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Estimating time-varying exposure-outcome
associations using case-control data:
logistic and case-cohort analyses
Ruth H. Keogh1*, Punam Mangtani2, Laura Rodrigues2 and Patrick Nguipdop Djomo2

Abstract

Background: Traditional analyses of standard case-control studies using logistic regression do not allow estimation
of time-varying associations between exposures and the outcome. We present two approaches which allow this.
The motivation is a study of vaccine efficacy as a function of time since vaccination.

Methods: Our first approach is to estimate time-varying exposure-outcome associations by fitting a series of logistic
regressions within successive time periods, reusing controls across periods. Our second approach treats the case-
control sample as a case-cohort study, with the controls forming the subcohort. In the case-cohort analysis, controls
contribute information at all times they are at risk. Extensions allow left truncation, frequency matching and, using
the case-cohort analysis, time-varying exposures. Simulations are used to investigate the methods.

Results: The simulation results show that both methods give correct estimates of time-varying effects of exposures
using standard case-control data. Using the logistic approach there are efficiency gains by reusing controls over
time and care should be taken over the definition of controls within time periods. However, using the case-cohort
analysis there is no ambiguity over the definition of controls.
The performance of the two analyses is very similar when controls are used most efficiently under the logistic
approach.

Conclusions: Using our methods, case-control studies can be used to estimate time-varying exposure-outcome
associations where they may not previously have been considered. The case-cohort analysis has several advantages,
including that it allows estimation of time-varying associations as a continuous function of time, while the logistic
regression approach is restricted to assuming a step function form for the time-varying association.

Keywords: Case-control study, Case-cohort study, Cox proportional hazards model, Logistic regression, Time-
varying association, Vaccine efficacy

Background
Case-control studies are widely used to study associa-
tions between exposures and disease (or other) out-
comes, especially when the outcome is rare. For
overviews see Breslow and Day (1980) [1], Breslow
(1996) [2] and Keogh and Cox (2014) [3]. In a ‘standard’
case-control study cases are individuals who experienced
the outcome of interest within a specified time period

and controls are chosen to represent the non-cases in
the same population.
In this paper we describe methods for estimating time-

varying associations between exposures and outcomes
using standard case-control study data, focusing on
unmatched and frequency matched studies. Conven-
tional analyses of case-control data using logistic regres-
sion do not accommodate time-varying associations. We
outline two approaches. One is to estimate associations
(odds ratios (OR)) separately within a series of time
periods using logistic regression. The second treats the
case-control sample as a case-cohort study, with the
controls forming the ‘subcohort’. The case-cohort design
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[4] is a method for selecting a case-control-type sample
from a prospective cohort, enabling estimation of
hazard ratios (HR) without obtaining complete infor-
mation for the full cohort. See Onland-Moret et al.
(2007) [5] for an overview.
We describe a motivating study before outlining the

two proposed approaches and presenting results from a
simulation study.
The motivation for this work was a case–control study

of the long-term efficacy of infant-BCG (Bacillus
Calmette-Guérin) vaccination against tuberculosis (TB),
in particular of whether the vaccine efficacy becomes
weaker over time since vaccination. Incident cases aged
0 to 19 at the first disease episode were identified retro-
spectively from those occurring over a 10-year period
and recruited to the study. Controls were selected at the
same time at which cases were retrospectively identified
and chosen to represent the underlying population by
sampling households, and so as to obtain approximately
equal numbers of cases and controls within a series of
birth cohorts.
The vaccination policy in the underlying population

recommends administration of BCG before age 1. Partic-
ipants’ vaccination status was ascertained using a com-
bination of vaccination records, reported history, and
inspection for BCG vaccination scar. It was of interest to
estimate vaccine efficacy within a series of time periods
post-vaccination, and to model the vaccine efficacy
smoothly with time since vaccination.
Rodrigues and Smith (1999) [6] give an overview of

the use of case-control studies to study vaccine efficacy.

Methods
We outline two approaches to estimating time-varying
exposure-outcome associations using unmatched case-
control data:

(i) Performing separate logistic regressions within a
series of time periods.

(ii)Treating the study as a case-cohort study and apply-
ing a case-cohort analysis.

Both approaches assume that the cases are rare in the
underlying population.
We consider a case-control sample containing n indi-

viduals. The main exposure is denoted x, whose associ-
ation with the outcome may vary over time. A vector of
covariates is denoted z, which are assumed to have non-
time-varying associations with the outcome.

Logistic regression analysis
We focus on estimating the association between the
exposure and the outcome within L consecutive non-
overlapping time periods, that is assuming a step

function form for the time-varying association. A logis-
tic model for the probability of being a case in time
period l is

log
Pr
�
Dl ¼ 1

���x; z
�

1− Pr
�
Dl ¼ 1

���x; z
� ¼ δ0l þ δXlxþ δTZlz ð1Þ

where Dl denotes case (Dl = 1) or control (Dl = 0) sta-
tus in time period l, δXl is the log OR for the exposure x
in time period l, and δZl is a vector of log ORs for the
covariates z in time period l. The probabilities Pr(Dl =
1|x, z) are conditional on the case-control sampling
scheme and the intercepts δ0l do not have a useful inter-
pretation [7]. We now discuss the definition of a case
and a control in time period l, before outlining the ana-
lysis based on model (1).
We define an ‘index time’ for each individual. For

cases the index time is the time they became a case, on
the relevant time scale, e.g. the age at disease diagnosis.
For controls the index time is the time up to which it is
known they have not had the event; in the motivating
example this was the time of being interviewed for the
study. For cases, Dl = 1 if the index time was in time
period l. The question arises as to how to define controls
in period l. We propose that a control individual can
serve as a control in any time period up to and including
that in which their index time falls. Therefore controls
can contribute to the analysis in more than one time
period. For example, in the motivating example the time
scale is age and we assume for now that vaccination oc-
curs at birth. We may wish to estimate the vaccine
efficacy in age groups (or equivalently years since vaccin-
ation periods) 0–4, 5–9, 10–14, 15–19. Individuals inter-
viewed as controls up to and including age 4 can only
appear as controls for cases occurring in the 0–4 age
group, while an individual interviewed as a control at
age 14, say, may serve as a control in three age groups:
0–4, 5–9, 10–14. Another possibility would be to use
control individuals in only one time period. However,
this would be inefficient in comparison with our pro-
posed scheme for the reuse of controls across multiple
time periods. In the simulation study we investigate al-
ternative control definitions. These issues are connected
to the work of Lubin and Gail (1984) [8] and Robins et
al. (1986) [9], who discuss control selection in nested
case-control studies. We do not allow cases occurring in
a given time period to contribute to the analysis as a
‘control’ at any time prior to that at which they become
a case.
We let xi and zi denote the exposure and covariates re-

spectively for individual i (i = 1,…, n). The full likelihood
under the analysis approach proposed above, in which
controls are reused across multiple time periods, is
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where Dli takes value 1 for a cases occurring in time

period l and 0 for individuals eligible to be used as a
control in time period l according to our proposed
criteria. Ili is an indicator of whether individual i contrib-
utes to the analysis in time period l, therefore taking
value 0 for control individuals with index time less than
the lower limit of period l and 1 for a controls with
index time greater than the lower limit of period l. For
cases, Ili is 1 if the case occurs in period l and 0 other-
wise. In practical terms, for the analysis the data can be
arranged so that each case has exactly one row of data
and each control has one or more rows of data; one row
for each time period up to and including that in which
their index time falls. The analysis can be performed in
standard software for logistic regression by using interac-
tions between time period and the exposure and covari-
ates, allowing a separate intercept for each time period.
It may be reasonable to assume that the associations

between the covariates z and the outcome is the same
across time periods (δZl = δZ, for all l = 1,…, L), or that
the intercept is the same over time (δ0l = δ0, for all l =
1,…, L). If common parameters are used across time
periods then the use of some individuals as controls
within multiple time periods induces dependence be-
tween contributions to the likelihood and robust vari-
ance estimates should be used.
In the analysis proposed above, we do not allow cases to

serve as controls in time periods before which they be-
came a case, as this would result in over-representation of
future cases in the control set in a given time period. The
controls in a given time period are in fact individuals who
remained free of becoming a case up to their index time.
Therefore there is technically an under-representation of
future cases in the control group in each period. However,
when cases are rare in the underlying population we ex-
pect this to result in negligible bias.

Case-cohort analysis
The logistic analysis estimates the exposure-outcome
association (an OR) separately within time periods, i.e.
assuming a step function, but does not extend to allow
estimation of a smooth association over time. The way in
which controls are used across time periods is also not
ideal in that events happen in continuous time, but con-
trols must be assigned within discrete time periods. The

logistic analysis could in theory be performed using a large
number of short time periods, to build up a detailed pic-
ture of how the exposure-outcome association changes
over time. However, in practice the number of time periods
that can reasonably be used is restricted by sample size.
We instead consider a case-cohort analysis and start

by describing the standard setting in which a case-
cohort study arises as a sub-study within a prospective
cohort. To obtain a case-cohort sample the first step is
to obtain a random sample of individuals from an under-
lying cohort at the start of follow-up (or, often, retro-
spectively, but as though it has been done at the start of
follow-up), referred to as the subcohort. The subcohort
may contain some individuals who become cases during
the course of follow-up. The case-cohort sample is com-
prised of the subcohort plus all individuals in the rest of
the cohort who become cases during the course of
follow-up. In the analysis of a case-cohort study each
case is compared at its event time with the individuals in
the subcohort who are still at risk at that time using a
pseudo-partial likelihood (Fig. 1) [7].
In a standard case-cohort analysis, we assume the Cox

proportional hazards model [10] for the hazard for the
event of interest

hðtjx; zÞ ¼ h0ðtÞexp
�
βxþ γTz

�
ð3Þ

where t denotes the event time, h0(t) is the baseline
hazard at time t, β is the log HR for the exposure x, and
γ is a vector of log HRs for the covariates z. This can be
extended to accommodate a time-varying association be-
tween x and the hazard, by replacing β in (3) by β(t),
which models the log HR for the exposure x as a func-
tion of time. There are various possibilities for the
choice of β(t). A simple approach is to assume a step
function form so that that the HR is assumed constant
within a series of time intervals: β(t) = v1β1 + v2β2 +⋯ +
vLβL, where vl is an indicator taking value 1 when t is in
time period l and value 0 otherwise (l = 1,…, L). Alterna-
tively we can model the exposure-outcome association
smoothly as a function of time, for example using a linear
model, β(t) = β0 + β1t. Another possibility is to use a spline
[11]. Quantin et al. (1999) [12] discuss methods for mod-
elling time-varying associations in Cox regression.
We denote the ordered event times t1 < t2 <… tN and

the case at time tj is denoted ij. The parameters of the
extended Cox proportional hazards model including β(t)
are estimated using the pseudo-partial likelihood:

YN
j¼1

exp
�
β
�
tj
�
xij þ γTzij

�
X

k∈Rj
exp

�
β
�
tj
�
xk þ γTzk

� ð4Þ

where Rj denotes the set of individuals in the subco-
hort who were at risk at time tj (including the case itself
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at time tj if the case is in the subcohort), plus the case it-
self at tj (if the case is not in the subcohort)[6]. This dif-
fers from the partial likelihood analysis of a full cohort
study [13] only by the definition of Rj; in a full cohort
study Rj would be replaced by the full risk set at time tj.
Tied survival times can be handled using Breslow’s
method (1972) [14]. The expression in (4) is a pseudo-
partial likelihood due to the ‘shared’ control group and
Sandwich estimators, or an appropriate equivalent, are
required to obtain correct standard errors [4]. The case-
cohort analysis can be performed using standard
software for Cox regression after making a small modifi-
cation to the data (the entry time (start of follow-up) for
cases not in the subcohort is set to be just an instant
before they become a case, ensuring that these cases
only appear in the denominator of the pseudo-partial
likelihood at the time at which they are the case) and
using robust standard errors.
We propose that a standard case-control study may be

viewed as a case-cohort study under the assumption that
the cases are rare in the underlying population, and as-
suming that the case event times are known. In a usual
case-cohort study the subcohort may contain some cases
by chance. However, in our situation of a standard case-
control study the controls are selected from those who
did not become cases during the follow-up period. If the
cases are rare in the population then the controls will be
approximately representative of the population in which
the cases arose. Therefore, the case-control study can be
viewed as a case-cohort sample with the control group
forming the subcohort. The analysis is as outlined above,
with controls considered to be ‘at risk’ up until their

index time (the date of interview in our motivating
example).
The case-cohort approach makes full use of the data

by allowing controls to contribute information to all
sampled risk sets Rj up to their index time. A particu-
lar advantage of this approach is that it allows model-
ling of time-varying exposure-outcome associations as
a continuous function of time; that is, we are not
restricted to estimating the association within time pe-
riods. However, estimating a separate HR within a
series of time periods will often be a sensible analysis
particularly as a starting point.
The logistic analysis described in the preceding section

may be thought of as a discrete-time survival analysis.
As the time periods become small and only contain a
small number of cases, the appropriate analysis would
be a conditional logistic regression with cases and
controls in each period forming a matched set. In this
case our proposed logistic analysis reusing controls
across multiple time periods becomes equivalent to the
case-cohort analysis.

Extensions
Frequency matching of controls
Frequency matching in a standard case-control study is
analogous to stratified sampling of the subcohort in a
case-cohort study [15], in which the subcohort is formed
of random samples from a series of strata s (s = 1,…, S)
defined by the frequency matching criteria. In this situ-
ation the baseline hazard h0(t) in (3) is replaced by
stratum specific baseline hazards h0s(t). The pseudo-
partial likelihood in (4) is modified by replacing Rj by

Fig. 1 Diagram illustrating a case-cohort study showing survival times (black circles) and censoring times (lines not ending in a circle) in a pro-
spective cohort, also showing the subcohort and the controls used for each case in the case-cohort analysis (grey circles). The full risk set for each
case is indicated by the dotted lines
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Rsj, the set of individuals in the subcohort who are at
risk at tj and in the same stratum as the case which
occurred at time tj, plus the case itself at tj (if the case is
not in the subcohort). Frequency matching of controls
can be accommodated in the logistic analysis by re-
placing δ0l by δ0ls in (1).

Time-varying exposures
Many studies involve time-varying exposures. This oc-
curs in our motivating study, in which the time scale
is age and vaccination occurs at different ages, though
typically before the first birthday. Focusing on a binary
exposure, we let x(t) denote the exposure at time t, on
the relevant time scale. We now separate the time
scale for occurrence of the event (t) and the time since
exposure (u). The case-cohort analysis accommodates
both time-varying exposure-outcome associations and
time-varying exposures. Under this extension the
pseudo-partial likelihood is

YN
j¼1

exp
�
β
�
uijj

�
xij
�
tj
�þ γTzij

�
X

k∈Rj
exp

�
β
�
ukj

�
xk
�
tj
�þ γTzk

� ð5Þ

where ukj denotes the time since exposure for individ-
ual k at event time tj, and β(u) models the log HR as a
function of time-since-exposure. To perform analysis the
data would be arranged with multiple rows per control
individual to accommodate both changing exposure over
time and different times since exposure; cases would still
have only one row of data.
The logistic regression approach does not extend

easily to accommodate a time-varying exposure with a
time-varying association with the outcome. A non-time-
varying association between a time-varying exposure
and an outcome can be estimated using logistic regres-
sion by fitting separate models within a series of time
periods, using current values of the time-varying expos-
ure in each period, and pooling the estimates across pe-
riods. This gives similar results to Cox regression using
time-varying exposures [16]. This approach could be ex-
tended to the setting of a time-varying exposure with a
time-varying exposure-outcome association, by fitting
logistic regressions within sub-intervals of each time
period of interest for the time-varying association and
obtaining a pooled estimate across sub-intervals within
each time period, using current values of the time-
varying exposure in each regression. However, this is
cumbersome and requires sufficient numbers of cases
and controls within sub-intervals. Therefore we con-
sider the logistic regression approach to be impractical
for time-varying exposures with a time-varying associ-
ation with the outcome.

Left truncation
In the motivating study the cases were cases of TB
occurring between 2003 and 2012, resulting in left trun-
cation prior to 2003. Left truncation is accommodated
in the case-cohort analysis by having control individuals
enter the risk set starting only at the time from which
they would have been eligible to become a case.
Left truncation can be accommodated in the logistic ap-
proach by extending the definition of a control within a
given time period. We propose that an individual can
appear as a control in any time period in which they are
observed for any length of time, including when they do
not enter the risk set until part-way through the time
period due to left truncation.

Results
We use a simulation study based on the motivating
example to investigate the performance of our pro-
posed methods.

Simulating the data
We first generated full cohort data within which cases
occur in time, and then obtained a frequency matched
case-control sample within that.
Full cohort data were generated for nb individuals in

five birth cohorts (b = 1, 2, 3, 4, 5) covering the period
1984–2012. Dates of birth were generated uniformly
within each birth cohort. The sizes of the birth cohorts
(n1,…, n5) were chosen to give particular numbers of
cases in different age groups (mimicking the numbers
expected in the motivating example), resulting in
approximately 582 cases in each full cohort.
The exposure (vaccination status) was generated

randomly from a binomial distribution within each birth
cohort, using the following exposure percentages which
mimic changes in vaccination uptake in the target popu-
lation over time: birth cohorts 1 and 2: 60 %; birth
cohort 3: 80 %; birth cohorts 4 and 5: 90 %.
We assumed the vaccine efficacy declined over time,

with HR 0.25 in the time period up to 5 years after ex-
posure, and a subsequent increase in the HR by 35 %
every 5 years, giving the HRs across years since exposure
periods (which here are the same as age groups): age 0–
4: 0.25 , age 5–9: 0.34, age 10–14: 0.46, age 15–29: 0.62,
age > =20: 0.83.
Event times were generated using a piecewise expo-

nential model with event rates differing by 5-year age
group and using the above HRs. Estimates of age-
specific TB rates for the target population were
obtained from 5-year average TB rates in England [17].
The number of cases per 100,000 across age groups
were: age 0–4: 13, age 5–9: 14, age 10–14: 16, age 15–
19: 36, age 20–24: 40, age 25–29: 45.
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All individuals were followed up to the end of 2013.
The index time for cases was their age at TB diagnosis
and that for non-cases was their age at the end of 2013.
Left truncation was introduced so that events were only
observed from 2003. Cases were all individuals having
the event before the censoring time at the end of 2013
and aged 19 or under at the time of becoming a case. In-
dividuals eligible as controls in the case-control sample
were those who had not had TB by the end of 2013.
Controls were sampled randomly within the 5 birth
cohorts such that the number of controls in each birth
cohort group was the same as the number of cases, as
in frequency matching. The case-control study com-
prises all cases plus the sampled controls.
We generated 1000 simulated case-control data sets.

Methods
In each simulated case-control data set we estimated the
exposure-outcome association within 5-year age groups
0–4, 5–9, 10–14, and 15–19, using the methods outlined
below.

1. Logistic regression analysis using controls across
multiple time periods.

In the logistic analyses we allow a separate intercept
parameter in each birth cohort. We consider four ways
of defining a control in time period l, which has lower
limit τlA and upper limit τlB, where TE denotes the entry
time for a given control (i.e. start of follow-up, account-
ing for left truncation) and TI denotes the index time:
Control definition (i) TE < τlB, TI ≥ τlA. This is our pro-

posed approach. A control individual can serve as a con-
trol in any time period in which their start of follow-up
(entry time) is before the upper limit of the time period
and in which their index time is after the lower limit of
the time period.
Control definition (ii) TE < τlB, TI > τlB. A control indi-

vidual can serve as a control in any time period in which
the start of follow-up (entry time) is before the upper
limit of the time period and in which their index time is
after the upper limit of the time period.
Control definition (iii) TE ≤ τlA, TI ≥ τlA. A control indi-

vidual can serve as a control in any time period in which
their start of follow-up (entry time) is before the lower
limit of the time period and in which their index time is
after the lower limit of the time period.
Control definition (iv) TE ≤ τlA, TI > τlB. A control indi-

vidual can serve as a control in any time period in which
their start of follow-up (entry time) is before the lower
limit of the time period and in which their index time is
after the upper limit of the time period. This is the most
stringent control definition.

2. Logistic regression analysis using each control in
only one time period.

We consider an analysis in which control individuals
are only used in one time period. Controls were allo-
cated to a time period from those in which they were
eligible to be a control (according to definition (i)) so as
to achieve as far as possible an equal number of controls
in each time period.

3. Case-cohort analysis.

The case-cohort analysis was applied allowing a separ-
ate baseline hazard within each birth cohort.
The analyses were applied in the 1000 simulated data

sets. The case-cohort analysis gives estimates of HRs,
while the logistic regression analysis gives ORs. Given
cases are rare in the population we expect HRs and ORs
to be very similar. Results are shown in Table 1.

Simulation results
All analyses give estimates of the exposure-outcome as-
sociation within time periods which are very close to the
true HRs. The case-cohort analysis gives the estimates
closest to the true HRs. All methods also give correctly
estimated standard errors (comparing the empirical
standard deviation with the model standard error) and
good coverage.
The case-cohort approach and the logistic approach

using our proposed control definition (i) gave similar
precision (looking at the empirical standard deviations).
The precision of the logistic regression estimates varied
according the control definition and whether controls
were reused across time periods. Our proposed logistic
regression approach which reuses controls according to
definition (i) was the most efficient. Using control defin-
ition (ii) results in around a 20 % loss in efficiency com-
pared to definition (i). Control definition (iv) is the most
stringent and gives the largest standard errors. The
logistic regression approach not reusing controls across
time periods also gives a substantial loss of efficiency
relative to our proposed method.

Discussion
We have outlined two approaches for estimation of
time-varying exposure-outcome associations using case-
control data; a logistic regression approach and a case-
cohort analysis. Our simulations showed that both
methods give correct estimates of the time-varying asso-
ciation. The methods can be used to estimate time-
varying associations from case-control data in settings
where this may not previously have been considered a
viable study design, notably in studies of vaccine efficacy
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over time. The approaches outlined assume that cases
are rare in the underlying population.
The case-cohort approach has a number of advantages

and this is our recommended method of analysis. A
major drawback of the logistic regression approach is
that it is restricted to assuming a step function form for
the time-varying association, i.e. estimation of the associ-
ation within a series of time periods, while the case-

cohort analysis accommodates a flexible model for the
time-varying association.
We showed how controls can be reused across time

periods in the logistic regression approach. However,
a further drawback of the logistic approach is that
there is ambiguity over what the definition of a con-
trol should be in a given time period. In the simula-
tion study we considered four definitions for controls,

Table 1 Simulation study results

True HR True log HR OR or HR Log OR or Log HR Difference from true log HR Emp SD Model SE Cov RE

1. Logistic regression analysis using controls in multiple time periods, controls definition (i)

Age 0-4 0.25 −1.386 0.246 −1.403 −0.017 0.260 0.258 0.943 -

Age 5-9 0.34 −1.079 0.335 −1.093 −0.015 0.238 0.244 0.962 -

Age 10–14 0.46 −0.777 0.458 −0.781 −0.004 0.235 0.234 0.947 -

Age 15-19 0.62 −0.478 0.619 −0.480 −0.002 0.205 0.197 0.943 -

1. Logistic regression analysis using controls in multiple time periods, controls definition (ii)

Age 0-4 0.25 −1.386 0.244 −1.412 −0.026 0.290 0.293 0.947 80

Age 5-9 0.34 −1.079 0.332 −1.104 −0.025 0.267 0.270 0.952 79

Age 10–14 0.46 −0.777 0.456 −0.785 −0.008 0.260 0.257 0.948 82

Age 15-19 0.62 −0.478 0.617 −0.483 −0.005 0.230 0.226 0.940 79

1. Logistic regression analysis using controls in multiple time periods, controls definition (iii)

Age 0-4 0.25 −1.386 0.246 −1.403 −0.017 0.301 0.293 0.948 75

Age 5-9 0.34 −1.079 0.334 −1.098 −0.020 0.260 0.266 0.954 84

Age 10–14 0.46 −0.777 0.460 −0.776 0.000 0.246 0.246 0.954 91

Age 15-19 0.62 −0.478 0.619 −0.480 −0.002 0.217 0.211 0.942 89

1. Logistic regression analysis using controls in multiple time periods, controls definition (iv)

Age 0-4 0.25 −1.386 0.243 −1.416 −0.030 0.351 0.346 0.951 55

Age 5-9 0.34 −1.079 0.328 −1.114 −0.035 0.299 0.301 0.953 63

Age 10–14 0.46 −0.777 0.458 −0.780 −0.003 0.273 0.273 0.952 74

Age 15-19 0.62 −0.478 0.616 −0.484 −0.006 0.248 0.247 0.951 68

2. Logistic regression analysis, not using controls across multiple time periods

Age 0-4 0.25 −1.386 0.244 −1.411 −0.025 0.318 0.307 0.954 67

Age 5-9 0.34 −1.079 0.327 −1.118 −0.039 0.317 0.315 0.946 56

Age 10–14 0.46 −0.777 0.454 −0.789 −0.012 0.305 0.301 0.950 59

Age 15-19 0.62 −0.478 0.616 −0.485 −0.007 0.218 0.214 0.939 88

3. Case-cohort analysis

Age 0-4 0.25 −1.386 0.249 −1.390 −0.004 0.277 0.267 0.944 -

Age 5-9 0.34 −1.079 0.337 −1.087 −0.008 0.240 0.245 0.957 -

Age 10–14 0.46 −0.777 0.461 −0.775 0.002 0.236 0.233 0.942 -

Age 15-19 0.62 −0.478 0.623 −0.474 0.004 0.206 0.198 0.939 -

OR or HR: Exponential of the mean estimated log OR (logistic analyses) or log HR (case-cohort analysis) across 1000 simulations.
Log OR or log HR: Mean of the estimated log OR (logistic analyses) or log HR (case-cohort analysis) across 1000 simulations.
Difference from true log HR: Mean difference between the estimate of the log HR or log OR and the true log HR across the 1000 simulations.
Emp SD: Empirical standard deviation of the estimates of the log HRs or log ORs across the 1000 simulations.
Model SE: The mean of the model-based standard errors for the estimates of the log HRs or log ORs across the 1000 simulations.
Cov (Coverage): The proportion of the 1000 95 % confidence intervals for each of the log HRs or log ORs ratios which contain the true log HR.
RE (Relative efficiency): percentage efficiency relative to the logistic analysis using controls definition (i). The relative efficiency is the ratio of the squared empirical
standard deviation for the reference method (i) to the squared empirical standard deviation for the comparison method (control definitions (ii), (iii), (iv), and not
reusing controls), expressed as a percentage
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which determine whether a control individual is eli-
gible to contribute to the logistic regression analysis
in a given time period. Our results showed that there
are considerable gains in efficiency by reusing con-
trols across time periods, and that our proposed con-
trol definition (i) is most efficient. By contrast, the
case-cohort analysis automatically makes efficient use of
controls and there is no ambiguity over the definition of a
control at any time point, as a control individual contrib-
utes to the sampled risk set at all event times at which
they were at risk. We found similar results using the case-
cohort analysis and the logistic regression analysis which
makes most efficient use of controls.
In summary, the case-cohort approach has several

advantages over the logistic regression approach. It
allows a flexible model for the time-varying exposure-
outcome association and, because it handles time con-
tinuously, involves no ambiguity over the definition of a
control at a given time point. Additionally, the case-
cohort approach easily accommodates time-varying
exposures, whereas it is impractical to do this using
logistic regressions.
We have focused on unmatched and fre-

quency matched studies. Individual matching of cases to
controls is also common, including the use of matching
on ‘time’ using ‘concurrent sampling’; for example
matched controls are selected from those who have
reached the same age as the case at his/her event time.
When the matching is in continuous time, this is equiva-
lent to a nested case-control study in which controls are
sampled from the risk set for each case. In this situation,
the modified partial likelihood analysis used for nested
case-control data is identical to a conditional logistic
regression analysis. Niccolai et al. (2007) [18] discussed
the use of a nested case-control design to study vaccine
efficacy over time, and Vasquez et al. (2004) [19] used a
study of this type to investigate the efficacy over time of
the varicella vaccine.
Use of time-varying exposures in case-control studies

has been considered previously in work which is closely
connected to ours. Suissa et al. (2010) [20] described a
‘multitime case-control design’ for estimating the associ-
ations between time-varying exposures and an outcome
using an unmatched case-control study, motivated by
transient exposures. They noted that controls could pro-
vide exposure information for multiple time periods and
outlined simple approaches to estimation of ORs,
though did not extend to regression modelling. The
methods described in this paper are an extension of their
methods to a more general setting. Leffondre et al. (2003)
[21] considered use of time-varying exposures in matched
case-control studies. They investigated analyses based on
both logistic and Cox regression. Their ‘augmented Cox ap-
proach’ is similar to our case-cohort approach, as is the

approach which was taken by Freedman et al. (2009) [22]
to study the association between time-dependent informa-
tion on smoking and risk of Warthin’s tumour using data
from a matched case-control study. Leffondre et al.
(2010) [23] extended to situations in which cases are
not rare in the underlying population, by considering
weighted Cox models using information on event oc-
currence in the underlying population. Our methods
could be extended in a similar way and this is an area
for future work.

Conclusions
By using the case-cohort analysis outlined in this paper,
case-control studies can be used to estimate time-
varying associations in settings where they may not pre-
viously have been considered a viable study design. A
logistic regression approach can also be used to estimate
time-varying associations but is restricted to modelling
the time-varying association using a step function and
controls should be defined using our definition (i) to
avoid loss of efficiency.
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