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Abstract 

CYP3A enzymes metabolize endogenous hormones and chemotherapeutic agents used to treat 

cancer, thereby potentially impacting drug effectiveness. Here we refined the genetic basis 

underlying the functional effects of a CYP3A haplotype on urinary estrone glucuronide (E1G) 

levels and tested for an association between CYP3A genotype and outcome in patients with 

chronic lymphocytic leukemia (CLL), breast, or lung cancers. The most significantly associated 

single nucleotide polymorphism (SNP) was rs45446698, a SNP that tags the CYP3A7*1C allele; 

this SNP was associated with a 54% decrease in urinary E1G levels. Genotyping this SNP in 

1,008 breast cancer, 1,128 lung cancer, and 347 CLL patients, we found that rs45446698 was 

associated with breast cancer mortality (hazard ratio [HR]=1.74, P=0.03), all-cause mortality in 

lung cancer patients (HR=1.43, P=0.009), and CLL progression (HR=1.62, P=0.03). We also 

found borderline evidence of a statistical interaction between the CYP3A7*1C allele, treatment 

of patients with a cytotoxic agent that is a CYP3A substrate and clinical outcome 

(Pinteraction=0.06). The CYP3A7*1C allele, which results in adult expression of the fetal CYP3A7 

gene, is likely to be the functional allele influencing levels of circulating endogenous sex 

hormones and outcome in these various malignancies. Further studies confirming these 

associations and determining the mechanism by which CYP3A7*1C influences outcome are 

required. One possibility is that standard chemotherapy regimens that include CYP3A 

substrates may not be optimal for the approximately 8% of cancer patients who are CYP3A7*1C 

carriers. 
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INTRODUCTION 

The CYP3A5, CYP3A7 and CYP3A4 genes, which form the cytochrome P450 3A (CYP3A) 

gene cluster at 7q22.1, encode enzymes that metabolise a diverse range of substrates (1). 

Specifically, in addition to a role in the oxidative metabolism of endogenous hormones, CYP3A 

enzymes metabolise around 50% of all clinically used drugs including many of the agents used 

in treating cancer (2). Of particular relevance to breast cancer, the hormonal agent tamoxifen, 

the alkylating agent cyclophosphamide, the taxanes, paclitaxel and docetaxel and the 

topoisomerase II inhibitor, mitoxantrone are all CYP3A substrates (1, 3). CYP3A genes are 

differentially regulated and substantial inter-individual differences in expression have been 

reported for all three genes (4). CYP3A4, the major isoform in adults, is predominantly 

expressed in the liver, where it is the most abundant P450, accounting for 30% of total CYP450 

protein (5). CYP3A5 is “polymorphically” expressed, with approximately 33% of Europeans and 

60% of African Americans expressing detectable levels in the adult liver (4). CYP3A7, the major 

isoform in the fetus, is generally silenced shortly after birth (6).  

 

We have previously screened 642 single nucleotide polymorphisms (SNPs) tagging 42 genes 

involved in sex steroid synthesis or metabolism, and tested for association with premenopausal 

urinary estrone glucuronide (E1G) levels, measured in serial urine samples collected at pre-

specified days of the woman’s menstrual cycle (7). We demonstrated that a rare haplotype, 

defined by two SNPs spanning the CYP3A gene cluster (rs10273424 and rs680055), was 

associated with a highly significant 32% difference in urinary E1G (7). Predicated on the 

assumption that genetically-determined effects on metabolism may impact on patient outcome, 

we have (i) refined the genetic basis for this association and (ii) examined the association 

between genotype and outcome in three cancers - breast and lung cancer and chronic 

lymphocytic leukaemia (CLL). 
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MATERIALS AND METHODS 

Ethics 

The study was conducted in accordance with the tenets of the Declaration of Helsinki and all 

patients provided written informed consent. Ethical approval for the study was obtained from the 

Royal Marsden NHS Trust.  

Study Subjects - Fine mapping of the CYP3A locus 

Full details of the 371 women from the British Breast Cancer (BBC (8)) and the 358 women from 

the Mammography Oestrogens and Growth Factors (MOG (9)) studies genotyped for this 

analysis have been published previously (7). Briefly they comprised premenopausal women 

who were first-degree relatives and friends of breast cancer cases (BBC study) or participants in 

the intervention arm of a trial of annual mammographic screening in young women (10) 

conducted in Britain (MOG study). To be eligible women had to be having regular menstrual 

cycles, not using hormone replacement therapy or oral contraceptives and not to have been 

diagnosed with breast cancer at recruitment to the study.  All women had self-reported Northern 

European ancestry. To be included in the original analysis and this fine-mapping analysis 

women had to have provided serial urine samples, at pre-specified days of their menstrual cycle 

for measurement of creatinine adjusted urinary E1G. E1G was measured using an in-house 

enzyme-linked immunosorbent assay (ELISA; (7)). 

Study Subjects - Risk analysis  

Royal Marsden Hospital (RMH) Lifestyle and Family History study 

The RMH Lifestyle and Family History study comprises 1,786 consecutive breast cancer 

patients who attended the RMH Breast Unit (Royal Marsden Hospital, Chelsea, London, UK) 
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between June 2000 and January 2007. Women were invited to participate in the study by 

completing a questionnaire, consenting to access to medical records and providing a blood 

sample. We identified all women with self-reported White ethnicity for whom DNA was available 

(n=1536). We excluded: women born outside the British Isles (n=173, 11.3%), women not 

followed up at the RMH (n=96, 6.3%), secondary referrals where the pathology report from the 

referring hospital was missing or incomplete (n=97, 6.3%), cases presenting with metastatic 

disease (n=13, 0.8%), complex disease histories (n=8), atypical histology (n=6), women who 

had a prophylactic mastectomy (n=2) and cases unable to be traced (n=13). Finally we 

excluded 118 (7.7%) cases with non-invasive cancer leaving 1,010 cases for analysis. Two 

hundred and twenty-one patients died during follow up; for 159 (71.9%) cause of death was 

recorded as breast cancer.  

GELCAPS lung cancer cases  

Patients with lung cancer were ascertained through the Genetic Lung Cancer Predisposition 

Study (GELCAPS), a population-based study of lung cancer. Full details of the design and 

conduct of the study have been described previously (11). The current analysis is based on 

1,142 patients from whom detailed clinico-pathological data and follow-up information had been 

collected using a standardised proforma. All cases were of self-reported White ethnicity and 

were United Kingdom residents.  

UK Leukemia Research Fund CLL4 trial 

We studied CLL patients entered in the UK Leukemia Research Fund CLL4 trial. 

Comprehensive details about the design and conduct of the trial have been published 

elsewhere (12). Briefly, CLL4 was a randomized phase III trial established to compare the 

efficacy of fludarabine, chlorambucil, and the combination of fludarabine plus cyclophosphamide 

as a first-line treatment for Binet stages B, C and A-progressive CLL. Age was not a criterion for 

entry into the study. Of the 777 patients entered into the trial the current analysis is based on a 
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random subset of 356 patients of White Caucasian ethnicity who had blood samples taken for 

clinical diagnostic purposes and cell marker studies at participating centres.  

 

SNP selection, imputation and genotyping 

To fine map the 7q22.1 association signal for urinary estrone glucuronide levels(7) we used 

SNAP (13) to identify 184 SNPs that were correlated (r2 ≥ 0.1) with rs10273424 and rs680055, 

based on the CEU 1000 genomes (1KG) pilot data. We were able to design Sequenom plexes 

(Sequenom Inc, San Diego, USA) for 154 of these; we also included 7 SNPs genotyped as part 

of the original study(7) for monitoring of QC. Post genotyping we excluded 19 SNPs that failed 

genotyping and 4 SNPs for which the call rate was <95%, leaving 138 SNPs for analysis. The 

mean call rate for these 138 SNPs was 99.4% and genotypes of all SNPS were in accordance 

with Hardy-Weinberg equilibrium (i.e. P>0.05). Based on 25 (3.4%) duplicate samples 

concordance was 100% across the 138 SNPs.  

 

To increase the density of our fine mapping, we imputed untyped genotypes using IMPUTE 

version 2.2 software with 1KG as the reference. Thresholding at an INFO score of ≥0.8, 725 

additional SNPs and indels were successfully imputed resulting in a total of 863 variants for 

analysis in 727 samples. 

 

To confirm imputed genotypes for the most significant SNP (rs45446698) and to test for 

association with patient outcome we genotyped rs45446698 by Taqman (Life Technologies, 

Paisley, UK). Call rates were 96.9% (fine-mapping and RMH Lifestyle and Family History study), 

98.8% (GELCAPS) and 97.5% (CLL4). Concordance with imputed genotypes (fine-mapping) 

and between duplicate samples (cancer cases) was 100%.  
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Sequencing 

We confirmed that rs45446698 was serving as a proxy for the CYP3A7*1C allele by Sanger 

sequencing a 370 bp PCR fragment including the 60 bp region that defines this allele in four 

common homozygotes, three heterozygotes and one rare homozygote (primer sequences 

available on request).  

 

Statistical analysis 

Fine-mapping 

The percent change in hormone level per allele of each SNP was estimated by linear regression 

models of loge-transformed hormone levels. We used t tests of the regression coefficient to 

calculate P values for linear trend.  

Risk analysis 

We used Cox regression to test for an association between rs45446698 genotype and breast 

cancer specific survival (BCSS; RMH Lifestyle and Family History study) or progression-free 

survival (PFS; CLL4). For lung cancer (GELCAPS), where the prognosis is poor (5 year survival 

<10%), we used overall survival as a proxy for a disease-specific outcome. In the breast cancer 

series, to allow for differences in ascertainment between incident and prevalent cases, the time 

at risk began on the date of diagnosis but the time under observation began on the date of entry 

to the study (defined as receipt of blood sample) (14, 15). Time at risk ended on the date of 

death from breast cancer, or censoring (defined as date of last follow up or death from other 

causes). All cases were censored at 15 years after diagnosis on the basis that follow up was 

likely to be unreliable after this period. For GELCAPS cases, time at risk began on the date of 

diagnosis and ended on the date of death from any cause, last follow up or censoring. For the 

CLL4 cases, time at risk began at randomization to the trial and ended on date of progression, 

date of last follow up or censoring. Since rs45446698 has a minor allele frequency of 0.04, we 
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combined rare homozygotes with heterozygotes and used a one degree of freedom (1df) test. 

To test for statistical interaction between genotype and each stratifying variable we compared 

models with and without interaction terms using likelihood ratio tests. The proportional hazards 

assumption was tested using Schoenfeld residuals. Statistical analyses were performed using R 

software, version 2.11 (R Foundation for Statistical Computing, Vienna, Austria) and STATA 

software, version 11.0 (College Station, TX, USA). All reported P-values are two-sided. 

 

RESULTS 

The most significantly associated SNP was rs45446698, which was associated with a 54% 

reduction in urinary estrone glucuronide (95% CI -61.0% to -47.7%, P=6.9x10-24; Figure 1, 

Supplementary Table S1). rs45446698 is one of seven highly correlated SNPs (rs11568824, 

rs45494802, rs45575938, rs45467892, rs11568825, rs11568826 and rs45446698) that cluster 

within the CYP3A7 promoter and comprise the CYP3A7*1C allele (4). Sequencing of the 

CYP3A7 promoter in four carriers of the rare rs45446698-C allele and four rs45446698-A 

common homozygotes confirmed that rs45446698 tags all seven base changes that define the 

CYP3A7*1C allele in these Northern European women (data not shown).  

To assess rs45446698 as a potential marker of disease outcome, we genotyped 1,008 breast 

cancer patients participating in the RMH Lifestyle and Family History study (Methods; Table 1). 

For the majority of patient and tumour characteristics, there was no association with rs45446698 

genotype. The exception was the number of positive lymph nodes; rs45446698-C carriers were 

more likely to have four or more positive nodes than rs45446698-A homozygotes (Table 1; 

P=0.003). In an unadjusted analysis, carrier status for rs45446698-C was associated with a 

74% increase in breast cancer mortality (HR=1.74, 95% CI 1.08–2.82, P=0.02; Figure 2A). 

Restricting the analysis to the 889 individuals for whom we had complete data, and adjusting for 
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established prognostic factors (age, tumour size, grade, positive nodes, vascular invasion) and 

radiotherapy did not alter this result (HR=1.74, 95% CI 1.05–2.90, P=0.03). Stratifying on 

estrogen receptor (ER) status showed no evidence that the association differed by ER-status 

(HR=1.86, 95% CI 1.03–3.34, P=0.04 and HR=1.70, 95% CI 0.55-5.24, P=0.35 for ER-positive 

and ER-negative disease respectively; Pheterogeneity=0.92).  

In this cohort of  breast cancer patients, median time from diagnosis to enrolment was 1.7 years 

but the range was wide (0-12.3); excluding the 65 (7.3%) cases diagnosed more than 5 years 

prior to enrolment did not alter the HR estimate (HR=1.82, 95% CI 1.09-3.04, P=0.02) and 

stratifying on time from diagnosis to enrolment we found no evidence that the HR was biased by 

the inclusion of prevalent cases (HR=1.72, 95% CI 0.72-4.08; HR=2.03, 95% CI 1.06-3.89, for 

cases diagnosed <1 or ≥1 year before entry to the study, Pheterogeneity=0.76). There was, however, 

some evidence that the risk associated with rs45446698-C carrier status varied with time since 

diagnosis (test of the assumption of proportional hazards, P=0.01); stratifying the analysis into 

two time periods the hazard ratios were HR=1.14 (95% CI 0.53–2.47, P=0.74) and HR=4.46 

(95% CI 1.98–10.04, P=0.0003) for the first (t < 7.5 year since diagnosis) and second (t ≥ 7.5 

years since diagnosis) halves of the study, respectively.  

To determine whether rs45446698 was associated with outcome for other site-specific cancers 

we genotyped the GELCAPS lung cancer cases (11) (Table 2) and the CLL4 trial series (12) 

(Table 3). There was no evidence that rs45446698 was associated with patient or disease 

characteristics. In GELCAPS, rs45446698-C carrier status was associated with a 26% increase 

in all causes mortality (HR=1.26, 95% CI 0.96-1.64, P=0.09; Figure 2B). After adjusting for 

standard prognostic factors (age, gender, stage and smoking status), surgery and radiotherapy 

the HR was 1.43 (95% CI 1.09-1.87, P=0.009) with no evidence that the association differed 

between small cell lung cancer (SCLC) and non-small cell lung cancer (NCLSC) (HR=1.93, 95% 

CI 1.18-3.16, P=0.009 and HR=1.25, 95% CI 0.90-1.74, P=0.19 for SCLC and NSCLC 
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respectively, Pheterogeneity=0.16). In this cohort of lung cancer cases there was no evidence that 

the association varied with time since diagnosis (test of non-proportional hazards P=0.93). In 

the CLL series carrying the variant allele of rs45446698-C was associated with a 54% increased 

risk of progression (HR=1.54, 95% CI 1.00-2.36, P=0.05; Figure 2C). Adjusting for standard 

prognostic factors (age, gender and stage) altered this result only marginally (HR=1.62, 95% CI 

1.05-2.50, P=0.03). In the 283 cases for whom 13q deletion and IGHV mutation status were 

available (HR=1.46, 95% CI 0.89-2.39, P=0.13), adjusting for 13q deletion (HR=1.46, 95% CI 

0.89-2.38, P=0.13) or mutation status (HR=1.36, 95% CI 0.83-2.22, P=0.23) altered the result 

only marginally. In this cohort of CLL cases, there was no evidence that the association 

between genotype and disease free progression varied with time since diagnosis (test of non-

proportional hazards P=0.78). 

To determine whether the association between rs45446698 genotype and outcome was 

influenced by chemotherapy, specifically treatment with an agent that is a CYP3A substrate 

(Table 4), we carried out stratified analyses and tested for statistical interaction. Stratifying on 

treatment with tamoxifen, in the breast cancer series, there was no evidence that the 

association differed between strata; HRs were 1.68 (95% CI 0.90-3.13, P=0.10) and 1.89 (95% 

CI 0.69-5.17, P=0.21) for treated and non-treated, respectively (Pheterogeneity=0.89). Stratifying on 

treatment with a cytotoxic agent that is metabolised by a CYP3A enzyme (Table 4), the 

association between genotype and outcome appeared to be specific to patients who were 

treated with a CYP3A substrate (HR=1.96, 95% CI 1.11-3.45, P=0.02) compared to those who 

were not (HR=0.98, 95% CI 0.28-3.49, P=0.98) but this difference was not statistically 

significant (Pheterogeneity=0.57). Similarly, in the lung cancer study, the HR in cases who were 

treated with a CYP3A substrate was more extreme (HR=1.71, 95% CI 1.21-2.41, P=0.003) than 

in those who were not (HR=1.11, 95% CI 0.71-1.74, P=0.64) but with no evidence of statistical 

interaction (Pheterogeneity=0.24). In the CLL trial, the only chemotherapeutic agent that was a 
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CYP3A substrate was cyclophosphamide (Table 4). Comparing cases who were or were not 

treated with cyclophosphamide, respective HRs for rs45446698-C carriers were HR=2.15 (95% 

CI 0.82-5.64, P=0.12) and HR=1.36 (95% CI 0.83-2.22, P=0.22; Pheterogeneity=0.52). Combining 

data across all three studies, the HR for rs45446698-C carriers who were treated with a 

cytotoxic agent that is a CYP3A substrate was 1.80 (95% CI 1.36-2.39; P=4.1 x 10-5) compared 

to an HR of 1.20 (95% CI 0.87-1.65; P=0.26; Figure 3) for those who were not, with borderline 

evidence of statistical interaction between treated and non-treated (Pheterogeneity=0.06) but no 

evidence of heterogeneity between studies (Pheterogeneity=0.79 and 0.87 for non-treated and 

treated, respectively).  

 

DISCUSSION 

Our data supports the CYP3A7*1C allele, tagged by rs45446698 as being the likely genetic 

basis for the association between the rs10273424-A rs680055-G haplotype and urinary estrone 

glucuronide levels (7). This allele has previously been associated with significantly reduced 

serum dehydroepiandrosterone sulfate (DHEAS) and estrone (E1) levels in men, providing 

independent support for our findings (16).  

The CYP3A7*1C allele arose from a gene conversion event in which an approximately 60 bp 

region within the fetal CYP3A7 promoter was replaced with the equivalent region from the adult 

CYP3A4 gene (17). Comparing the variant CYP3A7*1C allele with the reference CYP3A7 allele, 

there are seven, highly correlated, single base changes all of which map to the CYP3A7 

promoter and which result in expression of CYP3A7 in adult carriers of the CYP3A7*1C allele. 

Functional analyses demonstrated that two of these SNPs (rs11568825 and rs11568826) are 

necessary and sufficient for determining pregnane-X-receptor (PXR) dependent activation of 
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CYP3A7 and four of the other five SNPs (rs11568824, rs45494802, rs45575938, rs45467892) 

influence constitutively activated receptor (CAR) mediated activation (18). 

To our knowledge this is the first study to test for an association between the CYP3A7*1C allele 

and outcome in cancer patients. Genome-wide association studies of breast and lung cancer 

survival have been published (19-30); while none has reported an association with variants at 

the CYP3A locus only one, a recent meta-analysis from the Breast Cancer Association 

Consortium (BCAC), that combined data from nine breast cancer studies, has had power to 

detect moderate effects for variants with MAF<0.05 at genome-wide significance. The lack of 

association between rs45446698 and outcome in the BCAC meta-analysis (30) may reflect a 

relatively short mean duration of follow up with censoring of cases at 10 years after diagnosis. In 

our breast cancer data we found evidence of non-proportional hazards such that the association 

between the CYP3A7*1C allele and outcome varied with time since diagnosis with HRs of 1.14 

and 4.46 at < 7.5 and ≥ 7.5 years after diagnosis, respectively. Replication of this finding in 

additional studies will be needed to determine whether this time-dependence is a chance 

finding, whether any such effect is specific to breast cancer, and whether it is influenced by the 

doses and combinations of chemotherapeutic agents that the patients received.  

Due to the wide diversity of exogenous and endogenous substrates that are metabolized by the 

CYP3A enzymes, there are many different potential mechanisms by which CYP3A expression 

could influence disease outcome and we cannot at this juncture confirm or refute any particular 

mechanism. Possibilities include the CYP3A7*1C allele (i) associating with markers of disease 

prognosis (eg stage, grade or lymph node involvement) dependent on, or independent of, 

endogenous hormone levels or (ii) by influencing plasma clearance of chemotherapeutic agents 

that are CYP3A substrates. In support of a CYP3A allele influencing outcome through 

association with prognostic markers, association of the CYP3A4*1B allele with higher tumor-

lymph node-metastasis and Gleason score has been reported for prostate cancer (31) and in a 
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study of  Ewing’s sarcomas, high expression of CYP3A4 was significantly associated with 

distant metastases (32). In this analysis we observed an association between the CYP3A7*1C 

allele and lymph node metastasis (≥4 positive nodes) in breast cancer cases. There was, 

however, no association between carrier status and disease stage for lung cancer or CLL and 

the association of CYP3A7*1C with adverse outcome for all three cancers remained after 

adjusting for established prognostic markers.  

In support of the CYP3A7*1C allele influencing plasma clearance of chemotherapeutic agents, 

this allele was associated with adverse outcome across three site-specific cancers and, while 

these cancers have differing aetiologies and prognoses, the treatment regimens for all three 

include CYP3A substrates (Table 4). Consistent with an extensive body of evidence 

demonstrating that the efficacy of tamoxifen therapy cannot be predicted by CYP2D6 genotype 

(33, 34), we found no evidence of statistical interaction between the CYP3A7*1C allele, 

outcome and treatment with tamoxifen.  For cytotoxic cancer drugs, there was consistency 

across the three studies; HRs in CYP3A7*1C carriers were more extreme in patients treated 

with a drug that was a CYP3A substrate and in the combined data there was some evidence of 

statistical interaction between the CYP3A7*1C allele, treatment with a cytotoxic agent that was 

a CYP3A substrate and outcome (Pheterogeneity=0.06). Further studies confirming the association 

of the CYP3A7*1C allele with adverse outcome and investigating the mechanism by which this 

allele may influence outcome are required. 

 

There are several limitations to this analysis; the endpoints that we analyzed varied across the 

three different malignancies (disease-specific mortality (breast cancer), all cause mortality (lung 

cancer) and disease progression (CLL). While genotypes are effectively randomized at birth 

(35), and there was no association between being a carrier of the CYP3A7*1C allele and 
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receiving chemotherapy (Table 1, P=0.23 and Table 2, P=0.47 for breast and lung cancers 

respectively), treatment was not randomized in the two observational studies. The frequency of 

CYP3A7*1C allele is just 4% (8% carriers); accordingly we were unable to analyze cases who 

were heterozygous or homozygous for the variant allele separately. The relative rarity of this 

allele and the lack of detailed information on drug doses and numbers of treatment cycles 

limited our ability to carry out meaningful subgroup analyses. We could not investigate whether 

the time-dependence of the association between the CYP3A7*1C allele and outcome that we 

observed in the breast cancer study depended on particular combinations of cancer drugs and 

we were unable to test for statistically significant interaction between outcome, the CYP3A7*1C 

allele and individual chemotherapeutic agents or specific treatment regimens. The pooled 

estimate of the increased risk in carriers of the CYP3A7*1C allele, treated with one or more 

cytotoxic agents that are CYP3A substrates (HR=1.80, P=4.1x10-5) represents a “weighted 

average” which may vary substantially between different treatment regimens and across cancer 

types.  Finally, even in the combined data from all three of these retrospective studies, the 

evidence for statistical interaction between outcome, the CYP3A7*1C allele and the cytotoxic 

agents that are CYP3A substrates was weak (P=0.06). While this may reflect the heterogeneity 

of treatment regimens and a lack of power, we cannot exclude the possibility that the 

association between CYP3A7*1C and disease outcome is mediated by some other mechanism.  

In conclusion, we have shown that the CYP3A7*1C allele, which results in the adult expression 

of the fetal CYP3A7 gene, is likely to be the functional allele that is associated with both lower 

levels of circulating endogenous sex hormones and adverse outcome in  breast cancer, lung 

cancer and CLL. Our results require independent replication in larger studies, preferably with 

more detailed information on chemotherapy schedules and dosages, and across other cancer 

sites. However, one implication of our findings is that the doses and regimens of 
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chemotherapeutic agents that provide optimal benefit for the average patient may not be optimal 

for the approximately 8% of cancer patients who are CYP3A7*1C carriers.  
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Table 1: Characteristics of 1,008* breast cancer cases according to rs45446698 genotype 

  rs45446698 A:C + C:C 
n = 73 

rs45446698 A:A 
n = 935 

P-value# 

Mean age   55.0 56.1  
Age range  27 - 82 24 - 89 0.44 
Tumor size group (cm) < 2 44 (60.3) 521 (55.7)  
 2-5 23 (31.5) 363 (38.8)  
 5+ 6 (8.2) 51 (5.5) 0.35 
Grade 1 11 (15.1) 155 (16.6)  
 2 36 (49.3) 435 (46.5)  
 3 26 (35.6) 345 (36.9) 0.89 
ER status Positive 64 (87.7) 789 (84.4)  
 Negative 9 (12.3) 146 (15.6) 0.45 
Positive nodes 0 30 (41.1) 498 (53.3)  
 1-3 17 (23.3) 239 (25.6)  
 4+ 19 (26.0) 115 (12.3)  
 N/A 7 (9.6) 83 (8.9) 0.003 
Vascular invasion Positive 29 (39.7) 315 (33.7)  
 Negative 41 (56.2) 598 (64.0)  
 N/A 3 (4.1) 22 (2.3) 0.24 
Surgery Yes 72 (98.6) 923 (98.7)  
 No 1 (1.4) 12 (1.3) 0.95 
Radiotherapy Yes 68 (93.1) 808 (86.4)  
 No 5 (6.9) 124 (13.3)  
 N/A 0 (0) 3 (0.3) 0.11 
Chemotherapy Yes 43 (58.9) 481 (51.4)  
 No 30 (41.1) 452 (48.3)  
 N/A 0 (0) 2 (0.2) 0.23 
Tamoxifen Yes 58 (79.5) 736 (78.7)  
 No 15 (20.5) 195 (20.9)  
 N/A 0 (0) 4 (0.4) 0.94 
Pyrs  447 5625  
Events 
Rate (per 1000 pyrs) 

 19 
42.5 (27.1-66.6) 

140 
24.9 (21.1-29.4) 

 
0.02 

*Excludes two women with missing genotype; #two-sided t test (age), chi-squared test (size, grade, ER status, positive nodes,  
vascular invasion, surgery, radiotherapy, chemotherapy, tamoxifen), log rank test (events). 
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Table 2: Characteristics of 1,128* lung cancer cases according to rs45446698 genotype 

  rs45446698 A:C + C:C 
n = 89 

rs45446698 A:A 
n = 1039 

P-value# 

Mean age   62.8 64.8  
Age range  32 - 81 26 - 88 0.08 
Gender Male 41 (46.1) 435 (41.9)  
 Female 48 (53.9) 604 (58.1) 0.44 
Smoking Never 7 (7.9) 72 (6.9)  
status Ever 82 (92.1) 967 (93.1) 0.74 
Diagnosis SCLC 28 (31.5) 245 (23.6)  
 NSCLC (squamous) 30 (33.7) 383 (36.9)  
 NSCLC (adeno) 23 (25.8) 242 (23.3)  
 NCSLC (other) 8 (9.0) 169 (16.3) 0.15 
Stage 1 16 (18.0) 223 (21.5)  
 2 10 (11.2) 110 (10.6)  
 3 32 (36.0) 335 (32.2)  
 4 31 (34.8) 371 (35.7) 0.83 
Surgery Yes 14 (15.7) 179 (17.2)  
 No 75 (84.3) 860 (82.8) 0.72 
Radiotherapy Yes 24 (27.0) 265 (25.5)  
 No 65 (73.0) 774 (74.5) 0.76 
Chemotherapy Yes 67 (75.3) 745 (71.7)  
 No 22 (24.7) 294 (28.3) 0.47 
Pyrs follow up  824 1151  
Events  59  644   
Rate (per 1000 pyrs)  715.8 (554.6-923.8) 559.7 (518.1-604.7) 0.09 
* Excludes 14 women with missing genotype; #two-sided t test (age), chi-squared test (gender, smoking status, diagnosis,  
stage, surgery, radiotherapy, chemotherapy), log rank test (events). 
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Table 3: Characteristics of 347* CLL cases according to rs45446698 genotype 

  rs45446698 A:C + C:C 
n = 23 

rs45446698 A:A 
n = 324 

P-value# 

Median age   63.4 64.8  
Age range  42 - 83 46 - 84 0.44 
Gender Male 18 (78.3) 239 (73.8)  
 Female 5 (21.7) 85 (26.3) 0.64 
Stage A 2 (8.7) 88 (27.2)  
 B 12 (52.2) 139 (42.9)  
 C 9 (39.1) 97 (29.9) 0.15 
13q deletion Deletion 12 (52.2) 186 (57.4)  
 No deletion 10 (43.5) 115 (35.5)  
 N/A 1 (4.4) 23 (7.10) 0.50 
IGHV Mutation status Mutation 6 (26.1) 111 (34.3)  
 No mutation 12 (52.2) 169 (52.2)  
 N/A 5 (21.8) 44 (13.6) 0.60 
Pyrs follow up  45 933  
Events  23  298  
Rate (per 1000 pyrs)  514.3 (341.8-773.9) 319.4 (285.1-357.8) 0.05 
*Excludes 9 with missing genotype; #two-sided t test (age), chi-squared test (gender, stage, 13q deletion, mutation), log rank test (events). 
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Table 4: Chemotherapy regimens used in the treatment of breast cancer, lung cancer and CLL 
cases. 

Breast cancer (cytotoxic treatment)1 N treated (%) 
Doxorubicin, cyclophosphamide 173 (17.2)2 
Cyclophosphamide, methotrexate, fluorouracil 18 (1.8) 
Epirubicin, cisplatin, fluorouracil 13 (1.3)3 
Fluorouracil, epirubicin, cyclophosphamide 202 (20.0)4 
Methotrexate, mitoxantrone 93 (9.2)5 
Vinorelbine, epirubicin 21 (2.1) 
Other/not known 6 (0.6) 
No cytotoxic treatment 482 (47.8) 
Total 1,008 (100) 
Breast cancer (hormonal treatment)1  
Tamoxifen 495 (49.1) 
Tamoxifen, anastrozole 128 (12.7) 
Tamoxifen, letrozole 171 (17.0) 
Other/not known 75 (7.4)6 
No hormonal treatment 139 (13.8) 
Total 1,008 (100) 
Lung cancer 
Cisplatin/carboplatin, etoposide  206 (18.3)7 
Cisplatin/carboplatin, vinorelbine/vincristin  180 (16.0)8 
Cisplatin/carboplatin,  vinorelbine/vincristin, mitomycin 133 (11.8) 
Cisplatin/carboplatin, gemcitabine  194 (17.2) 
Cisplatin/carboplatin, taxane 28 (2.5) 
Doxorubicin, cyclophosphamide, vinorelbine/vincristin 33 (2.9) 
Doxorubicin, cyclophosphamide, etoposide 11 (1.0) 
Other/not known 27 (2.4) 
No cytotoxic treatment 316 (28.0) 
Total 1,128 (100) 
CLL  
Chlorambucil 166 (47.8) 
Fludarabine 88 (25.4) 
Fludarabine, cyclophosphamide 93 (26.8) 
No cytotoxic treatment 0 (0) 
Total 347 (100) 
Agents that are metabolised by a CYP3A enzyme are in bold. 1for breast cancer, treatment with a 
cytotoxic agent and a hormonal agent were not mutually exclusive; 415 (41.2%) of the 1,008 cases were 
treated with both a cytotoxic agent and a hormonal agent.  2includes 19 women also treated with a 
taxane, 3includes one woman also treated with a taxane, 4includes 20 women also treated with a taxane, 
5includes 14 women also treated with a taxane, 6comprises 41 women who were treated with anastrozole, 
29 who were treated with letrozole, 1 who was treated with both and 4 for whom treatment details are not 
known. 7includes 4 individuals also treated with ifosfamide, and 1 who was also treated with both 
ifosfamide and vincristine, 8includes 2 individuals also treated with ifosfamide.  
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Figure Legends: 

Figure 1: Regional association plot of the CYP3A locus at 7q22.1 (98,803,430-99,662,733)  

Chromosome position is indicated on the x-axis, and -log10 P-value on the y-axis. Directly 

genotyped SNPs are represented as red diamonds, with the most significant SNP (rs45446698) 

indicated by a large red diamond.  Imputed SNPs/indels are represented as green circles. The 

colour intensity of each diamond/circle reflects the extent of linkage disequilibrium with 

rs45446698 – red/green (r2 > 0.8) through to white (r2 < 0.2). The local recombination rate is 

plotted in blue. Physical positions are based on hg19.  

 

Figure 2: Kaplan-Meier survival estimates based on (A) breast cancer specific mortality 

(1,008 breast cancer cases) (B) all cause mortality (1,128 lung cancer cases) and (C) 

progression (347 CLL cases), according to rs45446698 genotype. 

Estimated survivor function (y-axis) is plotted against the time at risk (x-axis).The number of 

carriers of the reference (A) and the variant (C) alleles under observation at each time point are 

shown beneath the x-axis. 

 

Figure 3:  Association of rs45446698 with disease specific mortality (breast cancer), all 

cause mortality (lung cancer) and progression (CLL), stratified by whether the patient’s 

treatment regimen included a cytotoxic agent that is metabolised by a CYP3A enzyme. 

Horizontal lines represent 95% CIs. Square boxes represent cancer specific fixed-effects 

estimates. Diamonds represent the combined, fixed-effects estimates of the HRs and 95% CIs 

in each stratum. The vertical line represents the null effect (HR = 1.0).  
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Figure 1: Regional association plot of the CYP3A locus at 7q22.1 (98,803,430-99,662,733)
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Figure 2: Kaplan-Meier survival estimates based on (A) breast cancer specific mortality (1,008 breast cancer cases) (B) all cause mortality (1,128 
lung cancer cases) and (C) progression (347 CLL cases), according to rs45446698 genotype
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Figure 3: Association of rs45446698 with disease specific mortality (breast cancer), all 

cause mortality (lung cancer) and progression (CLL) stratified by whether the patient’s 

treatment regimen included a cytotoxic agent that is metabolised by a CYP3A enzyme. 
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