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Background: Lymphatic filariasis is a debilitating neglected tropical disease that affects impoverished commu-
nities. Rapid diagnostic tests of antigenaemia are a practical alternative to parasitological tests of microfilarae-
mia for mapping and surveillance. However the relationship between these two methods of measuring burden
has previously been difficult to interpret.

Methods: A statistical model of the distribution of worm burden and microfilariae (mf) and resulting antigenaemic
and mf prevalence was developed and fitted to surveys of two contrasting sentinel sites undergoing interventions.
The fitted model was then used to explore the relationship in various pre- and post-intervention scenarios.

Results: The model had good quantitative agreement with the data and provided estimates of the reduction in mf
output due to treatment. When extrapolating the results to a range of prevalences there was good qualitative
agreement with published data.

Conclusions: The observed relationship between antigenamic and mf prevalence is a natural consequence of the
relationship between prevalence and intensity of adult worms and mf production. The method described here
allows the estimation of key epidemiological parameters and consequently gives insight into the efficacy of an
intervention programme.

Keywords: Antigenaemia, Elimination programme, Lymphatic filariasis, Microfilaraemia, Prevalence surveys

Introduction

Lymphatic filariasis (LF) is a debilitating disease caused by para-
sitic infection of the lymph nodes.1 Although most cases displayed
are asymptomatic, prolonged and high burden can lead to abnor-
mal enlargement of body parts causing pain, severe disability and
social stigma. There are currently global efforts to eliminate the
disease as a public health problem by 2025 through the use of
mass drug administration (MDA) with a combination of albenda-
zole and either ivermectin (in onchocerciasis endemic areas) or
diethylcarbamazine (in areas without onchocerciasis). The cam-
paign has had a great number of successes, but problems and
questions remain as to whether the set targets are achievable.2

One challenge facing the monitoring and evaluation of pro-
grammes is the use of different diagnostic tests. Transmission of
the filarial worm is through mosquitoes; where microfilariae (mf)

in an infected host’s blood are ingested by the mosquito, and
develop into infective larvae that are able to enter another suscep-
tible host when the mosquito takes another blood meal. Therefore
mf counts are a good tool for estimating not only the prevalence of
infection, but also the mean mf load and infectious pool in a com-
munity.3 Microfilariae are counted in blood samples through either
a blood smear or a counting chamber and therefore require expert
parasitologists to detect. In addition, in Africa, where several mil-
lion people are at-risk, measures can only be taken through
blood samples at night, because of Wucheria bancrofti’s nocturnal
periodicity. Sensitivity and specificity of the test are 97% and 100%
respectively, although this is dependent upon mf load, blood
volume and parasitological method.4,5

A simpler method of measuring prevalence of LF is an antigenic
immunochromatographic test (ICT). The test relies upon detect-
ing antigens secreted by adult worms in a blood sample. Due to
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its cost, fewer requirements for training and lack of necessity to
take a blood sample at night, the ICT has become a popular alter-
native to mf testing.6 However, ICT prevalence cannot measure
the infective pool due to the nonlinear correspondence between
worm burden and mf output7 and, more importantly, the action
of the MDA.8 The treatments being used in MDA primarily kill mf,
with some additional effect on mortality and sterilisation of adult
worms.9 Therefore, after a number of rounds of MDA there is a
possibility that ICT prevalence could remain high whilst mf preva-
lence is very low, potentially leading to unnecessary rounds
of MDA.

Given the different profiles of these two diagnostic methods,
and a general shift from mf surveys to ICT surveys, it is important
to understand the relationship between the two. However, there is
currently a lack of good correspondence between the antigen and
microfilaraemia prevalence.10 A recent study compared the ICT
and mf prevalence in both pre- and post-intervention settings
and found that no covariates could explain the discrepancy
between the two and suggested that predicting mf prevalence
from ICT prevalence remains an open problem.10

Here we propose that the observed prevalence of antigenae-
mia and mf is a consequence of the underlying distribution of
adult worms and their mf output. This nonlinear relationship
could explain the observed patterns, and be used to interpret sur-
veillance data.

In order to test this hypothesis, we use standard assumptions
about the distribution of adult worms and egg output to build a
model of the resulting prevalence of antigenaemia and mf positiv-
ity. We fit the model to data from two contrasting sentinel sites.
The first from Malindi, Kenya was conducted at the start of an
intervention programme and has surveys conducted at baseline
and for two rounds of MDA in 2002 to 2004. This is contrasted
with a survey from Western Sri Lanka in the later stages of the
MDA programme in 2004 and 2005. We then extrapolate the
model to understand how the relationship would change for dif-
ferent baseline prevalences and compare the results to data from
a recent review of the literature.10

Materials and methods

Model

The model is based on an underlying distribution of adult worm
loads in the population, with each individual having a probability
of testing positive by each of the two tests based on their antige-
naemia and mf output, leading to the resulting observed popula-
tion prevalence by each test. The main idea is to construct the
distribution of worm load in the population and the probability dis-
tribution of mf for an individual with a given worm load and use
these to calculate the prevalence of antigenaemia and microfilar-
aemia in the population. A schematic of this is given in Figure 1.

The underlying distribution of adult worms in a population is
known to be over dispersed. The distribution of worm burden,
P(W), in the population is therefore modelled as negative binomial
with mean worm burden m and aggregation parameter kw.11 The
aggregation parameter controls the extent of the over dispersion
of the worm population, with a highly aggregated distribution
when kw is ,1 and a more evenly distributed worm population
for large kw. The ICT test detects if an individual is antigenaemic,
based on antigens secreted by the adult worms.12,13 The test

therefore is assumed to detect the presence of adult worms
with a pre-defined sensitivity, f. The probability of a random indi-
vidual in the population receiving a positive result from the ICT
test is therefore the probability of having a positive worm burden
multiplied by the probability of detection according to the sensitiv-
ity of the test,

pICT = fP(W . 0) = f 1 − 1 + m
kw

( )−kw
( )

.

The mf prevalence is slightly more involved to derive as it not only
depends upon the distribution of worms in the population, but
also on the distribution of mf being produced by the adult
worms. The production and detection of mf per adult worm is
assumed to be constant throughout the population, a simplifica-
tion of the density dependent assumptions in some models. We
cannot independently estimate both the mf production rate and
the sensitify of mf measurements, and we therefore use a single
parameter for the production of detectable mf. Assuming a
Poisson-count distribution of mf per adult worm, the probability
of an individual with worm burden w having an mf count of j is
therefore

P(M = j | W = w) = (aw)j
j!

e−aw.

From this, the probability of a detectable mf burden, given an
adult worm burden, w, is

P(M . 0|W = w) = 1 − P(M = 0|W = w).

To derive the prevalence of mf, we now need to calculate the prob-
ability that an individual is mf positive in this population. This is a
combination of their probability of having a certain worm burden,
w, and the probability that this worm burden results in detection.

pmf = P(M . 0) = 1 − P(M = 0)

= 1 −
∑1
w=0

P(M = 0|W = w)P(W = w).

Substituting in the derived expressions for the probability of mf
count given a worm burden and the probability of observing a par-
ticular worm burden produces a probability of mf count depend-
ent upon the population parameters: mean worm burden,
aggregation of worm burden in the population and rate of produc-
tion and detection of mf. A positive mf test occurs if there is a non-
zero measure of mf in a sample. The resulting probability of micro-
filaraemia is therefore

pmf = 1 −
∑1
w=0

e−awG(kw + w)
w!G(kw)

1 + m
kw

( )−k−w m
kw

( )w

.

The sensitivity of the ICT test, w, is set according to literature esti-
mates (97%), whilst the other model parameters are assumed to
vary and hence were fitted to data. The model was validated by
comparing the predicted probability of an individual being both
ICT positive and mf negative with the proportion of individuals in
the data. Using the literature-based estimate for the specificity of
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the ICT (c), this probability can be calculated as 1-pmf – c(1-pICT),
with the specificity value taken as 98.4%.14

Model fitting

In order to estimate the parameters of the derived relationship
the model was fitted to two studies. The first is a study of two
rounds of MDA using diethylcarbamazine combined with albenda-
zole across four sentinel communities in Malindi, Kenya in the
years 2002–2004 inclusive.15 Baseline blood samples were
taken in all four communities before the first round of MDA in
February 2002. Thereafter, blood samples were taken in March
2003 (post-MDA1) and July 2004 (post-MDA2). Both ICT and mf
tests were performed on the same blood samples to provide an
estimate for the prevalence of antigenaemia and microfilaraemia
in the population. In order to retain statistical power, the results
from the four communities were aggregated to provide a total
number sampled in each survey of n¼808.

Further analysis was conducted on a 2-year study in two
districts in Western Sri Lanka during an MDA programme.16

Antigenaemia was measured through ICT and microfilaraemia
measured through membrane filtration in the districts of
Colombo and Gampaha. Measurements were taken after an
MDA round in September 2004 and just prior to another MDA
round in February 2005.

The model was fitted using a Bayesian Markov chain Monte
Carlo (MCMC) framework. A likelihood was constructed assuming
binomial sample error for the number of individuals testing posi-
tive in the total population of individuals surveyed. For a given
population n, with the number of ICT positive individuals nICT,

ICT negative individuals (n-nICT), mf positive individuals nmf

and mf negative individuals (1-nmf), the log-likelihood is defined
as

l = nICT log pICT + (n − nICT) log(1 − pICT) + nmf log pmf

+ (n − nmf ) log(1 − pmf )

Exponential priors were assumed for all parameters of the model
with means set to values from the literature m¼1,a¼0.2,k¼0.1.17,18

The posterior was sampled using a Metropolis-Hastings sampler
using 40 000 iterations, including 10 000 iterations for burn-in.
The model was then fitted to each year when the survey was con-
ducted. Fitting was performed using the PyMC statistical package
in Python.19

Immunochromatographic test–microfilariae relationship

The fit of the model to each setting along with the estimated pos-
terior of parameter values was used to explore the credible rela-
tionship between antigenaemia and microfilaraemia. In each
setting the relationship between the prevalence of mf and the
prevalence of antigenaemia in a population in a given intervention
regime was explored by first constructing a credible interval for
the adult worm population parameters (m,kw) and the mf produc-
tion and detection rate (a) using the estimated posterior. The esti-
mated 95% confidence range for each fit was used to produce an
interval range for each parameter. These were then uniformly
sampled and the calculated prevalence of mf and antigenaemia
were plotted to produce a credible region for the relationship.

To understand the broad differences between the relationship
in the pre- and post-intervention setting, a range of parameters
were constructed based on known efficacies of drug regimens.

Figure 1. Overview of statistical model. The parameters mean worm burden m and aggregation of adult worms kw in the population are used to
construct the probability of an individual having a given worm burden P(W). The microfilariae (mf) production and detection parameter a is used to
informs the probability of a given mf count conditional on a given worm load P(M | W). These two probabilities are combined to produce the mf
distribution in the population P(M). The prevalence of antigen positives pICT are then based on the probability of a non-zero worm load with the test
sensitivity w. The prevalence of mf positives in the population are similarly calculated as the probability of an individual having a non-zero number of
mf detected.
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The pre-intervention range of parameters was taken from the pre-
intervention Kenyan 95% confidence interval range, with a smal-
ler lower bound for the mean worm burden to account for areas
with lower transmission than those observed in the baseline data.
Current most effective drug regimens have a macrofilaricidal
effect of 45% and a microfilaricidal effect of 95%.12 The mean
worm burden upper and lower range was therefore reduced by
45% each and the mf output was reduced by 45% to construct
the post-intervention range. These ranges for the parameters
were then used to simulate the pmf and pICT relationship.

Results
The model was first fitted to the Kenya data set, to each survey
year separately and the maximum a posteriori was calculated
for all model parameters (Table 1). The baseline mf production
is in close correspondence with literature estimates.20 The mf pro-
duction and detection rate, mean worm burden and worm aggre-
gation all reduce each year (0.25–0.16, 1.94–0.76 and 0.20–0.11).
Both mf production and mean worm burden reducing suggest
microfilariacidal and adulticidal effects of the MDA. Aggregation
of worms also increases, which would be expected if drug cover-
age and efficacy were not evenly distributed in the population.

The model was further fitted to a contrasting dataset from
Sri Lanka where a number of years of intervention had already
taken place (Table 2). The resulting parameter fits reflect this
with a low worm burden that decreases year to year (0.084 and
0.002), with a highly aggregated distribution. The mf production
and detection also decreases year to year (1.414 and 0.895);
however, the CI for each is large, reflecting that the number of
mf positive individuals in each year is extremely low, giving a
greater degree of uncertainty in the parameter estimates.

The model was validated using both datasets by comparing
the predicted probability of being both ICT positive and mf nega-
tive to the estimated values in the data. In all years there is close
agreement between the data and the prediction (absolute errors

for each year in Kenya are 0.2%, 0.4% and 0.2% and in Sri Lanka
are 1.8% and 1.5%) (Table 3).

We subsequently used the model and these parameter esti-
mates to investigate the predicted relationship between ICT and
mf prevalence both pre-MDA and post-MDA for a range of scen-
arios. The baseline relationship across different settings shows
high variance with the prevalence of mf below the prevalence of
ICT.10 Post-MDA, the prevalence of mf is lowered while the preva-
lence of ICTremains high. After several rounds of MDA this leads to
a flattened distribution, where the mf positives are fewer than the
ICT positives. From the model, worm burden and aggregation can
vary greatly between sites, leading to high variance in prevalence,
and therefore ICT prevalence, whilst it is assumed that mf produc-
tion is based upon the biology of the filarial worm and the pres-
ence of an MDA regime and hence will vary less across sites. By
drawing worm burden, worm aggregation and mf production
parameters from the estimated posterior in a pre and post-
intervention setting, a distribution of mf-ICT prevalence values
can be produced (Figure 2). This indicates that similar epidemio-
logical parameters produce a wide variance relationship, where
a wider range of antigenaemia prevalence can exist for narrower
mf prevalence after subsequent MDA rounds.

With the model validated, the relationship derived from the fit-
ted posteriors and known efficacies of MDA were compared to a
number of datasets where the prevalence of ICT and mf were
known. These data were stratified by whether diagnosis tests
were taken before or after MDA21–24 (Figure 3). The model predic-
tions match closely with the data, although there are notable
outliers in the pre-intervention scenario.

Discussion
In a recent article,10 the disparity between the pre- and post-
intervention settings is highlighted. The authors found that a
regression analysis was unable to provide a predictable relation-
ship between the two measures of prevalence. Using minimal

Table 2. Estimated parameters (with 95% CI) for the 2 years surveys were conducted in Colombo and Gampaha, Sri Lanka

Year mf detected in 100 mL blood per worm a Mean worm burden m Worm aggregation kw

2004 1.414 (0.052–7.185) 0.084 (0.0427–1.410) 0.036 (0.008–0.226)
2005 0.895 (0.079–5.901) 0.002 (0.0–0.004) 0.081 (0.009–0.279)

mf: microfilariae.

Table 1. Estimated parameters (with 95% CIs) for Poisson-dispersed mf model for 3 years the surveys were conducted in Malindi, Kenya

Year mf detected in 100 mL blood per worm a Mean worm burden m Worm aggregation kw

2002 (baseline) 0.254 (0.117–0.562) 1.943 (0.72–5.457) 0.205 (0.124–0.499)
2003 0.186 (0.063–0.414) 1.177 (0.508–3.796) 0.148 (0.081–0.337)
2004 0.161 (0.048–0.384) 0.756 (0.324–2.849) 0.11 (0.055–0.279)

mf: microfilariae.
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assumptions of population worm burden and mf distribution, we
have constructed a statistical mechanistic model of the preva-
lence of antigenaemia (pICT) and microfilaraemia (pmf) which
explains these patterns. The model predicts a wide variance rela-
tionship between these prevalences in a site pre-intervention and
a narrow relationship after several rounds of MDA, where antige-
naemia is generally much higher than microfilaraemia in the
population. Here, we first fitted and validated the model using a
three-year sentinel site study in Malindi, Kenya before and during
MDA. The fitted parameters show a drop in both the mf production
and mean worm burden each year MDA occurred. This drop is con-
sistent with other studies of MDA with diethylcarbamazine com-
bined with albendazole.25,26 These new rates can then be used
to estimate the relationship in subsequent years as MDA takes
place and thus estimate the pmf from the pICT alone. The updated
parameters in subsequent years also give insight into the efficacy

of MDA by providing an estimate of the reduction of mean worm
burden and the reduction of mf production.

The early-intervention Kenyan dataset was contrasted with a
late intervention dataset conducted in Western Sri Lanka. The fit-
ted parameters also show a decline in mf production and mean
worm burden after an MDA round, however the confidence inter-
val on the mf production is large due to the fact that nearly all
individuals surveyed were mf and ICT negative. This represents a
difficulty in estimating the fecundity of individual worms when
their numbers are extremely low and have a highly aggregated
distribution.

A plausible relationship between the ICT and mf in pre- and
post-intervention settings was also constructed by considering
how the population worm distribution may vary geographically
and between sites. Differences in immunity, history of infection, vec-
tor control, population density and lifestyle would all contribute to
observed differences in mean worm burden, aggregation and mf
production, which are parameter inputs for the model. The decline
of mf production due to MDA reduces the overall mf production,
whilst the mortality of adult worms is limited, thus leading to a
high variance of pICT with a low variance of pmf. The model, therefore,
predicts the observed relationship in these two distinct settings and
also provides a way of predicting the new prevalence relationship
based upon the known mechanisms of filaricidal drugs used in MDA.

The validated model was compared to a number of datasets
from a variety of settings. The broad pattern predicted by the
model is reproduced by the data, with a greater reduction in mf
prevalence than in the ICT prevalence. There are notable outliers
in the pre-intervention setting. These regions have unusually low

Table 3. Comparison of predicted probability of an individual
receiving a positive immunochromatographic test (ICT) and
negative microfilariae (mf) test with the estimates in the data for
the two surveys

Location Year Predicted ICT
positive, mf
negative (%)

Data ICT
positive, mf
negative (%)

Malindi, Kenya 2002 (baseline) 16.5 16.7
2003 16.1 16.5
2004 13.2 13.0

Colombo and
Gampaha,
Sri Lanka

2004 2.1 3.9
2005 1.7 0.2

Figure 3. Comparison of microfilariae–immunochromatographic test
(mf–ICT) prevalence relationship in a number of settings to the model
predicted range with parameters estimated from the two fitted
datasets. The Kenyan parameter range was used to produce the
pre-intervention range, with a lower mean worm burden to account for
a variety of endemic settings. A reduction in mean worm burden and mf
output that corresponds with known drug regimen efficacies was applied
to the range to produce the post-intervention area relationship. The
relationship in pre and post-intervention setting were compared to
a number of diverse studies where both antigenaemia and
microfilaraemia were assessed.21–24 This illustrates how a combined
reduction in mean worm burden combined with a higher reduction in
mf output leads to the observed pattern in pre- and post-intervention
settings.

Figure 2. Estimated relationship between microfilariae (mf) prevalence
and immunochromatographic test (ICT) prevalence under different
mass drug administration (MDA) regimes, either at baseline; after one
MDA treatment round and after two MDA treatment rounds. The
estimated relationship was constructed by sampling from the posterior
in each year from the Kenyan survey and using these parameters in the
model to produce an mf–ICT relationship. The relationship found in the
data is shown for 3 years as black dots.15
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mf prevalence with high ICT prevalence. The model was fitted to
an individual location, where it is assumed mf production varies
with the application of MDA alone. Over more diverse regions
other factors may need to be taken into account, such as history
of infection, immune response of the population and time at
which blood samples were taken.

Limitations of the study

This model is based on a basic understanding of the distribution of
adult worms and their detectability through antigenemia and mf
output. The model does not currently include transmission and
subsequently an understanding of how the parameters evolve in
time is necessary to provide further predictions of the relationship
going forward. The parameters are also likely to vary between
settings as a number of factors change such as bite-risk hetero-
geneity, resulting in different distributions of adult worms. Using
other forms of data would improve the estimate of these key
parameters and provide further estimation of the relationship.
Currently, both microfilaraemia and antigenaemia prevalence is
required to calibrate the model and few studies consider both
over subsequent years, before during and after an intervention
campaign. The estimation also currently does not use the mf or
antigen intensity. These data may help to further calibrate the
model providing a more robust relationship between the preva-
lences. Importantly, our methodology does not allow a direct esti-
mation of mf prevalence from ICT prevalence without some mf
studies to inform the parameter estimation and it is unclear
how transferable these studies are between different settings.

Conclusions

We have shown using minimal assumptions of worm and mf dis-
tribution an explanation for the disparity between microfilaraemia
and antigenaemia. The technique allows us to estimate key epi-
demiological parameters during a MDA programme as well as
during post-MDA surveillance; these estimates can be compared
to other diagnostic methods proposed for use in surveillance such
as filarial antibodies.27–29 For example, ICT prevalence and mf
prevalence data at baseline can be used to infer the mean
worm burden and aggregation in a population in subsequent
rounds, this combined with knowledge of drug efficacy in clearing
mf can be used to calculate a credible interval for the prevalence
of mf. This gives new insight in being able to determine the effi-
cacy of an MDA programme based upon the reduction in mf pro-
duction as opposed to the crude estimates of the prevalence
alone. This insight would also be useful in preventing recrudes-
cence by understanding how the mf prevalence may change in
subsequent years if transmission has been broken or if worm
burden is increasing in the population.
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