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Multiple imputation methods for bivariate outcomes in
cluster randomised trials.

K. DiazOrdaz∗, M. G. Kenward, M. Gomes, R. Grieve
London School of Hygiene and Tropical Medicine.

Abstract

Missing observations are common in cluster randomised trials. The problem is exacerbated when mod-
elling bivariate outcomes jointly, as the proportion of complete cases is often considerably smaller than
the proportion having either of the outcomes fully observed. Approaches taken to handling such missing
data include: complete case analysis, single-level multiple imputation that ignores the clustering, multiple
imputation with a fixed effect for each cluster and multilevel multiple imputation.

We contrasted the alternative approaches to handling missing data in a cost-effectiveness analysis
that uses data from a cluster randomised trial to evaluate an exercise intervention for care home resi-
dents.

We then conducted a simulation study to assess the performance of these approaches on bivari-
ate continuous outcomes, in terms of confidence interval coverage and empirical bias in the estimated
treatment effects. Missing-at-random clustered data scenarios were simulated following a full-factorial
design.

Across all the missing data mechanisms considered, the multiple imputation methods provided esti-
mators with negligible bias, while complete case analysis resulted in biased treatment effect estimates in
scenarios where the randomised treatment arm was associated with missingness. Confidence interval
coverage was generally in excess of nominal levels (up to 99.8%) following fixed-effects multiple imputa-
tion, and too low following single-level multiple imputation. Multilevel multiple imputation led to coverage
levels of approximately 95% throughout.

keywords:
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1 Introduction

In cluster randomised trials (CRTs), the unit of random allocation is a group of individuals (e.g. a school
or a hospital) rather than the individual subjects. It is a common study design in the health and social
sciences, especially for evaluations of interventions that operate at a group level, manipulate the socio-
physical environment, or cannot be delivered at an individual level. It is well known that observations
within each cluster are correlated [1] and that analyses that ignore this homogeneity within clusters
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can result in overestimation of the precision of the treatment effects, possibly leading to inappropriate
inferences being drawn. Appropriate statistical techniques for CRTs are well developed and include
mixed models and generalised estimating equations [2].

A common problem that compromises the validity of the results is that of missing data. The validity of
inferences from incomplete data depends on the process that leads to data being missing, the so-called
missing data mechanism, also known as missingness mechanism or missing data process [3, Section
3.2]. The missing data mechanism is characterised by the conditional distribution of the probability of
missingness, given the data. A classification of the missing data mechanisms according to the assumed
model for the probability of non-response was introduced by Rubin [4]. A process is said to be Missing
Completely at Random (MCAR) if the probability of non-response is completely independent of any other
variable, whether measured or not. A process is classified as Missing at Random (MAR) if the probability
of non-response is conditionally independent of the unobserved data given the observed data. Processes
that are neither MCAR nor MAR are called missing not at random (MNAR).

For missing data mechanisms that satisfy MAR, valid inferences can be obtained using likelihood-
based or Bayesian analyses of the complete cases [3, Part III]. However, moment-based estimators, such
as those that use generalised estimating equations are, without special modification, only valid with more
stringent conditions about the missing data mechanism, namely that the missingness is independent of
the outcome given the covariates in the model [5].

With partially-observed clustered data, by far the most common approach is to only analyse the
complete cases (CCA) [6]. However, when two or more outcomes are analysed jointly, the proportion of
complete cases is often smaller than the complete-cases corresponding to each outcome in turn. This
is an important issue as multivariate outcomes are common in clinical trials. Examples include clinical
trials of psychological interventions and those in cardiology, which often focus on non-fatal cardiovascular
events, in addition to time-to-event. Our paper uses cost-effectiveness analyses (CEA) that use data
from CRTs as an illustrative example. Most CEA that use individual-level data from clinical trials have
observations with incomplete information [7].

A common approach for obtaining valid inferences with incomplete data under the MAR assumption
is to undertake Multiple Imputation (MI) [4]. In some circumstances, essentially when the analysis and
imputation models coincide, MI principally replicates a likelihood analysis. Nevertheless, an advantage
of MI is that unlike conventional likelihood analyses, it can incorporate so-called auxiliary variables that
are not included in the analysis model, but which are related to both the missing values and to the
probability of observations being missing. Incorporating such auxiliary variables makes the underlying
MAR assumption more plausible.

From a theoretical perspective, it is known that for CRTs, the imputation method should accommodate
the multilevel structure of the data. A failure to do so may lead to invalid inferences [8]. Unfortunately,
multilevel MI (MMI) is not yet available as a standard implementation in commonly used statistical pack-
ages. Hence, analyses using MI in the CRT settings commonly avoid such imputation strategies, and
use instead single-level imputation (SMI) methods [6]. A systematic review of CEA that use CRT data
[9], found that only 5% of studies included used MI, of which none accounted for the clustering.

An alternative approach that has been previously recommended in the literature is including the clus-
ter as a fixed effect in the imputation model (FMI) [10, 11]. This has the advantage of being easily
implemented in widely available MI software.

The aim of this paper is to investigate and compare the performance of these different MI strategies
for handling missing bivariate outcome data in CRTs, over a wide range of missingness mechanisms
that are dependent on individual and cluster-level variables. We do this by first applying the methods to
a cost-effectiveness study that used data from a published CRT (Section 3). Then, a simulation study
with a full-factorial design is presented in Section 4. We close with a few points of interpretation and
discussion in Section 5.
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2 Multiple Imputation

MI breaks down the analysis of incomplete data into a number of steps. We first need to distinguish
between two statistical models. The first is the analysis model that would have been used had the data
been complete. This is called the substantive model or model of interest. The second model, called the
imputation model, is used to describe the conditional distribution of the missing data given the observed.
For hierarchical data, this conditional distribution must reflect the multilevel nature of the data.

The MI algorithm proceeds by fitting the imputation model to the observed data and taking Bayesian
draws from the posterior distribution of its model parameters. Missing data are then imputed from the
imputation model, using the parameters previously drawn. These steps are repeated a fixed M number
of times, to obtain M completed data sets. The substantive model is then fitted to the multiple data sets
separately, producing M sets of parameter and covariance estimates which are combined using Rubin’s
formulae [4] to produce a single MI estimate of the substantive model parameters and associated covari-
ance matrix. Under the MAR assumption, this will produce consistent estimators and, in the absence of
auxiliary variables, is asymptotically (as M increases) equivalent to maximum likelihood [12, 13].

Sampling from the approximate predictive distribution of the missing data as described above can be
performed in several ways. Two broad approaches can be identified; the first approach jointly models
incomplete variables, by sampling from an underlying joint predictive distribution [13, 14]. In the second
approach, referred to as full-conditional specification (FCS) or chained equations, draws from the joint
distribution are approximated using a sampler consisting of a set of univariate models for each incomplete
variable conditional on all the other variables [15]. In the motivating example and simulations presented
here, both approaches are used for ease of implementation. For single-level imputation and fixed cluster
effects models, which are also essentially single-level, the FCS method is used. The FCS approach is
not well-suited to proper multilevel MI and so, for these imputations, a joint modelling algorithm assuming
multivariate normality is used [13]. In our settings, because both outcomes are continuous, and modelled
with normal linear regressions, the FCS algorithm is equivalent to a Gibbs sampler that draws from a
multivariate normal distribution, and hence equivalent to a joint MI algorithm [16, 17, 18].

Having outlined the generic MI procedure, we now set out the details of the relevant imputation
models to be compared here. Let Y1,ijk and Y2,ijk be the two continuous outcomes with missing data,
corresponding to the i-th individual in cluster j of a two-arm cluster trial. Assume that J clusters are
allocated to each treatment k ∈ {0, 1}, and that there are nj individuals in each cluster j, for j = 1, . . . , J .
Let k indicate treatment allocation, k = 1, if the cluster is allocated to intervention, and 0 otherwise.

Let Xijk denote the vector of fully-observed variables, individual and cluster-level, to be included in the
imputation model. This includes the variables in our model of interest and any other auxiliary variables,
and may be different in each treatment arm. The imputation models compared here are regression
models of the outcomes on the covariates in the substantive model and the auxiliary variables, fitted
separately within each treatment arm, to allow for different covariance structure.

The single-level imputation model (used in SMI) can be written as:

Y1,ijk = β1,0k +Xijkβ1,X + e1,ijk
Y2,ijk = β2,0k +Xijkβ2,X + e2,ijk

(
e1,ijk
e2,ijk

)
∼ N

[(
0
0

)
,

(
σ2
1k ρkσ1kσ2k

ρkσ2kσ1k σ2
2k

)]
With SMI, the imputed values are drawn from the conditional distribution of the missing observations

given the observed data, ignoring any dependency between observations within a cluster not explained
by the cluster-level auxiliary variables included in the model. Therefore, the single-level imputation model
does not properly represent the conditional distribution of the missing data given the observed data.

The effect of clustering can be incorporated either as a fixed or random effect. Firstly, we include a
cluster fixed-effect in the imputation model (corresponding to FMI):

Y1,ijk = β1,0k +Xijkβ1,X + β1,jk + e1,ijk

Y2,ijk = β2,0k +Xijkβ2,X + β2,jk + e2,ijk

where βℓ,jk, are the fixed cluster-effect coefficients, different from 0 only if the observation i belongs
to cluster j in treatment group k, for j = 1, . . . , J . To avoid over-parameterisation, βℓ,1k = 0, for k ∈
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{0, 1}, ℓ ∈ {1, 2}, making the first cluster in each treatment arm the reference category. The error terms
(e1,ijk, e2,ijk) are assumed to be bivariate normal as before. Missing outcomes will be imputed from the
conditional normal distribution given the other outcome, if observed, and the covariates and auxiliary
variables, which must all be at the individual level, with a mean determined by the fixed-effect for that
cluster.

We note that this parameterisation of the fixed-effects imputation model may result in biased estimates
when there is a high proportion of clusters with completely missing outcomes. This is because FMI
imputes empty clusters from the distribution of the reference cluster, as the fixed-effect for the empty
cluster cannot be estimated. When this is the case, the imputer must choose the reference cluster
carefully. In particular, we should choose the cluster which has cluster-mean closest to the randomised-
group mean.

An alternative to the FMI is to include a cluster random effect in the imputation model (corresponding
to MMI):

Y1,ijk = β1,0k +Xijkβ1,X + u1,jk + e1,ijk
Y2,ijk = β2,0k +Xijkβ2,X + u2,jk + e2,ijk

(
u1,jk

u2,jk

)
∼ N

[(
0
0

)
,

(
τ21k ϕkτ1kτ2k

ϕkτ1kτ2k τ22k

)]
, (1)

again separately in each treatment group k. The individual-level residuals (e1,ijk, e2,ijk) are assumed
normally distributed and correlated as before, independently of (u1,jk, u2,jk), the cluster random-effects.

Finally, complete-case analysis (CCA) is also included in our simulations and example, for compara-
tive purposes.

2.1 Substantive model

In this paper, we assume that the substantive model is a bivariate linear random-effects model where
the only explanatory variable is treatment. This means that in what follows, the vector Xijk of explana-
tory variables in the imputation models specified in the previous section contains only auxiliary variables.
If, however, the substantive model includes baseline covariates, these must be included in the imputa-
tion model, as covariates if they are fully-observed; or as dependent variables, if they themselves have
missing values.

The substantive model is fitted to the data from both arms simultaneously, assuming common vari-
ance across the treatment arms. Let the cluster random effects be represented by the latent variables
u1,jk and u2,jk. The model can be written as follows

Y1,ijk = β1,0 + β1k + u1,jk + e1,ijk

Y1,ijk = β2,0 + β2k + u2,jk + e1,ijk (2)

where β1 and β2 represent the treatment effect on the corresponding outcome. The error term (e1,ijk, e2,ijk)
and the cluster effects are assumed to be normally distributed:(

e1,ijk
e2,ijk

)
∼ N

[(
0
0

)
,

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)]
and

(
u1,jk

u2,jk

)
∼ N

[(
0
0

)
,

(
τ21 ϕτ1τ2

ϕτ1τ2 τ22

)]
where σ1, σ2 are the individual-level standard errors, ρ is the individual-level correlation between Y1 and
Y2 and τ1, τ2, and ϕ are the standard errors and correlation of the two cluster random effects respectively.

3 Motivating example: the OPERA study

We illustrate our methods using the OPERA study (Exercise for treating depression in care home res-
idents). It was a CRT to evaluate the impact of a ‘whole home’ exercise intervention on depressive
symptoms in care home residents in England, aged 65 or over who are free of severe cognitive impair-
ment [19]. Clusters were randomly allocated to provide either a depression awareness training session
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for care home staff (control) or an exercise intervention delivered by a visiting physiotherapist (treatment).
The intervention comprised twice weekly physiotherapist-led exercise groups.

For the purpose of illustration, we look at the cost-effectiveness data, which consisted of 798 individ-
uals in 72 nursing homes. There were 31 clusters in the intervention and 41 in the control arm. As is
common, the OPERA CRT had an imbalanced design; the number of participants per cluster varied from
5 to 20.

This paper considers costs (in Great British pounds, £) and health-related quality of life completed
via proxy (based on European Quality of Life questionnaire – EQ5D) recorded at 3-monthly intervals,
for a period of 12 months. These EQ5D data were used to obtain quality-adjusted life years (QALYs)
over 12 months. Intra-cluster correlation coefficients (ICCs) were high for QALYs (0.23 in the intervention
and 0.08 in the control), but moderate for costs (0.03 for intervention and 0.10 in the control arm). While
QALYs were approximately normally distributed, costs were positively skewed. The correlation between
the outcomes was −0.11 in the control arm and −0.07 in the intervention.

The data set also includes baseline measurements collected from participants, for variables antici-
pated to be prognostic for the clinical primary outcome, depression measured using Geriatric Depression
Score-15 (GDS-15). These variables include both cluster-level variables (location and size of home) and
individual level variables –Age, Sex, Ethnicity, Being on antidepressants, Years spent in formal educa-
tion, Cognitive impairment (Mini-Mental State Examination – MMSE), Physical function (Short Physical
Performance Battery–SPPB), Fear of falling, Pain, Social engagement, baseline GDS-15 and baseline
EQ5D (self-completed and proxy).

We had 449 individuals with complete cost-effectiveness data, 190 individuals with only missing
QALYs at 12 months, a further 110 with only costs missing and an additional 49 individuals with both
outcomes missing. Table 1 reports the percentage of observations with missing cost-effectiveness out-
comes and baseline covariates, by treatment group. The number of clusters with one outcome completely
missing was moderate: one intervention and 6 control clusters had QALYs completely missing (less than
10% of the total). There were no clusters with completely missing costs.

The CEA assumes a model with linear additive treatment effects for both costs and QALYs, with no
additional covariates. The corresponding effect of treatment, incremental QALYs δQ and incremental
costs δC , is estimated from a bivariate normal mixed model (2) [20]. Cost-effectiveness is then reported
as the estimated incremental net monetary benefit (INB)

INB(λ) = λδQ − δC (3)

where λ represents the decision-makers’ willingness to pay for a one unit gain in health outcome. Thus
the new treatment is cost-effective if INB > 0. In the original study, the reported INB was calculated
using λ = £20000, which is within the range of the cost-effectiveness threshold recommended by the UK
National Institute for Health and Care Excellence (NICE) [21]. As the INB is a linear combination of δ̂C
and δ̂Q, its variance can be calculated from the corresponding estimated variances and covariances, in
the usual way.

3.1 MI methods for the OPERA study

We now apply the alternative MI methods to the OPERA dataset. For the purpose of illustration, we delete
from the dataset the single observation with missing age at baseline, and consider age, sex and cluster
size as completely observed baseline variables, and use them as auxiliary variables in the imputations,
as they are associated with the missingness and the outcomes. All MI strategies use the same baseline
covariates as auxiliary variables in the imputation model, with one exception. Cluster size is dropped
from the FMI approach, as cluster-level variables cannot be used as explanatory variables in models
using fixed cluster effects. Although costs are somewhat skewed, we do not log-transform or perform
post-imputation rounding, as this has been shown to bias the associations [22, 23]. Both outcomes,
costs and QALYs, are included in all imputation models. The number of imputations in this example is
50.
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We calculate INB on each multiply imputed dataset using bivariate linear mixed models (2) and com-
bine these results using Rubin’s rules to obtain MI estimates. We construct normal-based confidence
intervals (CIs) around the MI estimate.

SMI and FMI are implemented in R package mice, which uses the FCS algorithm. The number of
iterations or cycles of the chained equations algorithm used is 50, as this appears to lead to satisfactory
convergence for this dataset. For the MMI, we use R package pan, with 1000 burn-in iterations and
imputed every 3000 to reduce auto-correlation and improve convergence, as it is known that with large
number of clusters and small ICCs the Gibbs sampler is slowly mixing [8].

All three MI methods result in approximately 35 negative imputed costs per imputed set. Table 1
shows that the estimates of incremental QALYs, which has relatively high ICCs, are relatively insensitive
to the choice of MI approach. By contrast, the incremental cost point estimate obtained by FMI, is very
different from the others. The standard errors across the two outcomes are different for each missing
data approach, but relatively large compared to the size of the estimate. SMI produces smaller standard
errors than those obtained with MMI and CCA. This is because costs and QALYs have a relatively large
ICC in the OPERA data set and we are looking at a between-cluster estimator. As a consequence, there
is an increased risk of type I error [24].

The choice of MI method, which mostly affects the way the variance of the missing data is mod-
elled, affects the estimated SE. Nevertheless, for the OPERA study, all MI approaches lead to the same
conclusion, that the OPERA intervention is not cost-effective compared to the control treatment.

4 Simulation study

We now use a full-factorial simulation study, to compare the performance of the MI methods across a
wide range of circumstances typically found in CRTs. The simulation steps proceeded as follows: data
generation, application of a missing data mechanism, and estimation and inference for the treatment ef-
fect from the analysis after handling (or ignoring) the missing data. Finally, the behaviour of the treatment
effect estimator is examined according to our chosen performance measures.

4.1 Data generation

We begin by selecting those factors anticipated to have an impact on the performance of the approaches
for handling missing data, based on previous literature [24, 25]: number of clusters per treatment arm and
number of individuals per cluster (3 settings); ICCs of the outcomes (4 levels); proportion of missing data
(2 levels) and missing data mechanism (4 settings). The total number of clusters is 2J , with nj individuals
in cluster j, for j ∈ {1, . . . , J}, in each trial arm k ∈ {0, 1}. The number and size of clusters are allowed
to vary, while maintaining the same expected sample size (S = 500). This sample size is typical of
the sample sizes seen in CRTs, as a recent systematic review of CRTs published in medical journals
reported the inter-quartile range (IQR) of number of participants per arm as being [143–866] [26]. Three
different types of two-arm CRT design are considered: (i) large number of clusters (J = 25) and few
individuals per cluster (nj = 10); (ii) small number of clusters (J = 5) and large cluster size (nj = 50);
(iii) moderate number of clusters (J = 15) and variable number of individuals per cluster. The small and
large number of clusters were also chosen to be close to the lower and upper quartiles of number of
clusters reported by [26], which found an IQR of [12–52]. Following previous simulation studies [20, 27],
the variable cluster size nj is obtained by rounding a Gamma-distributed random variable. This Gamma
random variable has mean 20 and coefficient of variation cv = SD(n)

E(n) = 0.5. The full description of the
simulation factors and their levels are summarised in Table 2. There are 3×4×2×2×4 = 192 simulated
scenarios in total.

In each simulated scenario, a cluster-level indicator is then created allocating half of the clusters to
treatment and half to control. Then, for each subject i in cluster j, i.i.d standard normal individual-level
covariate Xi and cluster-level variable Wj are generated. These are independent of treatment allocation
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k and are therefore thought of as pre-randomisation variables. Then, bivariate normal outcome data
(Y1,ijk, Y2,ijk) are generated separately by treatment arm as follows:

Y1,ijk = 100 + 120k + βw,1Wjk + βx,1Xi + u1,jk + e1,ijk (4)
Y2,ijk = 50 + 10k + βw,2Wjk + βx,2Xi + u2,jk + e2,ijk (5)

with (e1,ijk, e2,ijk)
⊤ ∼ N(0,Σ) and (u1,jk, u2,jk)

⊤ ∼ N(0,Φ), where Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
is the level-1

variance-covariance matrix, with σ1 = 40, σ2 = 20 and ρ = 0.1 assumed constant across all scenarios.

The level-2 variance-covariance matrix Φ =

(
τ21 ϕτ1τ2

ϕτ1τ2 τ22

)
is chosen so that the level of clustering,

quantified by the ICC, takes different values, as specified in each scenario. The values for these ICCs,
namely 0.01, 0.05, 0.20 and 0.60 were based on approximation to the sample median 0.048 and IQR of
ICCs, [0.016–0.124] with a maximum of 0.667, reported in a previous review of ICCs in medical research
[28].

We note that while the variables X and W are associated with the outcomes, they are not included in
the substantive model, and as such, they are auxiliary variables in the imputation models to follow.

The R function used to generate these data, by changing the levels of each factor accordingly, can
be found in the Supplementary File 2.

4.2 Missing data mechanisms

To generate the missing data for each outcome under the Missing-at-Random assumption, we used
four different missing data mechanisms, where the probability of missingness, denoted by πℓ,ijk, with
ℓ ∈ {1, 2}, is such that the non-response indicator Rℓ,ijk ∼ Bern(πℓ,ijk), depends on Xi and/or Wj , as
displayed in Table 2. The coefficient η represents the strength of association between the covariates and
missingness indicator Rℓ,ijk. We adjust α0 empirically to achieve the required expected probability of
missing.

For both outcomes, individual and cluster-level covariates have the same level of association, η, with
the missingness indicator, and thus we drop the subscripts ℓ and X,W . However, for the last of our
missingness mechanisms, we allow η to differ between treatment arms. This represents a situation
where there is an interaction between treatment and the covariate driving the missingness, i.e. the
treatment modifies strength of association between the covariate and non-response, which may arise in
clinical trials, because for example of side-effects or lack of perceived efficacy in the intervention arm, or
disillusionment amongst those assigned to the control arm. We allow two settings; these are presented at
the bottom of Table 2, together with the probabilities of non-response, which also differ across treatment
arms.

Non-response rates are chosen to be moderate, to avoid situations where a high proportion of clusters
have one or both outcomes completely missing.

For each simulated dataset, non-response indicators Rℓ,ijk for each outcome ℓ ∈ {1, 2} are indepen-
dently drawn from a Bernoulli distribution with probabilities πℓ,ijk as specified in Table 2. Missing values
are then generated to create the observed data set.

4.3 Implementation

For a simulation study of this size, it is important to balance computational time with efficiency of the
methods. The number of imputations M is set to 10 [29], though in practice, a higher number of imputed
sets is recommended [10].

The MI methods using FCS, i.e. SMI and FMI, are implemented using the mice package in R. The
chained equations procedure was repeated for 10 cycles to produce a single imputed data set, following
recommendations in [30]. For the multilevel MI, Schafer’s pan package in R is used [31]. Details on
the MCMC procedure used in pan can be found in [13]. Briefly, a Gibbs sampler is used to simulate

7



draws from the posterior distribution of the parameters, starting with the level-2 variances. For our
simulations, we use non-informative priors for regression parameters, diffuse inverse-Wishart priors for
variance components, and impute on every 1000th iteration, after a 1000-iteration burn-in. In practice,
one needs to monitor the convergence behaviour of the MCMC algorithm, and modify the number of
iterations between imputations and the burn-in period accordingly.

After imputation, for which the two covariates are used as auxiliary variables, the substantive model,
equation (2), is applied to each multiply imputed dataset to estimate treatment effect on Y1 and Y2 simul-
taneously. The estimates obtained using the analysis model in each of the M multiply imputed sets are
then combined using Rubin’s rules. Confidence intervals around the MI estimates are constructed using
a normal distribution, instead of a t-distribution with the small-sample MI degrees of freedom [32]. This is
for comparability with the CIs obtained after a CCA, which are also constructed routinely using a normal
approximation.

For each scenario, the whole simulation procedure (data generation, imposing missing values, impu-
tation, analysing each of the imputed datasets using the substantive model, and combining the resulting
treatment effect estimates using Rubin’s rules) is performed on each of the N = 1000 datasets to capture
the behaviour in repeated samples.

4.4 Performance criteria

Let βℓ denote the true treatment effect on Yℓ, with ℓ ∈ {1, 2}, and β̂ℓ,ι the estimate obtained in the
ι = 1, . . . , N replicated dataset. The following criteria were used to measure the performance of the
different MI strategies.

1. Confidence interval coverage rate (CR): The percentage of times that the true parameter value is
covered in the 95% confidence interval.

2. Empirical bias, B = 1
N

∑N
ι=1(β̂ℓ,ι − βℓ)

3. Root-mean-square error (RMSE)
√

1
N

∑N
ι=1(β̂ℓ,ι − βℓ)2

4. Average width of confidence interval (AW): The distance between the average lower and upper
confidence interval limits across N confidence intervals.

The performance of a procedure is regarded as poor if its coverage drops below 90% [33]. When
the procedure results in over-coverage, there is an increased type II error probability. When coverage is
close to 100%, extra caution should be taken when using that procedure [34], especially when coupled
with wide CIs. Coverage close to the nominal value, along with narrow confidence intervals translates
into greater accuracy and higher power.

4.5 Simulation results

Figure 1 and 2 present respectively, the bias and coverage distribution for each method. Each box-and-
whiskers plot shown represents 48 scenarios, stratified by missing data mechanism. The performance
of the methods across the scenarios was similar for both Y1 and Y2.

For the first three missing data mechanisms shown (see Table 2), where the missing data mechanism
was not dependent on treatment arm, all approaches resulted in unbiased estimates across most of the
scenarios. This is in line with theoretical results, as the variables associated with missingness are not as-
sociated with the treatment effect. However, for the scenario when the missing mechanism is differential
by treatment arm, the CCA produced substantially biased estimates across the scenarios considered.
This corresponds to the situation where there is a different association between the covariate and the
response indicator in each treatment arm, and this treatment-covariate interaction is not accounted for
when we condition on the complete cases. By contrast, the corresponding results for the MI estimates
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show negligible bias: in general less than 3.5%, and mostly within Monte Carlo error limits. To see this
in more detail, see Table 3.

However, the alternative MI strategies result in very different variance estimates, and consequently
varying coverage rates. This is evident in the plots of CI coverage Figures 1 (b) and 2 (b). In general,
SMI resulted in coverage lower than the nominal. This is particularly critical for scenarios with high
ICCs (0.20 and above). The number and size of clusters also appear to be factors associated with
low coverage rate. See Tables A4, A5 and A6 in the Supplementary File 1. In contrast, fixed-effects
MI results in over-conservative coverage for a range of scenarios, especially those where the ICCs are
small, and the number of clusters is large and the cluster-level variable is associated with the missingness
mechanism. In addition, wider confidence intervals are obtained using FMI compared to those obtained
using MMI, even when coverage was similar. See Tables A5, A6, A16 and A17 in the Supplementary
File 1. MMI results in acceptable coverage rates in most scenarios, but for scenarios where the number
of clusters is relatively low (J = 5 per arm) and the clustering is high (≥ 0.2), coverage rates are only just
above 90%. This is because the convergence of the Gibbs sampler depends on the degree to which the
cluster random effects in the imputation model, equation (1), can be estimated from the observed data
[8]. Convergence can be improved by increasing the burn-in period for the sampler in the MMI software.
For example, we re-ran the scenario with J = 5 and the ICC= 0.2 for both outcomes with differential
missingness by treatment arms with η low and missing proportions 0.2 in each outcome. By increasing
the burn-in to 5000, CI coverage rate increased to 92.0%, compared 90.9% reported in Table 4 for the
same scenario. We therefore recommend that, when faced with small numbers of clusters, the burn-in
period is increased.

It is clear that the validity of inferences drawn depends crucially on the method chosen to handle the
missing data. As the box and whisker plots for CI coverage show, the method which most consistently
achieves coverage rates close to the nominal is MMI, as the interquartile range of the distribution of
coverage across the 192 simulated scenarios is almost all contained within the limits 90% – 97% (for
example, only 8 scenarios out of the total 192 resulting in coverage for Y1 outside this range).

The results corresponding to RMSE are reported in the Supplementary File 1. In general, MMI is
more efficient than the other two MI methods. The ratio of MMI RMSE to either SMI or FMI RMSE, is
almost always ≤ 1, with only 4 scenarios resulting in a ratio > 1.02. In general, the FMI RMSE is larger
than those corresponding to the other two MI methods, in situations where the outcome ICCs where
smaller than 0.2. Conversely, when ICCs are greater or equal than 0.2, the RMSE corresponding to SMI
is larger than the corresponding RMSE for the other two methods.

5 Discussion

In this study, we compared the performance of single, multilevel and fixed-effects MI for handling missing
data in CRTs. The full-factorial nature of our simulation study enabled us to establish which characteris-
tics have the greatest influence on the performance of the alternative methods for handling missing data
considered here.

In our simulations, which assumed the data were MAR throughout, bias was a serious problem for
the complete case analysis when the missingness mechanism was differential by treatment arm, while
all MI methods resulted in unbiased treatment estimates. The main difference amongst the three MI
procedures is in how variability is incorporated into the imputations. This is reflected in the variance
estimates and has an impact on CI coverage rate. SMI resulted in low (< 90%) coverage rate across
most scenarios, in particular when the ICCs exceeded 0.05 and there were few clusters. Fixed-effects
MI produced overly conservative coverage (> 98%), especially when there were small ICCs and more
than 30 clusters. This finding reflects the way these two approaches accommodate the between-cluster
variance. Under SMI, the between-cluster variance is set to zero, whereas with FMI, this variance is
unbounded in the sense that the behaviour of one estimated cluster effect is unrelated, or unconstrained,
by the behaviour of any of the others. Hence, FMI cannot be used to impute cluster-level variables, or

9



indeed, when the substantive model includes cluster-level variables, because these cannot be explicitly
included in the imputation model.

By contrast, MMI models the correlation in the data appropriately, producing coverage rates close to
the nominal level. This consistent performance across the varying number of clusters and cluster sizes
is indicative of acceptable finite sample properties. Moreover, MMI is compatible with the substantive
model, in the sense that the imputation model contains the analysis model. The imputation model can
include auxiliary variables at both the individual and the cluster-level, thus increasing the plausibility of
the MAR assumptions.

The re-analysis of the OPERA study illustrates how each of the methods could be implemented in
practice. In this re-analysis, the standard errors for the estimated treatment effect for both outcomes are
substantially larger when using FMI, while SMI resulted in smaller standard errors. From this and other
simulation studies [24, 25], we know that FMI overestimates the variance, while SMI underestimates it.
Moreover, there is a large difference in the estimates following the FMI, compared to other methods.
This was larger for the endpoint (cost) where the ICC was smallest. This could be due to the fact that
the FMI cannot incorporate explicitly cluster size into the imputation model. In this example, the overall
conclusion that the exercise intervention was not cost-effective did not differ according to the approach
taken to handling the missing data, but this may not always be the case.

The validity of the results when using MI depends on obtaining an appropriate estimate for the stan-
dard errors. This requires that the imputation model recognises the dependencies within the data, in this
case amongst clusters. It is also important to use an appropriate number of imputations. A small M
will translate into a loss of efficiency compared to the estimate obtained with infinitely many imputations.
If we can accept a 5% loss of efficiency, then 5 imputations may be sufficient even for 25% missing
information [4]. In practice, the actual number of imputations necessary for MI to perform satisfactorily
depends not only on the amount of information missing, but also on the type of analysis. Some analyses
may require M = 50 or more to obtain stable results [35]. So, for a particular application, this number
must be carefully chosen, based on sampling error of the MI estimates [10]. In the present work, we used
10 imputations for the simulations and 50 for the illustrative example, following the recommendations in
[10] for determining the required number of imputations.

We have shown how the flexibility of MMI allows the analyst to handle continuous multivariate out-
comes without any modification to the multilevel imputation algorithm, because it is already based on
multivariate normality. We illustrate this here using bivariate outcomes, but the generalisation to mul-
tivariate outcomes is straight-forward. The MMI approach is readily available for continuous data in R
packages pan [31], and jomo. The stand-alone software RealcomImpute also performs MMI [36], and
can be used in conjunction with Stata.

Previous simulation-based comparisons of the alternative methods have been published before [24,
25]. Our study builds on and extends the previous literature by establishing which characteristics of
the setting most influence the performance of the different strategies for handling the missing data. In
addition, we complement Andridge’s work [25] by undertaking a more comprehensive assessment of the
fixed effects MI, including complex scenarios with cluster-level variables as predictors of missingness,
varying cluster sizes and bivariate outcomes, and showing further limitations of the FMI approach when
compared with MMI.

The approach presented in this paper has some limitations. For simplicity, we assumed the missing
data mechanism is MAR throughout. However, MI provides a flexible and convenient route for investi-
gating sensitivity to alternative MNAR mechanisms, see for example [37, Chapter 10]. Our simulations
excluded situations with missing covariate data and where the imputation model is misspecified. MI as-
sumes that the functional form of the imputation model has been correctly specified, and includes all
interactions and terms of higher order that are of substantive interest. A further concern could be that
either the imputation or the analytical models make incorrect distributional assumptions. This was the
case in the OPERA example, where we imputed the costs assuming a normal distribution. However,
simulation studies by Schafer [13] and others [22, 34] have shown parametric MI to be fairly robust to
misspecified distributions. Inferences are also insensitive to non-Gaussian random-effects in a multilevel
imputation model, except when the rates of missingness are very high or the sample size is small [38].
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Future research directions thus include considering MNAR mechanisms, especially those where the
cluster random effect is driving the missingness. Other potential extensions relate to situations where
there is cluster non-response. In both situations, MMI could provide a flexible route for investigating
sensitivity to alternative MNAR mechanisms and cluster drop-out.
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Figures and Tables

Table 1: Description of missing data in the OPERA study, by treatment group (top panel), and
results from CEA by MI method: Incremental cost (£) and QALYs and INB (£) at 12 months.

Control group Intervention group
(Total n=446) (Total n=352)

Outcome variables Missing n % Missing n %

Cost 82 18.4 77 21.9
QALY 159 35.7 80a 22.7

Cost-effectiveness analysis by MI method
Outcome CCA SMIb FMIc MMIb

Incremental cost 256.4 (442.0) 166.67 (454.09) 27.4 (548.8) 177.27 (440.88)
Incremental QALY −0.04 (0.04) −0.05 (0.03) −0.02 (0.05) −0.04 (0.05)
INB −1148.9 (920.5) −1237.0 (840.23) −453.4 (1137.2) −978.5 (1163.6)
a One observation was removed from the data set before performing any analysis or MI, due to having missing age at
baseline. This corresponded to an individual with missing QALY in the treatment arm.
b Imputation models included age at baseline,sex and cluster size as auxiliary variables.
c Imputation models included age at baseline and sex as auxiliary variables.
d INB calculated at willingness to pay £20000.
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Table 2: Simulation design factors and chosen levels. The top part of the table reports values for sce-
narios with missingness mechanisms which do not differ by treatment arm, with those corresponding to
missingness mechanism which are differential by treatment arm are reported at the bottom.

Factor Levels Values
ICC1 and ICC2 low (0.01, 0.01)

moderate (0.20, 0.05)
high (0.20, 0.20)
differential by outcome (0.60, 0.01)

Cluster design many small clusters J = 25, nj = 10
few large clusters J = 5, nj = 50
unbalanced J = 15 , variable size

Missingness Individual covariate logit πℓ,ij = α0 + ηXXi

mechanism Cluster covariate logit πℓ,ij = α0 + ηWWj

Both logit πℓ,ij = α0 + ηXXi + ηWWj

Differential by treatment logitπℓ,ijk = α0k + ηX,kXij + ηW,kWj

Association between covariates low ηX = ηW = η = 1
and missingness high ηX = ηW = η = 2
Probability of Non-response equal 20%

different by outcome 30% for Y1,ij ; 10% for Y2,ij

Levels for missingness mechanisms that are differential by treatment arm
Association Probability of non-response
with equal Different by outcome

Level of association Arm missingness For Y1 For Y2

low Control ηX,0 = ηW,0 = 1 20% 30% 10%
Intervention ηX,1 = ηW,1 = 2 35% 45% 20%

high Control ηX,0 = ηW,0 = 1.5 10% 15% 10%
Intervention ηX,1 = ηW,1 = 3 30 % 35% 30%

The numbers in italics are not simulation parameters, but the approximate empirical rates of non-response obtained after setting
α0.
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Table 3: Percentage bias for the estimated treatment effect on Y1 for scenarios corresponding to miss-
ingness mechanism is differential by treatment

Design η Missingness ICC CCA SMI FMI MMI
J = 25, nj = 10 Low .20,.20 0.01, 0.01 -24.8 -1.4 -0.8 -0.8

0.20, 0.05 -32.9 -1.5 -1.3 -1.0
0.20, 0.20 -33.1 -1.6 -1.3 -1.0
0.60, 0.01 -38.7 -1.4 -2.1 -1.4

.30,.10 0.01, 0.01 -23.2 -1.3 -0.7 -0.2
0.20, 0.05 -31.0 -1.6 -1.7 -0.3
0.20, 0.20 -31.1 -1.6 -1.7 -0.4
0.60, 0.01 -35.9 -1.8 -3.5 -0.5

High .20,.20 0.01, 0.01 -28.2 -1.7 -2.3 -1.7
0.20, 0.05 -37.5 -1.7 -3.0 -2.0
0.20, 0.20 -37.9 -1.9 -3.0 -1.9
0.60, 0.01 -43.4 -1.5 -4.2 -2.6

.30,.10 0.01, 0.01 -29.2 -1.3 -1.1 -1.5
0.20, 0.05 -39.3 -1.5 -2.3 -1.7
0.20, 0.20 -39.7 -1.6 -2.3 -1.7
0.60, 0.01 -46.5 -1.4 -4.3 -2.1

J = 5, nj = 50 Low .20,.20 0.01, 0.01 -25.2 0.1 -0.2 -0.9
0.20, 0.05 -31.1 -1.0 -1.5 -1.8
0.20, 0.20 -31.5 -1.0 -1.5 -1.7
0.60, 0.01 -32.7 -2.8 -3.7 -3.5

.30,.10 0.01, 0.01 -24.5 -0.1 -0.4 -0.9
0.20, 0.05 -30.2 -1.3 -1.7 -1.9
0.20, 0.20 -30.7 -1.3 -1.7 -1.9
0.60, 0.01 -31.7 -3.3 -4.0 -3.5

High .20,.20 0.01, 0.01 -29.2 0.0 -0.4 -0.4
0.20, 0.05 -36.5 -1.1 -1.7 -1.3
0.20, 0.20 -37.0 -1.2 -1.7 -1.2
0.60, 0.01 -38.5 -2.9 -4.0 -3.2

.30,.10 0.01, 0.01 -31.1 0.3 -1.5 -0.1
0.20, 0.05 -38.9 -0.7 -1.7 -0.9
0.20, 0.20 -39.5 -0.8 -1.6 -0.7
0.60, 0.01 -41.0 -2.3 -4.3 -2.2

J = 15, unbalanced Low .20,.20 0.01, 0.01 -23.1 0.9 1.2 0.4
0.20, 0.05 -30.3 0.4 0.6 0.0
0.20, 0.20 -30.6 0.3 0.5 -0.1
0.60, 0.01 -33.7 -0.6 -0.8 -1.1

.30,.10 0.01, 0.01 -22.6 0.5 1.2 0.4
0.20, 0.05 -29.6 -0.4 0.2 -0.2
0.20, 0.20 -29.8 -0.5 0.3 -0.3
0.60, 0.01 -33.0 -2.0 -1.5 -1.2

High .20,.20 0.01, 0.01 -26.8 0.8 0.4 0.5
0.20, 0.05 -35.4 0.3 -0.3 0.0
0.20, 0.20 -35.8 0.2 -0.3 -0.1
0.60, 0.01 -39.6 -0.5 -1.8 -1.1

.30,.10 0.01, 0.01 -28.3 0.7 0.5 0.8
0.20, 0.05 -37.6 -0.2 -0.6 0.3
0.20, 0.20 -38.1 -0.4 -0.7 0.1
0.60, 0.01 -42.6 -1.8 -2.7 -0.8
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Table 4: Coverage rate (CR) and average width (AW) corresponding to confidence interval of the treatment effect
estimate, when missingness is differential by treatment arm. Bold text indicates coverage lower than 90%, while
italics indicates over-coverage (higher than 97%).

Design η Missingness ICC CCA SMI FMI MMI
CR AW CR AW CR AW CR AW

J = 25, Low .20,.20 0.01, 0.01 81.2 18.6 95.5 17.9 98.8 22.3 94.9 17.5
nj = 10 0.20, 0.05 84.7 27.6 92.6 26.2 96.5 31.2 93.1 27.4

0.20, 0.20 83.9 27.7 92.8 26.3 96.3 31.2 93.1 27.2
0.60, 0.01 91.3 56.0 90.7 51.4 95.1 58.7 94.4 56.9

.30,.10 0.01, 0.01 82.2 18.7 95.5 19.4 99.7 26.1 94.9 18.9
0.20, 0.05 85.2 27.7 92.5 26.9 97.5 34.0 93.0 28.2
0.20, 0.20 84.6 27.7 92.6 27.0 97.5 34.0 92.4 27.9
0.60, 0.01 91.7 56.0 90.7 50.8 95.2 60.1 93.5 57.5

High .20,.20 0.01, 0.01 75.1 17.4 95.6 17.3 98.7 21.4 95.6 17.2
0.20, 0.05 81.2 26.7 91.8 26.2 96.8 30.6 93.8 27.4
0.20, 0.20 81.2 26.6 91.9 26.2 96.8 30.6 93.7 27.2
0.60, 0.01 89.7 55.2 91.0 52.3 94.6 58.4 94.4 56.9

.30,.10 0.01, 0.01 73.7 17.8 96.2 18.5 99.1 23.4 95.8 18.1
0.20, 0.05 78.4 26.8 92.2 26.8 96.8 32.0 93.2 28.0
0.20, 0.20 78.6 26.8 92.3 26.8 96.8 32.1 93.6 27.8
0.60, 0.01 89.3 55.3 90.4 52.2 95.0 59.1 94.4 57.4

J = 5, Low .20,.20 0.01, 0.01 82.0 20.3 94.8 20.2 96.5 22.6 95.6 20.2
nj = 50 0.20, 0.05 87.4 48.1 87.4 47.0 92.4 53.1 91.0 51.1

0.20, 0.20 87.2 48.4 87.8 47.0 92.6 53.1 90.9 51.1
0.60, 0.01 89.9 116.1 87.5 107.3 91.1 121.5 90.9 120.2

.30,.10 0.01, 0.01 83.2 20.3 94.8 21.8 97.2 25.4 95.3 21.7
0.20, 0.05 86.6 47.9 87.2 46.3 92.1 54.3 90.3 51.2
0.20, 0.20 87.7 48.2 87.2 46.4 92.4 54.1 90.2 51.0
0.60, 0.01 89.0 115.7 85.3 103.7 91.0 121.5 90.7 120.0

High .20,.20 0.01, 0.01 75.6 19.4 94.8 19.8 96.1 21.9 94.1 20.0
0.20, 0.05 85.4 47.3 88.9 47.9 92.0 52.7 91.4 51.3
0.20, 0.20 85.3 47.5 88.9 47.9 92.1 52.6 91.4 51.3
0.60, 0.01 89.7 115.0 87.9 110.2 91.2 121.0 91.0 120.2

.30,.10 0.01, 0.01 74.3 20.0 94.6 20.9 97.1 27.0 95.1 21.0
0.20, 0.05 85.1 47.6 87.6 47.7 92.8 54.3 90.1 51.7
0.20, 0.20 84.9 47.8 87.5 47.7 92.4 53.8 90.2 51.6
0.60, 0.01 89.1 115.0 86.9 108.4 91.0 123.7 90.8 120.9

J = 15, Low .20,.20 0.01, 0.01 81.0 17.7 93.9 17.0 97.4 21.0 93.2 16.9
unbalanced 0.20, 0.05 85.9 32.1 89.9 30.3 95.7 36.1 93.0 32.9

0.20, 0.20 85.9 32.1 89.7 30.3 96.0 35.9 93.1 32.7
0.60, 0.01 91.2 70.3 89.6 63.7 94.3 74.0 93.5 72.4

.30,.10 0.01, 0.01 82.6 17.8 93.8 18.4 98.5 24.6 93.9 18.3
0.20, 0.05 85.7 32.1 88.0 30.4 96.4 38.3 92.2 33.4
0.20, 0.20 85.5 32.1 88.2 30.4 96.2 38.1 91.5 33.1
0.60, 0.01 91.9 70.5 87.4 62.1 94.3 75.1 94.0 72.9

High .20,.20 0.01, 0.01 74.9 16.6 93.5 16.7 97.6 20.4 93.6 16.8
0.20, 0.05 83.0 31.1 90.9 30.8 96.0 35.6 92.9 33.0
0.20, 0.20 83.0 31.2 90.6 30.7 95.9 35.5 92.8 32.8
0.60, 0.01 91.0 69.5 89.7 65.5 94.6 73.6 93.8 72.4

.30,.10 0.01, 0.01 73.4 17.1 94.3 17.5 97.4 22.9 93.8 17.7
0.20, 0.05 82.5 31.4 90.7 30.8 96.0 37.3 93.5 33.4
0.20, 0.20 82.1 31.4 91.0 30.8 96.2 36.9 93.0 33.1
0.60, 0.01 90.5 69.7 89.7 64.5 94.0 74.4 93.8 72.8
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Figure 1: Boxplot of the distribution of (a) percentage bias and (b) coverage rate for treatment effect esti-
mates on Y1, by analysis strategy (CCA, SMI, FMI, MMI), stratified by missingness mechanism, denoted
by the columns Ind: individual covariate; Clus: cluster-level covariate, Both and Treat: indicating the
variables associated with missingness. Each box-and-whiskers plot represents 48 scenarios. The dotted
black lines represent (a) no bias and (b) the nominal coverage rate, while the dashed lines represent
minimum (90%) and maximum (97%) acceptable coverage rates.
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Figure 2: Boxplot of the distribution of (a) percentage bias and (b) coverage rate for treatment effect esti-
mates on Y2, by analysis strategy (CCA, SMI, FMI, MMI), stratified by missingness mechanism, denoted
by the columns Ind: individual covariate; Clus: cluster-level covariate, Both and Treat: indicating the
variables associated with missingness. Each box-and-whiskers plot represents 48 scenarios. The dotted
black lines represent (a) no bias and (b) the nominal coverage rate, while the dashed lines represent
minimum (90%) and maximum (97%) acceptable coverage rates.
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