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Abstract Zika virus was discovered in Uganda in 1947 and is transmitted by Aedes mosquitoes,

which also act as vectors for dengue and chikungunya viruses throughout much of the tropical

world. In 2007, an outbreak in the Federated States of Micronesia sparked public health concern. In

2013, the virus began to spread across other parts of Oceania and in 2015, a large outbreak in

Latin America began in Brazil. Possible associations with microcephaly and Guillain-Barré syndrome

observed in this outbreak have raised concerns about continued global spread of Zika virus,

prompting its declaration as a Public Health Emergency of International Concern by the World

Health Organization. We conducted species distribution modelling to map environmental suitability

for Zika. We show a large portion of tropical and sub-tropical regions globally have suitable

environmental conditions with over 2.17 billion people inhabiting these areas.

DOI: 10.7554/eLife.15272.001

Introduction
Zika virus (ZIKV) is an emerging arbovirus carried by mosquitoes of the genus Aedes (Musso et al.,

2014). Although discovered in Uganda in 1947 (Dick et al., 1952; Dick, 1953) ZIKV was only known

to cause sporadic infections in humans in Africa and Asia until 2007 (Lanciotti et al., 2008), when it

caused a large outbreak of symptomatic cases on Yap island in the Federated States of Micronesia

(FSM), followed by another in French Polynesia in 2013–14 and subsequent spread across Oceania

(Musso et al., 2015a). In the 2007 Yap island outbreak, it was estimated that approximately 20% of

ZIKV cases were symptomatic. While indigenous transmission of ZIKV to humans was reported for
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the first time in Latin America in 2015 (Zanluca et al., 2015; World Health Organisation, 2015),

recent phylogeographic research estimates that the virus was introduced into the region between

May and December 2013 (Faria et al., 2016). This recent rapid spread has led to concern that the

virus is following a similar pattern of global expansion to that of dengue and chikungunya

(Musso et al., 2015a).

ZIKV has been isolated from 19 different Aedes species (Haddow et al., 2012; Grard et al.,

2014), but virus has been most frequently found in Ae. aegypti (Monlun et al., 1992;

Marchette et al., 1969; Smithburn, 1954; Pond, 1963; Faye et al., 2008; Foy et al., 2011b;

WHO Collaborating Center for Reference and Research on Arboviruses and Hemorrhagic Fever

Viruses: Annual Report, 1999). These studies were based upon ancestral African strains of ZIKV,

but the current rapid spread of ZIKV in Latin America is indicative of this highly efficient arbovirus

vector (Marcondes and Ximenes, 2015). The relatively recent global spread of Ae. albopictus

(Benedict et al., 2007; Kraemer et al., 2015c) and the rarity of ZIKV isolations from wild mosquitoes

may also partially explain the lower frequency of isolations from Ae. albopictus populations. Whilst

virus transmission by Ae. albopictus and other minor vector species has normally resulted in only a

small number of cases (Kutsuna et al., 2015; Roiz et al., 2015), these vectors do pose the threat of

limited transmission (Grard et al., 2014). The wide geographic distribution of Ae. albopictus com-

bined with the frequent virus introduction via viraemic travellers (McCarthy 2016; Bogoch et al.,

2016; Morrison et al., 2008; Scott and Takken, 2012), means the risk for ZIKV infection via this vec-

tor must therefore also be considered in ZIKV mapping.

The fact that ZIKV reporting was limited to a few small areas in Africa and Asia until 2007 means

that global risk mapping has not, until recently, been a priority (Pigott et al., 2015b). Recent associ-

ations with Guillain-Barré syndrome in adults and microcephaly in infants born to ZIKV-infected

mothers (World Health Organisation, 2015; Martines et al., 2016) have revealed that ZIKV could

lead to more severe complications than the mild rash and flu-like symptoms that characterize the

eLife digest Zika virus is transmitted between humans by mosquitoes. The majority of infections

cause mild flu-like symptoms, but neurological complications in adults and infants have been found

in recent outbreaks.

Although it was discovered in Uganda in 1947, Zika only caused sporadic infections in humans

until 2007, when it caused a large outbreak in the Federated States of Micronesia. The virus later

spread across Oceania, was first reported in Brazil in 2015 and has since rapidly spread across Latin

America. This has led many people to question how far it will continue to spread. There was

therefore a need to define the areas where the virus could be transmitted, including the human

populations that might be risk in these areas.

Messina et al. have now mapped the areas that provide conditions that are highly suitable for the

spread of the Zika virus. These areas occur in many tropical and sub-tropical regions around the

globe. The largest areas of risk in the Americas lie in Brazil, Colombia and Venezuela. Although Zika

has yet to be reported in the USA, a large portion of the southeast region from Texas through to

Florida is highly suitable for transmission. Much of sub-Saharan Africa (where several sporadic cases

have been reported since the 1950s) also presents an environment that is highly suitable for the Zika

virus. While no cases have yet been reported in India, a large portion of the subcontinent is also

suitable for Zika transmission.

Over 2 billion people live in Zika-suitable areas globally, and in the Americas alone, over 5.4

million births occurred in 2015 within such areas. It is important, however, to recognize that not all

individuals living in suitable areas will necessarily be exposed to Zika.

We still lack a great deal of basic epidemiological information about Zika. More needs to be

known about the species of mosquito that spreads the disease and how the Zika virus interacts with

related viruses such as dengue. As such information becomes available and clinical cases become

routinely diagnosed, the global evidence base will be strengthened, which will improve the accuracy

of future maps.

DOI: 10.7554/eLife.15272.002

Messina et al. eLife 2016;5:e15272. DOI: 10.7554/eLife.15272 2 of 19

Research Article Epidemiology and global health Microbiology and infectious disease

http://dx.doi.org/10.7554/eLife.15272.002
http://dx.doi.org/10.7554/eLife.15272


majority of symptomatic cases (Gatherer and Kohl, 2016). Considering these potentially severe

complications and the rapid expansion of ZIKV into previously unaffected areas, the global public

health community needs information about those areas that are environmentally suitable for trans-

mission of ZIKV to humans. Being a closely related flavivirus to DENV, there is furthermore the

potential for antigen-based diagnostic tests to exhibit cross-reactivity when IgM ELISA is used for

rapid diagnosis. Although ZIKV-specific serologic assays are being developed by the U.S. Centers

for Disease Control, currently the only method of confirming ZIKV infection is by using PCR on acute

specimens (Lanciotti et al., 2008, Faye et al., 2008). Awareness of suitability for transmission is

essential if proper detection methods are to be employed.

In this paper, we use species distribution modelling techniques that have been useful for mapping

other vector-borne diseases such as dengue (Bhatt et al., 2013), Leishmaniasis (Pigott et al.,

2014b), and Crimean-Congo Haemorrhagic Fever (Messina et al., 2015b) to map environmental

suitability for ZIKV. The environmental niche of a disease can be identified according to a combina-

tion of environmental conditions supporting its presence in a particular location, with statistical

modelling then allowing this niche to be described quantitatively (Kraemer et al., 2016). Niche

modelling uses records of known disease occurrence alongside hypothesized environmental covari-

ates to predict suitability for disease transmission in regions where it has yet to be reported

(Elith and Leathwick, 2009). Contemporary high spatial-resolution global data representing a

Figure 1. (A) Map showing the distribution of the final set of 323 ZIKV occurrence locations entered into the

ensemble Boosted Regression Tree modelling procedure. Locations are classified by year of occurrence to show

those which took place (i) prior to the 2007 outbreak in Federated States of Micronesia; (ii) between 2007–2014;

and (iii) during the 2015–2016 outbreak; (B) the total number of locations reporting symptomatic ZIKV occurrence

in humans globally over time.

DOI: 10.7554/eLife.15272.003

The following figure supplement is available for figure 1:

Figure supplement 1. Maps of all covariates entered into the 300 BRT models.

DOI: 10.7554/eLife.15272.004
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Figure 2. Maps of (A) global environmental suitability for ZIKV, ranging from 0 (grey) to 1 (red), showing greater

detail for (B) the Americas, (C) Africa, and (D) Asia and Oceania.

DOI: 10.7554/eLife.15272.005

The following figure supplements are available for figure 2:

Figure supplement 1. Uncertainty around Zika suitability predictions displayed in main manuscript – Figure 2,

ranging from less than 0.01 (very little uncertainty) to 0.94 (greatest uncertainty).

DOI: 10.7554/eLife.15272.006

Figure supplement 2. Effect plots for each covariate entered into the ensemble of 300 BRT models.

DOI: 10.7554/eLife.15272.007

Figure 2 continued on next page
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variety of environmental conditions allows for these predictions to be made at a global scale

(Hay et al., 2006).

Results
Figure 1A shows the locations of the 323 standardized occurrence records in the final dataset, classi-

fied by the following date ranges: (i) up until 2006 (before the outbreak in FSM); (ii) between 2007 (the

year of the FSM outbreak) and 2014; and (iii) since 2015, the first reporting of ZIKV in the Americas.

This map is accompanied by the graph in Figure 1B, showing the number of reported occurrence loca-

tions globally by year. These figures highlight the more sporadic nature of reporting until recent years,

with the majority of occurrences in the dataset (63%) coming from the recent 2015–2016 outbreak in

Latin America.

The final map that resulted from the mean of 300 ensemble Boosted Regression Tree (BRT) mod-

els is shown in Figure 2A (with greater detail shown for each region in Figures 2B–D). Figure 2—

figure supplement 1 shows the distribution of uncertainty based upon the upper and lower predic-

tion quantiles from the 300 models. We restricted our models to make predictions only within areas

where i) mosquito vectors (in this case Ae. aegypti) were able to persist and ii) where temperature

was sufficient for arboviral replication within the mosquito. The former of these was calculated by

taking the Ae. aegypti probability of occurrence (Kraemer et al., 2015c) value that incorporated

90% of all known occurrences (Kraemer et al., 2015b) (giving a threshold value of 0.8 and greater)

while the latter was evaluated using a mechanistic mosquito model (Brady et al., 2013; 2014), which

identified regions where arboviral transmission could be sustained for at least 355 days (one year

Figure 2 continued

Figure supplement 3. Environmental suitability for Zika virus transmission to humans, not taking into account

temperature suitability for dengue via Aedes albopictus.

DOI: 10.7554/eLife.15272.008

Figure supplement 4. Map showing areas predicted to have greater dengue suitability (from Bhatt et al., 2013,

Nature) vs those which are predicted to have greater Zika suitability in the current study.

DOI: 10.7554/eLife.15272.009

Figure 3. Status of ZIKV reporting as of 2016 by country, showing countries that are highly environmentally suitable (having a suitable area of more than

10,000 square kilometres) but which have not yet reported symptomatic cases of ZIKV in humans. ’Currently reporting’ countries are those having

reported cases since 2015.

DOI: 10.7554/eLife.15272.010
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minus the human incubation period) in an average year. Figure 3 is a country-level map distinguish-

ing between those countries that are currently reporting ZIKV, those which have reported ZIKV in

the past, those which have highly suitable areas for transmission, and those which are unsuitable.

Our models predicted high levels of risk for ZIKV in many areas within the tropical and sub-tropical

zones. Large portions of the Americas are suitable for transmission, with the largest areas of risk

occurring in Brazil, followed by Colombia and Venezuela, all of which have reported high numbers of

cases in the 2015–2016 outbreak. In Brazil, where the highest numbers of ZIKV are reported in the

ongoing epidemic, the coastal cities in the south as well as large areas of the north are identified to

have the highest environmental suitability of ZIKV. The central region of Brazil, on the other hand,

has low population densities and smaller mosquito populations, which is reflected in the relatively

low suitability for ZIKV transmission seen in the map. Although ZIKV has yet to be reported in the

USA, a large portion of the southeast region of the country, including much of Texas through to Flor-

ida, is also highly suitable for transmission. Potential risk for ZIKV transmission is high in much of

sub-Saharan Africa, with continuous suitability in the Democratic Republic of Congo and surrounding

areas and several sporadic case reports in western sub-Saharan countries since the 1950s. Although

no symptomatic cases have yet been reported in India, a large portion of this country is at potential

risk for ZIKV transmission (over 2 million square kilometres), with environmental suitability extending

from its northwest regions through to Bangladesh and Myanmar. The Indochina region, southeast

China, and Indonesia all have large areas of environmental suitability as well, extending into Oce-

ania. While only representing less than ten percent of Australia’s total land area, the area shown to

be suitable for ZIKV transmission in its northernmost regions is considerable (comprising nearly

250,000 square kilometres).

Our models showed ZIKV risk to be particularly influenced by annual cumulative precipitation,

contributing 65.0% to the variation in the ensemble of models. The next most important predictor in

the model was temperature suitability for DENV transmission via Ae. albopictus, contributing 14.6%.

These are followed by urban extents (8.3%), temperature suitability for DENV via Ae. aegypti (5.7%),

the Enhanced Vegetation Index (EVI; 3.8%), and minimum relative humidity (2.5%). Effect plots for

each covariate are provided in Figure 2—figure supplement 2. Validation statistics indicated high

predictive performance of the BRT ensemble mean map evaluated in a 10-fold cross-validation pro-

cedure, with area under the receiver operating characteristic (AUC) of 0.829 ( ± 0.121 SD). Due to

Table 1. Population living in areas suitable for ZIKV transmission within each major world region and

top four countries contributing to these populations at risk.

Region/Country Population living in areas suitable for ZIKV transmission (millions)

Africa 452.58

Nigeria 111.97

Democratic Republic of the Congo 68.95

Uganda 33.43

United Republic of Tanzania 22.70

Americas 298.36

Brazil 120.65

Mexico 32.22

Colombia 29.54

Venezuela 22.22

Asia 1,422.13

India 413.19

Indonesia 226.04

China 213.84

Bangladesh 133.29

World 2,173.27

DOI: 10.7554/eLife.15272.011
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the uncertainty about Ae. albopictus as a competent vector for ZIKV, we also provide results for an

ensemble of models which did not include temperature suitability for dengue via this mosquito spe-

cies in Figure 2—figure supplement 3.

A threshold environmental suitability value of 0.397 in our final map was determined to incorpo-

rate 90% of all ZIKV occurrence locations. This was used to classify each 5 km x 5 km pixel on our

final map as suitable or unsuitable for ZIKV transmission to humans. Using high-resolution global

population estimates (WorldPop, 2015; SEDAC, 2015), we summed the populations living in Zika-

suitable areas and have identified 2.17 billion people globally living within areas that are environ-

mentally suitable for ZIKV transmission. Table 1 shows a breakdown of this figure by major world

region, also showing the top four contributing countries to the potential population at risk. Asia has

the most people living in areas that are suitable for ZIKV transmission at 1.42 billion, accounted for

in large part by those living in India. In Africa, roughly 453 million people are living in areas suitable

for ZIKV transmission, the largest proportion of which live in Nigeria. In the Americas, more than 298

million people live in ZIKV-suitable transmission zones, with approximately 40 percent of these peo-

ple living in Brazil. Within the majority of environmentally suitable areas for ZIKV in the Americas,

prolonged year-round transmission is possible. Southern Brazil and Argentina, however, are more

likely to see transmission interrupted throughout the year, as is the case with the USA should autoch-

thonous ZIKV transmission occur there. Using high-resolution data on births for the year 2015

(WorldPop, 2015), we also estimate that 5.42 million births will occur in the Americas over the next

year within areas and times of environmental suitability for ZIKV transmission.

Discussion
A large number of viruses (circa 219) are known to be pathogenic (Woolhouse et al., 2012). Of the

53 species of Flavivirus, 19 are reported to have caused illness in humans (ICTV, 2014). Some flavivi-

ruses, such as DENV, YFV, Japanese encephalitis virus, and West Nile virus, are widespread, causing

many thousands of infections each year. The remainder, however, have been recognized as being

pathogenic to humans for decades, but have highly focal reported distributions and are only minor

contributors to mortality and disability globally (Hay et al., 2013; Murray et al., 2015). As a result,

many are of relatively low priority when research and policy interest are considered (Pigott et al.,

2015b). The recent spread of ZIKV across the globe highlights the need to reassess our consider-

ation of these other flaviviruses, to gain a better understanding of the factors driving their spread

and the potential for geographic expansion beyond their currently limited geographical extents.

Environmental suitability for virus transmission in an area does not necessarily mean that it will

arrive and/or establish in that location. Arboviral infections in particular are dependent on a variety

of non-environmental factors, with their movement having historically been largely attributed to

human mobility from travel, trade, and migration, which introduce the viruses to places where mos-

quito vectors are already present (Murray et al., 2013; Weaver and Reisen, 2010; Nunes et al.,

2015; Gubler and Clark, 1995). The identification of locations with permissible environments for

transmission of emerging diseases like ZIKV is crucial, as importation could give rise to subsequent

autochthonous cases in these locations (Hennessey et al., 2016; Zanluca et al., 2015). In order to

identify places potentially receptive for ZIKV, we assembled the first comprehensive spatial dataset

for ZIKV occurrence in humans and compiled a comprehensive set of high-resolution environmental

covariates. We then used these data to implement a species distribution modelling approach

(Elith and Leathwick, 2009) that has proven useful for mapping other vector-borne diseases

(Bhatt et al., 2013; Pigott et al., 2014a; Mylne et al., 2015; Messina et al., 2015b), allowing us to

make inferences about environmental suitability for ZIKV transmission in areas where it has yet to be

reported or where we are less certain about its presence. How the ongoing epidemic unfolds in

terms of case numbers (or incidence) will depend on a range of other factors such as local transmis-

sion dynamics, herd immunity, patterns of contact among mosquitoes and infectious and susceptible

humans (Stoddard et al., 2013), and mosquito-to-human ratios as recently shown for dengue

(Kraemer et al., 2015a) and chikungunya (Salje et al., 2016).

Globally, we predict that over 2.17 billion people live in areas that are environmentally suitable

for ZIKV transmission. We also estimate the number of births occurring in the Americas only, as it is

the region for which the most accurate high-resolution population data on births exists

(Tatem et al., 2014; Sorichetta et al., 2015) and because it is the focus of an ongoing outbreak,
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which is the largest recorded thus far. In the Americas alone, an estimated 5.42 million births

occurred in 2015 within areas and at times that are suitable for ZIKV transmission. It is important to

recognize that not all individuals will be exposed to ZIKV. Like with other flaviviruses, a ZIKV out-

break may be temporally and spatially sporadic and, even in the most receptive environments, is

unlikely that all of the population will be infected. Furthermore, increasing herd immunity of this

likely sterilizing infection will rapidly reduce the size of the susceptible population at risk for infection

in subsequent years (Dick et al., 1952) and work is ongoing to predict the likely infection dynamics

after establishment. Instead, the estimates are intended as indicators of the total number of individu-

als or births that may require protection during the first wave of the outbreak. Specifically, these

populations should be the focus of efforts to increase awareness and provide guidelines for mitigat-

ing personal risk of infection. In future analyses, our estimates could be extended to include ZIKV

incidence and the virus’ effect on incidence of associated conditions such as Guillain-Barré syndrome

and microcephaly. Before appropriately caveated estimates can be generated, however, more infor-

mation is needed regarding: (i) the background rate of these conditions due to other causes; (ii) how

risk may vary throughout the course of a pregnancy; (iii) the proportion of the population exposed

during outbreaks; and (iv) whether or not immunity acquired through a mother’s prior exposure is

protective.

For all arboviral diseases, public health education about reducing populations and avoiding con-

tact with mosquito vectors is required in at-risk areas. Specific to ZIKV is the risk of microcephaly in

newborns, which has led public health agencies to issue warnings for women who are currently or

planning on becoming pregnant in areas suspected to have ongoing ZIKV transmission and the dec-

laration of a Public Health Emergency of International Concern (Heymann et al., 2016). Due to the

sensitive nature and implications of these warnings, it is important that levels of risk are rigorously

estimated, validated, and updated. Transmission of related arboviral diseases still occurs in many

areas we defined as at-risk for ZIKV, which highlights the need for improved vector control out-

comes, particularly those targeting Ae. aegypti. Predicted levels of risk for ZIKV transmission are

potentially helpful for prioritized allocation of vector control resources, as well as for differential

diagnosis and, if a vaccine becomes available, delivery efforts. It should be noted that instances of

ZIKV sexual transmission have been reported (Patino-Barbosa et al., 2015; Musso et al., 2015b;

Foy et al., 2011a). We did not incorporate secondary modes of transmission into the models we

described here, but our map can help inform future discussions about the potential impact of this

mode of transmission as its relative importance becomes better understood.

A great deal of basic epidemiological information specific to ZIKV is lacking. As a result, informa-

tion must be leveraged from our knowledge about transmission of related arboviruses. Previous

work has focused on mapping other vector borne diseases that share much of the ecology of Zika,

such as DENV (Bhatt et al., 2013) and CHIKV, as well as for its primary vectors, Ae. aegypti and Ae.

albopictus (Kraemer et al., 2015c). For this reason, temperature suitability for dengue (Brady et al.,

2013, 2014) was entered into the models due to the greater number of field and laboratory studies

available for parameterising this metric for DENV. Until more studies related to vector competence

and temperature constraints on ZIKV transmission to humans are conducted, this is the most accu-

rate indicator of arboviral disease transmission via Aedes mosquitoes currently available. Indeed, all

other covariates in our models could equally be applied to mapping DENV and CHIKV, and ZIKV-

specific refinements to modelling covariates will be possible as the disease continues to expand to

allow for improvements in future iterations of the map. The relatively smaller amount of occurrence

data available for ZIKV (especially prior to recent outbreaks) means that this dataset should also be

updated with new information as necessary, leading to a stronger global evidence base and

improved accuracy of future maps. Better understanding of ZIKV transmission dynamics will eventu-

ally allow for further cartographic refinements to be made, such as the differentiation between

endemic- and epidemic-prone areas. Still, all covariates included in the current study have been

updated and refined since (Bhatt et al., 2013), and when combined with the most extensive occur-

rence database available for ZIKV, the resulting map we present here is currently the most accurate

depiction of the distribution of environmental suitability for ZIKV. A map highlighting differences in

predicted suitability for both diseases is provided in Figure 2—figure supplement 4.
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Conclusion
In this study, we produced the first global high spatial-resolution map of environmental suitability for

ZIKV transmission to humans using an assembly of known records of ZIKV occurrence and environ-

mental covariates in a species distribution modelling framework. While it is clear that much remains

to be understood about ZIKV, this first map serves as a baseline for understanding the change in the

geographical distribution of this globally emerging arboviral disease. Knowledge of the potential

distribution can encourage more vigilant surveillance in both humans and Aedes mosquito popula-

tions, as well as help in the allocation of limited resources for disease prevention. Public health

awareness campaigns and advice for mitigation of individual risk can also be focused in the areas we

have predicted to be highly suitable for ZIKV transmission, particularly during the first wave of infec-

tion in a population. The maps we have presented may also inform existing travel advisories for

pregnant women and other travellers. The maps and underlying data are freely available online via

figshare (http://www.figshare.com).

Materials and methods
To map environmental suitability for ZIKV transmission to humans, we applied a species distribution

modelling approach to establish a multivariate empirical relationship between the probability of

ZIKV occurrence and the environmental conditions in locations where the disease has been con-

firmed. We employed an ensemble boosted regression trees (BRT) methodology (De’ath, 2007;

Elith et al., 2008), which required the generation of: (i) a comprehensive compendium of known

locations of disease occurrence in humans; (ii) a set of background points representing locations

where ZIKV has not yet been reported; and (iii) a set of high-resolution globally gridded environmen-

tal and socioeconomic covariates hypothesised to affect ZIKV transmission. The resulting model pro-

duces a 5 x 5 km spatial-resolution global map of environmental suitability for ZIKV transmission to

humans.

Assembly of the geo-referenced ZIKV occurrence dataset
Information about the locations of ZIKV occurrence in humans was extracted from peer-reviewed lit-

erature, case reports, and informal online sources following previously established protocols

(Kraemer et al., 2015b; Messina et al., 2014; 2015a). To collate the peer-reviewed dataset, litera-

ture searches were undertaken using PubMed (http://www.ncbi.nlm.nih.gov/pubmed) and ISI Web

of Science (http://www.webofknowledge.com) search engines using the search term ’Zika’. No lan-

guage restrictions were placed on these searches; however, only those citations with a full title and

abstract were retrieved, resulting in the review of 148 references ranging in publication dates

between 1951 and 2015. In-house language skills allowed review of all English, French, Portuguese

and Spanish articles for useable location information for human ZIKV occurrence. ProMED-mail

(http://www.promedmail.org) was also searched using the term ’Zika’, resulting in the review of 139

reports between 27 June 2007 and 18 January 2016. Additionally, the most current database of

ZIKV case locations in Brazil was obtained directly from the Brazilian Ministry of Health. From all

sources, only laboratory confirmation of symptomatic ZIKV infection in humans was entered into the

dataset (mention of suspected cases was not entered). Serological evidence from healthy individuals

could represent a past infection, with transmission potentially occurring in a different location to that

where the individual currently resides (Darwish et al., 1983), or could be an artefact from possible

cross-reactivity with a variety of different viruses (Smithburn et al., 1954). As a result, these less reli-

able diagnoses of ZIKV were excluded.

All available location information was extracted from each peer-reviewed article and ProMED

case report. The site name was used together with all contextual information provided about the

site to determine its latitudinal and longitudinal coordinates using Google Maps (https://www.maps.

google.com). If the study site could be geo-positioned to a specific place, it was recorded as a point

location. If the study site could only be identified at an administrative area level (e.g. province or dis-

trict), it was recorded as a polygon along with an identifier of its administrative unit. If imported

cases were reported with information on the site of infection, they were geo-positioned to this site;

if imported cases were reported with no information about the site of infection, they were not

entered into the dataset. Informal online data sources were collated automatically by the web-based

Messina et al. eLife 2016;5:e15272. DOI: 10.7554/eLife.15272 9 of 19

Research Article Epidemiology and global health Microbiology and infectious disease

http://www.figshare.com
http://www.ncbi.nlm.nih.gov/pubmed
http://www.webofknowledge.com
http://www.promedmail.org
https://www.maps.google.com
https://www.maps.google.com
http://dx.doi.org/10.7554/eLife.15272


system HealthMap (http://www.healthmap.org) as described elsewhere (Freifeld et al., 2008). Alerts

for ZIKV were obtained from HealthMap for the years 2014–2016, and then manually checked for

validity. In total, usable location information was extracted from 110 sources. Information was also

collected about the status of symptoms in each reported occurrence, distinguishing between those

where symptomatic cases were being reported, versus those where only seroprevalence was

detected in healthy individuals.

Due to the potential for multiple independent reports referring to the same cases temporal and

spatial standardization was required, as we have described previously in detail for dengue mapping

efforts (Messina et al., 2014). In brief, an occurrence was defined as a unique location with one or

more confirmed cases of ZIKV occurring within one calendar year (the finest temporal resolution

available across all records). Point locations were considered to be overlapping if they lay on the

same 5 km x 5 km pixel, and polygon locations were identified by a unique administrative unit code.

Furthermore, all polygons whose geographic area was greater than one square decimal degree

(approximately 111 square kilometers at the equator) were removed from the dataset to avoid aver-

aging covariate values over very large areas, and only those occurrences comprising symptomatic

individuals were retained for modelling purposes to ensure an accurate location of infection. In total,

the final occurrence dataset contained 323 unique occurrences to be entered into our BRT modelling

procedure. A map of the final set of occurrence locations is provided as Figure 1A.

Generation of the background location dataset
Separate maps of the relative probability of occurrence of Ae. aegypti and Ae. albopictus

(Kraemer et al., 2015c) were used to compute a combined metric of the relative probability of vec-

tor occurrence, by taking the maximum value from the two layers for all 5 km x 5 km gridded cells

globally. The inverse of this combined-Aedes occurrence probability layer (higher values indicating

greater certainty of absence) was then used to draw a biased sample of 10,000 background loca-

tions. As such, a greater number of background points were sampled in areas where we are more

certain that Ae. aegypti or Ae. albopictus do not occur, and therefore where ZIKV is less likely to be

transmitted to humans. While it has been demonstrated that predictive accuracy from presence-

background species distribution models can be improved by biasing background record locations

toward areas with greatest reporting probabilities (Phillips et al., 2009), information on possible

reporting biases, or proxies of such spatial bias, are currently unavailable for ZIKV. These 10,000

background locations were combined with the standardized occurrence dataset to serve as compari-

son data locations in the BRT species distribution modelling procedure. The background locations

were weighted such that their total sum was equal to the total number of occurrence locations

(n=237; pseudo-absence weighting=0.0237), in order to aid in the discrimination capacity of the

model (Barbet-Massin et al., 2012).

Explanatory covariates
A set of six covariates hypothesized to influence the global distribution of ZIKV transmission to

humans were used in our models to establish an empirical relationship between ZIKV presence or

absence and underlying environmental conditions. These six covariates included: (i) an index of tem-

perature suitability for dengue transmission to humans via Ae. aegypti; (ii) temperature suitability for

dengue transmission to humans via Ae. albopictus; (iii) minimum relative humidity; (iv) annual cumu-

lative precipitation; (v) an enhanced vegetation index (EVI); and (vi) urban versus rural habitat type.

The underlying hypothesis behind each of the covariates is discussed in more detail below, along

with a description of data sources and any processing that was undertaken before entering these

covariates into our models. Maps of each covariate layer are provided in the supplementary informa-

tion in Figure 1—figure supplement 1.

Temperature suitability for dengue transmission to humans
via Ae. aegypti or Ae. albopictus: Temperature affects key physiological processes in Aedes mosqui-

toes, including age- and temperature-dependent adult female survival, as well as the duration of the

extrinsic incubation period (EIP) of arboviruses and the length of the gonotrophic cycle (Brady et al.,

2013). While these parameters have yet to be measured experimentally for ZIKV, they have been for

the closely related DENV. We obtained temperature data from WorldClim v1.03 (http://www.
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wordclim.org), which uses historic global meteorological station data from 1961–2005 to interpolate

global climate surfaces. MARKSIM software (Jones and Thornton, 2000) was then used to apply the

coefficients of 17 Global Climate Models (GCMs) to estimate temperature values for the year 2015.

This enabled us to incorporate the quantified effects of temperature on DENV transmission into a

cohort simulation model that analysed the cumulative effects of both diurnal and inter-seasonal

changes in temperature on DENV transmission within an average year, both for Ae. aegypti and Ae.

albopictus separately. The models were then applied to the 2015 temperature data for each 5 km x

5 km grid cell globally. This resulted in maps of temperature suitability for DENV transmission by

either Aedes species ranging from 0 (no suitable days) to 1 (365 suitable days). These measures

were then used as a proxy for temperature suitability for ZIKV transmission to humans.

Annual cumulative precipitation
Presence of static surface water in natural or man-made containers is a pre-requisite for Aedes ovi-

position and larval and pupal development. While fine-scale spatial and temporal heterogeneities

have been observed between precipitation, vector abundance, and incidence of human DENV infec-

tions, there is evidence that areas with greater amounts of precipitation are generally associated

with higher DENV infection risk (Chandy et al., 2013; Chowell and Sanchez, 2006; Dom et al.,

2013; Pinto et al., 2011; Restrepo et al., 2014; Sang et al., 2014; Sankari et al., 2012;

Campbell et al., 2015). Although studies that directly connect levels of precipitation to ZIKV trans-

mission have yet to exist, we assumed for Zika a similar association of precipitation as closely related

flaviruses. WorldClim v1.03 precipitation data and MARKSIM software were used as described above

for temperature, to estimate annual cumulative precipitation for the year 2015 for each 5 km x 5 km

grid cell globally.

Minimum relative humidity
Greater relative humidity has been found to promote DENV propagation in Ae. aegypti mosquitoes

in several localized settings (Colón-González et al., 2011; Thu et al., 1998), and has also been

found to be an important contributor when predicting DENV risk at a global scale (Hales et al.,

2002). Therefore, we again assumed a similar association for ZIKV in the absence of any direct stud-

ies, and included the minimum annual relative humidity in our models as a potential limiting factor

to ZIKV transmission. Relative humidity (RH) was calculated as a percent of saturation humidity, or

the amount of water vapour required to saturate the air given a particular temperature, using the

temperature data from WorldClim v1.03 described earlier. The saturation, or ’dew’, point (TdewÞ was

calculated using a tabular relationship (Linacre, 1977). RH was then calculated as follows:

RH ¼
VðTxÞ

VðTdewÞ
� 100

Where VðTdewÞ = 611:21� exp 17:502� T
240:97þT

� �

and VðTxÞ is the humidity at the given tempera-

ture. We then extracted the minimum annual RH for each 5 km x 5 km pixel globally for the year

2015.

Enhanced vegetation index (EVI)
A close association has been shown between local moisture supply, vegetation canopy develop-

ment, and abundance of mosquito reproduction (Linthicum et al., 1999), with previous studies

highlighting the importance of moisture-related measures such as relative humidity to DENV occur-

rence (Hales et al., 2002). Although resistant to desiccation, both Aedes eggs and adults require

moisture to survive (Cox et al., 2007; Sota and Mogi, 1992; Reiskind and Lounibos, 2009;

Costa et al., 2010; Luz et al., 2008), with low dry season moisture levels substantially affecting

Aedes mortality (Russell et al., 2001; Trpis, 1972; Luz et al., 2008). Vegetation canopy cover has

previously been associated with higher Aedes larvae density (Fuller et al., 2009; Troyo et al., 2009;

Bisset Lazcano et al., 2006; Barrera et al., 2006) by reducing evaporation from containers,

decreasing sub-canopy wind speed, and protecting outdoor habitats from direct sunlight. To

account for these factors, we included a 5 km x 5 km resolution measure of the EVI derived from

NASA’s Moderate Resolution Imaging Spectrometer (MODIS, Boulder, Colorado) imagery

(Wan et al., 2002; Lin, 2012), summarized from gap-filled, 8-day, 1 km x 1 km resolution images
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acquired globally for years 2000 through 2014 (Weiss et al., 2014) to produce a mean annual EVI

layer. This mean EVI product is indicative of amount of photosynthesis taking place in the environ-

ment over the course of a year, which is positively correlated with the density of vegetation, and is

thus a proxy for the level of moisture available given the relationship between precipitation and veg-

etative growth.

Urban versus rural habitat type
There is a well-established link between urban areas, some vector borne diseases, and their vectors.

In particular, Ae. aegypti is found in close proximity to human dwellings often breeding in artificial

containers (Brown et al., 2011; Powell and Tabachnick, 2013; Kraemer et al., 2015c). To identify

the relationship between urbanisation and ZIKV presence we adapted probabilistic spatial modelling

techniques to predict the spatial distribution of global urban extents at a 5 km x 5 km spatial resolu-

tion. We used urban growth rates from the United Nations Population Division (Division, 2014),

paired with urban extents measured and tested by the Moderate Resolution Imaging Spectroradi-

ometer Collection 5 (MODIS C5) land-cover product for Asia (Schneider et al., 2009;

2010; 2015). A set of spatial covariate datasets hypothesized to influence the spatial patterns of

urban expansion was generated, including the time to travel from each 5 km x 5 km pixel to a major

city (Nelson, 2008), the proportion of urbanised land within a buffer of 20 km, human population

density (Linard and Tatem, 2012; Stevens et al., 2015; Gaughan et al., 2013), slope (Becker et al.,

2009), and distance to water (Arino et al., 2008). A BRT modelling approach was then used to pre-

dict areas that would become urban in 2015 (Linard et al., 2013). Outputs were tested against a

training dataset comprising points from Asia only, and showed good overall predictive performance

(AUC=0.82). The output raster is a 5 km x 5 km gridded surface with urban (1) vs. rural (0) pixels.

Ensemble boosted regression trees approach
The boosted regression tree (BRT) modelling procedure combines regression trees with gradient

boosting (Friedman, 2001). In this procedure, an initial regression tree is fitted and iteratively

improved upon in a forward stagewise manner (boosting) by minimising the variation in the response

not explained by the model at each iteration. It has been shown to fit complicated response func-

tions efficiently, while guarding against over-fitting by use of extensive internal cross-validation. As

such, this approach has been successfully employed in the past to map dengue and its Aedes mos-

quito vectors, as well as other vector-borne diseases (Bhatt et al., 2013; Pigott et al., 2014b;

Messina et al., 2015b; Kraemer et al., 2015c). To increase the robustness of model predictions

and quantify model uncertainty, we fitted an ensemble (Araújo and New, 2007) of 300 BRT models

to separate bootstraps of the data. We then evaluated the central tendency as the mean across all

300 BRT models (Bhatt et al., 2013). Each of the 300 individual models was fitted using the gbm.

step subroutine in the dismo package in the R statistical programming environment (Elith et al.,

2008). All other tuning parameters of the algorithm were held at their default values (tree complex-

ity= 4, learning rate= 0.005, bag fraction= 0.75, step size= 10, cross-validation folds=10). Each of

the 300 models predicts environmental suitability on a continuous scale from 0 to 1, with a final pre-

diction map then being generated by calculating the mean prediction across all models for each

5 km x 5 km pixel. Cross-validation was applied to each model, whereby ten subsets of the data

comprising 10% of the presence and background observations were assessed based on their ability

to predict the distribution of the other 90% of records using the mean area under the curve (AUC)

statistic. This AUC value was then averaged across the ten sub-models and finally across all 300

models in the ensemble in order to derive an overall estimate of goodness-of-fit. Additionally, to

avoid AUC inflation due to spatial sorting bias, a pairwise distance sampling procedure was used,

resulting in a final AUC which is lower than would be returned by standard procedures but which

gives a more realistic quantification of the model’s ability to extrapolate predictions to new regions

(Wenger and Olden, 2012). We restricted our models to make predictions only within areas where

either Ae. aegypti probability of occurrence (Kraemer et al., 2015c) is more than 0.8 or temperature

is conducive to transmission for at least 355 days in an average year. A second ensemble of 300

models was executed which did not take into account temperature suitability for dengue transmis-

sion via Ae. albopictus, due to the uncertainty of this species as a competent ZIKV vector. The results

of this ensemble of models are provided in Figure 2—figure supplement 3.
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Population and births at risk
To calculate the number of people located in an area that is at any level of risk for ZIKV transmission,

the global ZIKV environmental suitability map was combined with fine-scale global population surfa-

ces (SEDAC, 2015; WorldPop, 2015). Firstly, the continuous ZIKV environmental suitability map

(ranging from 0 to 1) was converted into a binary surface indicating whether there is any risk of trans-

mission. To do this, we carried out a protocol previously used in (Pigott et al., 2015a), choosing a

threshold environmental suitability value that encompasses 90% of the ZIKV occurrence point loca-

tions. This threshold cut-off of 90% was chosen (rather than 100%) to reflect potential errors or inac-

curate locations in the occurrence point dataset. Every 5 km x 5 km pixel in the suitability map with a

value above this threshold value was considered at risk for ZIKV transmission. Finally, to estimate the

population at risk, we multiplied this binary ZIKV risk map by the global population counts (aligned

and aggregated to the same 5 x 5 km grid) for the year 2015 and summed across all cells.

We next estimated the maximum number of births potentially affected by ZIKV in Latin America,

as this region is the focus of the recent outbreak and the first to point to a possible association with

microcephaly in newborn infants to mothers infected with ZIKV. In order to do this, we first identified

the proportion of the year that is suitable for ZIKV transmission within areas that are predicted to be

suitable in the binary ZIKV risk map. This proportion was derived from existing temperature suitabil-

ity models (Brady et al., 2013; 2014), which predict the total number of days within an average year

that arbovirus transmission can be sustained in Ae. aegypti, assuming there is a local human reser-

voir of infection. While the intra-mosquito viral dynamics in this model were parameterised for den-

gue virus, the limited information currently available on other arboviruses suggests that their

dynamics are similar (Lambrechts et al., 2011). Using the resulting 5 km x 5 km map showing the

proportion of the year suitable for ZIKV transmission to humans, we then multiplied this by a map

(also at a 5 km x 5 km resolution) of the number of births in the Americas for the year 2015, updated

from (Tatem et al., 2014; UNFPA, 2014). The resulting map indicates the number of births in the

Americas potentially at risk for ZIKV (for 2015), assuming ZIKV currently fully occupies its environ-

mental niche and that births are evenly distributed throughout the year.
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