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Abstract 

Background: Malaria among school children is increasingly receiving attention, yet the burden of malaria in this age 
group is poorly defined. This study presents data on malaria morbidity among school children in Bungoma county, 
western Kenya.

Method: This study investigated the burden and risk factors of Plasmodium falciparum infection, clinical malaria, 
and anaemia among 2346 school children aged 5–15 years, who were enrolled in an individually randomized trial 
evaluating the effect of anthelmintic treatment on the risks of malaria. At baseline, children were assessed for anae‑
mia and nutritional status and information on household characteristics was collected. Children were followed‑up 
for 13 months to assess the incidence of clinical malaria by active detection, and P. falciparum infection and density 
evaluated using repeated cross‑sectional surveys over 15 months.

Results: On average prevalence of P. falciparum infection was 42 % and ranged between 32 and 48 % during the five 
cross‑sectional surveys. Plasmodium falciparum prevalence was significantly higher among boys than girls. The overall 
incidence of clinical malaria was 0.26 episodes per person year (95 % confidence interval, 0.24–0.29) and was signifi‑
cantly higher among girls (0.23 versus 0.31, episodes per person years). Both infection prevalence and clinical disease 
varied by season. In multivariable analysis, P. falciparum infection was associated with being male, lower socioeco‑
nomic status and stunting. The risk of clinical malaria was associated with being female.

Conclusion: These findings show that the burden of P. falciparum parasitaemia, clinical malaria and anaemia among 
school children is not insignificant, and suggest that malaria control programmes should be expanded to include this 
age group.
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Background
Significant progress in malaria control has been realized 
in the last decade with a number of countries, includ-
ing Kenya, reporting decline in malaria transmission 

and hospital admission [1, 2]. The progress observed is 
largely due to the increase in access and use of proven 
malaria control interventions, combined with social and 
economic development [3–7]. Despite this reduction, 
malaria remains an important public health problem 
worldwide with endemicity in over 100 countries in the 
tropics and subtropics [8, 9].

Malaria prevention typically targets the highest risk 
groups; pregnant women and children under five who are 
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most affected by the severe forms of the disease. How-
ever, there is increasing evidence suggesting that school-
aged children (5–15  years) bear the highest burden of 
asymptomatic malaria irrespective of the transmission 
setting with a prevalence range between 14 and 64  % 
[10–14], and constitute nearly half of the population at 
risk of malaria [8]. Moreover, due to a decline in trans-
mission and exposure in some areas, the peak age of clin-
ical attacks of malaria is shifting from very young (under 
five) to older children [3, 15].

Both asymptomatic and clinical malaria have been 
shown to have a negative impact on the health and cogni-
tive development of school children [16–22]. Although, 
school children are included in standard malaria inter-
vention strategies, often they have the lowest coverage 
of malaria preventive measures, such as bed nets use [23, 
24]. While reduction of infections is observed in younger 
age groups that are targeted by interventions, para-
site prevalence among school aged children may even 
increase, as observed after the national distribution of 
bed nets in Kenya [25, 26]. In addition, as school children 
are rarely treated for these asymptomatic infections, they 
may contribute significantly to the infectious reservoirs 
of malaria [27, 28].

In order to adapt malaria control strategies to changes 
in transmission patterns, there is urgent need for data 
on asymptomatic and clinical malaria among different 
age groups. The present study aimed to describe pat-
terns of Plasmodium falciparum infection and clinical 
malaria among school children living in an area of high 
malaria transmission in western Kenya. Specifically, this 
study investigated the burden of P. falciparum infection, 
clinical malaria, and anaemia, as well as associated risk 
factors.

Methods
Study area and participants
The study presents secondary analysis of longitudinal 
data arising from an individually randomized clinical 
trial evaluating the impact of repeated (every 4 months) 
anthelmintic treatment with albendazole on clinical 
malaria and malaria parasitaemia among school chil-
dren [29]. The trial was conducted between February 
2013 and October 2014 in Bumula District, Bungoma 
County, western Kenya. Malaria transmission is intense 
and perennial, with two seasonal peaks (May–August 
and November–December) associated with an increase 
in rainfall and predominantly caused by P. falciparum. A 
school survey conducted in 2009 reported that the preva-
lence of P. falciparum among school children in western 
Kenya was 21.6 % and with only 19.0 % of school children 
sleeping under a bed net the previous night [30]. The 
most recent Malaria Indicator Survey conducted in 2010 

reported a slightly higher proportion of children sleeping 
under a bed net (28.0  %) in western Kenya and a com-
pared to national use of 20 % [26]. There was a mass net 
distribution campaign that was conducted in 2011, that 
is reported to have increased the average net ownership 
from 1.0 per household to 2.6 as had been earlier [31].

The trial recruited 2346 children aged 5–15 years from 
23  day schools [29]. The schools were recruited purpo-
sively based on their accessibility, all children in the 
selected schools were invited to be part of the study. 
Children with signs of severe malaria, aged >15  years, 
or suspected sickle-cell trait were excluded from the 
trial. For the purpose of the trial, children were selected 
based on soil transmitted helminths (STH) infection sta-
tus and complemented by non-infected children to reach 
the required sample size, so that 1505 (64 %) had detect-
able STH infection. There was no difference between 
STH infected and uninfected children in terms of demo-
graphic parameters. However, children who did not have 
detectable STH infection were more likely to have P. 
falciparum infection, while parasite density was not sig-
nificantly different between the two groups (Additional 
file 1). After 15 months of follow up, there was no differ-
ence in either the incidence of clinical malaria or preva-
lence of P. falciparum between the two treatment groups 
[29], therefore, all the children are combined in a single 
analysis in the present paper.

Baseline assessments and follow‑up of children
Prior to the trial, a baseline household survey was con-
ducted to collect information on socioeconomic char-
acteristics, and children’s use of malaria prevention 
measures. During the baseline health survey, haemoglo-
bin concentration was assessed from a finger prick blood 
sample using a HemoCue haemoglobin photometer (Hb 
201  +  , Ångelholm, Sweden), weight and height were 
recorded. Follow-up cross-sectional surveys at schools 
were conducted at 3, 7, 11, and 15 months (Fig. 1) when 
a finger-prick blood sample was collected from all chil-
dren, irrespective of whether they had fever or not, thick 
and thin blood smears prepared. Active malaria case 
detection surveillance was conducted over 13  months 
of follow-up. School visits were conducted on a weekly 
basis, with absent children followed-up at home. Axillary 
temperature was measured using a digital thermometer. 
Children with documented fever (axillary temperature 
≥37.5  °C) or who reported fever or any other signs and 
symptoms (headache, rigors, fevers, vomiting and chills) 
of malaria within the past 24 h were asked to provide a 
finger-prick blood sample, which was used to perform a 
malaria rapid diagnostic test (RDT) (Bioline Malaria Ag 
P.f/Pan, BD Biosciences, SanDiego, CA) and to prepare 
thick and thin blood smears. Children diagnosed with 
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uncomplicated clinical malaria (fever or other malaria 
signs plus a positive RDT result) were treated using 
Coartem® (20  mg artemether/120  mg lumefantrine) in 
accordance with national guidelines. No cases of compli-
cated malaria were encountered.

Household and school locations of all enrolled children 
were mapped using a hand held GPS device (eTrex 20 
Garmin Ltd., Olathe, KS, USA). Estimates of land surface 
temperature (LST), enhanced vegetation index (EVI), 
elevation and normalized difference vegetation index 
(NDVI) were extracted for each school after averaging 
the values of covariates within a 1-km catchment area 
around each school and household. Permanent water 
bodies were identified through intersecting gridded sur-
faces of the normalized difference water index (NDWI) 
for rainy and dry season. Those water areas which remain 
throughout the year were considered potential perma-
nent breeding sites for mosquitoes. Straight-line distance 
(Euclidean distance) from schools to the nearest perma-
nent body was calculated. A detailed description on how 
the data was obtained and extracted is provided in an 
additional file enclosed (Additional file 2).

Microscopy and laboratory techniques
Blood smears were air dried and stained with 3 % Giemsa 
for 45  min. Parasite density was defined as number of 
Plasmodium parasites per μL of blood, counted against 
200 leukocytes assuming a leukocyte count of 8000/μL of 
blood. If fewer than 10 asexual parasites were detected in 

the first 200 leukocytes, counting was continued against 
500 leukocytes. A blood smear was considered negative 
when the examination of 200 high power fields failed to 
reveal asexual parasites. Thin smears were used for spe-
cies identification. All blood slides were read by two inde-
pendent microscopists with discrepancies resolved by a 
third microscopist.

Ethical consideration
Written informed consent was obtained from a parent 
or guardian and assent was sought from children before 
enrollment into the study. The study was approved by 
the Kenya Medical Research Institute and KEMRI Ethics 
Review Committee (SSC no.2242), the London School of 
Hygiene and Tropical Medicine (LSHTM) Ethics Com-
mittee (6210), and the Makerere School of Public Health, 
Institutional Review Board (IRB00005876). The study 
was registered with the Clinical trial.gov NCT01658774.

Definition of variables
Three malariometric outcomes were considered; (1) 
malaria parasitaemia defined as P. falciparum infection 
at any density irrespective of presence fever as diagnosed 
by expert microscopy, (2) P. falciparum parasite density 
categorized in two groups: light (1–999 parasites/μL), 
and heavy (≥1000 parasites/μL), and (3) clinical malaria, 
defined as the presence of asexual P. falciparum parasi-
taemia as determined by microscopy plus either an axil-
lary temperature >37.5  °C or a reported history of fever 

Fig. 1 Timeline of the surveys conducted and active case detection during the 15 month follow‑up period, among school children in Bumula 
district, western Kenya
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during the preceding 24 h. Children were considered at 
risk from their date of entry into the study until complet-
ing follow-up at 13  months. Children with documented 
or reported clinical malaria or known to have received 
medical attention from any source other than the survey 
team were censored for 28 days and those children who 
were absent from school for ≥10 days were censored for 
the time of absence [29]. Anaemia was defined using age 
and sex corrected WHO threshold adjusted by altitude 
[32] with a mid-point age assumed for the self-reported 
age for each child as there were doubts over the correct-
ness of the age. Patterns of P. falciparum infection and 
clinical malaria were investigated by season: wet season 
(May–August and November–December) and dry season 
(January–April and September–October).

Individual and household‑related variables
Principal component analysis was used to construct a 
household wealth index based on information on wall, 
floor, and roof construction materials, source of fuel, and 
education level of household head. The wealth index was 
then divided into two groups (termed poor and less poor) 
based on the median. Z-scores of height-for-age (HAZ), 
weight-for-age (WAZ) and body mass index for age 
(BMIZ) were calculated using the AnthroPlus software 
that uses the new 2006 WHO growth Ref. [33]. Children 
were classified as stunted, underweight, and thin if their 
HAZ, WAZ, and BMIZ, respectively, were less than −2 
standard deviations (SDs) from the reference medium. 
Based on observed distribution, age was considered as 
categorical variable (5–10 years and 11–15 years). Three 
categories were generated to determine the consistency 
of bed net use; never (reported none use), sometimes 
(reported use at least once), and always (reported use at 
each survey) based on bed net use information collected 
during the five cross-sectional surveys.

Statistical analysis
Data were analysed using Stata version 13 (Statacorp, 
College Station). Summary statistics were calculated for 
all baseline data. Proportion of children with P. falci-
parum infection and anaemia together with their 95  % 
confidence interval (CI) was calculated using binomial 
regression analysis, adjusted for clustering by school. To 
allow for over dispersion in the distribution of parasites, 
arithmetic mean parasite counts with their 95 % CIs were 
estimated using a negative binomial regression model 
taking into account school clustering. Estimates of preva-
lence and density of P. falciparum infection were calcu-
lated by sex and survey. Incidence rates were calculated 
as number of events divided by person years at risk using 
survival analysis, and were estimated for each calendar 

month, stratified by sex and age group. Survival analysis 
for clinical malaria was presented using Kaplan–Meier 
curves. Prevalence rate ratios (P. falciparum infection 
and anaemia) and incidence rate ratios were calculated 
adjusting for clustering in schools. Most of the infections 
were of low parasite density and preliminary analysis 
indicated little variation and therefore no further analysis 
was undertaken of this outcome.

Risk factors of P. falciparum infection were identified 
using mixed effects logistic regression modelling, where 
P. falciparum infection status was treated as repeated 
measures (child random intercept), with additional ran-
dom intercepts to adjust for clustering of children within 
schools and households. As most households had a sin-
gle child, the study area was divided into 191 hexagons 
of 1  km diameter to which households were assigned 
based on their geographic location (1–66 children per 
hexagon). Hexagon defined clusters were favored over 
actual household clusters due to model convergence. All 
univariable and multivariable models for P. falciparum 
infection included a fixed term for survey round; this 
adjusted for the number of times a child contributed to 
the analysis, even if there was missing data at a particu-
lar follow-up survey. Univariable analysis was first per-
formed including one covariate at a time and significant 
variables (P ≤  0.05, based on likelihood ratio test) were 
included in multivariable analysis. Parsimonious regres-
sion models were developed using a backwards variable 
selection approach, eliminating one variable at a time 
based on the highest P value and retaining only variables 
with P ≤ 0.05.

Risk factors for incidence of clinical malaria were inves-
tigated using mixed effects Poisson regression. The mod-
els included a random intercept for children, however 
they failed to converge when clustering at both school 
and household level was considered. Hence models 
were adjusted only for clustering at household, as this is 
where infection is more likely to occur. Anaemia was not 
included in the variable selection procedure, because of 
potential reverse causality. The association of P. falcipa-
rum infection and anaemia was however subsequently 
tested adjusting for variables included in the minimum 
model. To investigate any potential effect of previous P. 
falciparum infections on incidence of clinical malaria, 
the final model was further tested including the number 
of P. falciparum infections experienced by a child as a 
fixed term.

Factors associated with baseline anaemia prevalence 
were identified using mixed effects logistic regression 
modelling with a random intercept to adjust for cluster-
ing within schools. Model selection procedures were fol-
lowed as described above.
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Results
Baseline child characteristics
In total, 2346 children aged 5–15 years from 1712 house-
holds were included in the study. Baseline characteris-
tics of children are presented in Table 1. At baseline, the 
mean age was 10.4  years [standard deviation (SD): 2.5] 
and 47.5 % of children were female. A total of 1853 (79 %) 
children reported sleeping under a bed net the previous 
night and the proportion did not vary between boys and 
girls.

Plasmodium falciparum infection
The overall prevalence of P. falciparum infection was 
42  % and was significantly higher among boys (45 vs 
39 %, P < 0.001) and among younger (5–10 years) com-
pared to older children (11–15 years) irrespective of sex 
(53.9 vs 46.1  %, P  <  0.001) (Table  2). The prevalence of 
P. falciparum was significantly higher during wet season 
compared to the dry season (42.6 vs 40.6 %, P = 0.042). 
The majority (68  %) of the infections were light, having 
parasite densities < 1000 parasites/µl of blood. Densities 
did not vary by sex, but varied significantly by season 
(P < 0.001).

In univariable and multivariable analysis the odds of 
P. falciparum infection reduced with increasing age of 

children (P < 0.001). Additionally, P. falciparum infection 
was more common among boys, in children from house-
holds with lower socioeconomic status and who were 
anaemic (Table 3). Additionally, stunting was associated 
with increased odds of infection in multivariable analysis. 
However, there was no evidence for a lower risk of P. fal-
ciparum infection among children who slept under a bed 
net the previous night.

Incidence of clinical malaria
The total observation time during the 13 months of active 
case detection was 2310.8 person years, which was 85 % 
of the potential follow-up time. During the 13  months 
follow-up, 606 cases of malaria were recorded, corre-
sponding to an overall incidence rate of 0.26 (95  % CI, 
0.24–0.29) episodes per person-year. Of the 2346 chil-
dren enrolled into the study, 1815 (77.4 %) did not experi-
ence any episode of clinical malaria during the follow-up 
period, 405 (17.3  %) children had only one episode and 
93 (4  %) had two or more episodes of malaria. Having 
any episode and repeated episodes of clinical malaria was 
significantly higher among girls than boys (0.31 vs 0.23 
episodes per person-year, P  <  0.001) (Table  2; Fig.  2a) 
and girls were more likely to have repeated episodes of 
clinical malaria (P  =  0.03). However, using alternative 

Table 1 Baseline characteristics of study children, by sex

SD standard deviation, WAZ weight-for-age z-score (underweight), HAZ height-for-age z-score (stunted), BMIZ body-mass-index-for-age z-scores, CI confidence 
interval, μL microlitre, g/dL grammes/decilitre
a Data are proportions % (n), unless otherwise stated
b  based on Wald test comparing boys versus girls

Characteristica Overall
2346

Boys
1232

Girls
1114

Pb value

Child characteristics

 Age, years, mean (SD) 10.4 (2.5) 10.6 (2.5) 10.2 (2.5) <0.001

Age categories (years)

 5–10 50.2 (1178) 46.1 (568) 54.8 (601)

 11–15 49.8 (1168) 53.9 (664) 45.2 (504) <0.001

Mean body temperature, mean °C (SD) 36.6 (0.6) 36.6 (0.6) 36.6 (0.6) 0.467

HAZ <−2 SD below median reference value 25.3 (593) 31.1 (383) 18.6 (210) <0.001

WAZ <−2 SD below median reference value 3.0 (71) 3.6 (44) 2.4 (27) 0.105

BMIZ <−2 SD below median reference value 10.4 (245) 13.1 (161) 7.5 (84) <0.001

P. falciparum infection 48.3 (1095) 50.8 (607) 46.7 (488) 0.015

P. falciparum infection density/μL, mean (95 % CI) 1886 (1452–2450) 1812 (1361–2413) 1968 (1339–2894) 0.731

Haemoglobin, g/dL, mean (SD) 12.3 (1.3) 12.3 (0.4) 12.3 (0.4) 0.142

Anaemia 38.0 (834) 40.9 (471) 34.8 (363) 0.003

Household characteristics

 >1 net per household 87.5 (1319) 85.2 (673) 90.1 (646) 0.004

 Slept under a bed net previous night 78.7 (1742) 77.8 (905) 79.8 (837) 0.241

Education level of household head

 None or incomplete primary 57.4 (1255) 56.8 (653) 58.1 (602) 0.547

 Above primary school 42.6 (930) 43.2 (496) 41.9 (434)
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case definition with a parasite density cutoff of >2500 
parasites/μL as used in previous studies [34], the inci-
dence rate did not vary by sex (Table 2). Younger children 
(5–10 years) were 20 times more likely to have an episode 
of clinical malaria compared to the older age group (11–
15  years) (P  =  0.038). Although there were more girls 
in the younger age groups compared to boys, the inci-
dence of malaria was higher in the older girls as shown 
in Fig. 2b with a higher cumulative risk of developing an 
episode of clinical malaria P < 0.001.

Incidence of malaria varied considerably by calendar 
month ranging from (0.00 to 0.80) episodes per person 
year with the peak corresponding with the wet season. 
When stratified by season and sex, the incidence rate 
varied among boys and girls between the seasons with 
broadly similar trends, (Table  2; Fig.  2a). In total, 361 
(99  %) blood smears done during the wet season were 
confirmed as clinical malaria cases, compared to 248 
(38 %) of the blood smears during the dry season.

In univariable analysis with season as a fixed term, 
clinical malaria was associated with being female (Inci-
dence rate ratio 1.33, 95  % CI: 1.11–1.62), (Additional 
file 3). None of the other investigated factors were signifi-
cant after adjusting for season and sex in multivariable 
analysis.

Geographic distribution of P. falciparum infection 
and clinical malaria
A map showing the location of households in the study 
area is provided in Fig.  3. Household GPS coordinates 
were missing for 408 children and sensitivity analy-
sis showed that P. falciparum infection prevalence was 

higher among children with missing coordinates. Figure 3 
shows the geographic distribution of clinical malaria and 
P. falciparum infection by households and survey round. 
P. falciparum infection occurred across the study area, 
but a subset of households in the west appeared to exhibit 
repeated P. falciparum infection with children from these 
households having 4–5 detected infections. Clustering 
of both P. falciparum infection and clinical malaria was 
more evident at school level, and followed a similar pat-
tern to what was observed at household level (Fig. 4).

Distribution of clinical malaria was skewed with major-
ity of the children not experiencing any episode of clini-
cal malaria (Fig. 4). Children with a single or no infection 
of P. falciparum during cross-sectional surveys had a 
higher cumulative risk for developing clinical malaria 
compared to children with repeated P. falciparum infec-
tion with a divergence of the survival curves occurring 
after 4 months as shown in Fig. 5 (P = 0.012). Only 11 % 
(364) of children did not experience any clinical malaria 
episode or P. falciparum infection.

Anaemia
Overall, 834 children (38 %) were anaemic and anaemia 
was most common among 11–15  year-olds and among 
boys (Table 1). Among boys, anaemia was higher in the 
older age group (11–15  years) compared to 5–10  year-
olds (P  =  0.009), while in girls, although not signifi-
cant, anaemia was higher among the younger age group 
(5–10 years) (P = 0.085). In univariable and multivariable 
analysis, anaemia was associated with being male, thin-
ness, and presence of P. falciparum infection irrespective 
of number of times infected (Table 4).

Table 2 Plasmodium falciparum infection and  incidence of  clinical malaria, by  sex among  school children during  the 
15 months follow-up

PYAR person years at risk, IRR incidence rate ratio, CI confidence interval, μL microlitre
a P values based on Wald test comparing the difference between boys and girls

Outcome Events Total tests Prevalence Events Total tests Prevalence Prevalence ratio
(95 % CI)

P valuea

Boys Girls

Plasmodium falciparum infection

 All events 2388 5362 0.45 1884 4853 0.39 0.87 (0.83–0.92) <0.001

 Events in dry season 2237 967 0.43 2036 770 0.38 0.87 (0.82–0.93) <0.001

 Events in wet season 3125 1421 0.45 2817 1114 0.40 0.87 (0.81–0.94) <0.001

Outcome Episodes PYAR Incidence Episodes PYAR Incidence IRR (95 % CI) P value
Boys Girls

Clinical malaria

 All episodes 277 1218.9 0.23 329 1091.8 0.31 1.33 (1.11–1.59) 0.001

 Episodes in dry season 107 659.0 0.16 139 589.6 0.23 1.45 (1.12–1.88) 0.005

 Episodes in wet season 170 502.2 0.30 190 560.0 0.38 1.24 (1.01–1.53) 0.036

 Parasite density >2500/μL 65 1199.6 0.05 65 1068.9 0.06 1.12 (0.78–1.62) 0.225
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Discussion
The epidemiology of malaria among school children 
has previously received little attention, with few studies 
looking at factors associated with the risk among Afri-
can school children [12, 35]. However there is a renewed 
interest because of the shift from malaria control that 
targets high risk groups to a more inclusive approach 
and targets community-wide transmission [36]. There 

is, therefore, need for robust data for all age-groups on 
the burden of malaria to inform planning of control pro-
grammes. These results show that malaria burden among 
school children was considerable, with at least 30  % of 
children being infected with P. falciparum at any one 
of five surveys and one in five children experiencing an 
attack of clinical malaria. The current study showed that 
asymptomatic malaria was common among boys, stunted 

Table 3 Factors associated with Plasmodium falciparum infection, among school children in Bumula District

LST land surface temperature, NDVI normalized difference vegetation index

Stunted = HAZ < −2 SD below median reference value, thin = BMIZ < −2 SD below median reference value, underweight = WAZ < −2 SD below median reference 
value; wet season survey (February–June 2013, May 2014); Dry season (September 2013, January 2014, September 2014). WAZ was calculated for children 5–10 years
a Multivariate analysis adjusted for sex, age and socio economic status
b P value based on likelihood ratio test

Variable Crude
odds ratio
(95 % CI)

P value Adjusteda

odds ratio
(95 % CI)

P valueb

Child characteristics

 Sex

  Male 1 1

  Female 0.78 (0.68–0.88) <0.001 0.76 (0.68–0.87) <0.001

 Age categories (years)

  5–10 1

  11–15 0.78 (0.69–0.81) <0.001 0.68 (0.67–0.85) <0.001

  Stunted 1.39 (0.97–1.97) 0.061 1.48 (1.04–1.41) 0.007

  Underweight 1.12 (0.98–1.29) 0.095 1.22 (1.06–0.95) 0.295

  Thin 0.98 (0.81–1.19) 0.848 0.96 (0.79–1.17) 0.713

  Anaemia 1.17 (1.03–1.33) 0.018 1.14 (1.01–1.32) 0.030

 Survey‑round

  1 (Feb–June 2013) 1 1

  2 (Sept 2013) 0.71 (0.61–0.82) 0.71 (0.61–0.82)

  3 (Jan 2014) 0.46 (0.40–0.54) 0.017 0.46 (0.40–0.54) <0.001

  4 (May 2014) 0.78 (0.67–0.90) 0.78 (0.67–0.90)

  5 (Sept 2014) 0.81 (0.70–0.94) 0.80 (0.69–0.94)

Household characteristics

 Bed net use

  Never 1 1

  Sometimes 0.99 (0.86–1.14) 0.893 0.99 (0.87–1.14) 0.990

  Always 0.96 (0.81–1.12) 0.97 (0.82–1.15)

 Socio economic status

  Poor 1 1

  Not poor 0.86 (0.76–0.98) 0.026 0.85 (0.75–0.97) 0.031

 LST (°C)

  16.0–20.6 1 1

  20.7–25.3 1.09 (0.85–1.39) 0.695 1.07 (0.83–1.40) 0.920

  25.5–34.8 1.10 (0.80–1.52) 1.09 (0.78–1.54)

 NDVI

  0.34–0.54 1 1

  0.35–0.60 1.10 (0.96–1.26) 0.523 1.11 (0.97–1.28) 0.412

  0.61–0.71 1.12 (0.96–1.31) 1.12 (0.96–1.32)

Average distance to water bodies (km) 1.10 (0.87–1.42) 0.421 1.11 (0.88–1.42) 0.362
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and anaemic children from households of lower socioec-
onomic status, while the incidence of clinical malaria was 
associated with being female.

The sex difference in P. falciparum infection has previ-
ously been reported in Africa [37–40]. Although studies 
on sexual dimorphism have been inconclusive and warrant 
further investigation, hypotheses of underlying reasons for 
such sex differences include estrogen or testosterone spe-
cific modulation of antiplasmodial immune [41]. Moreo-
ver, the lower risk of clinical malaria among boys may be 
attributed to development of partial immunity as a result 
of repeated exposure [42]. This is further supported by the 
observed lower cumulative risk in children with repeated 
detections of P. falciparum infection, as it was boys who 
were more likely to have P. falciparum infection at any 
one of the surveys. Even though the reported sex differ-
ences are interesting from an epidemiological perspec-
tive, the programmatic significance of these findings are 
comparably low. P. falciparum infection prevalence was 
high among boys and girls and, therefore, both should be 
equally considered in malaria control strategies.

Furthermore, in this study anaemia was prevalent (two 
in five children), and was shown to be associated with 
P. falciparum infection. Similar findings have been con-
sistently reported among school-aged populations in 
Africa [17, 22, 43–46]. The mechanism through which 
Plasmodium infection causes anaemia is multifactorial 
and includes direct destruction of infected red blood 
cells (RBCs), rupturing of RBCs, hypersplenism, and 
reduced RBC production in the bone marrow [47, 48]. 
Both anaemia and P. falciparum infection were associ-
ated with poor nutritional status: thinness and stunting, 
respectively. Malnourished children have previously been 
shown to have increased risk of malaria [46]. As micro-
nutrient deficiency is common in many malaria endemic 
areas, it is plausible that these children may have been 
anaemic initially and P. falciparum infection further 
added to the strain of anaemia [49]. In addition, intestinal 
helminth infections are common in Bumula [50] and may 
also contribute to the observed prevalence of anaemia, 
although no association was observed between anaemia 
and hookworm infection in the baseline survey.

The observed association of P. falciparum with low 
socioeconomic status is in agreement with previous stud-
ies that show malaria is more common among people 
of lower socioeconomic status who often live in poorly 
constructed houses increasing their exposure to infec-
tion [4, 24, 30, 51]. Bumula is one of the poorest dis-
tricts in Kenya, with 79 % of the households having their 
floors and walls made of mud and 40  % having a grass 
thatched roof [52]. In this study 95  % of the children 
came from houses with walls and floors made of mud 
and 10 % had thatched roofs. Such house constructions 
have been found associated with higher malaria preva-
lence and indoor vector density [53, 54] while improved 
house structure and quality of construction material was 
associated with lower incidence of malaria [55]. Mod-
ern housing is suggested to offer protection by obstruct-
ing mosquito vector entry and reducing their density in 
the houses, as compared to traditional houses that have 
thatched roofs, walls and floors made of mud [56, 57]. 
Improvement of socioeconomic development has been 
shown to be an effective intervention against malaria 
[58].

In contrast to cross sectional studies conducted in vari-
ous parts of Africa, where bed net use has been shown 
to be lowest among school children [23], 89  % of the 
children reported sleeping under a bed net the previous 
night at the baseline survey. Moreover, bed net use was 
not associated with reduced risk of P. falciparum infec-
tion or clinical malaria as would be expected, however 
the finding is agreement with the last malaria indicator 
survey that did not show an association of bed net use 
and Plasmodium infection in Lake Victoria region [31]. 

Fig. 2 a Incidence rate of clinical malaria by sex and calendar month. 
b Cumulative risk of developing an episode of malaria by sex and 
age group over the 13 months follow‑up among school children in 
Bumula District, western Kenya. Younger children (5–10 years), older 
children (11–15 years)
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It is possible, although children reported ownership of 
a bed net, they do not consistently use it, as only 22  % 
stated to consistently sleep under a bed net. Additionally, 
most school children in rural parts of Africa sleep on the 
floor and therefore hanging the net may be a challenge 
[24, 30]. An alternative explanation for the lack of protec-
tive effect of bed nets in this study may relate to devel-
opment of insecticide resistance among Anopheles spp. 
mosquitoes as previously has been reported in western 
Kenya [59].

As expected, the prevalence parasitaemia and incidence 
of clinical malaria fluctuated depending on the rainfall 
patterns. Western Kenya is a high malaria transmission 
area with a annual precipitation ranging 1200–1800 mm 
[60]. Higher prevalence of infection and incidence of 
clinical malaria were observed during the wet season, 
consistent, with what is known, transmission intensity 
varies with rainfall patterns [61]. Despite this seasonal 
variation, observed P. falciparum infection prevalence 

was important also during the dry season suggesting 
that transmission control interventions should not only 
be targeted to the wet season. Mapping of P. falciparum 
infection and clinical malaria by survey at school and 
household level showed pronounced spatial clustering in 
the western part of the study area. This may be explained 
by an insufficient spatial resolution of the environmental 
data used according to the size of the study area. It is well 
known that the major malaria vectors in the area (Anoph-
eles gambiae s.s.) has greater affinity for small breeding 
sites such as animal footprints and small ponds formed 
during rainy season [62] which is hardly detected by 
medium resolution satellite imagery, such as those used 
in this study. Clustering was more evident at school level 
compared to households, suggesting that school based 
surveys may provide valuable insight into community 
transmission dynamics. School based surveys have been 
previously shown to provide a more cost-effective frame-
work for the planning and evaluation of malaria control 

Fig. 3 a Map of household locations, geographic distribution of b Plasmodium falciparum infection and c clinical malaria by household, during the 
15 month follow‑up period in Bumula district, western Kenya
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programmes [10]. It is more effective to survey children 
at schools compared to community based surveillance 
which often misses them [13].

The major strength of this study was the temporal 
dimension afforded by examination of a cohort over 
1½ years, with 85 % follow-up rate. The study had a num-
ber of limitations. First, the children included in the main 
trial were from schools that were purposively selected 
based on accessibility, and therefore may not necessarily 
be representative of all school-aged children in the study 
area. However, these findings are similar to a study based 
on a representative sample of schools conducted in west-
ern Kenya [63]. Second, diagnosis was based on routine 
parasitological procedures and expert malaria micros-
copy may miss light infections when compared to more 
sensitive molecular methods [28]. School children have 
been shown in previous studies, to contribute substan-
tially to sub microscopic infection and therefore the true 
prevalence may have been under estimated [13, 28]. Third, 
clinical malaria episodes were missed out if treatment was 
sought outside the study. Fourth, the age or quality of the 
bed net and relied on self-reported use. Bed nets may have 
been of poor condition or torn and therefore fail to pro-
vide adequate protection as has been previously reported 
in Kenya [64–66]. Fifth, haemoglobin level was only meas-
ured at baseline; a better assessment of the association of 
anaemia and clinical malaria could have been made by 
measuring haemoglobin levels for each suspected case.

Fig. 4 Geographic distribution of Plasmodium falciparum infection by survey and clinical malaria as identified by active case detection, by school

Fig. 5 Cumulative risk of developing an episode of clinical malaria, 
over the 13 months follow, by Plasmodium falciparum infection dur‑
ing the cross‑sectional survey among school children. Abbreviations: 
Pf Plasmodium falciparum; Pf = 0 no P. falciparum infection; Pf = 1 
single P. falciparum infection; Pf = 2 repeated (more than once) P. 
falciparum infections during the five surveys conducted
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Conclusion
The results show that the burden of clinical malaria, P. fal-
ciparum infection and anaemia was high among school 
children in Bumula district, western Kenya. Although 
reported bed net ownership was high, consistent use was 
low. Therefore, promoting bed net use among this age 
group may help to achieve the desired protective effect 
of this intervention. The study demonstrated the need to 
include school children in standard malaria interventions, 
which may alleviate the observed high anaemia burden.
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Additional files

Additional file 1. Baseline characteristics among school children who 
were infected with any STH versus those who were uninfected in Bumula 
district. The table compares baseline characteristics of study children who 
were infected with any soil transmitted helminth versus those who were 
uninfected at recruitment.

Additional file 2. Sources and processing of environmental data. A 
summary of sources and processing procedures of environmental data is 
provided.

Additional file 3. Factors associated with incidence of clinical malaria 
among school children in Bumula, district. This table shows analysis of risk 
factors associated with clinical malaria.

Table 4 Factors associated with  prevalence of  anaemia, 
among school children in Bumula District

a Multivariable analysis adjusted for Sex, being thin, and P. falciparum infection, 
P value base on likelihood ratio test, Any P. falciparum infection being infected in 
at least one of the surveys

Variable Crude
odds ratio
(95 % CI)

P value Adjusteda

odds ratio
(95 % CI)

P value

Sex

 Boys 1 1

 Girls 0.76 (0.64–0.90) 0.002 0.79 (0.66–0.95) 0.009

Age categories (years)

 5–10 1 1

 11–15 1.19 (1.00–1.42) 0.053 0.14 (0.95–1.37) 0.150

 Stunted 0.90 (0.54–1.51) 0.704 1.13 (0.78–1.61) 0.521

 Underweight 0.86 (0.67–1.10) 0.232 0.91 (0.53–1.54) 0.721

 Thin 1.49 (1.12–1.99) 0.006 1.45 (1.26–1.67) 0.013

Any P. falciparum infection

 No 1 1

 Yes 1.41 (1.10–1.81) 0.006 1.39 (1.03–1.86) 0.017

Cumulative P. falciparum infection

 None 1 1

 Single infection 1.39 (1.05–1.83) 0.112 1.42 (1.23–1.63) <0.001

 Multiple infec‑
tions

1.37 (1.06–1.77) 1.40 (1.23–1.60)

Incidence of clinical malaria

 None 1 1

 Single episode 1.02 (0.84–1.24) 0.790 1.05 (0.86–1.28) 0.837

 Multiple epi‑
sodes

1.11 (0.79–1.56) 1.15 (0.82–1.63)

Average bed net use

 Never 1 1

 Sometimes 0.96 (0.78–1.19) 0.828 0.99 (0.80–1.23) 0.736

 Always 0.89 (0.70–1.13) 0.92 (0.72–1.17)

Socioeconomic status

 Poor 1 1

 Not poor 0.97 (0.94–1.00) 0.089 0.97 (0.94–1.00) 0.096

http://dx.doi.org/10.1186/s12936-016-1176-y
http://dx.doi.org/10.1186/s12936-016-1176-y
http://dx.doi.org/10.1186/s12936-016-1176-y
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