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Abstract

Background: Despite randomization, baseline imbalance and confounding bias may occur in cluster randomized
trials (CRTs). Covariate imbalance may jeopardize the validity of statistical inferences if they occur on prognostic
factors. Thus, the diagnosis of a such imbalance is essential to adjust statistical analysis if required.

Methods: We developed a tool based on the c-statistic of the propensity score (PS) model to detect global baseline
covariate imbalance in CRTs and assess the risk of confounding bias. We performed a simulation study to assess the
performance of the proposed tool and applied this method to analyze the data from 2 published CRTs.

Results: The proposed method had good performance for large sample sizes (n = 500 per arm) and when the
number of unbalanced covariates was not too small as compared with the total number of baseline covariates
(≥ 40 % of unbalanced covariates). We also provide a strategy for pre selection of the covariates needed to be
included in the PS model to enhance imbalance detection.

Conclusion: The proposed tool could be useful in deciding whether covariate adjustment is required before
performing statistical analyses of CRTs.

Keywords: Cluster randomized trial, Confounding bias, Propensity score, C-statistic, Baseline imbalance

Background
In cluster randomized trials (CRTs), the units of random-
ization are not individuals but rather the social units to
which the individuals belong [1]. This may challenge the
balance between groups in terms of baseline covariates.
Indeed, clusters are sometimes randomized before the
identification and recruitment of participants, which may
jeopardize allocation concealment [2–5]. In their review,
Puffer et al. [6] showed that 39 % of the selected CRTs
were at risk of confounding bias on individual characteris-
tics. That was also supported by the work of Brierley et al.
[7], who found a risk of bias in 40 % of CRTs that did not
use prior identification of participants. In addition, the
risk of chance imbalances increases when the number of
randomized clusters decreases, which is frequent [8, 9].
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Some allocation techniques have been proposed to
achieve a better baseline balance in CRTs, but they are not
always feasible to implement in practice [10]. If imbalance
occurs on one or more prognostic factors, the interven-
tion effect estimate may be biased and could compromise
the validity of statistical inferences. Identifying baseline
imbalance in CRTs is therefore of importance to imple-
ment suitable statistical analyses.
In individually randomized trials, statistical testing is

not recommended to assess group comparability because
if randomization is properly applied, all observed imbal-
ances will be due to chance [11, 12]. When reporting
the results of a randomized trial, the CONSORT state-
ment advises displaying baseline characteristics in a table
to gauge group comparability [13]. The same recommen-
dation is given in the CONSORT extension for CRTs,
both for individual-level and cluster-level covariates [14].
Fayers and King [15] stated that significance tests “are
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usually only worth doing if potential violation of the
randomisation is suspected”. In some CRTs, allocation
concealment is impossible (i.e., when, for instance, partic-
ipants are recruited after the randomization of clusters,
and because no blinding is possible), and therefore, in
this case, tests may be worthwhile. Nevertheless, Wright
et al. [16] showed that about 44.7 % of papers reporting
the results of a CRT did not provide a statistical test for
covariate balance, and 20 % did not even display a table
reporting covariates between groups.
The problem of baseline imbalance observed in some

CRTs is close to the imbalance that can occur in observa-
tional studies [17]. For these latter studies, several meth-
ods exist to assess group comparability at baseline. The
methods can be divided into two groups: those that assess
covariate balance one by one, and those that allow a global
assessment of the balance on several baseline covariates
[18]. Significance testing (based on t test or χ2 test, for
example), standardized difference [19], overlapping coef-
ficient [18] and Kolmogorov-Smirnov [20] or Lévy [21]
distances are in the first group of methods. Belister [22]
found that the standardized difference (see Table 1) had
the highest correlation with the bias of the intervention
effect estimate. Standardized differences also performwell
with small sample sizes [23], so it may have the best per-
formance in detecting baseline imbalance when covariates
are considered one by one. Nevertheless, this method does
not provide a global overview of the overlap of covari-
ates between groups. Global assessment of imbalance on
several covariates simultaneously is of interest in that it
allows for capturing the correlations between covariates.

Table 1 Standardized differences

Baseline groups comparability for each covariate can be assessed with the
standardized difference [19]. For a continuous covariates X, the
standardized difference SD is:

SD = 100 × |x̄1 − x̄0|√
s20+s21
2

, (1)

where x̄0 and x̄1 are X means in control and intervention arm, respectively,
and s20 and s

2
1 the corresponding variance estimates. For a binary covariate,

the SD is expressed as follows:

SD =
100 ×

∣∣∣P̂1 − P̂0
∣∣∣

√
P̂0(1−P̂0)+P̂1(1−P̂1)

2

, (2)

where P̂0 and P̂1 are the observed rates for the covariate in control and
intervention arm, respectively. The strength of SD as compared to
statistical tests is that this measure does not depend on the sample size
nor on the measurement scale [50]. Usually, covariates with a SD
exceeding 10 % are considered to be unbalanced [41]. However, for binary
covariates, a SD of 10 % can sometimes be negligible [51].

For example, let us consider two quantitative prognostic
factors, for which the impact on the outcome is on the
same direction: high values for these covariates lead to a
higher risk of an event. Because each of these prognos-
tic factors is slightly unbalanced, a univariate test may not
detect any imbalance. However, the impact of both imbal-
ances together may cause an important bias in the inter-
vention effect estimate. Consequently, a global approach
is more appropriate in the context of CRTs to handle
complex relationships underlying a potential confounding
bias.
Global metrics include the Mahalanobis distance [24],

the post-matching c-statistic of the propensity score (PS)
model [18] and L1 measure [25]. Franklin et al. [18] found
that the c-statistic of the PS model led to the better pre-
diction of bias for binary, count or continuous outcome,
provided the sample size is large enough. This statis-
tic represents the extent to which covariates can predict
intervention allocation. The c-statistic of the PSmodel has
been used to help in the selection of variables to include
in the PS model (even if this method is not recommended
[26]) but to our knowledge has not been used as a tool to
detect baseline imbalance.
In this context, we developed a decision rule based on

the c-statistic of the PS model and its expected probabil-
ity distribution to assess baseline imbalance. This method
can be viewed as a global statistical testing at a 5 % sig-
nificant level. The basic idea is to use the distribution of
the c-statistic in accordance with the characteristics of
the CRT (size, number of covariates) to choose the cut-
off for the detection of imbalance, rather than using a
unique threshold value. It is important to note that the
PS model fitted in order to detect imbalance is differ-
ent from the model fitted for the statistical analysis of
the trial. In both situation, the outcome of the PS model
is the treatment allocation, but, in the former situation,
all covariates associated with treatment allocation have
to be included in the PS model, whereas in the latter,
covariates both linked to treatment allocation and the
outcome need to be accounted for. Indeed, when analyz-
ing the trial, selecting confounding only for a propensity
score analysis is desirable [27, 28] while such a restric-
tion does not hold for our aim which is to detect any
baseline imbalance, to obtain a qualitative assessment of
the risk of bias in a given CRT. This paper is organized
as follows. We first describe two CRTs motivating exam-
ples at risk of confounding bias because clusters were
randomized before the patients were enrolled. We then
give the theoretical background for the PS approach and
the c-statistic, followed by the objectives of the present
paper and the principle of our method. Then, we give the
design and the results of a simulation study to assess the
performance of our method based on the distribution of
the c-statistic to detect baseline imbalance in CRTs. The
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implication in terms of risk of confounding bias and need
for covariates adjustment are then discussed, along with
an application of our method with the two motivating
examples.

Motivating examples
Example 1: Management of osteoarthritis with a
patient-administered assessment tool
The first motivating example was a published CRT using
a 2 × 2 factorial design that aimed to assess the impact
of an unsupervised home-based exercise programme, the
use of standardized evaluation tools, their combination,
or usual care on symptoms (pain, global assessment of
disease and physical functioning) in patients with knee
and hip osteoarthritis (OA) [29]. A total of 867 rheuma-
tologists were randomized and each had to enrol four
patients (three with knee OA and one with hip OA). Thus,
rheumatologists were not blinded to intervention alloca-
tion. For simplicity, we focus on only one intervention: the
use of standardized evaluation tools. In all, 1462 patients
received the standardised evaluation tools and 1 495
patients received usual care. Twelve covariates were col-
lected at baseline (Table 2). Standardized differences are
displayed to assess the balance between arms. Univariate

statistical testing showed an imbalance in age, pain, dis-
ability (measured by the the Western Ontario McMas-
ter University Osteoarthritis Index [WOMAC] physical
function subscale) and global assessment of disease at a
5 % significance level. These imbalances correspond to
a standardized difference of 7.81 % for age but greater
than 10 % for the other variables. Moreover, these vari-
ables were known to be strongly associated with the
potential outcome of the subjects. Because these vari-
ables were associated with whether patients were enrolled
into the trial in a given group, they constituted possi-
ble confounders. In addition, pain, WOMAC score and
global assessment of disease were correlated with each
other, with Pearson correlation coefficients in the range
[0.38 − 0.49].

Example 2: Standardized consultation for patients with
osteoarthritis of the knee
The second example was a CRT which evaluated the
impact of standardized consultations on patients with
OA of the knee versus usual care [30]. It was an open
pragmatic CRT in which 198 rheumatologists were ran-
domized, each of whom had to include two consecutive
patients who met the inclusion criteria. In total, 154

Table 2 Patient baseline characteristics per group in the study on management of osteoarthritis with a standardized evaluation tool
(first motivating example)

Characteristics Control Standardized tool p SDiff ( %)

n0 = 1495 n1 = 1462

mean (standard deviation) mean (standard deviation)

Duration of symptoms (months) 68.0 (69.8) 70.9 (75.0) 0.2737 4.03

Age (years) 67.2 (9.7) 66.4 (10.0) 0.0344 7.81

BMI (kg.m−2) 27.8 (4.9) 27.7 (4.7) 0.3824 3.14

Patient global assessment (0-100) 61.1 (18.2) 56.7 (17.4) < 0.0001 24.44

Pain evaluation VAS (0-100) 59.4 (16.0) 55.3 (15.1) < 0.0001 26.32

WOMAC function score (0-100) 45.5 (16.3) 43.8 (16.0) 0.0050 10.32

n ( %) n ( %)

Osteoarthritis in other joints 1366 (91.4) 1311 (89.7) 0.1297 5.81

Prior treatment

IA treatment 434 (29.0) 432 (29.6) 0.7877 1.14

NSAIDs 955 (63.9) 958 (65.5) 0.3689 3.45

SYSADOA 617 (41.3) 605 (41.4) 0.9810 0.22

Male 424 (28.4) 459 (31.4) 0.0782 6.65

Kellgren and Lawrence grade 0.2594

III 724 (48.4) 677 (46.3) 4.25

IV 516 (34.5) 547 (37.4) 6.02

BMI: Body Mass Index; VAS: Visual Analogue Scale; WOMAC: Western Ontario and McMaster Universities Arthritis Index; IA: intra-articular; NSAID: non-steroidal
anti-inflammatory drug; SYSADOA: systematic slow acting drug for osteoarthritis. SDiff: standardized difference; p: p-value for univariate tests (adjusted t test for quantitative
variables, adjusted chi-square test for qualitative variables to take the clustering into account). Bold values are significant tests at a 5 % significance level
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patients were allocated to standardized consultation and
182 to usual care. Overall, 26 covariates were measured at
baseline (Table 3). Statistical testing revealed a significant
imbalance in body mass index (BMI), delay in years since
the beginning of pain, age at the beginning of pain and
the use of non-drug treatments. Moreover, some other
variables (weight, pain, Medical Outcomes Study Short
Form 12 [SF-12] mental, and eight concommitant treat-
ments) had a standardized difference greater than the
usual threshold of 10 %.

Theoretical background
Propensity score theory
The PS theory was initially developed by Rosenbaum and
Rubin [31] to overcome the problem of confounding bias
in observational studies. The individual PS refers to the
individual probability, for a subject l involved in a study, of
receiving the intervention of interest (Tl = 1) rather than
the control intervention (Tl = 0), conditionally on the
subject’s characteristics at baseline xl = (x(1)l, . . . , x(r)l).
The PS is frequently denoted by e(xl) and is defined as

Table 3 Patient baseline characteristics per group in the study on standardized consultation for patients with osteoarthritis of the knee
(second motivating example)

Characteristics Control Standardized consultation p SDiff ( %)

n0 = 146 n1 = 181

mean (standard deviation) mean (standard deviation)

Age (years) 64.5 (8.4) 63.9 (8.1) 0.4720 8.02

Weight (kg) 81.4 (13.6) 84.1 (12.9) 0.0665 20.60

BMI (kg.m−2) 30.2 (3.8) 31.2 (3.5) 0.0143 27.63

PEL (0-5) 2.2 (0.9) 2.2 (0.8) 0.9594 0.00

Delay since beginning of pain (years) 5.5 (5.9) 7.4 (7.5) 0.0152 27.57

Age at beginning of pain (years) 59.1 (10.4) 56.5 (10.5) 0.0300 24.28

Pain (0-10) 5.6 (1.3) 5.5 (1.2) 0.3646 10.38

WOMAC function score (0-100) 29.9 (12.2) 30.3 (11.7) 0.7377 3.76

SF-12 physical subscale 34.8 (6.7) 35.4 (6.7) 0.4385 8.70

SF-12 mental subscale 41.4 (9.4) 43.3 (10.1) 0.0827 19.31

Global assessment of disease status (0-10) 5.6 (1.5) 5.6 (1.5) 0.9133 1.31

n ( %) n ( %)

Male 49 (27.1) 34 (23.3) 0.5132 8.73

Prior treatments

Analgesics 130 (71.8) 96 (65.8) 0.2889 13.13

NSAIDs 95 (52.5) 90 (61.6) 0.1215 18.58

Current use of NSAIDS 160 (88.4) 126 (86.3) 0.6883 6.31

SYSADOA 74 (40.9) 68 (46.6) 0.3576 11.49

Current use of SYSADOA 179 (98.9) 145 (99.3) 1.0000 4.46

IA treatment 31 (17.1) 29 (19.9) 0.6229 7.05

Non-drug treatment 110 (60.8) 71 (48.6) 0.0372 24.58

Diet 49 (27.1) 31 (21.2) 0.2750 13.67

Dietetician 12 (6.6) 7 (4.8) 0.6401 7.91

Physical exercice 44 (24.3) 27 (18.5) 0.2571 14.22

Physiotherapy 30 (16.6) 17 (11.6) 0.2692 14.20

Knee orthosis 21 (11.6) 11 (7.5) 0.2967 13.86

Insoles 24 (13.3) 11 (7.5) 0.1376 18.84

Walking sticks 13 (7.2) 10 (6.8) 1.0000 1.30

BMI: Body Mass Index; PEL: Baecke’s physical exercice level scale; WOMAC: Western Ontario and McMaster Universities Arthritis Index; SF-12: 12-items Short Form; IA:
intra-articular; NSAID: non-steroidal anti-inflammatory drug; SYSADOA: systematic slow acting drug for osteoarthritis. SDiff: standardized difference; p: p-value for univariate
tests (adjusted t test for quantitative variables, adjusted chi-square test for qualitative variables to take the clustering into account). Bold values are significant tests at a 5 %
significance level
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e(xl) = P(Tl = 1|xl). The true PS is unknown in practice,
but it can be estimated by logistic regression, modeling the
probability of receiving the intervention of interest given r
observed covariates as follows:

e(xl) =
⎧⎨
⎩1 + exp

⎛
⎝−α0 −

r∑
p=1

αpx(p)l

⎞
⎠

⎫⎬
⎭

−1

, (3)

where α0 is the intercept and αp (p = 1, . . . , r) are the
regression coefficients.
In CRTs, the PS has been studied for the estimation of

the intervention effect [27, 28], or to improve random-
ization [32] but not for detection of imbalance between
groups.

The c-statistic
The c-statistic (concordance statistic) measures the discri-
minatory capacity of a predictor [33]. It also corresponds
to the area under the receiver operating characteristic
(ROC) curve, which displays sensitivity as a function of 1-
specificity for all the possible thresholds of the predictor
[34]. If we consider an intervention allocation (interven-
tion vs. control), the c-statistic is the probability that a
subject receiving the intervention has a higher value for
the predictor than a subject in the control group [35]. It
can be estimated as follows:

c = 1
M

n0∑
i=1

n1∑
j=1

1
{
pi < pj

}
, (4)

where i = 1, . . . , n0 is the participant index in the
untreated group, j = 1, . . . , n1 is the participant index
in the treated group and 1 is a dummy variable equals
to 1 if pi < pj, 0 otherwise. The c-statistic takes its val-
ues in the range [0.5;1.0], where 0.5 corresponds to a
classification that does not outperform chance and 1.0
corresponds to perfect classification. In our situation, the
groups are the treatment arms and the predictor is the
prediction obtained from the PS model. The c-statistic
is often computed with the predictions obtained from a
logistic model.

Propensity scores and the c-statistic
In the absence of baseline imbalance, the PS has a nor-
mal distribution of mean 0.5 in each group of the study,
and thus the baseline variables are independant from the
intervention allocation. In other words, the c-statistic of
the PS model (3) is close to 0.5. By contrast, if at least
one covariate is associated with intervention allocation,
the c-statistic will be larger than 0.5. To our knowledge,
the c-statistic of the PS model has not been used as a tool
to detect baseline imbalance.

Objectives and principles
We developed a method, based on the c-statistic of the
PS model, to detect baseline imbalance between groups
in CRTs. In practice, this method is a tool to appreciate
the risk of confounding bias and to identify the situations
in which suitable statistical methods to take imbalance
into account must be implemented. Our method relies on
three steps:

(i) The c-statistic is estimated from the data of the CRT
for which one wants to assess the baseline balance
(ii) The 95th percentile of the c-statistic distribution

under the hypothesis of no systematic baseline imbalance
is determined from simulation with the same number of
covariates and sample size in the CRT
(iii) The statistical decision rule is expressed as follows:

if the c-statistic estimated in step (i) is above the thresh-
old value obtained in step (ii), then a baseline imbalance is
suspected.

Because of the use of the 95th percentile of the c-statistic
distribution as a threshold, our method is similar to a
global statistical test for baseline imbalance at a 5 % sig-
nificance level. It is important to note that our method
focuses only on individual-level characteristics; indeed,
in CRTs, clusters are the unit of randomization and thus
any observed imbalance in cluster-level covariates will
be due to sampling fluctuations. Applying this method
to cluster-level covariates would be similar to baseline
tests for individually randomized trials, which is not rec-
ommended in practice. Conversely, because participants
are not the randomization units in CRTs, confounding
bias may affect some trials, leading to systematic imbal-
ances in individual-level variables [17]. Because threshold
values are different for each combination of sample size
and number of covariates involved (illustrative results are
given in Additional file 1), our approach is more flex-
ible than using a unique threshold for the c-statistic.
Indeed, our methods uses the empirical distribution of the
c-statistic of the PS model considering the characteristics
of the CRT of interest.
The objectives of the present paper are to assess the

performance of this method with a simulation study
and to interpret the diagnosis of baseline imbalance in
terms of risk of confounding bias and need for covariate
adjustment.

Methods
Design of the simulation study
We performed a simulation study to assess the perfor-
mance of the proposed method to detect baseline imbal-
ance. The determination of thresholds values for our
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methods (step (ii) in the principle of our method) is
described in Additional file 1: Appendix A.

Data generation
We generated datasets corresponding to CRTs without
systematic imbalance and estimated the c-statistic of the
PS model for each dataset. The data were generated as
follows:

• Cluster size: Let us consider a two-parallel-arm
CRT, in which 2k clusters of mean size m are
randomized. We generated cluster sizes, as proposed
by Turner et al. [36], from a Poisson distribution with
parameter m:mij ∼ P(m), (i = 0, 1 the intervention
index and j = 1, . . . , k the cluster index).

• Covariates: Let X = (X1, . . . ,Xr) be a vector of r
randomly generated covariates, among which rc are
continuous covariates and rb are binary (rc + rb = r).
To generate X , a vector X0 was first drawn in a
multivariate normal distributionNr ∼ (0,�r×r),
without loss of generalizability.
At this stage, we have a matrix X0 of r continuous
balanced covariates measured at baseline. However,
this situation does not differ from an individually
randomized trial. To fit to the situation of a real CRT,
we induced an intraclass correlation for the
covariates meaning that subjects belonging to the
same cluster had more similar individual
characteristics. We randomly drew a cluster effect
γpj, (j = 1, . . . , k) for each cluster j and each covariate
p (p = 1, . . . , r) in a distributionN (0, 0.15),
with the constraint

∑k
j=1 γpj = 0 in each arm. The

variance parameter for the cluster effect of 0.15 was
chosen to obtain intraclass correlation coefficient
(ICC) values for the covariates in the range
[0.01;0.05]. These values are based on those observed
for baseline characteristics in the study of Kul et al.
[37]. Then, for each subject in cluster j and each
covariate, a random error was drawn from a
distributionN (γpj, 1) and this error term was added
to X0, the initial value of the covariate.
Among the r generated covariates, we induced an
imbalance on s of them. These covariates were
correlated with each other, because such correlations
are often observed in clinical trials [38]. Moreover, for
each of the s unbalanced covariates, the standardized
difference (reflecting the imbalance ‘size’) depended
on the degree of correlation between covariates: two
highly correlated covariates had similar standardized
differences. To induce the correlations between the
standardized differences, a vector X0 = (X1, . . . ,Xr)
of r covariates was first randomly drawn from a
multivariate normal distributionNr ∼ (0,�r×r) with
the following covariance matrix:

�r×r =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 σ1,2 · · · σ1,s σ1,s+1 · · · σ1,r
σ2,1 1 · · · σ2,s σ2,s+1 · · · σ2,r
...

...
. . .

...
... · · · ...

σs,1 σs,2 · · · 1 σs,s+1 · · · σs,r
σs+1,1 σs+1,2 · · · σs+1,s 1 · · · σs+1,r

...
... · · · ...

...
. . .

...
σr,1 σr,2 · · · σr,s σr,s+1 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

σf ,g , f , g = 1, .., q, f �= g represents the covariance
and the correlation between covariates Xf and Xg in
that the covariates followed standard normal
distributions. The covariance matrix �r×r was a
positive definite matrix randomly generated with the
R function genPositiveDefMat from the
clusterGeneration package. For convenience, we
considered the absolute values of the covariance
matrix.
Second, the sub-matrix �s×s of �r×r was used to
draw the standardized differences for unbalanced
covariates from a multivariate normal distribution.
Let � and s� be respectively the mean standardized
differences of unbalanced covariates and its standard
deviations. Thus, the s unbalanced covariates
followed a distributionN (�, s2�). As σf ,g = rf ,g×
σjσk , the covariance matrix ��

s×s used to generate the
standardized differences was: ��

s×s = s2��s×s. Thus,
standardized differences � = (�1, . . . ,�s) were
drawn from a multivariate normal distribution with
mean �1s with ��

s×s for the covariance matrix. Then,
for an unbalanced covariate f (f = 1, . . . , s) and a
subject l, the covariate’s value was Xfl + � × Tl,
where Xfl corresponded to the f th covariate’s value
for subject l when generating X0 and Tl being the
intervention indicator for subject l, as previously
defined.
Finally, rb covariates from X0 were dichotomized by
covariate-specific threshold values tp (p = 1, . . . , rb).
Thresholds tp were a priori fixed to obtain the
desired prevalences Pp of these characteristics, drawn
in a uniform distribution in the range [0.2; 0.8]. From
Pp, the threshold was: tp = �−1(1 − Pp), where � is
the cumulative density function (CDF) of a standard
normal distribution. Doing so, the standardized
difference for binary covariates could be calculated
from the formula in Table 1 with P̂1b = �(�−1(1−
P̂0b) − �/100), where P̂0b and P̂1b are the observed
proportions in the control and the intervention arms,
respectively.

Propensity score estimation
The PS was estimated with a logistic model adjusted on
the set of generated covariates. A cluster-specific random
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effect cannot be taken into account in this model because
clusters are nested in the intervention arm (subjects from
the same cluster received the same intervention). Even if
this limitation can have an impact when PS is used to
estimate the intervention effect [28], the impact on the
performance for imbalance detection is negligible because
clusters are the unit of randomization. Thus, considering
clusters as a fixed effect, cluster effect would be balanced
between groups.

Covariate pre-selection
Within the simulation, we also proposed two criteria to
select only some covariates among the r generated covari-
ates, in order to assess the efficiency of a more parsi-
monious model to detect imbalance, because numerous
studies showed the importance of covariate selection for
PS model to avoid over-fitting problems [39, 40]. More-
over, the presence of a large number of balanced covariates
in the PS model can attenuate the importance of a poten-
tial global imbalance. A covariate was included in the PS
model if it satisfied at least one of these two criteria:

• its standardized difference was ≥ 5 %
• its standardized difference was < 5 % but its

correlation with at least one covariate with a standard
difference ≥ 5 % was greater or equal to 0.2 in
absolute value.

These criteria allowed for selecting covariates with more
flexibility than with univariate testing. In practice, a
covariate is supposed to be unbalanced when its standard-
ized difference ≥ 10 % [41], whereas our method was less
stringent for the number of covariates kept. Moreover, a
balanced covariate highly correlated with an unbalanced
one may have an impact on the c-statistic. This strategy
allowed to assess if baseline imbalance must be diagnosed
from all available baseline covariates.

Threshold value
For each studied scenario, the corresponding threshold
value to conclude to baseline imbalance was obtained
from simulations with the same simulation parameters
but under the hypothesis of no systematic imbalance (i.e.
the r generated covariates are balanced). The impact of
sample size, number of clusters, number of covariates and
trial design (CRT or individually randomized trial) on
the c-statistic of the PS model without systematic imbal-
ance was studied beforehand and results are presented in
Additional file 1: Appendix A.

Results assessment
The results were assessed in terms of the following:

• proportion π of simulated datasets in which the
estimated c-statistic was greater or equal to the

threshold value defined as the 95th percentile of the
c-statistic distribution in absence of systematic
baseline imbalance, i.e., the proportion of situations
in which baseline imbalance was detected, according
to our proposed rule,

• for each unbalanced covariate, the proportion of
significant univariate tests at a 5 % significance level.
These tests were adjusted t test and adjusted
chi-square test, described in [1] to take the clustering
into account.

Studied scenarios
First, we studied 144 scenarios corresponding to the dif-
ferent combination of the following parameters:

• the sample size per arm: n = (100, 500). In CRTs,
the median number of subjects per arm is 329
(interquartile range [143–866]) [42]. Thus, the
chosen values correspond to the situation of a small
and average size CRT.

• the number of clusters per arm: k = (5, 10, 50),
• the number of covariates: r = (4, 10, 20) for

n = 100 and r = (10, 20, 50) for n = 500,
corresponding to ratios n

r = (25, 10, 5) for n = 100
and n

r = (50, 25, 10) for n = 500. We considered
rc = rb = r

2 .• the number of unbalanced covariates: s was
defined such that the percentage of unbalanced
covariates among all covariates was 20 % or 40 %
(except for the case k = 5,m = 20 in which 25 % and
50 % of covariates were unbalanced). Thus, s = (2, 4)
for r = 10, s = (4, 8) for r = 20 and s = (10, 20) for
r = 50. Among unbalanced covariates, s

2 were binary
and s

2 were continuous.
• the standardized difference for unbalanced

covariates: �(s�) = 10 %(5 %) or 20 %(10 %).

Second, we studied the performance of our method
after covariate selection according to the rule expressed
in Covariate pre-selection section of the main paper. We
focused on scenarios in which the total number of covari-
ates was ≥ 20 and the standardized difference for unbal-
anced covariates was moderate (10 %), corresponding to
36 different scenarios.
In both situations, we performed 5000 simulations.

Results
Results without covariate pre-selection
The results are displayed in (Fig. 1). As expected, the
imbalance detection rate π (i.e. the proportion of situa-
tions in which our method allowed to detect imbalance)
was higher when the standardized differences for the
unbalanced covariates was high (20 %) than for amoderate
imbalance (10 %). Second, imbalance was detected more
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Fig. 1 Percentage of imbalance detection π as a function of the number of baseline covariates r, the sample size per arm n, the standardized
difference (SD) for unbalanced covariates and the percentage of unbalanced covariates 100 × s/r. Results were pooled over the number of clusters
per arm k. Five thousand simulations were performed per scenario

often when the proportion of unbalanced total baseline
covariates was higher 40 or 50 % (for k = 5 and m = 20)
than when this proportion was 20 or 25 % (for k = 5 and
m = 20). This result suggested that when there were too
many balanced covariates, the information on unbalanced
covariates was attenuated.
Moreover, the percentage imbalance detection was

higher with sample size n = 500 than with n = 100.
However, this latter situation corresponded to a small

sample size (lower than the first quartile of the sam-
ple size per arm in a review of CRTs). This percent-
age increased also with the number of covariates. When
the percentage of unbalanced covariates remained con-
stant, the performance was better with increased number
of total covariates (and thus the number of unbalanced
ones), which suggests that the method allowed for captur-
ing a global imbalance rather than imbalance on isolated
covariates.
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Results with covariate pre-selection
For a set of 20 baseline covariates, the average number of
covariates retained after the pre-selection was 13.5 with
20 % unbalanced covariates and 14.1 with 40 % unbal-
anced covariates. For a set of 50 baseline covariates, the
average number of covariates retained was 27.1 and 29.7
with 20 and 40 % of imbalance, respectively. So this pre-
selection mechanism allowed for retaining a large set of
covariates, which was the basic idea for our method.
Moreover, this pre-selecting strategy for the covariates

allowed for a systematic improvement in the percent-
age of bias detection for each study scenario, as dis-
played in Fig. 2. The relative improvement (defined as the
ratio of the difference in percentage of imbalance detec-
tion with and without selection) varied from 0.7 % for
a scenario in which the initial percentage of imbalance
detection equaled 99.4 % before pre-selection, to 116.4 %
for the scenario showing the worst performance with-
out covariate pre-selection. However, this strategy was
mainly helpful for scenarios in which the initial perfor-
mance was moderate (about 50 %). Even after an average
improvement > 100 % for a small sample size (n = 100),
the performance remained < 50 %. Indeed, in these sit-
uations the risk of chance imbalance due to sampling
fluctuations is high (balance is achieved according the law
of large numbers). Thus, threshold values for these trials

are large even with no systematic imbalance and conse-
quently, the detection rate is small. However, covariate
selection increases detection rate in every scenario, so
these results confirmed the need for a parsimonious PS
model (i.e. including only a subset of covariates) that could
be obtained with our simple and automatic proposed
strategy.

From global imbalance to confounding bias
Once the imbalance is detected, further assessment could
be conducted to assess any risk of confounding bias, that
is, if at least one of the covariates included in the PS
model is also associated with the outcome. Such a vari-
able, known as a confounding factor, is both associated
with the intervention allocation and the outcome and
may lead to a mis-estimation of the intervention effect
[43]. Statistical measures of association can be used to
identify them, as well as the literature to identify known
confounders for a given outcome. When confounding
bias is suspected, adjustment is required, whereas if the
imbalance results from chance, adjustment would only
improve the precision of the estimate, at least in linear
models [44]. Among adjustment methods available for
CRTs, multivariable regression [45] or PS-based methods
[46, 47] are commonly used. However, the best predic-
tive PS model is not the best model to correct imbalance

Fig. 2 Percentage of imbalance detection π ′ after covariate pre-selection as a function of the initial percentage of imbalance detection π . Each
point corresponds to a different number of covariates. The gray line is the first bisector. Five thousand simulations were performed per scenario
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[40]. As compared with a model for imbalance detec-
tion which can involve a large amount of covariates, a
good PS model would include only confounding factors
[39]; covariates which are related only to the interven-
tion would increase standard errors without reducing bias
[48]. A simulation study showed that discrimination cri-
teria, such as the c-statistic or adequation tests such as
Hosmer and Lemeshow cannot detect the omission of a
confounding factor [26]. Consequently, the model built to
detect imbalance is not the most proper for the statistical
analysis.
Figure 3 displays the different steps that help identifying

the need of covariate adjustment. If patients are identi-
fied before cluster randomization and if the sample size is
large enough, there is no risk of global imbalance or con-
founding bias and adjustment is not required. If cluster
randomization occurs after patients recruitment but the
sample size is small, there is a risk of chance imbalance.
If cluster randomization occurs beforehand, there is a risk
of systematic bias. In the last two situations, our tool can
detect a global imbalance. If a such imbalance is detected,
the assessment of the association between covariates and

the outcome is needed to identify confounding bias, i.e.
the presence of covariates both linked to the intervention
and the outcome.When confounders are detected, covari-
ate adjustment is needed to obtain an unbiased estimate of
intervention effect. Otherwise, covariate adjustment will
have no impact on the estimate but can increase precision
for linear models.

Results from the twomotivating examples
For the two following examples, threshold values to detect
baseline imbalance were obtained under a hypothesis of
no systematic imbalance, with the same number of covari-
ates (and the same proportion of continuous and binary
covariates) and the same sample size as in the origi-
nal CRT. For covariate generation, we used the observed
mean (or rate) and standard deviations of covariates in the
control arm and the correlation matrix from each CRT.

Example 1: Management of OA with a
patient-administered assessment tool
The PS was estimated with a logistic model adjusted on
the 12 covariates displayed in Table 2. The PS distributions

Fig. 3 Steps for bias detection and guidance for covariates adjustment. Our diagnosis tool corresponds to the top part of the graph (part 1), whereas
the bottom part (part 2) is a qualitative approach to help to perform a covariate adjustment. Part 2 has to be thought in accordance to clinical
knowledge about potential confounders. *Adjustment on predictors can increase precision in linear model and generally increases power in case of
chance imbalance
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by arm are displayed in Additional file 1: Appendix C
Figure 2a. The estimated c-statistic from this model was
0.598. The threshold value under the hypothesis of no
systematic baseline imbalance was 0.549, below the esti-
mated c-statistic for the dataset. We also applied our
method using the pre-selection methods for the covari-
ates: seven covariates among the 12 measured at baseline
were retained. The estimated c-statistic was 0.595, and
the corresponding threshold value was 0.541. Thus, our
method allowed for diagnosing a baseline imbalance, with
or without selection for covariates, and highlights the
need for adjusted statistical methods.We showed in a pre-
vious work a huge difference in the intervention effect
estimate obtained from a crude analysis (without adjust-
ment) and that obtained with multivariable regression or
PS adjustment [27], and therefore confirmed that baseline
imbalance occured on counfounding factors.
Moreover, the results showed that covariates signifi-

cantly associated with the intervention allocation in the
PS model were not the same covariates that appeared sig-
nificantly unbalanced with univariate tests. Indeed, pol-
yarthritis and radiological grade were significant in the PS
model at a 5 % significance level, whereas the WOMAC
score was no longer significant. These results were
explained by the correlation patterns between covariates,
which suggests that global approaches for the diagnosis of
baseline imbalance may add some global information on
relationships among covariates, missing with the univari-
ate approach.

Example 2: Standardized consultation for patients with OA
of the knee
The PS model was built from the 26 covariates described
in Table 3. The PS distribution in the two arms was
not layered (see Additional file 1: Appendix C Figure
2b). However, the estimated c-statistic was 0.684 and the
threshold value was 0.696, so the method did not detect
imbalance between groups. This situation is close to the
case in which the number of unbalanced covariates was
small as compared to the total number of covariates, and
thus, a pre-selection of covariates is needed. Therefore,
we applied the selection strategy previously proposed.
From Table 3, Five covariates had a standardized differ-
ence < 5 % (physical exercise level [PEL] scale, WOMAC
score, global assesment of the disease, current use of
SYSADOA and use of walking sticks). Then, we esti-
mated the correlation matrix (Pearson’s correlation coef-
ficients were used, both for qualitative and quantitative
covariates). Among the five balanced covariates, two
showed correlation > 0.2 in absolute value, with at
least one covariate with a standardized difference > 5 %:
WOMAC score was correlated with SF-12 physical score
(r = −0.513) and PEL was correlated with sex (r = 0.289)
andWOMAC score (r = −0.245). Therefore, we removed

only the global assessment of the disease status, the cur-
rent use of SYSADOA and the use of walking sticks from
the PS model. The estimated c-statistic for the PS model
with 23 covariates remained 0.684. However, the provided
threshold value was 0.682. Consequently, after a pre-
selection of covariates, a baseline imbalance was detected.
This example also showed that our selectionmethod allow
for retaining a large amount of covariates, keeping the
advantage of a global method over univariate testing. In
the original paper, authors used an Inverse Probability
of Treatment Weighted (IPTW) estimator to correct for
baseline imbalance.

Discussion
In this paper, we provide a new tool, based on the
c-statistic of the PS model, to detect baseline imbal-
ance in CRTs. This tool performed well for CRTs with
a large sample size and a large number of covariates
and allowed allowed us to capture global information,
in contrast to univariate tests. In the first motivating
example, our method revealed a predictor of interven-
tion allocation that univariate methods ignored, and
confirmed the presence of imbalance and the require-
ment of adjusted statistical methods when estimating the
intervention effect. The efficiency of the proposed pre-
selection strategy was shown in the second motivating
example. Even if a subset of covariates was retained, the
subset was still meaningful for a global approach because
the pre-selection method aimed at retaining the correla-
tion patterns between covariates.
In practice, this approach can be viewed as a kind of

hypothesis testing because it relies on a “known” prob-
ability distribution and uses a threshold value defined
according to a significance level (5 % in our study because
we used the 95th percentile of the c-statistic distribution).
Of note, we used the 95th percentile of the c-statistic dis-
tribution under the hypothesis of no systematic imbalance
to allow us to compare the results with classical univari-
ate tests; however, to detect smaller baseline imbalances,
smaller percentiles could be adopted, especially in CRTs
with a large sample size with less chance variation in
baseline covariates expected. Indeed, adjustment on bal-
anced covariates does not have a negative impact such as
omitting an unbalanced risk factor would, and thus this
method will be less restrictive with a smaller percentile.
Moreover, as for classical tests for which a p-value close to
5 % has to be interpreted carefully, estimated c-statistics
close to their threshold values do not necessarily mean
that there is no confounding bias (if c <threshold) or a
systematic bias (if c >threshold). In these situations, a risk
of bias can be suspected and further considerations about
the link between covariates and outcome are needed to
assess the risk of bias. But again, unnecessary adjust-
ment would have a smaller impact on the analysis that
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the omission of a confounder in the analysis. Statistical
testing is not recommended in individually randomized
trials because they are not theoretically prone to con-
founding bias [11]. However, as previously explained, this
assumption does not hold in CRTs that randomize clus-
ters before selecting participants. Therefore, the quanti-
tative approach proposed in this paper could be useful to
improve both the reporting of baseline characteristics and
the subsequent statistical analysis.
The performance of our method was high for n =

500, a sample size close to that observed in practice
(the interquartile range of sample size per arm being
[143–866]) in a recent systematic review [42]. For n =
100, i.e. a value below the first quartile of the observed
sample size per arm, the performance was low or mod-
erate. In these situations that are highly prone to chance
imbalance, covariate adjustment may be useful even
if our method does not lead to the conclusion of a
baseline imbalance. Our method must be viewed first
as a tool to assess the risk of confounding bias and
then to help identify CRTs in which an adjustment is
needed, but for small sample sizes, covariate adjustment
should be systematic, considering the high risk of sample
fluctuations.
A limitation of this tool is the focus on ‘overt bias’ only,

i.e. it can only assess the imbalance on observed charac-
teristics as defined by Rosenbaum [49]. However, most
trials collect information on a large number of baseline
covariates, and given the fact that there are likely to be
associations between different covariates, it is unlikely for
the observed baseline covariates to be balanced between
treatment arms, but for the unobserved covariates to be
imbalanced. This would only happen if the observed and
unobserved covariates were independent from each other
and the association of these variables with the outcome
variable is weak. Moreover, this tool can only help in
assessing confounding bias, but not selection bias (i.e.
difference in characteristics between recruited and not
recruited patients). In order to detect selection bias, base-
line characteristics of patients not recruited would be
necessary, such as screen log data, but these data are often
not available.
Further research is needed to assess the performance

of the proposed method in a wider variety of situa-
tions. This study focused mainly on individual baseline
characteristics: because clusters are the randomization
unit, systematic imbalance on cluster-level covariates
should not occur, provided the randomizationmethod has
been implemented correctly with appropriate allocation
concealment, but chance imbalance on these covari-
ates may occur. In particular, chance imbalance is likely
to occur with only few randomized clusters, which is
frequent; a systematic review showed that the median
number of randomized clusters is 34 [9].

Conclusion
To avoid a risk of confounding bias, CRTs should, if pos-
sible, be designed to respect the usual chronology of
randomized trials (recruitment and then randomization
of clusters). However it is not always feasible in prac-
tice, for example when participants are incident cases.
When clusters are randomized prior to participants being
recruited, the proposed method is a helpful qualitative
tool to assess the risk of bias in CRTs and to provide
guidance for covariate adjustment.
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