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Abstract:  Climate change is expected to affect health through changes in exposure to weather disasters. 

Vulnerability to coastal flooding has decreased in recent decades but remains disproportionately high in low-

income countries. We developed a new statistical model for estimating future storm surge-attributable mortality. 

The model accounts for sea-level rise and socioeconomic change, and allows for an initial increase in risk as 

low-income countries develop. We used observed disaster mortality data to fit the model, splitting the dataset to 

allow the use of a longer time-series of high intensity, high mortality but infrequent events. The model could not 

be validated due to a lack of data. However, model fit suggests it may make reasonable estimates of log 

mortality risk but that mortality estimates are unreliable. We made future projections with and without climate 

change (A1B) and sea-based adaptation, but given the lack of model validation we interpret the results 

qualitatively. In low-income countries, risk initially increases with development up to mid-century before 

decreasing. If implemented, sea-based adaptation reduces climate-associated mortality in some regions, but in 

others mortality remains high. These patterns reinforce the importance of implementing disaster risk reduction 

strategies now.  Further, while average mortality changes discontinuously over time, vulnerability and risk are 

evolving conditions of everyday life shaped by socioeconomic processes. Given this, and the apparent 

importance of socioeconomic factors that condition risk in our projections, we suggest future models should 

focus on estimating risk rather than mortality. This would strengthen the knowledge base for averting future 

storm surge-attributable health impacts.            
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1 Introduction 

Climate change is expected to affect health through changes in exposure to weather disasters, 

including via wind storms (e.g. cyclones)1 and coastal flooding (IPCC, 2012). During 1980-

2000, cyclones caused an average of 12,000 deaths per year globally (Shultz et al., 2005), but 

a single disaster can cause a large loss of life in the absence of adequate defences and/or 

warning systems. High mortality events often occur in lower-income countries, but high-

income countries are not immune: Cyclone Nargis caused 138,000 deaths in Burma in 2008 

                                                 
1 Throughout, we use “cyclones” as a general term to refer to any major wind storm that may be associated with 

a storm surge; e.g. extra-tropical storms, hurricanes, tropical cyclones, typhoons etc.   



(Fritz et al., 2009), and Hurricane Katrina caused 1,800 deaths in the USA in 2005 (Knabb et 

al., 2006).  

 

Vulnerability to cyclones has decreased in recent decades due to improved disaster 

preparedness, but vulnerability remains about 200 times greater in low-income than in 

higher-income countries (UNISDR, 2011). Further, risk does not decline linearly with 

economic development: observations suggest that as low income countries develop, risk may 

initially increase before decreasing (De Haen and Hemrich, 2007, Kellenberg and Mobarak, 

2008). For example, expansion of slums in coastal cities may increase population exposure at 

a greater pace than can be compensated by protective measures.   

 

Cyclone mortality is associated with high-speed winds, heavy rains, and storm surge. We 

focus on mortality risk associated with storm surge, defined as sea water pushed forward and 

drawn up by a depression which floods an otherwise dry area of land. Climate change is 

expected to worsen storm surge events through sea-level rise (Brown et al., 2013) and via an 

increase in intensity, but not frequency, of cyclones (IPCC, 2012, Emanuel, 2005). Non-

climate factors will also affect future surge risk including physical changes such as land 

subsidence, and socioeconomic changes such as increased coastal population (McGranahan et 

al., 2007) and disaster preparedness. 

 

Previous studies of future flood mortality are of two types: ‘event-based’ (see Jonkman et al., 

2008 for a review; also, Penning-Roswell et al., 2005, Maaskant et al., 2009)  or ‘average 

mortality’ (e.g. McMichael et al., 2004, Peduzzi et al., 2012) models. The former focus on 

single flood events, using detailed data describing flood characteristics (e.g. depth, velocity), 

area-specific conditions (e.g. buildings, evacuation routes), and the exposed population (e.g. 

age distribution). The data requirements mean the strategy is not suitable for global-level 

modelling. ‘Average-mortality’ models consider a given area (e.g. a grid cell, a nation-state) 

and use data on long term probabilities of events, average population exposure, and average 

socioeconomic conditions to estimate average mortality. We adopt this latter strategy.  

 

To our knowledge, only two papers have quantified global storm-surge mortality. McMichael 

et al (2004) developed a model using a 20 year series of mortality data for all coastal flood 

disasters. Mortality risk was estimated using national population as the denominator. For 



future projections, the changes in population vulnerability were linearly scaled to Gross 

Domestic Product (GDP) per capita.  

 

Dasgupta et al (2009) developed a spatially explicit mortality model for 84 countries and 577 

coastal cities. They modelled 1:100-year storm surges, and assessed future impacts under 

climate change accounting for sea-level rise and a 10% increase in event intensity. Despite 

detailed physical modelling, socioeconomic changes were poorly represented: future country-

level impacts assumed no population or socioeconomic changes from the present, and city-

level impacts held socioeconomics constant but accounted for population change.  

 

In this paper, we developed a new statistically-based ‘average mortality’ model for estimating 

future mortality attributable to storm surge due to climate change in the context of 

socioeconomic change.  

 

First, we describe the coastal flood model (DIVA) which provides the principal input into our 

mortality risk model: population at risk of exposure to storm surge. Second, we outline the 

development of the mortality risk model. Third, we describe model calibration. Fourth, we 

project future mortality risk and mortality under given climate and socioeconomic scenarios.  

 

2 Coastal flood model 

The Dynamic Interactive Vulnerability Assessment (DIVA) is an integrated bio-geophysical 

model (Vafeidis et al., 2008, Hinkel and Klein, 2009) which assesses the impacts of sea-level 

rise (assuming no increase in storminess), subsidence and socio-economic change in the 

coastal zone. Pattern-scaled climate scenarios were derived from Brown et al (2013) (also see 

Section 5.1.1), subsidence from Peltier (2000b, Peltier, 2000a), and socioeconomics 

(population and GDP) from the SRES socio-economic scenarios (Nakicenovic and Swart 

2000) (see Online Resource, ESM, Appendix S1).  

 

We used the DIVA country-level output, “average annual people at risk of exposure to storm 

surge”; i.e. expected number of people flooded per year if they do not evacuate or move to 

storm shelters, as analysed in Brown et al (2013).  

 



DIVA considers two engineered adaptation strategies (‘sea-based strategies’). ‘No upgrade to 

protection’ models dikes for a common baseline (1995) and assumes this standard of 

protection is not upgraded as sea-level rises and socioeconomics change; i.e. a future without 

adaptation. ‘Upgrade to protection’ entails that dikes are upgraded reflecting changes in 

population density as sea-level rises, and that there is beach nourishment in response to 

erosion; i.e. a future with adaptation.   

 

Two aspects of DIVA guided the development of the mortality risk model. Firstly, DIVA 

considers sea-based strategies of adaptation and estimates people at risk of flooding if the 

defences are breached. It does not account for other adaptation strategies such as warning 

systems, shelters, and building regulation (‘land-based strategies’). We therefore included an 

analogue of the Human Development Index (HDI) (UNDP, 2010) as a proxy variable for 

land-based strategies in the mortality risk model. That is, we refer to two types of adaptation: 

‘sea-based strategies’ (as modelled by DIVA), and ‘land-based strategies’ (as modelled in the 

mortality risk model).  

 

Secondly, DIVA assumes that cyclone intensity and frequency will remain at baseline levels 

in the future. Thus, the mortality risk model assumes the same.     

 

3 Mortality risk model 

3.1 Form of the model 

Population mortality risk is a function of climatic and socioeconomic conditions. To model 

this, we adopted a model structure based on Patt et al (2010), who developed a statistical 

model for estimating country-level vulnerability (as log mortality risk) to climate-related 

extreme events. We tested various configurations of the model and selected the following 

form (see Section 4): 
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where: 

jiM , is average annual surge mortality in country i , in time-slice j , 



where j is 2000 for calibration, and 2030, 2050, and 2080 for future projections  

jiX ,  is average annual people at risk of exposure to storm surge (as estimated by DIVA) 

‘ 610 ’ scales the equation to ‘per million people exposed’ 

iE  is average annual number of surge events 

jiP , is national population 

jiH , is an analogue of the HDI 

a  are fitted parameters, where a 1 to 4 

k is the fitted constant 

 

Following DIVA, which holds event frequency and intensity constant, we hold iE  constant 

over time. jiM ,  and iE  were shifted by 1 as they may take zero values meaning the log term 

would be undefined.  

 

The future time-slices are 2026 to 2030, 2046 to 2050, and 2076 to 2080 for j = 2030, 2050 

and 2080 respectively. The baseline time-slice (j=2000) used for calibration represents the 

present. Typically when conducting a multi-model assessment, data from various sources are 

not strictly aligned: exposure data are for 1996 to 2000; mortality data cover 1970 to 2010; 

and socioeconomic data are for 2000.  

 

The left-hand side (LHS) of equation (1) approximates to ‘log mortality risk per million 

people at risk of exposure to storm surge’ when mortality is high (as shifting mortality by 1 

would have little influence). Hence we refer to the LHS as ‘log mortality risk’.    

 

Following Patt et al (2010), the variables on the right-hand side (RHS) are interpreted as 

follows. iE  and jiP ,  represent exposure characteristics. As the number of annual events ( iE ) 

increases, coping capacity is expected to decrease, and hence average mortality risk is 

expected to increase. Conversely, it is ‘expected that larger countries are likely to experience 

disasters over a smaller proportion of their territory or population, and also benefit from 

potential economies of scale in their disaster management infrastructure’ (Patt et al., 2010); 

thus as population ( jiP , ) increases, mortality risk is expected to decrease. 

 



The HDI ( jiH , ) is a national-level measure of development accounting for social and 

economic factors (UNDP, 2010). It takes values from 0 to 1, where 0 is the lowest level of 

development and 1 the highest. Here, the HDI acts a proxy for land-based strategies of 

adaptation.   

 

Generally, as jiH ,  increases, mortality risk may be expected to decline. However, for coastal 

floods, observations suggest that as low income countries develop, risk initially increases (see 

Section 1). Because of this, the model includes jiH ,  as a quadratic term. Due to data 

availability, we adopted an analogue of the HDI (see Section 4.1.3).    

 

3.2 Extraction of future mortality estimates  

Equation (1) estimates future mortality risk. Estimates of future mortality ( jiM , ) are 

extracted by rearranging equation (1):   
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Note that as the final step is to subtract 1, it is possible to obtain country-level results where 

01 ,  jiM . In these instances results are rounded up to 0. Additionally, if predicted 

mortality exceeded exposed, we set mortality equal to exposure. In our projections, this was 

necessary for three islands in Oceania. It is likely this problem arose due a combination of 

model error and locations with low exposure (due to low populations) but high risk.     



 

4 Model calibration 

We drew on various data sources and performed a number of transformations to calibrate the 

model (See Figure 1). In some instances, the same data enters the model in multiple 

locations; this situation is not uncommon in integrated assessment methods and we discuss 

the implications in Online Resource, ESM, Appendix S2.    

 

4.1 Data for fitting the model 

4.1.1 Baseline storm surge exposure ( 2000,iX ) 

Observational data for surge exposure are not available. We used modelled national-level 

estimates of exposure from DIVA for average annual exposure for 1996 to 2000. Globally, 

about 3.5 million people were at risk of exposure annually (see Online Resource, ESM, table 

S1 for regions, and table S2 for regional baseline exposure). As these were the only available 

exposure estimates we fit equation (1) cross-sectionally for a single time-slice.  

 

4.1.2 Baseline storm surge-attributable mortality ( 2000,iM ) 

Data for baseline storm surge-attributable mortality are not available. Thus we derived 

estimates from the only accessible global disaster dataset: the Emergency Events Database 

(EM-DAT) (CRED, 2011).  

 

EM-DAT provides mortality data by event by country. An event is included if: 10 or more 

people are killed; 100 or more are people affected; a state of emergency is declared; or, a 

call is made for international assistance. EM-DAT reports total mortality for cyclone 

events, and storm surge-specific deaths are not available. Consequently, we extracted all 

cyclone events (classified as Hydrological: storm surge/coastal flood; Meteorological: 

extratropical/tropical cyclone) over the period 1970 to 2010. For unclassified events, we 

checked other fields in the database (e.g. named events are likely to be cyclones). We 

identified a total of 1,569 events.  

 



A large proportion of total cyclone mortality is attributable to large infrequent events. 

Therefore it is preferable to assess average mortality using a long time-series of mortality 

data. EM-DAT data quality has improved in recent years, and may be considered reasonably 

complete for 15 to 20 years. However, events with high mortality may have been reasonably 

well recorded for around 30 to 40 years (personal communication, Phillipe Hoyois, EM-

DAT).  

 

This presents a trade-off.  On one hand, restricting data to the last 20 years would maximise 

completeness, but may introduce considerable biases: if an infrequent but high impact event 

struck a country during this period, average annual deaths would be high; if it was not struck, 

average deaths would be too low. On the other hand, using data covering 40 years would 

provide better (although not optimal) coverage of high impact events, but would exclude 

many smaller events.  

The best use of the data was to create two data sets: a short time-series covering 1990 to 2010 

including only ‘small’ events )...1( Ss  , and a long time-series covering 1970 to 2010 

including only ‘large’ events ( )...1 Ll  . After inspecting the data, we defined ‘small’ events 

as those with less than 200 deaths, and ‘large’ events as those with 200 or more deaths.  

 

As exposure data for the present were available only as averages for the baseline time-slice, 

we required corresponding mortality estimates. Our mortality data covered the period from 

1970 onward; during this time, world population almost doubled (United Nations, 2011) and 

this would have influenced death tolls. Thus to bring exposure and mortality data into line, 

we standardized deaths in all events to population in the year 2000 using standard methods 

(e.g. Donaldson and Donaldson, 2003). (See Online Resource, ESM, Appendix S3 for details 

and regional-level event and mortality data).  

 

We then estimated the fraction of all-cause cyclone-attributable deaths that were attributable 

to storm surge. We assumed that in the least developed countries about 90% of cyclone 

mortality is surge-attributable (Rappaport, 2000) compared to about 67% in more developed 

countries (Jonkman, 2005, Jonkman et al., 2009). We estimated baseline storm surge-

attributable mortality ( 2000,iM ) using a piecewise linear function and the HDI-analogue           

( 2000,iH ) (See Online Resource, ESM, Appendix S4).  



 

Finally, we combined mortality and exposure to estimate average annual mortality risk for the 

baseline time-slice. (See Online Resource, ESM, Table S3, for baseline surge-specific 

mortality and mortality risk estimates). 

 

4.1.3 Mortality risk model input variables ( i,20002000, H , , ii PE ) 

We estimated iE , the average annual number of cyclone events in country i , by summing the 

average annual number of events in the ‘small’ and ‘large’ event datasets (See Online 

Resource, ESM, Appendix S3, table S3.1). Populations in the year 2000, 2000,iP , were from 

the World Population Prospects (WPP), 2010 Revision (United Nations, 2011). Following 

Patt et al (2010), when calibrating the model (see Section 4.2) we tested a variable for fertility 

(also from the WPP), used as an indicator of women’s empowerment.  

 

The HDI is the geometric mean of normalised estimates of GDP/capita, life expectancy at 

birth, and education (UNDP, 2010). For consistency between baseline data and future 

projections we used an analogue of the HDI. GDP data was from the World Bank 

Development Indicators  (World Bank, 2012), population and life expectancy data from the 

WPP (United Nations, 2011), and ‘years of education at the age of 25’ from Barro and Lee 

(2000). All data was for the year 2000, or the nearest year available (See Online Resource, 

ESM, Appendix S5 for the method for calculating the HDI-analogue).  

 

4.2 Calibration 

We calibrated the mortality risk model using data for 141 countries with baseline data. After 

testing various forms we adopted equation (1), which met the following criteria. Firstly, the 

parameterized equation had a good statistical fit (adjusted 2R =0.43) (Table 1). Secondly, in 

conceptual terms (see Section 3.1), the signs of the estimated parameters are as expected. 1

is positive, meaning risk increases as events increase; 2 is negative, meaning risk decreases 

as population increases; and 4  is negative, meaning the equation is concave in relation to 

the HDI-analogue. Finally, it appeared to be fit-for-purpose (i.e. for making future 

projections) as the standardized regression coefficients show the equation is most responsive 



to variables for which the most reliable projection data are available. That is, the model is 

most sensitive to changes in ‘development’ ( jiH , ) and population ( iP ) and least responsive to 

‘events’ ( iE ), which is in approximation and held constant over time. (For further details, see 

Online Resource, ESM, Appendix S6).   

  

Classically, we would validate the calibrated model using an independent dataset. We were 

unable to do so for two reasons. Firstly, as only 141 national ‘observations’ were available 

we used all these data to calibrate the model. Secondly, prior to calibrating the model, the 

majority of the data were transformed (see Figure 1) meaning that even if a sub-set of data 

were reserved for validation it would not have been independent.  Hence, the best available 

indicator of model fit was the adjusted 2R . While this suggests log mortality risk is predicted 

reasonably well, it does not indicate the model makes reliable future projections.  

 

For mortality, we compared ‘observed’ mortality ( 2000,iM ) with estimates extracted using 

equation (2). Correlation was poor ( 08.0R ), suggesting mortality estimates are not 

reliable. This is partially because the model was fit in the logarithmic space (see Online 

Resource, ESM, Appendix S7). Total global ‘observed’ average annual mortality is 23,900 

compared to 14,600 predicted by the model.  

 

5 Future projections 

We estimated future storm surge-attributable mortality risk and mortality with land-based 

adaptation, with and without climate change-associated sea-level rise, and with and without 

sea-based strategies of adaptation, for the 2030s, 2050s and 2080s.  

 

5.1 Scenarios and future exposure estimates 

5.1.1 Scenarios 

The ‘with climate change’ scenario was modelled for an A1B future using seven General 

Circulation Models (GCMs) (Online Resource, ESM, Table S3) with an assumption of no 

change in storminess (Brown et al., 2013). Across the GCMs, global mean sea-level rise 



ranged from 0.28m to 0.53m by 2100, with respect to 1961-1990. A sea-level rise scenario 

for a ‘without climate change’ scenario was also derived.   

GDP and population data for an A1B scenario were from IMAGE 2.3 (van Vuuren et al., 

2007). Rates of population growth in the coastal zone were assumed to be the same as the 

national growth rates. For the HDI-analogue, life expectancy data were from the WPP 

(United Nations, 2011), and  years of education at age 25 were from Barro and Lee (2000). 

(See Online Resource, ESM, Table S4).  

 

5.1.2 Future exposure estimates ( ji,X ) 

DIVA estimated future national-level average annual people at risk of exposure to storm 

surge in futures with and without climate change, and with and without sea-based strategies 

of adaptation (All future projections include land-based adaptation). In futures with climate 

change, the median estimate across the GCMs was used as the exposure estimate ( jiX , ). 

 

5.2 Results  

We estimated future log mortality risk at the national-level, and mortality for 21 regions (see 

Online Resource, ESM, table S1). Given the model was not validated, and that it is known 

that mortality predictions are poor, the results should be seen as indicative at best. Of more 

interest are: (i) how future mortality risk changes with different input variables, and, (ii) how 

mortality patterns may change in futures with and without climate change, and with and 

without sea-based adaptation.  

 

In the projections it was possible for surge exposure to be 0; here, to avoid division by 0, we 

set the LHS of equation (1) to 0. (i.e. if exposure to surge is zero, mortality risk must also be 

0). 

 

5.2.1 Log mortality risk 

We estimated future log mortality risk at the national level (We did not aggregate this to 

regional level as it is not additive; )log()log()log( baba  ). Quantitative estimates of log 



mortality risk are difficult to interpret, but qualitative patterns show how factors included in 

the model interact to shape changes in mortality risk over time.  

 

Figure 2 shows projected log mortality risk estimates made using equation 1 for four selected 

countries chosen to illustrate diverse patterns. In each plot, the colour contours represent log 

mortality risk (i.e. LHS of equation 1) for that country, as a function of factors on the RHS of 

equation 1: the HDI-analogue ( jiH , , x-axis) and national population ( jiP , , y-axis). Note that 

the pattern of contours differs for each country due to the influence of number of annual 

events ( iE ). The black dots indicate the projected trajectory of log mortality risk over the 

next century, assuming climate change and land-based adaptation but without sea-based 

adaptation. Each dot is labelled with the time-slice (in brackets) and projections of average 

annual surge exposure ( jiX , ), which is a function of sea-level rise, land subsidence and 

population living in the coastal zone.  

 

In Bangladesh, despite an increasing HDI, risk increases until 2050 but then decreases to 

2030 levels in 2080 as HDI continues to increase. That is, the benefits of improved land-

based strategies in the 2080s are partially off-set by increased exposure risk. In Mozambique 

there is an even larger increase in mortality risk out to 2050 as HDI rises from a very low to 

moderate level. After this risk may rise further before returning to 2050 levels in 2080; again, 

rises in exposure partially off-set benefits associated with land-based adaptation and increases 

in population.  

 

In the USA, risk continually decreases, largely because population increases. This is despite 

more than a 10-fold increase in exposure by 2080; that is, population increases off-set 

exposure increases. Finally, Jamaica illustrates the difficulties of estimating baseline 

exposure risk in high-risk small islands; the estimated average exposure of 10 per year is 

likely to be too low. However, the model suggests baseline risk amongst the exposed is high, 

and that despite increases in exposure with time, risk declines – although it remains high - as 

the HDI increases.   

 



5.2.2 Mortality 

As the mortality projections are not robust we provide estimates of future mortality at 

regional level as categorical estimates. Figure 3 shows regional mortality at baseline and in 

the 2030, 2050 and 2080; regions are shown on the vertical axis, and time-slice on the 

horizontal axis. For each region there are three bars. The upper bar shows mortality without 

climate change and without sea-based strategies of adaptation. The central bar shows a future 

with climate change but without (sea-based) adaptation; comparing it with the top bar gives 

an indication of climate change-attributable mortality. The lower bar shows mortality in 

futures with climate change and adaptation; comparing the middle and lower bars gives an 

indication of the mortality burden avoidable via adaptation. (All futures include land-based 

strategies of adaptation).      

 

The results suggest that in East Asia, mortality will increase over time without climate 

change (upper bar), but that climate change will increase mortality further by 2080 (central 

bar). Sea-based strategies of adaptation may reduce future mortality to around baseline levels 

(lower bar). Similar patterns are seen in the Caribbean, Oceania, and Eastern and Western 

Sub-Saharan Africa. In these regions, adaptation reduces mortality to relatively low - 

although not insignificant - levels. In contrast, South and South East Asia have high baseline 

mortality, and it remains high regardless of the future scenario. While sea-based strategies of 

adaptation reduce future mortality to around baseline levels, storm surge-associated mortality 

remains a major threat.        

      

6 Discussion 

6.1 Mortality risk model 

We developed a new global-level storm surge mortality risk model. Methodologically, we 

made a number advances on the previous global-level work (McMichael et al., 2004, 

Dasgupta et al., 2009) which may provide the basis for further improvements (Table 2).   

 

We were unable to validate the model due to a lack of data. The fit of the log mortality risk 

model suggested projections may be reliable, but mortality projections are clearly unreliable. 

One reason for this is that the model was fitted in the log space (see Online Resource, ESM, 



Appendix S7). Additionally, the particularities of any given country may introduce 

significant errors when estimating national-level average mortality using a global-level 

model. For instance, during the baseline period Bangladesh was struck by three events with 

exceptionally high mortality (CRED, 2011) meaning modelled average mortality was likely 

to be too low (which was the case; see Online Resource, ESM, table S7.1). Conversely, partly 

in response to these events, significant actions have been taken to reduce risk (Cash et al, 

2013) potentially leading to overestimated average mortality. The former effect is due partly 

to chance and the latter is partly a feedback response. Future modelling efforts should attempt 

to address these influences.   

 

This raises a more general issue related to the nature of surge deaths themselves: a few 

infrequent large events that are relatively unpredictable over decadal time scales cause the 

vast majority of mortality (CRED, 2011). This means average annual mortality is subject to 

discontinuities when a high mortality event occurs. In contrast, risk is a function of social and 

economic change as well as potential exposure; thus it tends to change continuously. While 

alternative discontinuous statistical approaches could be used to model mortality (e.g. 

Schoenberg, 2003)), we suggest modeling risk is preferable. That is, the ultimate purpose of 

modeling the health impacts of climate change is to avert them. To do this, risk – which is an 

evolving condition of daily life - must be reduced and models that trace its trajectory will best 

guide adaptation.         

 

6.2 Future mortality risk and mortality under climate change 

Our results are broadly consistent with previous assessments (McMichael et al., 2004). 

Climate change is expected to increase surge mortality, with the impacts concentrated in 

regions such as South and South-East Asia. Given the lack of model validation and the 

unreliability of the mortality estimates, our projections are best interpreted in terms of factors 

that appear to be important for impacts estimates, as this may provide guidance for future 

modelling.  

 

For mortality risk, Bangladesh and Mozambique show how ‘development’ may initially 

increase risk. This behaviour was built into the model, but if it reflects reality, it reinforces 

the importance of implementing disaster risk reduction strategies now (see also Patt et al 

(2010)). In the USA, change in risk is driven by improved coping capacity (operationalized 



using population). However, this operationalization may be questionable, particularly in low 

income settings: conceivably, increased population may decrease coping capacity. The 

relation between population and risk, and how it varies with context, should be further 

investigated. Additionally, in equation (1) there is potentially overlap between the assumed 

influence of population on economies of scale in disaster management infrastructure (see 3.1) 

and land-based adaptation represented by the HDI. The current model treats these effects 

separately, but future work should investigate their interaction.   

 

For mortality, the results suggest regions where climate change may significantly increase 

future mortality in the absence of sea-based adaptation. Further, they suggest that in some 

regions nationally-funded coastal defences could (if put in place) reduce mortality to 

relatively low (but still important) levels, while other areas may require external assistance to 

adapt. Given the long lead time required to put sea-based defences in place (around 30 years 

(Nicholls et al., 2007)), action needs to be taken in the near future. We suggest future health 

impact modelling should aim to assess the relation between mortality risk reduction and 

adaptation, and identify areas where mortality may remain intolerably high despite 

adaptation. 

 

In sum, our results highlight the importance of considering climate change health impacts in 

the context of social, economic and demographic factors, all of which could both increase and 

decrease vulnerability to climate-related exposures.   

 

6.3 Limitations of the mortality risk model  

The major limitation of the model is the unreliability of the mortality estimates. This is partly 

due to the model being fit in the log space, ‘outlier’ countries, and the nature of surge 

mortality. An additional limitation is that the model was (necessarily) fit cross-sectionally but 

used to make estimates over time. This follows Patt et al’s (2010) method and has precedent 

in previous climate-health modelling (e.g. McMichael et al, 2004). The underlying 

assumption is that statistical relations are causal, or at least stable over time. It is however 

plausible, for example, that the relation between land-based adaptation and the HDI will 

change with time.  

 



Two further limitations arise from assumptions regarding the baseline mortality data. Firstly, 

by standardizing mortality to national population in the year 2000 we account for population 

changes, but implicitly assume that change within a country is spatially uniform. As urban 

and coastal areas are growing more rapidly than rural areas, standardization may result in 

underestimates of mortality. While this assumption is consistent with DIVA, future work 

should attempt to account for spatial differentials.   

 

Secondly, a time-series of mortality data was used to generate average annual mortality for a 

baseline time-slice, but this was regressed against the HDI specific to the year 2000 in the 

mortality risk model. This implicitly assumes current land-based strategies have been in place 

over the time period covered by mortality dataset and may underestimate their benefits. 

However, this effect is partially off-set because the long time-series of data included only 

‘big’ events: observations suggest that socioeconomic improvements have a smaller benefit 

for high intensity compared to low intensity events (UNISDR, 2011).   

 

Additional limitations are associated with factors not included in the model. For climate 

change, the model only considers sea-level rise. Future work should also consider changes in 

cyclone characteristics, particularly as intense events cause the majority of health impacts. 

This would involve closer integration of coastal flood and health models, data for exposure 

by event intensity, and development of quantitative knowledge of the lethality of surges of 

different intensities. 

 

For health impacts, we only considered mortality. Coastal floods, however, also impact on 

morbidity, including injuries, infections, and mental health (Ahern et al., 2005). These 

impacts may be direct or indirect (e.g. via crop loss or damage to infrastructure), and 

immediate or delayed. Such complexities make the full recording and attribution of impacts 

difficult, and quantitative knowledge on which to base models is lacking. It may be possible 

to develop general quantitative relations linking surge, vulnerability, and morbidity risk for 

various outcomes, building on the limited attempts to date (Li et al., 2007, Fewtrell and Kay, 

2008).   

 



7 Conclusions 

Climate change is expected to worsen storm surge events and, in interaction with population 

vulnerability, this may have significant health impacts. While our model does not provide 

reliable mortality estimates we have made methodological innovations and recommendations 

for future model development. Further, we have illustrated the importance of socioeconomic 

factors in conditioning risk. In general, climate change health impacts work has tended to 

model physical aspects robustly but – partly due to data limitations – to model social and 

economic factors with considerably less rigour. To develop a stronger knowledge base for 

averting the health impacts of storm surge, as well climate change in general, conceptual and 

methodological innovations that robustly capture both physical and social factors are 

essential.  

 

       

 

  



Tables and figures 

 

Table 1: Estimates of mortality risk equation parameters, 95% confidence intervals, p-values, 

and standardized regression coefficients.  

Variable Parameter Mean 

estimate 

95% Confidence Interval p value Standardized 

regression 

coefficients1 

iE  1  1.73 0.75 to 2.72 0.001 0.25 

jiP ,  
2  -0.78 -0.96 to -0.60 0.0001 -0.63 

jiH ,  
3  18.01 7.68 to 28.35 0.001 1.25 

2

jiH  4  -13.46 -22.38 to -4.54 0.003 -1.08 

 k  15.60 11.51 to 19.69 0.0001  

1 The standardized regression coefficients quantify the change in the LHS of the equation relative to its standard 

deviation when a given RHS variable is changed by one standard deviation; the greater the absolute value of the 

statistic, the more responsive the LHS is to the variable. For example, 0.25 means that a 1 standard deviation 

change in iE is associated with a 0.25 standard deviation change in log mortality risk.  

  



Table 2: Methodological advances made in the mortality risk model and suggestions for further development 

Aspect Advances and suggested ways forward 

Baseline 

mortality data:  

time-period 

covered 

Previous work was based on models fit using mortality data selected on a criterion of 

‘completeness’. These data cover a relatively short time period over which infrequent, high 

intensity events are effectively random. Yet these events cause the majority of mortality.  

 

We have addressed this using an ad hoc method.  Formal methods, perhaps Bayesian, should 

be developed to allow the utilization of longer time-series. (For example, Reis and Stedinger 

(2005) use such a method to generate flood frequency curves; this could be used as a basis 

for work in health modelling). Additionally, when using long series of mortality data, the 

associated population data should be standardized, as they were in this paper.    

Baseline 

mortality data: 

surge-specific 

deaths 

Previous work was based on models fit using mortality data selected on a geographic- (i.e. 

‘coastal’) rather than event-based (i.e. ‘storm surge’) definition. Further, all deaths 

associated with a cyclone rather than only those attributable to storm surge were included.   

 

To assess the potential mortality impacts of future sea-level rise, we separated surge-specific 

deaths from other deaths in a given event using an ad hoc method. Further research is 

needed on the relation between vulnerability and various causes of deaths in events, and/or, 

consideration should be given to methods of including cause of death in event data.    

Socioeconomic 

change: 

representation 

The distribution of almost all health outcomes is associated with socioeconomic conditions. 

Previous work represented socioeconomic change using GDP/capita. However, this may be 

a poor proxy for actual living conditions of the vulnerable population.    

 

In this paper, we used the HDI, which is a better proxy and can be derived from existing 

scenario data. Variables such as life expectancy and fertility are indicators of national living 

conditions and are implicit in already available population projections. Further, fertility is 

influenced by education levels; this data could also be made available. In the future, a 

broader range of health-relevant socioeconomic projections are required.   

Socioeconomic 

change: 

distribution of 

benefits 

Previous work assumed that as GDP increases, socioeconomic conditions improve for all 

people. However, benefits may accrue to certain groups, and evidence suggests vulnerability 

to disasters may initially worsen with ‘development’ for some populations.  

 

We have attempted to model vulnerability in terms of both the benefits and harms of 

‘development’ by using a quadratic relation. As the negative aspects of development may be 

experienced by the most vulnerable groups in society, we suggest theoretically-grounded 

methods for improved quantitative modelling should be developed.  

 



Figure 1: The process of generating inputs for calibrating the mortality risk model, starting from data sources (shaded boxes1), via raw data (ovals) and its transformations 

(unshaded rectangular boxes), and finally to the variables used as inputs (striped boxes) into the mortality risk equation (double bordered box). See text for details . 

 
1 ‘EM-DAT’ is Emergency Events Database; ‘WDBI’ is World Bank Development Indicators; ‘Barro & Lee’ is Barro and Lee (2000); ‘UNWPP’ in United Nations World 

Population Prospects; ‘DIVA’ is Dynamic Interactive Vulnerability Assessment (coastal flood model).  

2 ‘Standardized’ refers to standardization to population in the year 2000; see text for details. 

3 We use ‘cyclones’ to refer to any cyclone-like event that may be associated with a storm surge (e.g tropical cyclones, extra-tropical storms).   

4 The HDI-analogue is a modified version of the Human Development Index; see text for details.  



Figure 2: Projected log mortality risk estimates made using equation 1, for four selected countries, as a 

function of the HDI-analogue ( jiH , , x-axis) and national population ( jiP , , y-axis). The colour contours 

represent log mortality risk per million (LHS of equation 1), with blues corresponding to the lowest risk and 

reds to the highest. The black dots indicate log mortality risk for a given time-slice (shown in brackets). Each 

dot is labelled with projected average annual surge exposure ( jiX , , un-bracketed numbers), which is a function 

of sea-level rise, land subsidence, and population living in the coastal zone.  Results are for futures with climate 

change (A1b emissions) and land-based adaptation, but without sea-based adaptation (e.g. improved sea dikes).   
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Figure 3: Estimates of regional-level1 average annual mortality ranges at baseline and in the 2030s, 2050s and 

2080s (running left to right in the figure, as per bottom axis) based on median exposure estimates2. For each 

region, there are three coloured horizontal bars which, from top to bottom, are (i) a future without climate 

change or adaptation3, (ii) a future with climate change but no adaptation, (iii) a future with climate change and 

adaptation. The colour of the bar indicates the range of average annual mortality as indicated in the legend on 

the right.    

 
1 Regions are As,HI: Asia Pacific, High Income; As,E: Asia, East; As,S: Asia, South; As,SE: Asia, Southeast; Au: 

Australasia; Ca: Caribbean; Eu,C: Europe, Central; Eu,E: Europe, Eastern; Eu,W: Europe Western; LA,C: Latin America, 

Central; LA,S: Latin America, South; NA,HI: North America, High Income; NA/ME: North Africa/Middle East; Oc: 

Oceania; SSA,C: Sub-Saharan Africa; SSA,E: Sub-Saharan Africa, East; SSA,S: Sub-Saharan Africa, Southern; SSA,W: 

Sub-Saharan Africa, West. 
2 Median exposure is the median estimate based on 7 GCMs; see text for details. 
3 Adaptation specifically refers to improved sea-defences; in all scenarios land-based defences improve as the Human 

Development Index increases (see text for further details).  
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