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Intracellular replication of the well-armed pathogen
Burkholderia pseudomallei
Sam J Willcocks1, Carmen C Denman1, Helen S Atkins2 and
Brendan W Wren1

The Burkholderia genus contains a group of soil-dwelling

Gram-negative organisms that are prevalent in warm and

humid climates. Two species in particular are able to cause

disease in animals, B. mallei primarily infects Equus spp. and B.

pseudomallei (BPS), that is able to cause potentially life-

threatening disease in humans. BPS is naturally resistant to

many antibiotics and there is no vaccine available. Although not

a specialised human pathogen, BPS possesses a large

genome and many virulence traits that allow it to adapt and

survive very successfully in the human host. Key to this survival

is the ability of BPS to replicate intracellularly. In this review we

highlight recent advances in our understanding of the

intracellular survival of BPS, including how it overcomes host

immune defenses and other challenges to establish its niche

and then spread the infection. Knowledge of these

mechanisms increases our capacity for therapeutic

interventions against a well-armed foe.
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Introduction
Burkholderia pseudomallei (BPS) is a motile, Gram-nega-

tive saprophyte that dwells in the soil and surface water of

hot and humid countries, notably in South East Asia and

Northern Australia. It is capable of infecting a wide

variety of mammals and causes the emerging disease,

melioidosis, in humans. Pathogenicity manifests as either

a chronic pulmonary disease when particles of contami-

nated soil are inhaled, alternatively as life-threatening

septicaemia if the bacteria are introduced into the blood

stream through dermal puncture.

Humans are an accidental host and the lack of human-to-

human transmission precludes host–pathogen evolution.

Yet, BPS is very successful at survival in vivo, in part due

to genomic islands acquired through horizontal gene

transfer from other bacteria [1], and in part from adapta-

tion to environmental stress factors that confer dual

protection against host immune mechanisms. BPS pos-

sesses a large genome for a bacterium of around 7.25 mil-

lion bases spread over two chromosomes. Accordingly, it

possesses numerous virulence factors and demonstrates

remarkable plasticity in adapting to microenvironmental

conditions.

Several tools are available that help to identify virulence

factors in the context of intracellular survival. A common

approach is to compare the genome of BPS with a closely

related avirulent species, B. thailandensis. A conceptually

similar experiment is to compare virulent and attenuated

clinical isolates derived from the same strain. Molecular

based approaches such as PCR-based subtractive hybri-

disation have identified factors such as the membrane

transporter, BPSL2033 that reduces the ability of BPS to

replicate in macrophages [2]. More recently, the creation

of initially small transposon-mediated signature-tagged

mutant libraries in BPS [3] and now large scale libraries

coupled with next generation sequencing [4] have

opened new avenues to reveal the genes required by

BPS to survive intracellularly.

In this review, we highlight recent reports relating to

the mechanisms employed by BPS to survive and

thrive inside host cells; summarised in Figure 1 and

Table 1. Not only is this characteristic an essential re-

quirement for pathogenicity, it also presents targets for

the development of novel antimicrobial therapeutics

against a hardy organism that naturally tolerates many

existing antibiotics.

First contact with the host cell
BPS is not an obligate intracellular pathogen, but if

cellular defense mechanisms are overcome it offers sev-

eral advantages over an extracellular lifestyle, such as the

evasion of humoral immunity, reduced exposure to anti-

biotics, and the potential establishment of latency. Intra-

cellular living is also essential for localised spread from

the site of infection, and eventual systemic dissemination.
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The initial infection of a host cell depends upon invasion

and adhesion factors that have been well reviewed [5]. In

brief, BPS has the capability to invade cells either pas-

sively in the case of uptake by phagocytes such as resident

tissue macrophages and recruited neutrophils; or actively

in the case of epithelial cell infection. An advantageous

trait of BPS in this regard are its flagellae, which in wet

soil or aquatic environments propel the bacilli against a

concentration gradient toward nutrients that may other-

wise be scarce; and in the mammalian host, enable

penetration of protective mucous linings and surfactant

to reach epithelial cells. Other factors such as the expres-

sion of Type IV pilli are well-recognized adhesion factors,

and BPS also possesses two further proteins, BoaA and

BoaB that promote attachment to epithelial cells [6]. Host

cell factors also play a role, such as protease-activated

receptor-1, expressed by various cell types, that promotes

cell ingress and is associated with BPS growth and dis-

semination [7].

The benefits of intracellular growth seem at odds with the

characteristic of BPS to induce cell death of the infected

cell. BPS is cytotoxic to dendritic cells (DC), monocytes

and macrophages within hours of infection, with an

absolute requirement for internalisation, caspase-1 acti-

vation, and the Type Three Secretion System (T3SS) in

what has been described as a pyroptotic cell death mech-

anism [8]. The BPS flagellar hook-associated protein also

induces cytotoxicity [9]. This rapid cell death is strongly

linked to the multiplicity of infection and cell type. For

example, epithelial cells seem somewhat resistant to

BPS-mediated killing. Therefore, a low level infection

that includes infection of epithelial cells may contribute

to chronic persistence in the host, in contrast to highly

inflammatory acute infection. Concurrently, BPS inhibits

mechanisms of cell death that may control the infection

though bacterial killing; infected neutrophils, for exam-

ple, normally undergo apoptosis and are subsequently

engulfed and degraded by macrophages, destroying their
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Figure 1
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Intracellular lifecycle summary of Burkholderia pseudomalleii. B. pseudomallei (BPS) gains access to epithelial or phagocytic cells via flagella and

adhesion-related virulence factors. BPS then goes on to expresses an arsenal of virulence factors to combat the host response. (I) Uptake and

entry: either via phagocytic cells or epithelial cells. When entering non-phagocytic cells such as epithelial cells, BPS can attach and enter host

cells. Flagella, pilli, and other adhesins BoaA and BoaB are involved in this process. Passive uptake by tissue resident macrophages or

neutrophils also occurs. (II) Survival and escape: BPS once taken up by the host cell is enveloped in an endocytic vesicle or phagasome. Upon

internalisation, B. pseudomallei is held within a phagosome, where the T3SS is required for BPS escape. Escape occurs before maturation and

killing. Resistance to oxidative stress response from the host, and production of the serine protease ecotin are also crucial steps for phagosome

survival and subsequent escape. (III) BPS replication and dissemination to surrounding cells, and fusion of neighbouring cells into MNGC’s. Once

outside the phagosome, B. pseudomallei is able to replicate host actin is utilized for the polymerisation of elegantly structured Ena/VASP-like tails.

These projections alongside the T6SS-1 result in successful dissemination to surrounding cells, resulting in the formation of multi-nucleated giant

host cells (MNGC). Black text describes intracellular process of BPS, navy text lists genes important for intracellular survival are listed, references

for which can be found in Table 1. Some of the host-combative responses are shown in red text, and the dashed-arrow indicates the connectivity

between T3SS and T6SS. Actin tails are not structurally accurate.
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Table 1

Selection of major B. pseudomallei intracellular virulence traits and advancements in the literature. BPS locus ID from Burkholderia.com

(Winsor et al., 2008)

Genetic feature General role Reference(s) BPS locus ID

Entry and uptake into host cells

Boa

boaB

Cell attachment; adhesin; autotransporter Balder et al. [6]

Lazar Adler et al. [74]

Lazar Adler et al. [70]

BPSL1705

bpaC Cell attachment; autotransporters; adhesin;

Type V secretion system; protects from

complement killing

Campos et al. [75]

Lazar Adler et al. [70]

BPSL1631

Type IV pilli, pilA Adhesion factor and intracellular mobility Essex-Lopresti et al.;

Boddey et al.

Fla1 and fla2 locus.

Metabolism and phagosome escape

fabI -1

fabI-2

Two enoyl-ACP reductases, bpmFabI-1 and

bpmFabI-2, found in BPS one on each

chromosome, involved in antibacterial

activity

Liu et al. [53]

Cumming et al. [52]

BPSL2204

BPSS0721

(unclear if active)

sodC Superoxide dismutase/oxidoreductase Vanaporn et al. [21] BPSL1001

ahpC Alkyl hydroperoxide reductase; related to T-

cell immunity

Loprasert et al. [76]

Reynolds et al. [77]

BPSS0492

CHBP Delays host cell maturation and apoptosis;

ATP/GTP binding protein unique to BPS

Gourlay et al. [9] BPSS1385

bopA

bopE

Type three secretion system; involved in

epithelial cell invasion; attenuated in murine

model of infection

Stevens et al. [78]

Pumirat et al. [79]

Vander Broek et al. [80]

BPSS1525

bprD Intracellular survival, type three secretion

effector, virulence regulator

Vander Broek et al. [80]

Chirakul et al. [81]

spR Regulators of T3SS and T6SS LexA repressor Holden et al. [82]

Chen et al. [63�]

Chen et al. [83]

BPSL1840

eco Serine protease activity releases BPS from

vesicle, inhibits elastase

Ireland et al. [33] BPSL1051

bsaN Transcriptional regulator involved in

modulation of T3SS and T6SS-1

Chen et al. [83]

Sun et al. [50]

BPSS1546

BPSS1504 Affects Hcp1 secretion and integrity of the

T6SS-1 apparatus

Hopf et al. [64] BPSS1504

bsaS T3SS-3 ATPase/ATP synthase SpaL Gong et al. [84] BPSS1541

vgrG-5 T6SS spike protein; membrane fusion;

intracellular spread

Toesca et al. [66]

Schwarz et al. [67�]

BP1026B_II1596

virAG Two component system, T6SS regulators,

sensor and histidine kinase.

Chen et al. (2013) BURPS1710b_

A0530-A0532

bsaU Involved in early onset activation of caspase-

1 pathway in macrophages; T3SS

Sun et al. [50]

Bast et al. [40]

BPSS1539

purM

purN

Phosphoribosylglycinamide

formyltransferase;

phosphoribosylaminoimidazole synthetase

purine biosynthetic pathway

Breitbach et al. [54] BPSL0908

BPSL2818

fabI Enoyl-ACP reductase; type II fatty acid

biosynthesis pathway

Liu et al. [53] BPSL2204

pabB/lipB Lipoate-protein ligase B; essential for

intracellular life cycle and virulence in murine

model

Breitbach et al. [54] BPSL0413

bipD, C, B T3SS translocon proteins; phagolysosome

survival; cell invasion protein

Gong et al. [36�]

Vander Broek et al. [80]

BPSS1529

BPSS1531

BPSS1532

bpscN (formerly sctC) TTSS1 ATPase; intracellular survival; murine

pathogenesis

Warawa and Woods [85]

D’Cruze et al. [86]

BPSS1390

sctN Type III secretion system ATPase Warawa and Woods [85] BPSS1394

bsaQ Type III secretion system; cell cycle inhibiting;

invasion and escape from endocytic vesicles

Muangsombut et al. [35]

Pumirat et al. [10]

BPSS1543

Spread and MNGC formation

hcp1 Tail-spike T6ss1, MNGC cell formation,

hemolysin-coregulated protein substrate and

or a secretion tube (also part of T6SS)

Burtnick et al. [87]

Lim et al. [62]

BPSS1498
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contents within a few hours, but this is delayed by BPS

infection [10,11].

The host cell response to BPS infection
The engagement of host pattern recognition receptors

during BPS infection have been well characterized, and it

has been found that the toll-like receptor repertoire offer

little protective benefit or worse, contribute to disease

severity and mortality [12–17]. This may in part be due to

the ability of BPS to resist various TLR-dependent innate

immune killing mechanisms. One such mechanism, par-

ticularly in the murine model of infection, is the genera-

tion of reactive nitrogen species (RNS). In contrast to

other Gram-negative bacteria, the LPS in the cell wall of

BPS is a weak inducer of the enzyme, iNOS, partly due to

its inability to stimulate IFN-b [18]. Accordingly, im-

pairment of iNOS activity in a murine model of infection

does not significantly alter killing capability [19]. A relat-

ed mechanism is the respiratory burst, triggered by the

engagement of pathogen associated molecular patterns

(PAMP) by TLR. Reactive oxygen species (ROS) are

able to denature enzymes as well as damage fatty acids

and DNA, and direct exposure is lethal for BPS. While the

effect of ROS-mediated killing of BPS in ex vivo isolated

macrophages or macrophage-like cell lines is modest, in
vivo studies have shown a significant role of ROS in host

survival [19].

Unlike RNS, BPS is an inducer of ROS, perhaps unavoid-

ably so. A key protein in BPS invasion of host cells is

BopE, which acts as a guanine nucleotide exchange factor

for RhoGTPases, promoting actin cytoskeleton rear-

rangement (reviewed by Allwood et al. [5]). However,

RhoGTPases also stimulate NAPH oxidase [20], promot-

ing the respiratory burst. Therefore, the ability of BPS to

neutralise ROS using proteins such as superoxide dis-

mutase is a key aspect of their virulence in vivo [21].

Whole genome analysis has further revealed that during

oxidative stress, BPS upregulates genes involved in cell

wall repair and biosynthesis, as well as the peroxide

scavenging enzymes, KatG and AhpC. Also discovered

was an oxidative stress regulon under the control of the

sigma factor, RpoE. RpoE is conserved among Gram-

negative bacteria, and deletion in BPS resulted in re-

duced intracellular survival in macrophages and virulence

in the murine model. RpoE seems to be important for

maintaining expression of spermidine acetyltransferase,

speG, under oxidative stress. Spermidine is useful for the

bacteria as it acts as a free radical scavenger but excessive

levels are toxic, and so SpeG is required to prevent its

accumulation to damaging levels [22,23].

Restricting the exposure of BPS to toxic levels of ROS in

monocytes and macrophages is potentially realised

through an additional mechanism. During the initial

hours post-BPS infection, there is a reduction in CFU

followed by growth recovery [24–26]; this temporally

correlates with activation of NADPH-oxidase that causes

rapid, but only transient ROS production. Although direct

modulation of NADPH-oxidase by BPS has not been

experimentally demonstrated, its activity, as well as a

large component of TLR-mediated signalling, depends

on the transcription factor, NfkB, which BPS has been

shown to actively inhibit. By undermining the transcrip-

tional response to TLR-activation, BPS is able to disarm a

key aspect of host immunity. The BPS virulence factor,

TssM, inactivates NfkB through deubiquitinisation of its

inhibitor, IkB, thus also impairing downstream interferon

pathway activation [27]. TssM is located upstream of the

T3SS, and downstream of the T6SS gene clusters. Dele-

tion of the T3SS bsa cluster reduces its secretion, as does

removal of the Type-Two Secretion-associated outer

membrane channel, GspD [27,28].

It has been observed over many years that there is a

clinical correlation between non-obese diabetes, predom-

inantly Type 1 diabetes mellitus, and BPS infection; it is a

recognized risk factor in endemic regions. Diabeties

mellitus is an auto-immune disease with pleiotropic

effects that generally impair the ability of the diabetic

host to control bacterial infection. For example, a de-

creased capacity of macrophages to phagocytose and kill

[29], LPS-induced generation of CD4 T-regulatory cells

and impairment of TLR-mediated MyD88 inflammatory

signalling [30].

Research into the molecular and immunological mecha-

nisms that link diabetes with BPS in particular is begin-

ning to reveal new insights into clinical observations. For

example, a further mechanism by which BPS moderates

Intracellular virulence of Burkholderia pseudomallei Willcocks et al. 97

Table 1 (Continued )

Genetic feature General role Reference(s) BPS locus ID

bimA Escape from the phagosome;

autotransporter, actin tail formation

Stevens et al. [88]

Sitthidet et al. [89]

Lazar Adler et al. [74]

Sarovich et al. [90]

Lazar Adler et al. [70]

Benanti et al. [60�]

BPSS1942

BPSL1528 Hypothetical protein with role in actin tail

formation, reduced intracellular survival, and

high-grade attenuation of virulence

Pilatz et al. [47] BPSL1528

www.sciencedirect.com Current Opinion in Microbiology 2016, 29:94–103



NfkB activity is by phosphorylation, and subsequent

inactivation of, glycogen synthase kinase 3b (GSK3b),

which usually supports NfkB activity. This is dysregu-

lated in a rat model of diabetes, resulting in excessive

TNF-a and IL12 cytokine production by peripheral

blood mononuclear cells that may contribute to the higher

risk of septic shock in diabetic patients with melioidosis

[31]. Remarkably, BPS can alter the immune function of

not only the infected host cell, but also uninfected

bystander cells. BPS-infected neutrophils are able to

locally inhibit CD4+ T-cell proliferation and IFN-g pro-

duction via increased surface expression of programmed

death ligand-1 (PDL1) [32�]. This trait is exacerbated

diabetes mellitus patients, and the resulting loss of effec-

tive CD4+ T-cell function may contribute to disease

severity and the ability to prevent disease progression.

Phagosome escape and the type three
secretion system
Following uptake by a professional phagocyte, BPS is

contained in a membrane-bound vesicle that matures

through endosomal contact to eventual fusion with the

lysosome, an organelle that by virtue of acidic pH and

degradative enzymes destroys the contents of the phago-

some, allowing denatured proteins to be loaded onto

MHCII molecules for surface expression and engage-

ment of CD4 T-cell immunity.

As the phagosome matures, BPS encounters host pro-

teases that are able to kill the compartmentalised invader.

To counter this, BPS expresses a serine protease inhibitor

called ecotin that enables growth in macrophages and

contributes to virulence in the murine model [33]. Ulti-

mately, however, BPS is able to escape the phagosome

before phagolysosomal fusion occurs, and for this, the

T3SS is essential.

The role of the T3SS in BPS intracellular fitness, and

therefore virulence cannot be overstated. To provide

some context, the capsule of BPS is a well-studied viru-

lence factor that confers protection against antibiotics and

host immune effectors such as complement and antibody

deposition. In a murine model of acute respiratory BPS

infection, capsule mutants were shown to be attenuated

6.8-fold, while T3SS mutants were attenuated 290-fold

[34]. Not only did T3SS mutants show reduced survival,

but were also poorly able to disseminate beyond the site

of infection. Mutation of genes encoding T3SS structural

components, such as bsaQ, impair BPS invasion of macro-

phages and multi- nucleated giant cell (MNGC) forma-

tion due to their inability to evade lysosomal degradation

[35], as well as reducing BPS-induced cytotoxicity [8]. For

this reason, T3SS-related proteins have become attractive

therapeutic targets [36�].

The secreted protein effectors that are exported via the

T3SS have diverse effects. For example, a cell-cycle

inhibitor, CHBP (BPSS1385), is able to arrest host cell

division, delay apoptosis and modify the cytoskeleton

[10]. BipC, located within the bsa locus, contributes to

host cell adhesion and invasion, intracellular replication,

cytotoxicity, phagosomal escape [37]. Adjacent to bipC on

the chromosome is bipB, which has similarly been

reported for its role in intracellular BPS infection, includ-

ing induction of MNGC and cell-to-cell spread [38�].

The T3SS-dependent liberation of BPS from the phago-

some into the cytoplasm exposes the bacilli to intracellular,

TLR-independent, pattern recognition receptors, namely

the NOD-like receptors (NLR) and by extension to the

machinery of the inflammasome [39]. Sensing of BPS

PAMP, such as flagellin or the T3SS-associated proteins,

BopE and BsaU by NLR4 leads to activation of caspase-1

in early infection [40], subsequently inducing rapid pyr-

optosis of infected cells, thus partly explaining the mecha-

nism of BPS-induced cytotoxicity and the pre-requirement

of T3SS-dependent phagosomal escape. While BopE is a

secreted effector of the T3SS, BsaU is a component of the

secretion apparatus itself, and its disruption compromises

the secretion of other effectors, reducing NfkB-mediated

inflammation in the host cell [41].

BPS infection additionally upregulates NOD2 expression

[42], engagement of which leads to NfkB activation. While

NOD2 is important for limiting early bacterial replication

and partially contains BPS infection, it seems not to

ultimately affect the outcome of survival in vivo [17].

BPS-mediated dysregulation of NfkB may play a role,

as described above, as well an apparent NOD-2-depen-

dent expression of suppressor of cytokine signalling 3 [42].

NOD2 activation has been reported to promote autop-

hagy, a homeostatic process by which cellular contents are

degraded and recycled. An autophagosome is formed

around cytoplasmic material, meaning bacteria that have

escaped the initial phagosome may once again become

membrane entrapped. Autophagy has been shown to be

induced by BPS infection in a T3SS-dependent manner,

and is able to kill the bacteria [43,44]. However, the

effectiveness of autophagy is undermined by expression

of the T3SS effector protein, BopA. Although its mecha-

nism of action remains to be fully elucidated, BopA is

required for evasion of autophagy, and contributes to

intracellular virulence [36�,44].

Metabolic challenges in the intracellular
environment
Any intracellular organism finds itself in a conflict for

resources with the host to maintain its metabolic activity.

This is especially true for essential micronutrients such as

iron, which is incorporated into molecules involved in

multiple biological processes. Pathogens such as Mycobac-
terium tuberculosis achieve the sequestration of iron

through the expression of siderophores that have a higher

98 Host-microbe interactions: bacteria
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affinity for the molecule than equivalent host molecules

such as transferrin and lactoferrin. Ferric siderophores are

then recognized by specific receptors on the bacterial

surface. The BPS malleobactin siderophore family is

crucial for its virulence and intracellular survival. They

appear to be remarkably diverse in their peptide struc-

ture, suggesting characteristic adaptability of BPS to

different microenvironmental conditions [45]. Genes that

encode malleobactins as well as other BPS proteins relat-

ing to iron binding and uptake have been shown to be

upregulated in experimentally induced models of iron

deprivation, including oxidative stress [23,46,47]. Besides

the dedicated iron-binding molecules, BPS expresses

proteins with dual function such as BPSL2825 (PabB),

a para aminobenzoate synthetase component important

for metabolism and growth in vitro that takes on a critical

role utilizing hemin as an iron source in vivo [47].

Metabolic flexibility is key to the ability of BPS to adapt

as it moves from in terra to in vivo and it remains one of

its defining features. While several Burkholderia spp.

are similarly well equipped to thrive on multiple

carbon sources, it has been postulated based on genomic

interrogation that virulent species may regulate these

pathways differently from avirulent species, with con-

sequential effects on the expression of virulence factors

[48]. An important requirement of pathogens, whether

they are obligate or facultatively intracellular is their

ability to metabolise fatty acids [49–51]. In bacteria,

fatty acids are required for the formation of cell wall

phospholipids and may be acquired either from existing

host-derived fatty acids, through de novo synthesis or a

combination of both. Since there is no evidence that

BPS is able to acquire host-derived fatty acids, de novo
fatty acid synthesis an attractive target for chemothera-

peutic intervention. FabI is an enoyl-acyl carrier protein

reductase, a key enzyme of the type II fatty acid

synthesis system, and has been shown to be required

for BPS virulence in the murine model of infection. It

has since been successfully targeted by specific chemi-

cal inhibitors [52,53], representing a promising approach

to drug design.

In addition to these processes, anabolic pathways, while

perhaps not traditionally considered virulence factors

are nonetheless essential for intracellular fitness. Anab-

olism requires ATP energy, for which the synthesis of

purine, encoded by the pur gene cluster is required,

purine also being a vital component of nucleic acids [54].

BPS differs from its host in that it is able to synthesise

several amino acids and vitamins that humans cannot

and instead acquire from dietary intake. This also makes

them an attractive target for antimicrobial therapy. For

example, histidine synthesis, encoded by the his gene

cluster, is required for intracellular growth of BPS, and

this area is also being explored for potential future

vaccine design [54].

Cell to cell spread and the Type Six Secretion
System
BPS is able to spread beyond the site of initial infection,

disseminating through the host and potentially infecting

any organ or tissue. One strategy is to use the infected

host cell itself as a vehicle. BPS has been shown to remain

viable within, and induce maturation and migration of,

immature DCs in vitro, a phenomenon seen in other

infections as a route for transport to secondary lymphoid

organs in vivo; although seemingly only a minority of

BPS-infected DCs translocate to the lymph in vivo [55].

More localised spread occurs via a distinctive feature of

BPS infection, namely its ability to create MNGC. Arising

from the fusion of cell membranes between an infected

cell and a neighbouring, uninfected cell, it is a phenome-

non that enables continued intracellular replication, and

cell to cell spread without the requirement of an extra-

cellular step and the consequences that entails regarding

host immunity. BPS is able to form MNGC in both

phagocytic and non-phagocytic cells within hours of in-

fection [56], and the eventual death of the MNGC results

in plaque formation [57�] that is damaging to the host, and

may serve as a niche for further BPS replication.

It is well established that cell–cell spread and induction of

MNGC requires bacterial motility. In addition to the two

flagellin encoding genes, fla2 on chromosome 2 and fla1 on

chromosome 1, BPS achieves intracellular motility through

the action of the autotransporter, BimA. Localising to one

pole of the bacillus, it binds host actin, polymerisation of

which pushes the bacteria through the cytoplasm, leaving

in its wake characteristic ‘comet tails’. BimA localisation is

not itself directed to the poles, rather it is transported

equally across the bacterial inner membrance [58]. BimA

localisation depends on the polarity of its partner protein,

BimC, which functions through an iron-dependent mech-

anism that remains to be fully described.

Interestingly, BimA is also expressed by B. thailandensis
which is avirulent in humans. Recent published work has

revealed the finer distinction responsible for virulence:

whereas B. thailandensis BimA mimics the host Arp3/3

actin polymerase complex, BimA from BPS and B. mallei,
another pathogenic member of the genus that causes the

disease, glanders, in horses, instead mimic the far more

efficient host Ena/VASP complex to initiate and elongate

actin filaments [59,60�]. The result is that while B.
thailandensis BimA is able to generate branched actin

networks, BPS BimA generates multiple bundles of fila-

ments; moreover, BPS BimA is able to generate more

actin tails and larger MNGC compared with B. mallei
BimA, highlighting the key importance of actin-based

motility for cell–cell spread in the host.

In addition to bacterial motility, a key requirement

for cell fusion and MNGC formation is the Type Six
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Secretion System (T6SS), disruption of which attenuates

virulence in vivo. BPS possesses a predicted six T6SS

gene clusters, which are thought to have evolved as a

weapon for inter-bacterial competition [61] within the

rhizosphere, the native microbiome of BPS.

While the T3SS is not directly required for MNGC

formation, it is a prerequisite that the bacteria are able

to escape the phagocytic vacuole [39,57�]. Furthermore,

there is cross-talk between the T6SS and T3SS; for

example, T6SS1 expression is regulated by BprC, which

is located in the T3SS gene cluster. The T6SS is upre-

gulated by several orders of magnitude upon infection of

host cells, and this is largely regulated by the two-com-

ponent histidine kinase sensor, VirAG [62], which is itself

regulated by a T3SS regulator, BsaN [63�]. Mutagenesis

studies have revealed that abrogation of both virAG and

bprC function attenuates virulence in the murine model

of BPS infection [63�].

VirAG activates the promoter of a key T6SS effector,

hemolysin-coregulated protein (Hcp), located in gene

cluster five out of the six BPS T6SS gene clusters

[63�]. Solving the crystal structure of BPS Hcp has

revealed unique variations in its tertiary structure that

are not present in orthologues from avirulent species,

hinting at its key role in virulence.

Hcp polymerases the hexameric ring structures that com-

prise the T6SS, forming an overall structure that is akin to

the bacteriophage tailspike. Hcp is also secreted by the

T6SS, dependant on the protein, BPSS1504 [64], and

functions as a chaperone for other secreted effectors,

localising to the infected cell plasma membrane. Exoge-

nous recombinant Hcp also localises to the host cell

surface, preferentially targeting antigen presenting cells.

Accordingly, it has been found to be highly immunogenic

and reacts strongly with sera from melioidosis patients

[65]. The consequence of this is not clear, but it has been

reported that binding of Hcp induces the anti-inflamma-

tory cytokines, IL-10 and TGF-b, potentially interfering

with the mounting of a robust immune response to other

epitopes besides Hcp.

Activation of T6SS is a dynamic, multi-step process that

begins with assembly of the inner tube, comprised of

Hcp, its outer sheath and baseplate at the bacterial cell

wall-host cell membrane interface. The tip of the T6SS

spike is comprised of a trimer of the protein, Valine-

glycine repeat protein G (VgrG) [66]. VgrG tranverses the

inner membrane, periplasmic space and peptidoglycan

layer of the bacterial cell wall, while the elongation of the

tail spike extends into the bacterial cytoplasm.

Upon contact with the host cell membrane, the T6SS

outer sheath contracts and provides the kinetic energy for

the inner tube to propel the VgrG tip, penetrating the host

cell and potentially into the neighbouring cell membrane

[67�]. At this stage, T6SS effector proteins are also deliv-

ered. The recruitment of ATPase then disassembles the

outer sheath proteins, which are recycled [68]. The con-

traction of the T6SS may serve to pull the two membranes

close enough whereupon, according to the hemifusion

paradigm, membrane fusion occurs when proximity is

<1 nM [69], resulting in a fused, multinucleated cell.

Although VgrG has been shown to be functionally con-

served across Burkholderia spp., some species such as B.
oklahomensis lack the ability of cell–cell spread, suggesting

other requisites than VgrG alone [66].

Conclusions and future perspectives
Much has been learned in recent years about how BPS is

able to infect human cells, evade immune killing mech-

anisms and replicate intracellularly.  This review is not

an exhaustive list of BPS virulence factors. Several are

the subject of ongoing research to fully explain their

function, such as boaB, bpaC and bpaE, which all con-

tribute to virulence in the murine infection model [70].

Still more targets remain to be identified and under-

stood, and newly emerging tools will help to expedite

these efforts. For example, transposon-directed inser-

tion-site sequencing (TraDIS) also known as TnSeq,

has facilitated the discovery of the essential gene set of

BPS [4] and B. thailandensis [71] and has very recently

been applied to elucidate virulence genes in the acute

model of in vivo infection [72]. A particular remaining

challenge is to understand the establishment of chronic

infection with BPS, which may demand novel treatment

therapies in the clinical setting [73]. We have gained

important insights into the pathogenicity of BPS, for

example the significance of the T3SS and T6SS, and

some of the basic cell biology of infection. Further work

is needed to understand the subtleties of host-pathogen

interactions that result in, or fail to result in, protective

host immunity. Together these efforts will contribute to

our ability to counteract the emerging threat of this

well-armed pathogen.
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