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ABSTRACT 
 

Clostridium difficile, a Gram-positive spore-forming bacterium, is a source of considerable morbidity 

and mortality for patients treated in hospitals and other healthcare settings. Intestinal colonisation by C. 

difficile can cause infection (CDI) if the normal flora is disrupted, e.g. by the use of antimicrobials and 

some other drugs. Vaccines targeting C difficile main virulence factors, toxins A and B are currently 

undergoing clinical trials, however, their potential population impact is largely unknown. The work 

presented in this thesis aims to quantify the effectiveness of C. difficile vaccination in preventing hospital-

onset CDI, including both its direct effects (reduction in individual patient morbidity and mortality) and 

indirect effects (prevention of onward transmission of the bacteria) using a mathematical dynamic 

transmission model framework.  

Based on a systematic literature review, it was shown that mathematical dynamic-transmission models 

have become an increasingly popular tool to help understand the patient-to-patient spread of nosocomial 

pathogens and predict the impact of healthcare prevention and control strategies. Methods have generally 

improved, with an increased use of stochastic models, and more advanced methods for formal model 

fitting and sensitivity analyses. Nonetheless, in contrast to methicillin-resistant Staphylococcus aureus – 

another bacterium commonly found in the healthcare setting – the transmission of C. difficile has rarely 

been considered within a dynamic modelling framework. 

Using national English CDI hospital surveillance data to fit a generalised additive mixed-effects 

model, this thesis revealed that, in line with recent evidence based on highly discriminatory genetic typing-

methods, whilst transmission between symptomatic carriers was significant, this did not account for the 

majority of CDI cases in English hospitals. Asymptomatic carriers have been suggested as co-

contributors, but their role in transmission remains uncertain to date.  

Previous estimates of additional excess bed days attributable to healthcare-acquired-CDI have varied 

widely, partly due to methodological weaknesses, and no robust estimates from a European setting are 

available. Both form key determinants to help quantify the health and economic burden of CDI, and are 

also likely to have an impact on the transmission-dynamics of the infection. Therefore, this thesis 
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quantified the hospital burden of CDI, expressed in excess length of stay and mortality. A Cox 

proportional hazard model revealed that CDI was associated with a significantly decreased daily risk of 

discharge and increased risk of mortality, where the former was even further reduced for severe CDI 

patients.  Using a multi-state model more intuitive estimates, i.e. the excess length of stay associated with 

mild (5 days [1.1-9.5]) and severe CDI (11.6 days [95% CI = 3.6-19.6]) were obtained. 

Finally, the results of an individual-based “state-of-the-art” dynamic transmission model in an 

English ICU (with epidemiological parameters informed by the findings of the statistical models 

mentioned, and with data-driven patient movement between the community, LTCF and ICU) showed 

that in settings with in-hospital acquisition rates comparable to the national average in English ICUs, 

immunising three patient groups: LTCF residents, elective patients and patients with a history of CDI in 

the ICU, resulted in a 43%, reduction of ICU-onset CDI. This required a relatively high number of 

vaccine doses, and a targeted strategy involving patients at high risk of colonisation on admission, such as 

LTCF residents proved more efficient. As these results proved highly sensitive to the level of 

antimicrobial use and in-ward acquisition rates, it was concluded that vaccination might be most efficient 

when targeting patient risk groups or settings where implementation of antimicrobial stewardship proves 

challenging. 
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CHAPTER 1 
 

INTRODUCTION 
 

 

1.1 BACKGROUND 
 

1.1.1 C. DIFFICILE INFECTION 

 

Clostridium difficile is a Gram-positive, spore-forming bacterium, which can only multiply in 

anaerobic environments. The name derives from the spindle shape (kloster [Greek]) of this bacterium 

under the microscope, which proved difficult to grow in laboratory conditions (difficilis [Latin]). The 

pathogen was first discovered in 1935 by Hall and O’Toole and described as a coloniser of the normal 

intestinal flora of new-borns under the name Bacillus difficilis [1]. The association with human disease was 

not made before 1978[2, 3], when C. difficile was isolated from patients with antimicrobial-agent-associated 

pseudomembranous colitis (i.e. inflammation of the large intestine). As part of a healthy normal gut flora, 

the bacterium is rare, and in general, considered harmless to humans. However, disturbance of the normal 

gut flora can cause endogenous or ingested C. difficile spores to germinate and proliferate in the 

gastrointestinal tract.  In the event of these bacteria having the relevant functioning genes, they can 

release enterotoxin A and B, which are the bacterium’s main virulence factors [4, 5]. These toxins enter 

the colonic epithelial cells through endocytosis, where they damage the actin cytoskeleton, e.g. inactivate 

guanosine triphosphatases (GTPases) of the Rho family, hence inducing cell death[6]. Both toxins 

combined were thought necessary to cause C. difficile infection (CDI), however in more recent studies, 

TcdA+TcdB- as well as TcdA-TcdB+ mutants have been found able to cause disease in animals[7, 8].  

 The consequences of C. difficile in the human gut are diverse:  individuals can remain 

asymptomatic (C. difficile colonisation/carriage), which has been largely attributed to individuals’ immune 

response (see below) [9–11], or induce mild to severe clinical manifestations (CDI) varying from 

diarrhoea [12] to pseudomembranous colitis and even death[13, 14].  
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1.1.2 RISK FACTORS FOR ACQUIRING CDI 

 

Antimicrobial usage is one of the primary predisposing factors for CDI, in particular broad-

spectrum penicillins (e.g. amoxicillin), third-generation cephalosporins (e.g. ceftriaxone, cefotaxime), 

clindamycin and quinolones [15–17]. The increased susceptibility to acquiring CDI has been estimated to 

be highest during one month post antibiotic treatment [18]. Another well-recognised risk factor is old age 

(defined as ≥65 years) [16, 19]. The reasons for this are unclear, but are probably several-fold.  The 

elderly, for example, have a weakened immune system, increased presence of severe underlying diseases 

such as chronic renal disease and inflammatory bowel, conditions which have both been associated with 

the disease[19]. They also have increased risks from more prolonged/frequent hospitalisations and receipt 

of more of “at-risk” antimicrobials[19]. Another much debated, but now generally accepted CDI risk 

factor, is the use of gastro-acid suppressants (e.g. proton pump inhibitors and H2-receptor antagonists) 

[20].    

Continued exposure to factors disturbing the gut flora post identification of CDI, such as gastric 

acid suppressors and antibiotic usage, increase the patient’s risk of recurrence [21] (defined here by a 

second CDI episode within 60 days[22]), which is experienced by about 20 per cent of patients[22]; either 

due to re-infection or relapse [23]. Importantly, the host’s ability to mount an antibody response to one of 

C. difficile’s main virulence factors, toxin A, is proven to play an important role both in preventing 

recurrence [24, 25], as well as primary disease[9–11].  

The above listed risk factors are frequently present in patients receiving healthcare today.  When 

combined with an enhanced ability of C. difficile to spread from patient-to-patient (either directly or 

indirectly through healthcare workers or the environment, discussed later in section 1.1.4) this provides a 

“perfect storm” for CDI to be amplified. Indeed, hospitalisation in the previous three months is a 

recognised risk factor for developing the infection[16, 26]. ICU stay in particular has been recognised as a 

risk factor for CDI [15, 27, 28]. Although large epidemiological studies in this setting are rare, the severe 

nature of their underlying disease often causes a state of immunosuppression[29], and requires high levels 

of antibiotic prescribing[30]. Moreover, due to the high prevalence of stress-related mucosal damage 
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following severe conditions such as trauma, sepsis or burns[31], gastro-acid suppressants are frequently 

prescribed among the critical ill patients. The occurrence of nosocomial CDI is discussed in the next 

section (section 1.1.3.1).  

Similarly admission of patients from elderly nursing homes or long-term care facilities (LTCFs) 

where the prevalence of symptomatic and asymptomatic carriage can be high, has been recognised as a 

risk factor developing hospital-onset CDI [32]. This creates a potential amplifying “carousel effect” 

between these settings. This carousel is made all the more complex with the increase in CDI outside 

healthcare facilities (further discussed in section 1.1.3.3).  

1.1.3 THE BURDEN OF CDI 

 

 C. DIFFICILE IN THE HOSPITAL-SETTING 

 

C. difficile is the most common cause of healthcare-associated gastrointestinal infections in 

England[33], as well as in many countries across Europe [34]. In 2008, an European wide hospital-based 

survey funded by the European Centres of Disease Control (ECDC) revealed a weighted mean incidence 

of 4.1 (range: 0 – 36.3) CDI cases per 10,000 patient-days per hospital (i.e. 23 (0 – 276) per 10,000 

admissions) across Europe[35]. This was an increase compared to the first European-wide survey based 

incidence survey in 2005 (2.5 [0.1 – 7.1] per 10 000 patient-days) [36]. The emergence of a C. difficile strain 

with increased virulence dramatically changed the epidemiology of the disease. First introduced in the 

United States and Canada in 2003, Polymerase Chain Reaction (PCR) ribotype 027 (also referred to as 

restriction enzyme analysis (REA) type BI or pulsed-field gel electrophoresis (PFGE) type 1 (NAP1)) was 

associated with fluoroquinelone resistance[37] and large outbreaks of more severe CDI involving an 

increased risk of mortality and high relapse rates[38, 39]. In 2004, when BI/NAP1/027 reports were 

dominant among CDI cases in Canada, a prospective cross-hospital study in Quebec revealed an 

incidence of 225 cases per 10,000 admissions[37].  Similar trends were observed in Northern European 

countries, including England, as well as Belgium, France, and the Netherlands[40]. In 2014, ECDC 

supported another European wide survey, of which preliminary results have been presented at the 
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Healthcare Infection Society conference in 2014. A slight decrease in European wide estimates (3.7 per 

10, 000 patient-days) was reported; however more details are required to conclude on overall trends. 

In 2003/2004, England experienced its first outbreak of BI/NAP1/027 in Stoke Mandeville 

Hospital[41]. In the few years after that, England has seen sharp increases in the proportion of CDI 

events caused by this particular strain (i.e. from 25.9% in 2004/2005 to 41.3% in 2007/2008)[42], 

resulting in large outbreaks and a marked increase in death certificates mentioning C. difficile[43]. In 

response to these developments, all acute National Health Service (NHS) hospital Trusts have become 

subject to mandatory reporting of identified CDI cases in January 2004[44]. Initially, reporting comprised 

all CDI patients ≥65 years. Three years later, in 2007, this was extended to include cases >2 years old. 

Moreover, the C. difficile Ribotyping Network was introduced which provided culture and ribotyping 

services for all registered Trusts [45].  

With 55,635 annual cases reported (9.4 per 10,000 bed days), CDI incidence reached its peak in 

2006 in England (Figure 1). This was followed by a steep decline, which appears to have slowly levelled 

off, with 13,361 annual reports (3.7 cases per 10,000 bed days) in 2013/14, and a slight increase in the 

latest financial year (14,165 annual reports, and 3.9 per 10,000 bed days). 

Figure 1: Yearly CDI incidence as reported through the English mandatory surveillance system 

 
Total number of cases reported by all NHS acute Trusts eligible for reporting to the English mandatory surveillance 

scheme. The numbers reflect the proportion of CDI cases that were Trust apportioned, defined as onset at least 72h 

after admission to the hospital. Data: CDI mandatory surveillance database obtained from Public Health England. 
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A number of different factors may have contributed to the reduction in CDI rates. The 

introduction of government-led CDI reduction targets in 2007 (imposing, besides enhanced surveillance, 

improved hospital infection prevention and control and antimicrobial stewardship[33]) as well as a 

reduction in the prevalence of BI/NAP1/027, which coincided with the observed decline in CDI.  Figure 

2 illustrates CDI incidence per 10,000 bed days for all England’s NHS Trusts in 2014/15 against the 

national average, standardised by hospital size. To compare, other European countries that reached states 

of endemic CDI similar to England, such as the Netherlands and Finland, have reported stable incidence 

rates at 2.9 and 2.3 per 10,000 bed days respectively[46, 47]. 

Figure 2: Funnel plot of the reported CDI rates (non-Trust and Trust apportioned) in England across all Trusts for the 
financial year 2014/15 

 

Reported CDI rates per 10,000 bed days (y-axis) as a function of Trust size expressed in the number of yearly bed days 

(x-axis) in the financial year 2013/2014. Each black dot represents the CDI rates of one NHS acute Trust. The red line 

corresponds to the national average incidence; the black dashed and solid lines represent the 95th and 99th percentile, 

respectively. Trusts with reported CDI incidence outside the upper limits have significantly higher rates than the 

average among Trusts with similar annual bed days, whereas Trusts with reports outside the lower confidence limit 

have significantly lower rates.  

A wide variation in CDI incidence reports across Trusts is observed, with 25% (38) of the Trusts 

reporting higher incidences than the 95th percentile for Trusts of similar size (Figure 2). This relates in 

part to variability in hospital characteristics such as hospital demographics and case-mix (in Chapter 3 it is 
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shown that teaching hospitals have generally higher number of reports than general and specialised 

hospital). Nonetheless, also considering the recent increases in CDI incidence and lower stable incidence 

rates reported elsewhere, this suggests there remains scope for further efforts in the prevention and 

control of CDI in England.  

 

 C. DIFFICILE IN LONG-TERM CARE FACILITIES 

 

Routine data on CDI prevalence among the elderly residing in long-term care facilities (LTCF) is 

currently non-existent, and prevalence studies on symptomatic and/or asymptomatic carriage are sparse. 

Asymptomatic colonisation prevalence is thought to be generally high compared to other (community) 

settings. Carriage rates of 2-4 per cent[48–50] have been found among healthy elderly participants 

residing outside the hospital and long-term care facilities (LTCFs), whereas a recent systematic review 

found a weighted average of 14.8% (95% CI 7.6 – 24.0) in LTCFs[51].  The case-mix of these facilities 

(elderly, requiring frequent antibiotic use and hospitalisation, e.g.[52, 53]), have been suggested as 

contributing factors. Point-prevalence surveys of healthcare-associated infections (HCAI) and antibiotic 

use in European LTCFs commissioned by ECDC have provided some insights in CDI prevalence. The 

latest survey in 2013 revealed low CDI incidence in LTCFs across Europe. Overall, 3.4% (range: 0.4 – 

9.5) of the residents were found positive for a health-care associated infection[54]. Five per cent of these 

were gastrointestinal, and C. difficile caused 17.7% (range: 0 - 100) of these infections. However, it was 

acknowledged that over half of the countries involved provided data from LTCFs that were non-

representative for the nation.  

Admissions from LTCF have been associated with increased risk of hospital-onset CDI[32] and 

residing in an LTCF has been identified as an independent risk-factor for developing CDI[55]. The 

frequent interaction between hospital and LTCF populations, and the vulnerability of the latter patient 

group, highlight the need for accurate estimates of the health burden of CDI in these settings. 
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 C. DIFFICILE IN THE COMMUNITY 

 

In the United Kingdom (UK), between 1994 and 2004, at a time CDI incidence increased, a 

population-based study using the General Practice Research database[56] revealed that the number of 

patients with CDI reported in the community, with no hospitalisation in the previous year increased as 

well[57]. Similar patterns were observed in the US [58, 59] and elsewhere [60]. These community-

associated CDI (CA-CDI) cases, commonly defined as patients with onset of symptoms in the 

community and no hospitalisation in the preceding 12 weeks [61, 62] (Figure 3), have been correlated 

with younger age [63, 64] and less severe co-morbidity [63, 65]. The association with antibiotic use in 

these cases is less clear, i.e. numbers of cases associated with previous antibiotic usage have been found to 

be lower among CA-CDI cases e.g. [63]. Nonetheless, a recent meta-analysis involving nine studies 

concluded antibiotic exposure remained a major risk factor for CDI in the community [66].  

Figure 3: Time line for surveillance definitions of CDI  

 

Source: [61, 62] 

Heightened awareness of CDI (reflected in the introduction of voluntary and mandatory national 

surveillance systems globally [35, 67]), might have been partly responsible for the observed increases in 

CA-CDI incidence. Also, non-standardisation in definitions used for CA-CDI [64, 68], hampers 

comparison of reported incidence of CA-CDI over time and across countries and settings. The English 

mandatory surveillance definition for non-Trust apportioned CDI (i.e. onset of CDI within three days 

after admission) is problematic in that it ignores onset related to recent hospitalisation, as well as enabling 

potential misclassification due to reporting delays. Since its introduction in 2007, the reported fraction of 

non-Trust apportioned CDI has increased consistently over time (see Figure 1). This could suggest a 
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continuing increase in community-acquisitions, but is perhaps more likely to be a consequence of the 

successful prevention of healthcare-acquired CDI.   

Despite these recent developments, the majority of reported CDI continues to be healthcare-

associated in Europe and North America. In the US, which in 2009 introduced a population-based 

surveillance scheme for CDI comprising both hospital and GP reports, about one-third of the cases were 

identified as community-associated in the ensuing two years [69, 70]. Similarly, population-based studies 

in Sweden [65] and Canada[71] identified 28% and 27% respectively of all CDI cases as community-

associated. Also, in 2008, the aforementioned European-wide hospital survey reported that, although the 

percentage of the identified cases that were community-associated (i.e. onset of CDI in the community 

and no admission to a healthcare facility (hospital or nursing home) in the previous 12 weeks) varied; the 

majority (75/83) of the participating hospitals reported higher proportions of healthcare-associated 

CDI[35]. However, considering there is a lack of structural, population-based CDI studies involving the 

testing of patients with diarrhoea both in the community and the healthcare setting, showing either 

presence or absence of common risk factors [68], it remains difficult to establish the true burden of CDI 

outside healthcare facilities. 

 ECONOMIC BURDEN OF C. DIFFICILE 

 

The preceding sections have emphasised the significance of the health burden of CDI. As a 

result, CDI places a marked economic burden on healthcare systems. However, the majority of studies on 

the economic healthcare costs associated with CDI originate from the US, and have focused largely on 

the direct costs associated with hospitalised patients[72]. Estimates of incremental costs of the disease 

vary from $2,871 to $30,049 per (primary) hospital-onset CDI case [72, 73]. These estimated costs were 

mainly driven by the additional number of hospital-bed days required for infected individuals[72, 73]. 

Although general consensus is that CDIs are responsible for excess lengths of stay (LoS), e.g. [74, 75] as 

well as mortality, e.g. [76], estimates for this excess LoS have varied widely from 0 to 21 days[75, 77]. 

These studies have mostly suffered from inappropriate methods used, for example fail to account for 

time-dependent bias (i.e. the timing of onset of infection), and competing risk events (such as discharge 

and death)[77]. The former is likely to result in an overestimation of the excess number of bed-days, as 
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patients that stay in hospital longer, are at increased risk of acquiring the infection. This has been shown 

extensively for other healthcare-associated infections [78–81]. In contrast, ignoring competing risk events 

might underestimate additional stay, since patients that acquire the disease could be at increased risk of 

experiencing death [82, 83].  

Estimates of excess bed-days and mortality due to disease form the current basis for cost-

effectiveness analysis and policy-making[84]. Therefore, more robust studies, quantifying these individual 

patient outcomes are highly needed. In particular studies in European-settings are lacking, as is research 

investigating the impact of (heterogeneity in) individual patient characteristics. 

1.1.4 C. DIFFICILE TRANSMISSION DYNAMICS  

 

Transmission of C. difficile occurs via the faecal-oral route; i.e. humans can ingest the vegetative 

form of C. difficile or its spores. The vegetative form is unlikely to survive the acidity of the stomach. The 

spores however, can pass through to the intestine, where they can germinate into vegetative bacteria. The 

spores are released in the faeces and can persist in the environment for several weeks [85]. The shedding 

of C. difficile spores into the (hospital) environment by CDI patients with diarrhoea makes this group of C. 

difficile carriers a likely source of C. difficile transmission, either directly or indirectly (through contaminated 

surfaces or hands of healthcare workers). Indeed, C. difficile spores have been recovered from the skin and 

hospital rooms of symptomatic patients, as well as hands of healthcare workers treating symptomatic 

carriers [86–88], and to a lesser extent of asymptomatic carriers [52, 87, 89, 90].  

In more recent years, CDI acquisition from (inpatient) symptomatic carriers was found less 

prevalent then generally assumed [91–93]. Only 20 per cent of hospital-onset cases of CDI were found to 

share an epidemiological link or, indeed genomic link (as analysed by multi-locus-sequence typing 

(MLST)[91] and whole genome sequencing (WGS) analyses) with symptomatic CDI cases, from 2008 to 

2011 in Oxfordshire, UK [92, 93]. Interestingly, patients carrying BI/NAP1/027 were found to be linked 

more commonly to other in-hospital patients (~60 per cent), supporting the hypothesis that certain 

strains are associated with higher transmissibility than others[92]. Eyre et al (2013) discovered (also in 

Oxfordshire) high levels of genomic diversity in hospital and community isolates from symptomatic CDI 

cases [93]. This recent evidence suggests other routes of transmission, such as via asymptomatic carriers 
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or an environmental source might be of equal or some importance to acquisition; at least in endemic-

settings. Good-quality studies investigating the transmission potential of asymptomatic carriers have been 

limited. Using multi-locus variable number of tandem repeats analysis (MLVA), Curry and colleagues 

(2013) found that a similar percentage of cases was associated with symptomatic (~30 per cent) as with 

asymptomatic carriers (~29 per cent) [94] in a US university hospital. Asymptomatic carriers outnumber 

their symptomatic counterparts (with ratios of 4:1 being suggested, e.g.[13, 86]); this, in combination with 

their lower frequency of skin and environmental contamination, might suggest the former could act as a 

reservoir for acquisition, albeit with lower per capita infectivity. 

The transmission-dynamics of CDI and role of asymptomatic carriers in the transmission of C. 

difficile remains uncertain to date. The majority of these studies have been limited to one geographical area 

and further epidemiological studies using e.g. national datasets are needed to identify whether similar 

patterns are observed elsewhere.  

1.1.5 C. DIFFICILE PREVENTION AND CONTROL AND THE ROLE OF VACCINATION  

 

Infection prevention and control methods for CDI currently involve measures to reduce C. 

difficile spread (e.g. environmental cleaning, contact precautions such as isolation and improved hand 

hygiene withwith soap and water (alcohol does not kill C. difficile spores), and efforts to decrease patient 

susceptibility to CDI when exposed to C. difficile, primarily through improved antimicrobial 

stewardship[62, 95]. These measures of course have the potential to interact and so maximise reductions 

in the levels of C. difficile acquisition.  

The receptor-binding domains of C. difficile toxins A and B (TcdA and TcdB) have been the 

target for vaccine development [96]. By using such toxoid vaccines, an IgG antibody response is induced 

and hence damage to the colonic mucosa, i.e. infection, prevented at the time of C. difficile colonisation 

[97–101]. Hence, such a vaccine is not thought to protect patients from asymptomatic C. difficile 

colonisation[9, 102]. A C. difficile toxoid vaccine, with and without adjuvant, developed by Sanofi-Pasteur 

is currently undergoing phase III clinical trials. Other companies also have products in various phases of 

clinical development (Table 1 and Appendix A). 
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Table 1: C. difficile vaccination pipeline  

Vaccine  Antigen  Clinical phase  Trial number 

Sanofi Pasteur ACAM-CDIFF™ Formalin Inactivated 
toxins A and B from 
VPI 10463 

III   NCT01887912 

Valneva VLA84 (former Intercell IC84)  Recombinant fusion 
protein of toxin A and 
B binding regions 

II  NCT02316470 

Pfizer PF-06425090  Recombinant toxin A 
and B mutants, 
chemically inactivated  

II NCT02117570 

 

If vaccination does reduce the risk of developing diarrhoea and colitis, it has the potential to 

reduce healthcare costs not only by preventing primary onset, but also by reducing the spread of 

infectious spores into the environment, and subsequently to other individuals. Assessing this potential 

population-level effect will require careful population-based studies and/or mathematical models. 

1.1.6 MATHEMATICAL MODELS TO EVALUATE CDI VACCINATION POLICIES 

 

Mathematical models have proven useful in understanding the transmission of infectious 

pathogens, as well as the impact of single or combined intervention strategies [103, 104]. An important 

strength of such mechanistic models is that scenarios can be investigated, which would be considered 

unethical or unfeasible for studies using, for example, randomised-controlled trials. Also, indirect effects, 

such as herd-immunity (i.e. the reduction in the number of infectious individuals in the population leading 

to other patients being at decreased risk of acquiring an infection) can be captured using dynamic models, 

where the risk of infection changes over time, and is dictated by the number of infectious individuals in a 

population [105]. Mathematical modelling has therefore become a well-established tool for integrating 

information from epidemiological studies and vaccine trials in order to estimate the population-level 

impact of vaccination [106, 107].  

Models simulating C. difficile transmission are rare when compared to pathogens of comparable 

significance, such as methicillin-resistant Staphylococcus aureus (MRSA) (see Chapter 2 and Chapter 5). Lee et 

al (2010) remain the only group to estimate the cost-effectiveness of a hypothetical CDI vaccine. The 

authors used a static decision analytic approach, i.e. assumed a fixed (independent from the number of 

https://clinicaltrials.gov/ct2/show/NCT01887912?term=clostridium+difficile&rank=26
https://clinicaltrials.gov/ct2/show/NCT02316470?term=clostridium+difficile&rank=45
https://clinicaltrials.gov/ct2/show/NCT02117570?term=clostridium+difficile&rank=9
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infected individuals) risk of infection. They therefore did not incorporate the potential indirect effects of 

vaccination. The study compared outcomes of vaccinating patients at risk of primary CDI to a strategy 

involving the vaccination of patients at risk of recurrence. No details were provided on specific settings 

and on what target groups would involve these at risk populations[108]. Outcomes were found to be 

highly sensitive to the risk of acquiring CDI, emphasising that the added value of the vaccine may highly 

vary from setting-to-setting. Moreover, when a CDI vaccine reaches the market, modelling can provide 

useful insights into the appropriate target populations for vaccination.  

 

1.2  THESIS OUTLINE 
 

1.2.1 RATIONALE 

 

To summarise the above, CDI is a major cause of gastro-intestinal infections globally. CDI 

incidence in England has seen major reductions, but recent increases have been observed and there is still 

a significant disease burden. The patient populations in England and most of Europe are increasingly 

aged with greater risks of CDI.  This together with modern and complex healthcare delivery provides 

additional challenges to sustaining any CDI reductions.  In addition, other healthcare systems outside 

Europe have not been as successful in implementing CDI reduction measures, most notably antibiotic 

stewardship[109]. The current burden, and spectre of increasing CDI have resulted in the progression of 

Phase III clinical trials on a vaccine targeting C. difficile TcdA and TcdB. Mathematical models have 

proven useful for providing insights into the potential of vaccination and the (cost)-effectiveness of 

different vaccine and other prevention and control strategies. Mathematical models of CDI have been 

rare, but insights from other infections, commonly associated with healthcare-settings, could aid in 

deciding the most appropriate modelling framework.  

Any such model requires proper understanding of the epidemiology of the disease. In recent 

years, changes in our thinking regarding the epidemiology of CDI have occurred. Importantly: awareness 

of the occurrence of CDI in the community has increased; and sources other than symptomatic carriers 

are suggested to contribute to hospital-onset of CDI.  
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Despite these developments, the onset of CDI continues to be primarily hospital-acquired, where 

it has been responsible for major attributable costs. Therefore, if the vaccine is found to be efficacious on 

an individual level in the clinical trials, it is likely to have a marked impact when preventing cases in 

hospital-settings. Estimates of these costs have been primarily driven by excess bed-days, of which robust 

numbers from European-settings are lacking. Moreover, among the few studies that use appropriate 

methodology, estimates vary widely. Hence there remains considerable uncertainty in the literature on the 

impact of CDI on length of stay. 

Any examination of the overall impact of vaccination needs to account for (uncertainty in) the 

potential role of asymptomatic carriers to transmission as well as the potential influence of the 

community population, including LTCF where asymptomatic carriage is commonly found. Mathematical 

models aiming to simulate transmission and evaluate CDI vaccine effectiveness should therefore 

incorporate movements between hospital and community-populations, and, if evaluating cost-

effectiveness, should pay particular attention to the quantification of (the dominant cost-driver) excess 

hospital stay. 

 

1.2.2 AIMS AND OBJECTIVES OF THE THESIS 

 

The primary aim of this PhD thesis is to determine - through detailed analysis of the transmission 

dynamics and burden of C. difficile - the potential role of vaccination in the prevention of nosocomial 

spread of CDI. In order to reach the overall aim of the thesis, the following study objectives were 

defined: 

1) To develop a comprehensive overview of existing mathematical models of HCAI transmission-

dynamics and prevention and control. Hence, define what modelling methods are most 

appropriate for the investigation and evaluation of the spread of C. difficile and the potential 

effectiveness of C. difficile vaccination. 
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2) To improve our understanding of C. difficile epidemiology by investigating the level of patient-to-

patient transmission between symptomatic carriers in the hospital setting on a national level. 

 

3) To provide the first robust estimate of the burden of C. difficile expressed in excess length of 

hospital stay and hospital mortality in England. 

 

4) To use the evidence generated from objective one, two and three to develop a mathematical 

dynamic transmission model to investigate the spread of nosocomial C. difficile, and evaluate the 

effectiveness of infection prevention and control strategies involving vaccination in an English 

hospital setting. 

1.2.3 STRUCTURE OF THE THESIS 

 

This section describes in brief terms the outline of the thesis. The primary content of each 

chapter is described, and Figure 4 provides a schematic overview of the entire PhD thesis content.  

Figure 4: Schematic overview of the PhD thesis 
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Chapter 2: Presents the results of a systematic review, which was conducted to meet objective one. 

The status quo of the field of dynamic-transmission modelling of healthcare-acquired infections is 

discussed, i.e. the pathogens modelled, the research themes investigated, the methods employed and how 

these methods have developed over time.  

Chapter 3: Describes the role of symptomatic carriers in the transmission-dynamics of C. difficile in 

the hospital-setting, in order to gain better understanding of the hospital epidemiology of C. difficile, and 

therefore addresses objective two. By means of generalised-additive mixed-effects modelling techniques 

the study makes novel use of routinely collected weekly incidence English C. difficile mandatory 

surveillance data.  

Chapter 4: Demonstrates the impact of healthcare-acquired CDI (HA-CDI) on a patient’s expected length 

of stay in hospital and risk of in-hospital mortality, to improve our understanding of the health and 

economic burden that C. difficile creates in England, therefore addressing objective three. Multi-state 

modelling (MSM) and Cox-proportional hazard models are employed to account for time-dependent bias 

and competing risks and used to realise objective three. 

 

Chapter 5: Provides a detailed account of the development and parameterisation of the individual-based C. 

difficile model. Evidence was synthesised from multiple sources, and numerous analyses undertaken for 

model parameterisation. The developed model was then used to assess the effectiveness of vaccination in 

preventing the transmission of C. difficile in high-risk settings. Hence this meets objective four, as well as 

the overall objective of this thesis. 

 

Chapter 6: Discusses the implications of the findings of all studies in the context of existing evidence. 

Moreover, areas for future research are discussed. 

1.2.4 CONTRIBUTION OF THE CANDIDATE TO THE THESIS 

 

The work conducted on this thesis was linked to a major research grant funded by the Healthcare 

Infection Society (U.K. Registered Charity No. 286064). Three papers have been published based on the 

work undertaken in this thesis, which are presented in Chapters 2, 3 and 4. The research for these papers 
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was conducted during the time of PhD registration. The candidate was the lead and corresponding author 

for all papers, carried out the literature review and/or analysis and prepared all drafts of the paper. The 

co-authors’ contributions to the manuscripts were restricted to providing comments on the drafts 

prepared by the candidate. More detailed account of the contribution of the candidate and of the co-

authors to the work presented in this thesis is outlined at the start of each thesis chapter.  
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CHAPTER 2 
 

MODELLING THE TRANSMISSION OF HEALTHCARE 

ASSOCIATED INFECTIONS: A SYSTEMATIC REVIEW 
 

 

2.1 PREAMBLE TO RESEARCH PAPER 1 
 

Chapter 1 explained how mathematical models could be useful tools for quantifying the impact 

of new or existing intervention strategies. Also highlighted was the limited number of models that 

investigated C. difficile transmission dynamics at the time of initiation of this PhD thesis (three in total). As 

CDI is most commonly associated with healthcare-settings, it was thought that useful insights could be 

gained from modelling studies involving other healthcare-associated infections (HCAI). The last review 

on this subject was published in 2006 [10] and primarily aimed to provide a narrative on how models can 

improve our understanding of HCAI dynamics and hence aid in hospital infection control, rather than a 

systematic overview of what models have been published in the field.  

Research paper one, by systematically reviewing the literature, firstly, gives an overview of how 

mathematical models have informed the field of HCAI. Secondly, it presents what methods have been 

employed and how they have evolved over time, hence providing an overview of the technical 

developments in this field. Therefore overall, research paper one gives an understanding of the quality of 

HCAI transmission models, as well as directions for further modelling work to address existing and 

emerging HCAI related issues all relevant to the ultimate aims of this thesis. 
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Abstract 

 

Background: Dynamic transmission models are increasingly being used to improve our understanding of 

the epidemiology of healthcare-associated infections (HCAI). However, there has been no recent 

comprehensive review of this emerging field. This study aimed to summarise how mathematical models 

have informed the field of HCAI and how methods have developed over time. 

Methods: MEDLINE, EMBASE, Scopus, CINAHL plus and Global Health databases were systematically 

searched for dynamic mathematical models of HCAI transmission and/or the dynamics of antimicrobial 

resistance in healthcare settings. 

Findings: In total, 96 papers met the eligibility criteria. The main research themes considered were 

evaluation of infection control effectiveness (64%), variability in transmission routes (7%), the impact of 

movement patterns between healthcare institutes (5%), the development of antimicrobial resistance (3%), 

and strain competitiveness or co-colonisation with different strains (3%). Methicillin-resistant 

Staphylococcus aureus was the most commonly modelled HCAI (34%), followed by vancomycin resistant 

enterococci (16%). Other common HCAIs, e.g. Clostridum difficile, were rarely investigated (3%). Very few 

models have been published on HCAI from low or middle-income countries. The first HCAI model has 

looked at antimicrobial resistance in hospital settings using compartmental deterministic approaches. 

Stochastic models (which include the role of chance in the transmission process) are becoming 

increasingly common. Model calibration (inference of unknown parameters by fitting models to data) and 

sensitivity analysis are comparatively uncommon, occurring in 35% and 36% of studies respectively, but 

their application is increasing.  Only 5% of models compared their predictions to external data.  

Conclusions: Transmission models have been used to understand complex systems and to predict the 

impact of control policies. Methods have generally improved, with an increased use of stochastic models, 

and more advanced methods for formal model fitting and sensitivity analyses. Insights gained from these 

models could be broadened to a wider range of pathogens and settings. Improvements in the availability 

of data and statistical methods could enhance the predictive ability of models. 

Keywords: mathematical modelling, healthcare-associated infections, epidemiology 
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Introduction 

Health care-associated infections (HCAI) continue to cause a major burden on society, affecting 

more than 4 million patients annually in Europe alone, and causing an estimated 16 million additional 

bed-days responsible for €7 billion in direct medical costs [1]. In the United Kingdom, interventions such 

as improved hand hygiene, antibiotic stewardship and screening combined with decolonisation are 

believed to have set off a steep reduction in reported incidence of health care-associated methicillin-

resistant Staphylococcus aureus (MRSA) bacteraemia and Clostridium difficile infection with peak incidence in 

2003/04 and 2007/08 respectively [2]. Further progress in reducing the burden of HCAI is hindered by 

uncertainty surrounding the role of asymptomatic carriers [3, 4], environmental transmission [5–7] and 

the recent emergence of bacteria other than MRSA and C. difficile, such as enterobacteriaceae (e.g. 

Escherichia coli) [8]. Mathematical models are increasingly being used to obtain a deeper understanding of 

epidemiological patterns in hospital infections and to guide hospital infection control policy decisions, as 

is seen in other areas of infectious disease epidemiology [9].  

A previous review of the area provided insight into the type of models used for hospital 

epidemiology and highlighted their capacity to increase epidemiological understanding, and inform 

infection control policy [10]. This review, conducted in 2006, primarily aimed to explain the capacities of 

models and therefore was limited to a detailed description of a number of studies. Hence, the emerging 

trends in the area were not fully explored. Since 2006 the field has expanded considerably. We conducted 

a systematic review in order to establish how mathematical models have been applied in the field of 

HCAI, and how model methods have developed over time.  

 

Methods 

We searched Medline (1950 to present), EMBASE (1947 to present), Scopus (1823 to present), 

CINAHL (1937 to present) and Global health (1910 to present). Results were limited to peer-reviewed 

publications in English. Search terms and Medical Subject Headings (MeSH) for nosocomial organisms 

and antibiotic resistance were combined with search and MeSH terms for healthcare settings and 

mathematical models as follows: 
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 Nosocomial infections in general (e.g.”healthcare-associated infection$” or “hospital-acquired infection$”) 

OR 

 Nosocomial organisms (e.g. “C. difficile” or “Staphylococcus aureus”) OR Antimicrobial resistance 

AND Nosocomial (e.g. “hospital$” or “healthcare”) 

AND 

 Mathematical modelling or economic evaluation model (e.g. “stochastic” or “deterministic” AND 

“model”)  

We decided not to use search terms for nosocomial infection types (e.g. surgical site infections or 

urinary tract infections), since our review focuses on the transmission of infections from one individual to 

another, which cannot generally be accurately represented without knowing the causative organism.  

The complete search strategy is provided in the supporting material. All databases were searched 

identically, with exception of the MeSH terms, which were altered to the subject-heading dictionary used 

in each particular database. The final search was conducted on 11 December 2011.  Each title and 

abstract in the search result was independently screened by EvK and at least one of the other authors. 

Full text evaluation was conducted by EvK and in case of uncertainty, discussion took place with JR. 

Inclusion criteria 

Eligible studies had to fulfil the following criteria: 1) mathematical modelling of HCAI 

transmission and/or the dynamics of antimicrobial resistance; 2) dynamic transmission models only (i.e. a 

model which tracks the number of individuals (or proportion of a population) carrying or infected with a 

pathogen over time, while capturing the effect of contact between individuals on transmission [9]); 3) a 

primary focus on HCAI transmission in healthcare settings.  

Exclusion criteria 

Studies were excluded if they did not involve: 1) human to human transmission; or did involve 2) 

within host transmission only; 3) pharmacodynamics and pharmacokinetics of drugs (e.g. the impact of 

antibiotic exposure, exploring antibiotic tolerance and investigating fitness), 4) animal transmission of 

HCAI; 5) community transmission of pathogens spread in the healthcare environment as well, where 
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community spread was the focus of the paper (e.g. Severe Acute Respiratory Syndrome (SARS) 

epidemics); or 6) literature review without new primary studies.  Moreover, no editorials or letters to 

editors were included, except if a new mathematical model was introduced.  

 

Results 

The database search retrieved 2461 unique papers (Figure 5). After screening the titles and 

abstracts, 302 papers met the inclusion criteria and were thus eligible for full text evaluation. Review of 

the full text publications resulted in the inclusion of 94 relevant papers based on our selection criteria. An 

additional two papers were identified via reference screening [11, 12]. 

Figure 5 PRISMA flowchart 

 

  

 

 5171 records identified through 
database searching (357 from CINAHL 

plus, 1285 from EMBASE, 556 from 
Global Health, 1061 from Medline, 
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 2461 records after duplicates removed 
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title-abstract selection based 

on eligibility criteria  

302 full-text articles assessed 
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96 of studies included in 
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208 full-text articles 
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The distribution of these 96 papers over time demonstrates that HCAI transmission models have been 

increasingly employed since the introduction of the first model of nosocomial pathogens’ spread [13] 

(Figure 6). 

Figure 6: Number of HCAI modelling publications over time (1993 – 2011) 

  

Number of studies identified on modelling of HCAI and antimicrobial resistance spread in a nosocomial setting 
according to year of publication. 

 

Objectives of mathematical models of HCAIs 

 

Pathogens modelled 

Although HCAIs are often associated with antibiotic-resistant bacteria, HCAI models have 

involved antimicrobial susceptible pathogens as well. In this review, studies that did not specify a 

particular pathogen of concern, but that claimed to investigate antimicrobial resistant bacteria, were 

classified as antimicrobial resistant bacteria (ARB). Otherwise, the study was categorised as ‘HCAI in 

general’. Moreover, as the majority of patients can carry HCAI such as MRSA and C. difficile 

asymptomatically, many mathematical models simulate the epidemiology of colonisation, however for 

brevity we have referred to all models as concerning the epidemiology of HCAI in the text. 

Figure 7 shows that MRSA was the most common bacterial species studied (34%; 33 studies) 

[14–46], followed by Vancomycin-resistant Enterococcus (VRE) (or glycopeptide-resistant enterococci)  

(16%; 15 studies) [12, 18, 28, 31, 47–57] whereas C. difficile has rarely been the subject of a model (3%; 3 
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studies) [58–60].  As several studies investigated the dynamics of more than one pathogen, the total 

number of infection agents (N=102) listed in Figure 7 exceeds the total number of studies (N=96). 

Figure 7: Pathogens modelled in a nosocomial setting (1993 – 2011) 

 

Number of studies identified on nosocomial infection transmission according to pathogen type. MRSA= Methicillin 

resistant Staphylococcus aureus; ARB = Antimicrobial resistant bacteria; VRE = Vancomycin-resistant Enterococcus; 

HCAI = Healthcare associated infections; ILI = Influenza-like illness; SARS = Severe acute respiratory syndrome; 

TB= Tuberculosis; R-GNR= Third generation cephalosporin-resistant Gram-negative rods; HIV = Human 

immunodeficiency virus; ESBL = Extended-Spectrum Beta-Lactamases; CRE = cephalosporin-resistant 

Enterobacteriaceae 

 
Intervention effectiveness 
 

The first model of HCAI conceptualised the spread of antibiotic resistance in bacterial 

populations among hospital patients [13]. This was soon followed by models evaluating the effectiveness 

of interventions to reduce antibiotic resistance (e.g. antibiotic cycling or mixing). Since then, most HCAI 

models have aimed to quantify infection control effectiveness (64%; 62 studies). The infection control 

measures most frequently considered among these 62 papers have been: hand hygiene (37%; 23 studies), 
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patient isolation (24%; 15 studies), HCW cohorting (23%; 14 studies), antibiotic stewardship (21%; 13 

studies), and screening (18%, 11 studies). Figure 8 provides an overview of the main interventions 

modelled over time, emphasising that decolonisation and vaccination are more recent subjects of study. 

Moreover, a wider variability of interventions has been evaluated in the later years. Table 2 illustrates the 

type of interventions that have been evaluated for each HCAI pathogen. 

Figure 8:Main interventions evaluated over time (1993 – 2011) 

 

Illustration of the proportionate distribution of the seven most commonly investigated interventions by means of a 
modelling framework by the total number of publications in each time period. 

 

Table 2: Healthcare infection control interventions evaluated by a modelling framework (1997 – 2011) 

Pathogen  Interventions studied  First 
published  

 References  

MRSA  Hand hygiene  1997  [15–17, 28, 29, 33, 34, 37, 40, 44–46] 
  Antibiotic stewardship  1997  [16, 21] 

  Isolation  1997  [14, 16, 26, 32, 35, 41, 42, 45] 
  HCW cohorting  2002  [17, 29, 40, 44, 45] 
  Screening  2005  [14, 23, 25, 32, 34, 39, 44, 45] 
  Decolonisation  2009  [14, 25, 26, 33, 34, 40, 45, 46] 
  Patient cohorting  2007  [40] 
  Gown and glove use  2009  [32] 
  Other  2006  [43] 
VRE  Hand hygiene  1998  [12, 21, 28, 47, 49, 51, 54, 55] 
  Antibiotic stewardship  1999  [47, 51, 55] 
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  Isolation  2004  [12, 52] 

  HCW cohorting  1998  [12, 49, 51, 54, 55] 
  Screening  2004  [47, 52] 
  Decolonisation  2007  [50] 
  Patient cohorting  2008  [47] 
  Environmental cleaning  2008  [47] 
C. difficile  Other  2009  [59] 
ARB  Hand hygiene  1997  [92] 
  Antibiotic stewardship  1997  [65, 75, 79, 96, 98, 99, 101, 102] 
  Barrier precautions (i.e. not 

specified) 
 2000  [98] 

HCAI in general  Hand hygiene  1999  [86, 123] 
  Isolation  2005  [87, 88] 
  HCW cohorting  2006  [88, 123] 
  Screening  1999  [86] 
  Vaccination  2008  [88] 
  Barrier precautions (i.e. not 

specified) 
 2007  [76] 

  Patient cohorting  2005  [87, 124] 
  Environmental cleaning  2007  [124] 
  Antibiotic prophylaxis   2007  [76] 
  Antibiotic stewardship  2008  [103] 
  HCW cohorting  2005  [87] 
HIV  Sterilization of medical 

appliances 
 1999  [97] 

Influenza or ILI  Vaccination  2008  [80, 81, 95] 
  Prophylaxis  2009  [91] 
  Other  2008  [89, 125] 
Pertussis  Vaccination  2009  [70, 83] 
Rotavirus  Hand hygiene  2011  [78] 
  HCW cohorting  2011  [78] 
  Vaccination  2011  [78] 
SARS  Isolation  2007  [105] 
  Barrier precautions (i.e. not 

specified) 
 2005  [73] 

TB  Isolation  2007  [72] 
  HIV treatment  2007  [72] 
  Air ventilation  2007  [72] 
  Facial mask  2007  [72] 

 

Furthering epidemiological understanding 

Models are often used to increase epidemiological understanding. Hospital surveillance data, 

which is frequently used to inform HCAI models, can lack detail in what is needed for modelling 

purposes. For example, information on asymptomatic carriage and timing of events (e.g. infection) are 

often lacking. Several studies use new statistical methods to overcome such difficulties [31, 36, 48] and to 

allow for estimation of important epidemiological parameters (e.g. transmission rates) from different data 

sources, varying from routinely collected hospital data [56, 57] to strain typing [61] or genotype data [62]. 

Others use modelling techniques to determine the relative importance of potential transmission reservoirs 
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or acquisition routes  (of C. difficile [58, 60], VRE [50, 53], cephalosporin-resistant Enterobacteriaceae 

(CRE) [63] and SARS [64]. 

The ecological dynamics of pathogens have also been explored using models, including 

antimicrobial resistance [13, 65, 66]; co-colonisation with different pathogen strain types [27, 46] and 

competition between strains [24].  Another more recent subject of study is the potential impact of 

readmission of patients from settings such as long-term care facilities (LTCFs) or the community, as well 

as general movement patterns between healthcare institutes and/or the community on the transmission 

of MRSA [19, 25, 38, 67], antimicrobial resistance [68] and HCAI in general [69]. 

Economic outcomes were not considered in dynamic transmission models until 2011 [14, 23, 70]. 

Three recent papers applied dynamic modelling techniques to estimate the economic burden of disease 

(MRSA) [22] and norovirus [67], and to investigate economic incentives for infection control investments 

[71]. 

Country of study 

A number of studies (36%, 32 studies) did not specify a particular national setting. Of the 

publications that did; only three studies (3%) explored transmission of HCAI in lower and lower middle 

income countries [22, 72, 73] and another three looked at upper middle income China [15, 64, 74]. Studies 

have mainly concentrated on the United States (16%; 15 studies), the United Kingdom (13%; 12 studies) 

and the Netherlands (10%; 10 studies). 

Methods employed for mathematical modelling of HCAIs 

Stochastic vs. deterministic 

The first HCAI models captured transmission dynamics in single wards using deterministic 

approaches [13, 16]. As the population size in a single ward or hospital is likely to be small, a stochastic 

modelling approach may often be more appropriate as it can take account of the role of chance in 

determining transmission patterns. In Table 3, a definition of the modelling terms used for model 

classification is provided. Figure 9A shows that the proportion of stochastic models has increased steadily 

over time, and as Figure 10 illustrates, stochasticity was soon introduced (in 1997) [88] after publication of 

the first (deterministic) HCAI model. Several studies developed both a stochastic and a deterministic 
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version of a similar compartmental model to investigate whether projected intervention effects were 

partly a result of random fluctuation [18, 35, 40, 75–77]. Others use a deterministic model to interpret the 

findings of a stochastic model [78].  

Table 3: Definitions of modelling terms 

Term  Definition 

Deterministic 

model 

 A model in which there is no role of chance in the evolution of the states of the system, 

i.e. the model is ‘predetermined’ by the parameters and initial conditions [121]. 

Stochastic model  A model in which random (stochastic) processes can affect whether certain events or 

processes occur (e.g. the rate at which individuals are infected can vary by chance) 

[121].  

Compartmental 

model 

 A model in which the population is divided into subgroups (i.e. compartments), which 

represent the average values of individuals in a particular state (e.g. susceptible, 

infectious or recovered). Within each compartment, all individuals are homogenous [9].  

Individual-based 

model 

 A model in which single individuals are tracked rather than subgroups. Hence, each 

individual can be assigned different characteristics such as the probability of acquiring 

infection or causing transmission [9]. 

Model fitting/ 

model calibration 

 The inference of unknown parameters by choosing their values in order to approximate 

a set of data as well as possible. Examples of model fitting methods are least squares 

approximation maximum likelihood estimation and Markov Chain Monte Carlo 

Methods [122]. 

Model validation  Comparison of model predictions to external data, that is a model should be validated 

against observations from alternative data to the data used for model fitting [122].  

Univariate 

sensitivity analysis 

 Investigation of uncertainty in model parameters and its impact on model predictions 

by means of altering one parameter at a time whilst holding others at their base-case 

value.  

Bi/ multivariate 

sensitivity analysis 

 Investigation of uncertainty in model parameters by means of alteration of two (or 

more) parameters at a time whilst holding others at their base-case value. 

Probabilistic 

sensitivity analysis 

 A type of multivariate sensitivity analysis where multiple runs of the model are 

performed with random selection of input parameters.  

Dynamic 

transmission 

model 

 A model which tracks the number of individuals (or proportion of a population) 

carrying or infected with a pathogen over time, where the risk of transmission to 

susceptible at a given point in time is dependent on the number of infected (or 

colonised) individuals in the community [9].   

Static model  A model where the transmission risk is treated as a parameter exogenous to the model, 

i.e. it does not change with the number of infectious individuals in the population [9]. 

Force of infection  The rate at which infected individuals become infected per unit time [121] 
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Compartmental vs. individual-based 

Infectious disease models can have either an aggregate (or compartmental) structure (which 

tracks groups in the population) or an individual-based structure (which tracks individuals). The latter 

enables better incorporation of heterogeneity in patient characteristics such as patient demographics, 

contact patterns and disease history, but at the cost of increased computational burden. To date, most 

(73%; 70 studies) HCAI models have taken an aggregate approach, although the proportion of individual-

based models has increased over time (Figure 9A). In total, 26 publications (27%) took an individual-

based approach of which seven papers (8%) used both compartmental and individual-based modelling 

[25, 34, 60, 70, 79–81]. 

Figure 9: Development of HCAI model structure, and methods used over time 

A 

 

Model approach Proportion of models using a deterministic vs. stochastic and a compartmental vs individual-

based modelling approach by the total number of publications in each time period. Note that the categories are not 

exclusive, i.e. whereas all individual-based models identified are stochastic, compartmental models may be 

deterministic or stochastic. Moreover, a proportion of studies use a combination of the above listed modelling 

approaches (e.g. a deterministic compartmental model complemented by a stochastic individual-based model). 
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B 

 

Model methods Proportion of models that are fitted to data, have included uncertainty and are validated by 
consultation of two different datasets by total number of publications in each time period.  
 
C 

  

Methods used for characterising parameter uncertainty Proportion of models that have employed uni-variate, 
vs bi-variate vs probabilistic sensitivity analysis by total number of publications that incorporated parameter 
uncertainty in each time period. 
 

 

Model fitting to data 

Model parameter values can be based on existing studies, on assumptions, or estimated directly 

from data [82]. Unknown parameters, such as infection transmission rates, can be inferred by calibrating a 

model to empirical data. With the increasing availability of computational power, numerically-intensive 

statistical methods for parameter inference have become more accessible. As Figure 9B shows, although 
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only 35% (34 studies) of HCAIs models have incorporated some sort of calibration process to empirical 

data, this proportion has increased over time. Metrics used to quantify goodness of fit include the least 

square criterion  (minimisation of sums of squares between the observed data and the model predictions) 

[21, 56, 57, 72], maximum likelihood estimation (identification of the parameter value(s) that makes the 

observed data most likely) [18, 22, 24, 35, 53, 61, 63, 64] and since 2007, Bayesian methods; frequently 

using Markov Chain Monte Carlo (MCMC) approaches [19, 32, 40, 41, 50, 58, 62, 74] or a combination of 

MCMC and maximum likelihood estimation [36, 59]. A further seven studies reported fitting their models 

by comparing model predictions to observed epidemiological data but did not apply any formal 

quantitative approach [17, 29, 43, 60, 78, 83, 84]. 

 

Uncertainty in model predictions 

Infectious disease models are developed and informed using a combination of available evidence, 

for example on infection transmission, disease natural history and intervention effectiveness. As 

availability of such information is unlikely to be complete, mathematical models inherently include some 

degree of uncertainty. This uncertainty may relate to model parameter values, model structure (e.g. in 

terms of disease states incorporated and the relationship between them) or methodology used [9, 85].  

Parameter uncertainty was investigated by 36% of the studies (35 publications). As Figure 9B 

illustrates, similar trends as seen for the application of formal model calibration apply for the inclusion of 

parameter uncertainty. Also the methods used for parameter uncertainty have become more complex 

over time (Figure 9C). Of the 35 studies that have investigated parameter uncertainty, univariate 

sensitivity analysis (i.e. alteration of one parameter at a time whilst holding others at their base-case value) 

was conducted by 43% (15 studies) [18, 28, 29, 43, 44, 46, 60, 61, 67, 78, 79, 86–89]. The more 

computationally expensive probabilistic sensitivity analysis (formulation of uncertainty in the model 

inputs by a joint probability distribution, and propagating this uncertainty to the outputs [90]) is in general 

considered a rigorous method to account for uncertainty in the joint distribution of the parameters. This 

was employed by 51% (18 studies) [14, 32, 36, 40–42, 48, 50, 57–59, 62, 72, 74, 75, 80, 81, 91] among 

which Latin Hypercube Sampling (LHS) as a means of performing probabilistic sensitivity analysis was 
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conducted by four studies [72, 80, 81, 91]. Probabilistic sensitivity analysis utilizing LHS provides a 

rigorous method of incorporating and representing real uncertainty surrounding parameter estimates into 

model-based analysis where joint probability distributions for parameters are available. 

Model validation 

Model validation is rare in HCAI modelling. Ideally, a model should be validated by means of 

comparing the model predictions with observations from an alternative dataset than the one used for 

model fitting, although this is often difficult in practice. Four studies (5%) reported some kind of model 

validation based on at least two different data sets [50, 53, 72, 83]. However, only one study used a 

statistical approach [83], whereas the others included subjective comparison of the model predictions (on 

infection transmission) with genotype data [50, 53, 72] . 

Setting and interaction between settings 

Mathematical models of HCAIs have primarily been set in a single ward (49%, 47 studies), with 

the intensive care unit (ICU) being the most frequent setting modelled (26%, 25 studies) [14, 16, 22, 28, 

29, 31, 32, 36, 40–42, 45, 49, 52, 53, 55, 61, 63, 70, 76, 83, 87, 92–94] or a simplified hospital setting, 

lacking any further ward structure (31%, 30 studies) [12, 13, 24, 27, 33, 34, 38, 39, 45, 46, 51, 58, 60, 62, 

64, 66, 67, 73, 75, 79, 88, 95–103]. More recent studies however, have incorporated the interaction 

between general wards and the ICU [23, 43, 67]  or between different wards [11]. Although these ward or 

hospital-based models do not usually treat the hospital as a closed system (i.e. hospital admission and 

discharge rates from and to a 'general community' are frequently included), transfer patterns between 

healthcare institutes are rarely considered [19, 25, 68, 69, 71, 104], as are transmission dynamics within 

settings outside the healthcare facilities. The interaction between community and hospital transmission 

has been included for MRSA [30, 35], antimicrobial resistant bacteria as a whole [65], Severe Acute 

Respiratory Syndrome [74, 105] and tuberculosis [72]. Hence any possible long-term feedback between 

the hospital and other settings is not taken into account. Only two models concerned nosocomial 

transmission in a LTCF setting alone, i.e. of influenza [91] and norovirus [84] respectively. 
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Figure 10: Milestones of HCAI modelling 

 

Timeline listing new applications of mathematical models for HCAI and antimicrobial resistance over time as well as 

improvements of these models according to year of publication. 
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Discussion 
 

Models of MRSA transmission dominate the literature, followed by VRE, although to a 

considerably lesser extent. Both have been the subject of national surveillance and infection control 

policies in a variety of developed countries [106–108]. This may account for the relative abundance of 

modelling studies. Despite causing a high burden and being the subject of national control policies [109, 

110], C. difficile transmission has seldom been modelled. Similarly, bloodstream infections due to third-

generation cephalosporin-resistant E. coli, which have been estimated to cause  ~2,700 excess deaths and 

120,000 extra bed days in Europe in 2007 have been considered by only one study [63]. For comparison, 

MRSA was estimated to cause ~5,500 deaths and 256,000 additional bed days in Europe [111], yet has 

been the subject of over 30 studies. It seems then that the occurrence of models does not necessarily 

correlate to the burden of disease. This is also true in low and middle income countries, where a recently 

published systematic review [112, 113] demonstrated significantly higher prevalence of HCAIs than in 

high income countries; however, very few modelling studies have tackled the problems of HCAI in less 

developed settings.  

In terms of model methods, considerable changes can be identified over time. After the 

introduction of the first deterministic HCAI modelling study, inclusion of stochasticity has become 

common practice. The majority of the HCAI models evaluate infection control policies, for which sound 

model parameterisation and sensitivity analyses are required for reliable predictions. The use of more 

sophisticated methods for model parameterisation (e.g. MCMC) and uncertainty analysis has become 

increasingly common.  

HCAI models have also increased in complexity regarding the settings modelled. Although the 

majority of the models have considered a single ward (often ICUs), the apparent emergence of 

transmission of typical HCAIs in the community, in particular of MRSA [114], have resulted in models 

which consider the transmission of HCAI from a more holistic approach. As the long-term feedback loop 

related to hospital discharge and readmission of colonised patients and spread of HCAI pathogens in the 

community or settings as LTCFs can effect HCAI transmission dynamics [19, 68, 115], such approach 

can aid in providing a realistic estimate of existing and new infection control strategies’ effectiveness. 
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This review has some limitations. First of all we have exclusively considered peer-reviewed 

publications in English. This might have resulted in a slight inaccuracy in our results, e.g with regards to 

the modelling of particular pathogens in alternative national settings. We were exclusively interested in 

models exploring the patient-to-patient transmission of HCAI and antimicrobial resistance within 

healthcare settings (either directly, or mediated by healthcare workers and/or the healthcare 

environment). This has resulted in the exclusion of a higher number of models that elucidate the 

dynamics of antimicrobial resistance in its own right, which are summarised elsewhere [116, 117]. 

Moreover, this review intended to provide overall trends in the field of HCAI modelling, rather than a 

detailed account of the quality of individual models and of what these models have shown, which could 

be a valid future area of investigation.   

Compartmental models (which group individuals in classes) have predominated the field of 

HCAI modelling. The emergence of individual-based modelling allows for more realistic modelling of 

healthcare worker-patient contact (e.g. super spreading events) or incorporation of heterogeneity in 

transmission risk profiles of patients. However, these approaches are computationally far more intensive, 

are difficult to fit to data, and the inclusion of additional factors makes more demand on the data 

available. Detailed level data such as observed healthcare worker-patient contact collected for example via 

mote-based sensor networks, as has been done recently [118], could help parameterise such more 

complex models.  

Moreover, recent technological developments in microbiology have resulted in enhanced access 

to pathogen sequence data, which could help to further improve HCAI models. Such data are beginning 

to inform disease outbreaks e.g. of avian influenza A (H7N7) [119] and Foot-and-Mouth disease [120]. 

Importantly, the increasingly routine use of sequencing of genetic material for epidemiological purposes 

can provide valuable insight, such as aiding in the understanding of the role of asymptomatic carriers in 

transmission (e.g. of C. difficile) and evolution of antimicrobial resistance.   

Conclusions 

Transmission models concerning HCAI have showed a general enhancement in complexity, but 

have been almost completely limited to high-income settings, and have strongly focused on MRSA 
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transmission in hospital settings. Further improvements in the availability of data and statistical methods 

could enhance the insight gained from these models. 
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Supplementary material 

 

Search terms MEDLINE  

The search strategy was identical for EMBASE, Scopus, Global Health and CINHAL plus 
except for the MESH terms used, which were adjusted (or absent) for each database of concern. 
 
ti,ab  = Search for specified search term in title, abstract 
mp  = Search for specified search term in title, abstract, subject heading, heading word, drug  

    trade name, original title, device manufacturer, drug manufacturer, device trade name 
and    
    keyword 

/  = MESH/EMTREE term 
$  = Truncation 
adj(N)  = The maximum number of words allowed between the specified search terms 
 
 
 
 
1. clostridium.ti,ab. 
2. CDI.ti,ab. 
3. CDAD.ti,ab. 
4. VRSA.ti,ab. 
5. VISA.ti,ab. 
6. MSSA.ti,ab. 
7. MRSA.ti,ab. 
8. staphylococc$.ti,ab. 
9. Streptococc$.ti,ab. 
10. acinetobacter.ti,ab. 
11. klebsiella.ti,ab. 
12. Enterococc$.ti,ab. 
13. Escherichia.ti,ab. 
14. E Coli.ti,ab. 
15. Enterobacter$.ti,ab. 
16. citrobacter.ti,ab. 
17. serratia.ti,ab. 
18. Burkholderia.ti,ab. 
19. Pseudomonas.ti,ab. 
20. proteus.ti,ab. 
21. Chryseobacteri$.ti,ab. 
22. Flavobacteri$.ti,ab. 
23. Alcaligenes.ti,ab. 
24. Achromobacter.ti,ab. 
25. legionell$.ti,ab. 
26. Mycobacteri$.ti,ab. 
27. rotavirus.ti,ab. 
28. norovirus.ti,ab. 
29. Respiratory Syncytial Viruses.ti,ab. 
30. Hepatitis.ti,ab. 
31. ebola.ti,ab. 
32. Varicella-zoster.ti,ab. 
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33. Cytomegalovirus.ti,ab. 
34. Adenovirus.ti,ab. 
35. Giardia lamblia.ti,ab. 
36. Candida albicans.ti,ab. 
37. Aspergillus.ti,ab. 
38. Cryptococc$.ti,ab. 
39. Cryptosporidi$.ti,ab. 
40. herpes$.ti,ab. 
41. SARS.ti,ab. 
42. Severe Acute Respiratory Syndrome.ti,ab. 
43. Influenza.ti,ab. 
44. Microbial-drug-resistan$.ti,ab. 
45. Antibiotic-resistan$.ti,ab. 
46. Antimicrobial-resistan$.ti,ab. 
47. Multidrug resistan$.ti,ab. 
48. or/1-47 
49. hospital$.ti,ab. 
50. nosocomial.ti,ab. 
51. healthcare.ti,ab. 
52. health care.ti,ab. 
53. exp hospital/ 
54. exp hospital units/ 
55. or/49-54 
56. 48 and 55 
57. exp Clostridium/ 
58. Clostridium difficile/ 
59. exp Clostridium Infections/ 
60. exp Staphylococcus aureus/ 
61. exp Staphylococcal Infections/ 
62. exp Escherichia coli/ 
63. exp Escherichia coli Infections/ 
64. exp Streptococcus/ 
65. exp Streptococcal Infections/ 
66. exp Klebsiella/ 
67. exp Klebsiella Infections/ 
68. exp Acinetobacter/ 
69. exp Acinetobacter Infections/ 
70. exp Enterobacter/ 
71. exp Citrobacter/ 
72. exp Serratia/ 
73. exp Serratia Infections/ 
74. exp Enterococcus/ 
75. exp Burkholderia/ 
76. exp Pseudomonas/ 
77. exp Burkholderia Infections/ 
78. exp Pseudomonas Infections/ 
79. exp Proteus/ 
80. exp Proteus Infections/ 
81. exp Flavobacteriaceae/ 
82. exp Alcaligenes/ 
83. exp Achromobacter/ 
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84. exp Legionella/ 
85. exp Mycobacterium/ 
86. exp Rotavirus/ 
87. Rotavirus Infections/ 
88. exp Norovirus/ 
89. exp Respiratory Syncytial Viruses/ 
90. Influenza, Human/ 
91. exp Hepatitis, Viral, Human/ 
92. exp Enterovirus B, Human/ 
93. exp Enterovirus/ 
94. Enterovirus Infections/ 
95. exp Herpesviridae/ 
96. Ebolavirus/ 
97. exp Adenoviridae/ 
98. exp Giardia/ 
99. SARS Virus/ 
100. Severe Acute Respiratory Syndrome/ 
101. Candida albicans/ 
102. exp Aspergillus/ 
103. exp Cryptococcus/ 
104. exp Sarcoptes scabiei/ 
105. exp Drug Resistance, Microbial/ 
106. or/57-105 
107. 48 or 106 
108. 55 and 107 
109. exp Cross Infection/ 
110. Infectious Disease Transmission, Professional-to-Patient/ 
111. Infectious Disease Transmission, Patient-to-Professional/ 
112. Cross infection.mp. 
113. (professional-to-patient adj2 tranmission).mp. 
114. (patient-to-professional adj2 transmission).mp. 
115. (patient-to-patient adj2 transmission).mp. 
116. (Healthcare-associated adj2 infect$).mp. 
117. (Healthcare-associated adj2 disease$).mp. 
118. (Hospital-acquired adj2 infect$).mp. 
119. (Hospital-acquired adj2 disease$).mp. 
120. (Hospital-onset adj2 infect$).mp. 
121. (Hospital-onset adj2 disease$).mp. 
122. (Nosocomial adj2 infect$).mp. 
123. (Nosocomial adj2 disease$).mp. 
124. (Hospital adj2 transmiss$).mp. 
125. (Hospital adj2 infect$).mp. 
126. HCAI.mp. 
127. HAI.mp. 
128. or/109-127 
129. Mathematic$.ti,ab. 
130. Compartment$.ti,ab. 
131. Stochastic.ti,ab. 
132. Deterministic.ti,ab. 
133. transmiss$.ti,ab. 
134. Epidemi$.ti,ab. 
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135. Individual-based.ti,ab. 
136. Population-based.ti,ab. 
137. dynamic.ti,ab. 
138. or/129-137 
139. Model$.ti,ab. 
140. Model?ing.ti,ab. 
141. Framework$.ti,ab. 
142. or/139-141 
143. 138 and 142 
144. Models, Theoretical/ 
145. mathematical computing/ 
146. Basic Reproduction Number/ 
147. Basic reproduction number.mp. 
148. Effective reproduction number.mp. 
149. Computer Simulation/ 
150. Markov chains/ 
151. Monte Carlo Method/ 
152. Bayes Theorem/ 
153. exp Stochastic Processes/ 
154. or/144-153 
155. ((Mathematic$ or Compartment$ or Stochastic or Deterministic or Transmission or 
Epidemi$ or Individual-based or population-based or Markov or Bayesian or equation or 
theoretic$ or cost-effective$ or cost-benefit or cost-consequence$ or $economic$ or discrete-
event or micro or agent-based or decision or decision-analytic or decision-tree) adj5 (Model$ or 
Model?ing or Framework$ or simulation$)).ti,ab. 
156. 108 or 128 
157. 154 or 155 
158. 156 and 157 
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CHAPTER 3 
 

NOSOCOMIAL TRANSMISSION OF C. DIFFICILE IN 

ENGLISH HOSPITALS FROM PATIENTS WITH SYMPTOMATIC 

INFECTION 
 

 

3.1 PREAMBLE TO RESEARCH PAPER 2 
 

Research paper one presented in the previous chapter, showed that dynamic transmission models 

have been used extensively to evaluate a wide range of hospital infection prevention and control 

policies[1]. In the discussion of the paper, the value of increased routine availability of genetic sequence 

data to help understand the epidemiology of HCAI was touched upon. Indeed, in more recent years, 

molecular typing data have been increasingly used in epidemiological studies to investigate the phylogeny 

and spread of pathogens[2–6]. Around the time of submission, i.e. 2012, similar data was published in a 

series of research papers relating to C. difficile. These studies found a high level of genomic diversity 

between symptomatic CDI patients, and identified only among a minority of the symptomatic patients in 

hospitals a genetic and epidemiological link to other hospitalised patients in an endemic setting [7–9].  

The overall aim of this thesis is to investigate, in a modelling framework, the effectiveness of 

vaccination in a hospital-setting representative for England. The level of cross-transmission and the 

sources of transmission of an infection are important for choosing a model structure. For example, if 

person-to-person transmission is low, the population-effect of any intervention (i.e. reducing the risk of 

infection for the (hospital) population by reducing the number of transmission sources) including 

vaccination will be minimal or non-existent, and therefore a static model would suffice[10].  

While the aforementioned whole genome sequencing work [7–9] shed some light on the 

transmission dynamics of C. difficile, the work was restricted to a limited number of hospitals and there 

remained a need to examine whether such trends were evidenced at a national level. Therefore, using the 
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English mandatory CDI surveillance data, research paper two examines the transmission dynamics of 

CDI at a national level as well as by hospital type (general, specialist and teaching hospitals). A statistical 

model is developed to investigate the presence of clustering in symptomatic CDI patients in hospitals in 

England between 2008 and 2012, indicative of CDI transmission in the hospital setting. This was the first 

time the importance of CDI in-hospital transmission was quantified at a national level. 

This statistical model demonstrates a novel use of routinely collected mandatory data, providing 

clinically relevant insights into CDI epidemiology. The approach can be easily implemented in settings 

outside England, as well as for alternative infectious agents, as has recently been done for E. coli 

bloodstream infections[11]. 
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Abstract 

Background: Recent evidence suggests that less than one-quarter of patients with symptomatic nosocomial 

Clostridium difficile infections (CDI) are linked to other in-patients. However, this evidence was limited to 

one geographic area. We aimed to investigate the level of symptomatic CDI transmission in hospitals 

located across England from 2008 to 2012.  

Methods: A generalized additive mixed-effects Poisson model was fitted to English hospital-surveillance 

data. After adjusting for seasonal fluctuations and between-hospital variation in reported CDI over time, 

possible clustering (transmission between symptomatic in-patients) of CDI cases was identified. We 

hypothesised that a temporal proximity would be reflected in the degree of correlation between in-

hospital CDI cases per week. This correlation was modelled through a latent autoregressive structure of 

order 1 (AR(1)).  

Findings: Forty-six hospitals (33 general, seven specialist, and six teaching hospitals) located in all English 

regions met our criteria. In total, 12,717 CDI cases were identified; seventy-five per cent of these 

occurred >48 hours after admission.  There were slight increases in reports during winter months. We 

found a low, but statistically significant, correlation between successive weekly CDI case incidences 

(phi=0.029, 95%CI: 0.009-0.049). This correlation was five times stronger in a subgroup analysis 

restricted to teaching hospitals (phi

Conclusions: The results suggest that symptomatic patient-to-patient transmission has been a source of 

CDI-acquisition in English hospitals in recent years, and that this might be a more important 

transmission route in teaching hospitals. Nonetheless, the weak correlation indicates that, in line with 

recent evidence, symptomatic cases might not be the primary source of nosocomial CDI in England.  

 

Keywords: Clostridium difficile, mixed-effects model, hospital-acquired infections  
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Introduction 

Clostridium difficile infection (CDI) is a source of considerable morbidity and mortality for hospitalised 

patients, and its prevention, control and treatment place a substantial burden on healthcare systems[12, 

13]. Since 2007, in addition to improved antimicrobial stewardship and mandatory surveillance, enhanced 

infection control measures to prevent C. difficile transmission have been implemented in England. These 

measures have focused on isolating symptomatic patients and improving hospital-cleaning regimens, with 

the goal of meeting government-led CDI reduction targets. Reported cases of CDI have dropped from 

55,498 in 2007/08 to 18,005 in 2011/12[14], at a time when the prevalence of the hyper-virulent C. difficile 

BI/NAP1/027 also decreased[15]. Apart from improved antimicrobial stewardship, guidelines for CDI 

prevention and control assume that symptomatic patients in hospitals account for most C. difficile 

transmission and consequent infection (CDI). However, in 2012 and 2013, research using whole genome 

sequencing of hospital and community isolates from Oxfordshire, United Kingdom, has challenged this 

assumption. Eyre et al found a high level of genomic diversity in samples from symptomatic CDI patients. 

Moreover, only a minority of hospital-onset cases of CDI were found to share an epidemiological link as 

well as genomic link with a symptomatic CDI case[7–9].  

This recent evidence was limited to a small sample of hospitals that were all located in one English 

county. To explore whether these new developments in our understanding of the epidemiology of CDI 

are more generally applicable, we investigated the presence of clustering in symptomatic CDI patients, 

indicative of patient-to-patient C. difficile transmission, in a wide range of hospitals in England between 

2008 and 2012.  

Methods 

Data  

The dataset consisted of mandatory reported details of each identified CDI case >2 years of age 

collected from all 167 National Health Service (NHS) Trusts via a web-enabled surveillance system, held 

by Public Health England (PHE)[16]. Details included the dates of admission and faecal sampling, patient 

category (e.g. inpatient, outpatient etc.) and age. Data covering the period between April 2008 and March 



 
 

78 

2012 were extracted from this surveillance scheme. To ensure consistency in the reported observations, 

we restricted our analyses to NHS acute trusts that followed the Department of Health’s CDI testing 

guidance according to a survey held in 2010[17]. In England, a two test screening algorithm has been 

advocated and hospital trusts are recommended to test patients with diarrhoea (Bristol Stool Chart types 

5-7)[18] using either a GDH Enzyme Immunoassay (GDH EIA), a nucleic acid amplification test 

(NAAT) or the Polymerase Chain Reaction (PCR), followed by a toxin sensitive EIA (or a cell cytotoxin 

neutralisation assay). If both the first test and the second test are positive, the case is eligible for reporting 

to PHE[19]. This resulted in the selection of data from 46 hospitals, belonging to 28 individual NHS 

acute Trusts, and excluded any of the Oxfordshire hospitals (see Table 4). Only CDI positive in-patients 

were included for analysis (i.e. excluding regular attendees, outpatients and patients having visited only 

accident and emergency departments). In order to evaluate healthcare facility associated infections, 

patients with onset of symptoms <48 hours after admission were excluded[20]. We aggregated the 

reported data per hospital by week, using the date of faecal sampling as the time of onset of CDI related 

symptoms.  



 
 

79 

Table 4: Description of CDI data from 46 selected hospitals 

  N  Median/ 

Mean for 4 
year period 

 IQR 

Q1-Q3  

 Median/ 

Mean p.w. 

 IQR 

Q1-Q3 

 Cases per 10,000 
bed-days 
available 
(mean/median) 

Number 
of weeks 

 209   -   -  -  -  - 

Beds 
available 
per 
hospital 

 -  422/423  243-515  -  -  - 

General  
(n=33) 

 -  444/416  346-500  -  -  - 

Teaching 
(n=6) 

 -  837/754  799-941  -  -  - 

Specialist 
(n=7) 

 -  134/169  95-243  -  -  - 

CDI 
cases 
reported 

 12,717  244/276  138-377  1/1.3  0-2  4.1/4.6 

General    8,974 
(70.6%) 

 253/272  194-352  1/1.3  0-2  4.1/4.5 

Teaching   3,348 
(26.3%) 

 551/ 558  331-690  2/2.7  1-4  5.6/6.4 

    
Specialist 

  395  
(3.1%) 

 37/56  30-77  0/0.27  0-0  1.8/3.1 

CDI 
cases 
reported 
with 
onset 
>48h 

  9,574   184/208  104-270  1/1.0  0-1  3.1/3.5 

General    6,779 
(70.8%) 

 200/205  140-247  1/1.0  0-2  3.2/3.5 

Teaching   2,504 
(26.2%) 

 370/417  252-534  1/2.0  0-3  4.1/5.3 

Specialist      291  
(3.0%) 

 31/42  28-53  0/0.2  0-0  1.2/2.2 

Summary statistics of CDI cases reported to the English mandatory surveillance system by a selection of 46 
hospitals from the period of April 2008 to March 2012. IQR = Interquartile range; p.w. = per week
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Statistical methods 
 

A generalized additive mixed-effects Poisson model, allowing for overdispersion, with a log link[21, 

22], was used for the weekly observations of CDI counts. Three effects were identified that required 

inclusion in the linear predictor of this model. Firstly, hospital was introduced as a categorical variable to 

allow for potentially strong clustering due to differences in size, case-mix, and region (see Table 4) 

Secondly, a fixed polynomial-by-hospital interaction term was included to accommodate varying rates of 

change (primarily decline) over the four-year period in observed CDI per hospital; Figure 11 shows the 

time series of symptomatic CDI per hospital. Thirdly, a cyclic effect was included using a periodic 

penalised cubic regression spline to accommodate seasonal patterns of CDI, as have been observed 

previously in settings outside England, and which have been attributed to increased levels of “at risk" 

antibiotic use (e.g. ciprofloxacin) during the winter months (January to March), and influenza (which can 

lead to secondary bacterial infections requiring antibiotic treatment)[23–25]. The intention was that these 

three terms would account for the longitudinal behaviour of weekly CDI counts. Finally, a random error 

term was added to the linear predictor with an autoregressive correlation structure of order 1 (AR(1)) that 

would accommodate local (in time) departures from this base model. The autoregressive component of 

this error would be an indicator of local statistical dependence, and its presence would serve as a 

proposed marker for transmission between symptomatic cases (either directly, or indirectly via the hands 

of healthcare works or hospital surfaces contaminated by symptomatic cases). Full details of the model 

are provided in the supplementary material. 
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Figure 11: Observed weekly number of CDI per hospital over the four-year study period 

 

Grey dots represent the weekly-observed CDI cases within all hospitals from April 2008 to March 2012. X-axis: Week 0 corresponds to the first week of April 2008 and week 209 

to the last week of March 2012.   Red line: the incidence trend over time illustrated by cubic smoothing spline fit (for illustration). 
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All analyses were performed with R 3.0.1 (Team R Development Core, website: http://cran.r-

project.org/) using the R package mgcv[26] and splines. To account more accurately for the decline in 

observed CDI since 2007, the comparative fit of three polynomials, linear, quadratic and cubic was 

assessed using Akaike Information Criterion (AIC). We added a cyclic (periodic) penalised cubic 

regression spline over the variable week of the year and compared model fit with and without this 

smoothing term representing seasonal variations, again based on AIC (see supplementary material). The 

standardized residuals were examined for significant departures from normality[27]. In addition, the Box-

Pierce portmanteau statistic was used to indicate serial dependence. 

Results 

Descriptive statistics 

The 46 hospitals reported 12,717 CDI cases in the four-year study period, of which 9,574 (75.3%) 

had an onset >48 hours after admission.  Between 2008/09 and 2009/10 there was a 30.6% decline in 

CDI reported from these healthcare facilities, in comparison to 20.9% (2009/10 to 2010/11) and 15.7% 

(2010/11 to 2011/12) in the years thereafter. This is in line with national figures (29.1%, 18.0% and 

17.1% respectively). Teaching hospitals reported the highest number of cases, which did not change once 

adjusted for their larger hospital size (expressed in the median number of cases per 10,000 bed-days 

available, where available bed-days is a crude estimate of the number of hospital beds in 2013[28] 

multiplied by the number of days covered by the study,  see Table 4).  

Base-model assuming no transmission patterns 

For all three representations of the base-model, a model including seasonal patterns provided a 

moderately better fit, and a combination of seasonality and a cubic time trend proved the best model fit 

(see Supplementary table 1). By examining the correlogram of the final base-model’s normalized residuals, 

we could identify whether there was evidence of serial dependence (Figure 12A). Such dependence could 

be explained by transmission between symptomatic CDI carriers. Figure 12A illustrates a low but 

significant correlation between cases in a given week and symptomatic carriers present in the hospital one 

http://cran.r-project.org/
http://cran.r-project.org/
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and two weeks earlier (p<0.05), with a slightly stronger correlation at two weeks. Taking a total of a 20-

week interval (as transmission events between hospital cases with an onset further than 20 weeks apart is 

assumed to be unlikely), the model revealed a highly significant Box-Pierce Q-statistic (X2 = 54.59, 

degrees of freedom (df) = 20, p = 0.00005), indicating non-independence. Therefore, the AR(1)-model 

was fitted, with the best fitting cubic polynomial to represent the decline in CDI over time, as well as 

seasonality.  

Figure 12: Dependence between observed weekly number of CDI – base-model 

 

A and B: autocorrelation function (ACF) of normalized residuals of the base-model fitted to data of all hospitals 

(A) and of teaching hospitals only (B) including a fitted cubic representation of the CDI trend over time and 

seasonality. The blue lines correspond to the threshold for significance of correlation (dependence) (p<0.05) 

between lagged weekly observations up to week 20. E.g. crossing of this threshold by the base-model residuals at lag 

1 and lag 2 for the model fitted to all hospitals suggests that a correlation exists between the observed CDI in a 

given week and the number of CDI cases present in the hospital one and two weeks earlier. 

 

AR(1)-model assuming transmission patterns  

Supplementary figure 1 presents the seasonal variation of CDI in hospitals within our sample fitted 

by the AR(1)-model, and shows a slight increase during the months January to March. Assuming that 

symptomatic cases primarily caused acquisition among patients admitted to hospital up to one week later 

and, to a lesser extent, to cases admitted beyond this time (i.e. the AR(1) structure), the estimated 
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magnitude of dependence was low, but statistically significant (ɸ = 0.029 (95% CI = 0.009-0.049). This 

suggested that transmission between symptomatic CDI cases was affecting the weekly-observed CDI, but 

that its role in acquisition might be limited.  This transmission pattern between observed weekly CDI was 

not fully explained by the AR(1) structure, as is indicated by the significant correlation at lag(week) 2 still 

being present after having fitted the AR(1) covariance structure (Box-Pierce Q-statistic (X2  = 44.4, df = 

20, p-value = 0.001)) (see Figure 13A). 

AR(1)-model by hospital type 

The negative correlation presented in the AR(1) cubic model after week 20 (Figure 13A) implied that 

the model might be over-fitting our data. Also, diagnostic plots suggested deviation from normality in the 

model’s standardized residuals (see Supplementary figure 2A).  This can be explained by the large 

variability in the number of reported cases per hospital, with a much greater number of reports and 

related rate of change in reports over time from teaching hospitals compared to just a few cases from 

specialist and some general hospitals. As a consequence, a hospital-specific term in the model 

representing the change in CDI reports over time might not be suitable for hospitals with only a few 

cases reported, whereas such specification is required to represent the CDI trend in teaching hospitals. 

Fitting the model to the more homogeneous group of teaching hospitals only, revealed a stronger, but still 

relatively low statistically significant correlation between CDI cases and patients present in the hospital 

one week later (ɸ = 0.104 (95% CI = 0.048-0.159) (see Figure 13A), which was captured by the AR(1)-

structure (Box-Pierce Q-statistic X2 =23.2, df=20, p=0.281) (see Figure 13B).  

Figure 14 illustrates the cubic AR(1) model predictions in comparison to the observed teaching 

hospital data and Supplementary figure 2, the model diagnostics.  
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Figure 13: Dependence between observed weekly number of CDI – AR(1)-model 

 

A and B: autocorrelation function (ACF) of normalized residuals of the AR1-model fitted to data of all hospitals 

(A) and of teaching hospitals only (B) including a fitted cubic representation of the CDI trend over time and 

seasonality. As in figure 2, the blue lines correspond to the threshold for significance of correlation (dependence) 

(p<0.05) between lagged weekly observations up to week 20. Crossing of this threshold by the AR(1)-model 

residuals at lag 2 suggests the AR(1) structure (symptomatic cases primarily cause acquisition of C. difficile among 

patients admitted to hospital up to one week later and, to a lesser extent, to cases admitted beyond this time), does 

not fully explain the dependence structure between weekly observations. 

 

Figure 14: AR(1) model fit teaching hospitals 

 

Grey dots represent the weekly-observed CDI cases within the teaching hospitals from April 2008 to March 2012. 

X-axis: Week 0 corresponds to the first week of April 2008 and week 209 to the last week of March 2012.   Blue 

line: fit of the AR(1) model with a cubic representation of the rate of change of CDI over time and seasonality.  
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Discussion 

In this study we explored the significance of symptomatic patient-to-patient CDI transmission in 

English hospitals as a source of hospital onset CDI. We found a statistical significant signal of 

dependence between symptomatic CDI patients spending time in hospital close in time, which suggested 

symptomatic patient-to-patient transmission of CDI was present. Nonetheless, the low magnitude of 

correlation between weekly cases in the AR(1) model, implies that the role of symptomatic carriers in 

CDI-acquisition was not as important as previously supposed. The highest number of CDI cases was 

reported in teaching hospitals, which corresponded to their overall prevalence of HCAI being among the 

highest according to the English National Point Prevalence Survey on Hospital-acquired infections 

(HCAI)[16]. This could be attributed to the more vulnerable case-mix of such hospitals, whom might be 

more prone to acquiring CDI[29].   Taking CDI reports from the teaching hospitals only, the association 

between symptomatic carriers was somewhat stronger, but still relatively low. Our findings are in line with 

recent evidence from whole genome sequencing of 1223 isolates from healthcare (among others from 

two large acute teaching hospitals, one specialist and one general district hospital) and community onset 

CDI cases in Oxfordshire, England isolated from 2008 to 2011[7]. Less than 20% of the genetically linked 

CDI positive cases had documented hospital contact with a symptomatic patient7. In addition, 45% of the 

included CDI cases could not be related to any other symptomatic case (community or healthcare setting) 

as they were too genetically diverse[7]. Even considering the reported low sensitivity of the toxin EIA 

test[20] used for CDI identification in the referenced study, the diversity argues for alternative sources of 

many CDI cases. 

Improved infection control, with a primary focus on preventing transmission, such as hand hygiene, 

isolation of symptomatic cases, and environmental cleaning, might result in lower rates of successful 

transmission between symptomatic cases following contact[30]. In addition, once a patient comes in 

contact with C. difficile or its spores, the development of CDI is dependent on the disruption of the 

normal gut flora, primarily due to antibiotic use such as broad-spectrum cephalosporins and 

quinolones[31, 32]. Nonetheless, this would not explain the origin of symptomatic patients lacking a 
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shared spatial-temporal and/or genetic link. C. difficile has been recovered from hospital rooms occupied 

by both symptomatic and asymptomatic carriers[33–35] and its spores can persist in the environment for 

as long as 20 weeks[36]. Therefore, transmission from contaminated hospital surfaces could suggest 

symptomatic hospital cases are unrelated, whereas actually indirect-cross infection could have occurred. 

However, a genetic link would still be found if cases had acquired their infection from the same 

contaminated hospital surface. If no restrictions were applied to the infectious period, incubation period 

or length of ward contamination, 27% of the sequenced samples in the earlier mentioned study shared 

both a genetic and an epidemiological hospital contact [7]. Alternatively, asymptomatic carriers could 

contaminate hospital surfaces with lower intensity than symptomatic carriers, hence cause acquisition at 

low frequency, which could potentially explain the wide genomic diversity among cases [37]. 

Importation of symptomatic and asymptomatic carriers from community-settings such as long-term 

care facilities (LTCF) has also been suggested as a source for hospital-onset CDI[38, 39]. A population-

based study conducted in the United States showed that out of a total of 416 identified CDI cases, 41% 

had onset of symptoms in the community or within 48 hours after admission and no hospitalisation in the 

12 weeks prior to onset[40].  We excluded patients with an onset of CDI <48 hours into admission. This 

is a frequently used, but arbitrary, cut-off to define community-acquired HCAI. Hence it is possible that 

our data included asymptomatic patients who acquired the bacteria elsewhere, and developed symptoms 

in the hospital >48 hours after admission. Moreover, in addition to onset within 48 hours into admission, 

no hospitalisation in the past 12 weeks is an often-used additional requirement for community-acquired 

CDI [11].  As we did not have information on previous hospitalisation, the possibility exists that cases 

defined as community-acquired in our data, and were therefore excluded, actually were hospital-acquired 

cases, i.e. patients who acquired C. difficile in their previous stay, but started to develop symptoms after 

discharge and were re-admitted with symptomatic CDI. Furthermore, approximately 20% of cases with a 

first occurrence of CDI experience recurrence after discontinuation of treatment[41, 42]. Re-admitted 

CDI carriers, who resolved their symptoms but remained colonised resulting in a recurrent episode once 

e.g. put on at risk antibiotics, could be partly responsible for the low correlation between symptomatic 
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carriers. However, considering the known chances of relapse, we do not expect these can be primarily 

responsible for the results of this study.  

Finally, and although not our primary focus, we found evidence of seasonal variations in CDI 

incidence in our selection of English hospitals, with slightly elevated reports of hospital-associated 

symptomatic CDI in the winter months. Seasonality has been suggested in relation to increased levels of 

CDI related antibiotics during the winter months in settings outside of England[23–25]. Comparison of 

variability in antibiotic prescribing patterns within English hospitals with fluctuations in hospital reported 

CDI incidence would be an interesting area of investigation. Nonetheless, the seasonal component in our 

model only explained a small proportion of the behaviour of the weekly reported CDI (reflected by a 

moderate decrease of AIC), and we would like to urge for more research on the presence of seasonal 

patterns of CDI in England.  

This study had several limitations. Firstly, we selected weekly intervals for our analysis. Both the 

incubation time and infectious period of C. difficile have not been quantified with certainty.  Studies have 

suggested that person-to-person transmission occurs primarily within a week (ranging from a median of 1, 

4 or 8 days after CDI diagnosis)[8], whereas a median incubation time of 2-3 days[20] to 18-33 days has 

been proposed[8]. Hence, onset of symptoms following symptomatic patient-to-patient transmission 

might occur after the one-week time interval, which could have affected the strength of correlation 

between weekly incidences. Secondly, strains may vary in their pathogenicity[43] and transmissibility[9].  

The routinely collected surveillance data did not contain ribotype specific information, so we could not 

establish to what extent our results are strain-specific as well as whether the hospitals in our sample are 

representative with regards to strain prevalence. Moreover, the AR(1) structure was unable to fully explain 

the correlation between weekly cases close in time using data from all hospital types, whereas it could for 

the teaching hospitals only. This might be a consequence of the stochastic nature of the few CDI cases 

reported by the smaller hospitals included in the overall dataset. Alternatively, teaching hospitals might 

have better environmental cleaning practices in place and/or are more likely to change antibiotic 

prescribing practices following an outbreak, resulting in more rapid containment. Further research is 
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needed to clarify the observed heterogeneity in reported hospital-acquired infection rates and 

transmission between teaching and non-teaching hospitals. Finally, alternative causes of dependence of 

the weekly CDI observations cannot be ruled out, e.g. a Scottish study[44] identified a temporal 

correlation between antibiotic use and HA-CDI [44]. However, as the results of the referenced study[44] 

suggest, it is unlikely that antibiotic hospital consumption will fluctuate between weekly time intervals.  

After investigation of the association between monthly variations in antibiotic use and monthly variations 

in observed CDI, Vernaz and colleagues (2009) identified that, for almost all of the antibiotics 

investigated, the association with observed CDI was significant with a lag of several months (among 

others ciprofloxacin, fluoroquinolones and cefuroxime) [44]. In addition, cases arising from asymptomatic 

carriers or environmental sources might correlate in space and time as well. However, the level of onward 

transmission from asymptomatically colonised individuals is highly uncertain, nor has foodborne 

transmission of C. difficile to humans been established with certainty [45, 46]. Given the infectious nature 

of symptomatic C. difficile cases, especially in settings with high antibiotic use, we expect symptomatic 

patient-to-patient transmission to be the most conservative explanation.  

Despite the limited information present in routinely collected hospital infection data, this study has 

provided further insight in the hospital transmission dynamics of C. difficile.  Our results indicate that 

patient-to-patient transmission when only those patients with symptomatic CDI are considered, may 

account for a small number of transmission events. To improve our understanding of the epidemiology 

of CDI, the role of other patient groups should be considered, such as those in the community and 

asymptomatic carriers, as well as the importance of indirect transmission from contaminated surfaces in 

the hospital environment and the role of antibiotic use. Individual-level patient data, which can inform 

dynamic transmission models would certainly aid the investigating and quantification of the potential 

sources of CDI transmission[47–49] and will be another area of our further investigations. 
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Supplementary material 

A1. Model description 

The following generalized additive mixed effects Poisson model allowing for overdispersion, with 

a log link[1, 2] was used for fitting to the data of all hospitals as well as of the teaching hospitals alone: 

 

𝑌𝑗𝑡|𝑅𝑗𝑡  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑗𝑡) 

log(𝜆𝑗𝑡) = 𝛼𝑗 + 𝑓1𝑗(𝑡) + 𝑓2(𝑡𝑤.𝑜.𝑦.) + 𝑅𝑗𝑡 

 

Where, 𝜆𝑗𝑡 indicates the observed number of CDI cases 𝜆 at week t in individual hospital j, given the 

random error term 𝑅𝑗𝑡 (see later), 𝛼𝑗 and 𝑓1(𝑡) are the individual hospital intercept and representation of 

the cross-sectional trend respectively, and  𝑓2(𝑡𝑤.𝑜.𝑦.)  the seasonal variation in CDI incidence. The 

alternative representations of the longitudinal CDI trend were specified as a linear, quadratic and cubic 

polynomial respectively. We added a cyclic (periodic) penalised cubic regression spline over the variable 

week of the year, i.e. 𝑓2(𝑡𝑤.𝑜.𝑦.) =  ∑ 𝑏�̃�
𝑘−1
𝑖=1 (𝑡𝑤.𝑜.𝑦.)𝑆𝑖; we provided the end points of the smoother (i.e. 

the first and last week of the year, week 1 and week 53) and allowed automatic generation of the 

remainder knots (knots specify adjacent intervals, where each interval represents an individual 

polynomial)[3]. Finally, 𝑅𝑗𝑡  denotes the residual term in hospital j at week t, which were of primary 

interest.  We assumed a temporal proximity pattern and allowed for additional Poisson variation Zt~iid 

N(0, σ2). This temporal proximity assumed that incidences of weeks close in time are strongly correlated, 

and that this correlation faded rapidly over time according to  𝑅𝑗𝑡 = ϕ𝑘𝑅𝑗 (𝑡−𝑘) + 𝑍𝑡 , 𝑘 = 1, 2, ….[4], k 

represents the weekly distance between the incidence observations and ϕ corresponds to the strength of 

the correlation, i.e. the correlation coefficient. If ϕ𝑘= 0, this corresponds to no (auto)correlation, and 

thus no weekly CDI dependence, indicating no symptomatic transmission. If ϕ𝑘= 0 and σ2 = 0, the data 

follows a simple Poisson distribution.  
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A2. Model Fitting 
 

The base-model (assuming no transmission, i.e. excluding AR(1)) was fitted by a penalised 

likelihood using the command gam() (library mgcv).  The different polynomials, denoting alternative 

representations of the CDI  incidence trend, were fitted by generating a B-spline basis matrix without 

interior knots using the command bs()(library splines) and seasonality was represented by a cyclic cubic 

smooth function using the command s(.., bs = “cc”) (library mgcv)[3]. The models were fitted both with a 

Poisson and quasi-Poisson distribution, the latter to allow for overdispersion (represented by a scale 

parameter >1 (Supplementary table 1) which is common in hospital count data. For all three 

representations of the base-model, a model including seasonal patterns provided a moderately better fit 

(with a reduction in AIC of 15.3, 14.3, 16.3, for the linear, quadratic and cubic null-models including 

seasonality, respectively).  For the seasonal trend, the distributional assumption under the null-hypothesis 

(chi-square) does not have a firm theoretical basis and is conditional on the smoothing parameter (i.e. the 

degrees of freedom estimated for the smooth term). Hence, the p-value provided by the gam model for 

the seasonal trend is an approximation and should be considered with care[3]. However, considering the 

reduction in AIC, seasonality was kept in the model. Supplementary table 1 summarizes model fit of the 

different representations of the declining incidence trend over time and adjusting for seasonality. A linear 

representation provided the worst model fit. Both the quadratic and the cubic time trend showed a 

considerable improvement in model fit in comparison to the linear trend, while the cubic time trend 

showed a moderately better fit in comparison to the quadratic time trend. As a next step, we added an 

AR(1) temporal covariance structure using the Penalised Quasi-likelihood based (PQL) based command 

gamm()(library mgcv). In contrast to gam(), this command allows the addition of patterned covariance 

structures. This method can work poorly (i.e. underestimate the standard error of the fitted parameters) 

for Poisson data with a mean number of counts of less than five[1, 5].  Comparison of model fit by a 

penalised likelihood and PQL resulted in similar model estimates for our base-model, which provided 

confidence in the PQL method used for our data. Another caveat of the PQL method is the lack of a real 

likelihood. Hence, it was not possible to formally test whether the inclusion of the AR(1) residual 

correlation structure indeed did improve model fit. For this reason, we evaluated the estimated value of 
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ϕ𝑘 (i.e. whether departure from 0), and the autocorrelation function (ACF) coefficients of the best fitting 

null-model and AR(1) model normalized residuals to test departure from independence (p <0.05). 

 

Supplementary table 1: Comparison of model fit for the base-model including alternative representations of the CDI 
incidence trend 

All 

hospitals 

 Poisson      Quasi-

Poisson 

      

Model  AIC  X2  p-value 

seasonality 

 AIC  F  p-value 

seasonality 

 Scale 

parameter 

Linear  + 

seasonality 

 22544  25.91  0.0002  NA  25.91  .0006  1.095 

Quadratic + 

seasonality 

 22454  24.99  0.0003  NA  2.837  .0008  1.081 

Cubic + 

seasonality 

 22426  27.31  0.0001  NA  3.131  .0003  1.074 

Cubic no 

seasonality 

 22442  -  -  NA  -  -  1.076 

Teaching 

hospitals 

 Poisson      Quasi-

Poisson 

      

Model  AIC  X2  p-value 

seasonality 

 AIC  F  p-value 

seasonality 

 Scale 

parameter 

Linear + 

seasonality  

 4054   6.54  0.142  NA   .003  .374  1.304 

Quadratic + 

seasonality  

 4032   6.33  0.108  NA   .156  .222  1.282 

Cubic + 

seasonality  

 4018  18.18  0.005  NA  .854  .016  1.266 

Cubic no 

seasonality 

 4025  -  -  NA  -  -  1.273 

AIC = Akaike Information Criterion, the lower the value, the better the fit. Upper half of table: model fit to 
data of all hospitals. Lower half: model fit to data from teaching hospitals. Left half of table: model fit assuming a 
Poisson distribution. Right half: model fit assuming an overdispersed Poisson (quasi-Poisson) distribution) 
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Supplementary figure 1: Seasonal variations of symptomatic C. difficile infection with onset >48 hours after admission 

 

 

Fitted cyclic penalised cubic regression spline (representing season variations) for the cubic AR(1) model fitted to 
data of all hospitals (A) and data of the teaching hospitals only (B). 



99 

 

Supplementary figure 2: Diagnostics of cubic AR(1)-models 

 

Residual diagnostics of AR(1)-model fitted to data of all hospitals, including a fitted cubic representation of CDI 

behaviour over time and seasonality. A: Quantile-Quantile (Q-Q) plot, deviation from a straight line denotes 

deviation from normal distribution. B: Residuals plotted against the linear predictor. C: frequency distribution of the 

model residuals. D: data against fitted values. E-H: Residual diagnostics of AR(1)-model fitted to data of teaching 

hospital only. 
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CHAPTER 4 

 

EXCESS LENGTH OF STAY AND MORTALITY DUE TO 

CLOSTRIDIUM DIFFICILE INFECTION: A MULTI-STATE 

MODELLING APPROACH 
 

 

4.1  PREAMBLE TO RESEARCH PAPER 3 
 

As laid out in Chapter one, estimates of LoS and mortality are key determinants to help quantify 

the health and economic burden of hospital-acquired infections, including CDI[1]. Previous estimates of 

additional excess bed days attributable to healthcare-acquired (HA)-CDI have varied widely, partly due to 

methodological weaknesses[2]. Patients that stay in hospital longer are at increased risk of acquiring a 

nosocomial infection. Therefore, a ‘naïve’ approach of retrospectively comparing the mean LoS of CDI-

negative patients to the mean LoS of CDI-positive patients would result in biased estimates, i.e. inflate the 

effect of hospital stay attributable to CDI[3]. Retrospectively matching cases to controls based on the time 

to exposure, that is, matching exposed patients (e.g. CDI cases) to unexposed patients that were in hospital 

at least as long as the time (t) of CDI-onset in the exposed person, accounts for this so-called time 

dependent bias to some extent[4]. However, as this approach conditions on events that occur after the time 

of exposure, i.e. matches exposed patients to unexposed patients that are still in hospital at time t and 

remain negative until discharge, selection bias is introduced[5].  

 

Both of these methods have predominated in CDI literature[2, 6]. At the time of publication of 

research paper three, the only two previous studies that did employ appropriate methods, that is Cox 

proportional hazard modelling including CDI as a time-dependent exposure and/or multi-state modelling 

(both are further explained in research paper three), reported very different results, i.e. no CDI attributable 

stay[7] compared to an additional stay of six days[8]. Hence there remains considerable uncertainty in the 

literature on the impact of CDI on length of stay. Moreover, no robust estimates of the excess LoS due to 

CDI are available from an English, nor European-setting. 
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From the perspective of modelling the effectiveness of CDI vaccination, the excess time that 

CDI patients spend in hospital and/or the in-hospital risk of mortality are important. Both give insight into 

the incremental cost of the infection, and additionally are likely to have an impact on the transmission-

dynamics of the infection. Research paper three is the first to investigate excess LoS and mortality due to 

CDI in a large English hospital using robust and currently preferred methods. Moreover, the paper 

investigates the impact of the severity of CDI on these outcomes. As research paper three reports on the 

severity of CDI of patients in our sample, the infection causing ribotypes, as well as patient co-morbidities, 

the work allows for interpretation of the generalisibility of the findings to other hospitals or regions.  
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Abstract 

Background: The burden of healthcare associated infections (HCAI), including healthcare-acquired 

Clostridium difficile (HA-CDI) can be expressed in terms of additional length of stay (LoS) and mortality. 

However, previous estimates have varied widely and, although some considered time of infection onset 

(time-dependent bias), none considered the impact of severity of HA-CDI; this was the primary aim of 

this study. 

Methods: The daily risk of in-hospital death or discharge was modelled using a Cox proportional hazards 

model, fitted to data on patients discharged in 2012 from a large English teaching hospital. We treated 

HA-CDI status as a time-dependent variable and adjusted for confounders. In addition, a multi-state 

model was developed to provide a clinically intuitive metric of delayed discharge associated with non-

severe and severe HA-CDI respectively.   

Findings: Data comprised 157 (including 48 severe) HA-CDI cases amongst 42,618 patients. HA-CDI 

reduced the daily discharge rate by nearly one-quarter (HR: 0.72 (95% CI: 0.61-0.84) and increased the in-

hospital death-rate by 75% compared with non-HA-CDI patients (HR: 1.75 (95% CI: 1.16-2.62). 

Whereas, overall HA-CDI resulted in a mean excess LoS of ~7 days (95%CI = 3.5 – 10.9), severe cases 

had an average excess LoS which was twice (~11.6 days [95% CI = 3.6-19.6] that of the non-severe cases 

(~5 days [1.1-9.5]).  

Conclusions: HA-CDI contributes to patients’ expected LoS and risk of mortality. However, when 

quantifying the health and economic burden of hospital-onset of HA-CDI, the heterogeneity in the 

impact of HA-CDI should be accounted for.  
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Introduction 

Clostridium difficile, is a considerable cause of healthcare acquired infections (HCAI) in Europe and 

the United States[9, 10]. In common with other HCAI, patients with healthcare-acquired Clostridium 

difficile infection (HA-CDI) place a serious health and economic burden on the hospital system. Previous 

economic analyses of HA-CDI have shown that direct healthcare, and opportunity, costs due to excess 

length of hospital stay (LoS) were the main HA-CDI cost drivers[11–14]. However, a recent review of 

publications on HA-CDI associated additional hospital stay, showed wide variation in excess LoS, ranging 

from 2.8 to 16.1 days[2]. These studies primarily used simple regression models, which did not account 

for the timing of onset of infection (“time-dependent bias”)[15]. Hence, they may overestimate the 

duration of excess hospitalisation, as a longer stay in hospital may increase the risk of infection. This has 

been demonstrated rigorously for other HCAI[1, 15, 16] but  has rarely been explicitly explored for HA-

CDI[2].  

Two recent publications, which implicitly adjust for “time dependent bias”, reported very 

different results[7,8]. Forster et al, using a Cox proportional hazards model, concluded that HA-CDI 

patients had a median excess LoS of six days,[8], while Mitchell et al found no significant impact of HA-

CDI on hospital stay[7]. Mitchell et al utilised multi-state model (MSM), that in addition to appropriately 

adjusting for both time to event bias and the competing end-points related to nosocomial infections, 

namely discharge and death[7], also provided more easily interpretable results than the proportional 

hazards model. In their conclusion, Mitchell et al posit that their results, and the difference to earlier 

estimates, could potentially be explained by milder HA-CDI due to a lack of circulating hypervirulent 

PCR ribotype 027 in their locality (Tasmania, Australia).   

As the clinical presentation of HA-CDI can range from mild diarrhoea to pseudomembranous 

colitis and even death, and the prevalence of severe HA-CDI can vary regionally, due to differences in 

ribotype prevalence[17–19] and case-mix[20], it is important for any estimation of attributable LoS and 

mortality to consider these heterogeneities. In this study, we demonstrate the impact of severe infection 

on the expected delayed discharge and mortality associated with HA-CDI based on a Cox proportional 

hazard model as well as MSM techniques. Hence, we provide, for the first time, a robust estimate of 
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excess LoS due to HA-CDI in an English teaching hospital and quantify the additional impact of severe 

HA-CDI on LoS and mortality.     

Methods 

Data 

Data were collected from Guy’s and St Thomas’ National Health Service (NHS) Foundation 

Trust, a teaching hospital including two sites with ~1200 beds. Details of all inpatients discharged in 2012 

(namely: age, primary diagnosis code, dates of admission and discharge, and discharge status [i.e. 

discharge alive or death]) were extracted from the Trust’s electronic patient record database.  These data 

were linked to the Trust’s voluntarily collected HA-CDI surveillance database containing information on 

date of onset of symptoms, markers of HA-CDI severity, antibiotic treatment and, where known the 

ribotype that caused the infection. In order to evaluate only those infections that were hospital-acquired, 

patients with symptom-onset ≤48 hours after admission and all patients with a LoS ≤48 hours were 

excluded from analyses. 

Severe HA-CDI 

Severe HA-CDI was defined by the clinical presence of one or more of four indicators: i) 

peripheral white blood cell count >15x109/L; ii) acutely rising serum creatinine (>50% increase above 

baseline); iii) temperature >38.5˚C; or iv) radiographic evidence of colitis or endoscopic appearance of 

pseudomembranous colitis[21].  

Procedure 

Proportions and medians were compared using the X2 test and Mann-Whitney-Wilcoxon test 

respectively. We used a Cox proportional hazards model to estimate the impact of HA-CDI on the risk of 

hospital discharge alive or death. This method can adjust for time-dependent bias and take into account 

the impact of important non-HCAI variables such as age and co-morbidity score on LoS. Hence, the 

method can identify and adjust for important confounders.    Nonetheless, it does not produce an easily 

interpretable metric (namely hazard ratios) for economic analysis. Therefore we constructed a suitable 

MSM, to quantify the average excess LoS caused by the event of interest, i.e. HA-CDI.  However, using 
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established methodology, MSM do not account for the potential confounding effect of other variables. As 

an alternative, we stratified our data by each of the relevant confounders, and performed the MSM on 

these subsamples. 

Statistical analysis 

Cox Regression Model 

The risk of in-hospital death or discharge was modelled with a Cox proportional hazards model, 

with HA-CDI treated as a time-dependent risk factor. We added the covariates age and co-morbidity to 

assess their confounding effects on the risk of in-hospital death or discharge. Co-morbidity was expressed 

in a Charlson co-morbidity index score[22] based on the patients’ primary diagnosis code. These primary 

diagnoses were classified using International Statistical Classification of Diseases and Related Health 

Problems 10th Revision (ICD-10) codes[22].  

Multi-state Model 

We developed a MSM with four states; admission with no HA-CDI (state 0), HA-CDI (state 1), 

discharge alive (state 2) and death in hospital (state 3)[23].  Since we were solely concerned with HA-CDI, 

we assumed all patients were admitted to the hospital without infection. Uninfected patients remained in 

state 0 from admission until discharge (state 2) or in-hospital death (state 3).  Infected patients entered 

state 1 and then remained in that state until discharge or death. This competing end-points approach 

allowed for assessment of the impact of mortality due to HA-CDI on a patients’ expected excess stay, e.g. 

whether HA-CDI-related mortality may in fact shorten expected LoS. Secondly, prolonged LoS 

associated with HA-CDI was estimated by constructing a MSM where the two competing end-points 

were combined as a single state[24]. Transitions between states were determined by time-varying hazards, 

which were estimated using the Aalen-Johansen estimator[25]. For each point in time t (in days), the 

expected LoS for HA-CDI and non-infected patients was compared. The unadjusted expected change in 

LoS was then calculated as the average difference in LoS of HA-CDI and non-HA-CDI cases across all 

days, weighted relative to the frequency of the possible events (i.e. HA-CDI, discharge alive and in-

hospital death) on each day[5]. Bootstrapping[26] was used to obtain robust standard error-based 

confidence intervals. 
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To assess the effect of specific confounders identified by the Cox regression model, we 

performed the MSM comparing patients within their risk group by stratification, for each potential 

confounding variable separately. Also, to evaluate the effect of severe HA-CDI on excess LoS, a stratified 

analysis was conducted, comparing mean differences in LoS of non-severe HA-CDI and severe HA-CDI 

cases respectively to non-infected patients.  

All analyses were performed with R 3.0.1 (Team R Development Core, website: http://cran.r-

project.org/). The R-packages mvna and etm were used to estimate the excess LoS and standard errors[25, 

27] and the R-package survival was used for the Cox model. 

Results 

Descriptive statistics 

The data comprised a total sample of 42,618 patients, 157 (0.4%) of whom had an episode of 

HA-CDI, of which  48 (30.6%) were severe (Table 5). The median age was 72 years [Inter-quartile range 

(IQR) = 57-82] for the infected, which was significantly higher than the median age of non-infected 

patients (47 [IQR = 26-68], p < 0.0001). The vast majority of all patients had no reported co-morbidities 

(91.6%, 39,146 patients). This percentage was slightly lower in the HA-CDI infected patient group 

(84.7%, 133 patients), than in the non-infected group (91.9%, 39,013 patients, p = 0.002)).  On average, 

patients with severe HA-CDI had spent a shorter time in hospital until identification of the infection than 

non-severe cases (Table 5). Moreover, after detection, the median LoS was longer for severely infected 

patients (Table 5).  Finally, the causative PCR ribotypes were known for 113 (72.0%) of the HA-CDI 

patients. None of these patients had an infection caused by hypervirulent PCR ribotype 027 

(Supplementary table 2). 

http://cran.r-project.org/
http://cran.r-project.org/
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Table 5: Demographic characteristics of the Guy’s & St Thomas hospital patients discharged in 2012 

Variable  Non-infected 

N = 42,461 

 Infected 

N=157 

 Non-severe HA-CDI 

N = 109  

 Severe HA-CDI 

N=48 

 Total 

N=42,618 

Age (N (%))           

>65 years old  13,446 (31.7)  102 (65.0)  73 (67.0)  29 (60.4)  13,548 (31.8) 

Co-morbidity (N (%))           

Charlson index score = 0  39,013 (91.9)  133 (84.7)  96 (88.1)  37 (77.1)  39,146 (91.9) 

Charlson index score ≥ 1  3,448 (8.1)  24 (15.3)  13 (11.9)  11 (22.9)  3472   (8.1) 

Death (N (%))           

Yes 

 

 801   (1.9)  24 (15.3)  15 (13.8)  9 (18.7)  825   (1.9) 

Length of stay  

(Median/Mean [IQR]) 

 

 

 4.0/7.6 [2.0-8.0]  25.0/36.6 [15.0-50.0]  29.0/36.6 [15.0-50.0]  22.5/36.8 [14.8-44.8]  4.0/7.7 [2.0-8.0] 

Length of stay pre-

infection  

(Median/Mean [IQR]) 

 

 NA  9.0/15.8   [4.0-18.0]  10.0/17.1 [4.0-22.0]  7.0/12.1 [3.8-12.3]  NA 

Length of stay post-

infection  

(Median/Mean [IQR]) 

 

 NA  12.0/21.1 [6.0-25.0]  11.0/19.5 [6.0-24.0]  13.5/24.6 [7.8-27.8]  NA 
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Cox regression model results 

HA-CDI-positive patients had a lower daily chance of being discharged (alive or dead) than non-

infected patients (Table 6). Both age of the patient (i.e. older or younger than 65 years old), and the 

patient’s co-morbidity were significant confounders, and the adjusted daily hazard of discharge (AHR) for 

HA-CDI patients was 0.72 [95% Confidence Interval (CI): 0.61-0.84] (Table 6). Moreover, HA-CDI 

patients were at higher risk of experiencing in-hospital death than HA-CDI-negative patients (AHR = 

1.75 [95% CI: 1.16-2.62]. Accounting for severity of the infection revealed that, compared to non-infected 

patients, severe cases had a daily likelihood of discharge which was two times more reduced than the 

probability of discharge of non-severe cases (Table 6). However, severe infection did not result in a 

further elevated chance of dying in hospital (Table 6). 

Multi-State Model results 

The four state multi-state model, which allowed for competing end-points, and the three state 

combined end-point model provided similar estimates for the excess LoS. Thus mortality due to HA-CDI 

did not seem to have an impact on the estimated additional days of hospitalisation associated with HA-

CDI. For this reason, the outcomes of the combined end-point model are presented only. The average 

extra number of days (unadjusted for confounders) spent in hospital due to HA-CDI was ~7 days [95% 

CI = 4 – 11] (Table 6). Patients with severe HA-CDI had, on average, twice the additional LoS of non-

severe cases, but with overlapping confidence intervals (Table 6). Stratification of our sample by age and 

co-morbidity score still showed an impact of HA-CDI on the patients’ stay. Among HA-CDI patients 

<65 years of age (55 patients in total), we found an average excess LoS of ~7 days [95% CI = 1-14 days 

[associated with HA-CDI; for the >65 population (133 patients) this was ~6 days [95% CI = 2-11].  A 

sample restricted to patients with a co-morbidity score <1 only (133 patients) showed an excess LoS of 

~7 days [95% CI = 3-11] whereas an average excess LoS of ~10 days [95% CI = -1-21] associated with 

HA-CDI was found for patients with a score of >1 (24 patients).   
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Table 6: Hazard ratios for in-hospital death or discharge alive and excess length of stay estimated from the Cox Regression Model and Multi-State Model 

 

 Hazard ratio for discharge alive  

(95% CI)a 

 Hazard ratio for in-hospital  
death (95% CI)a 

 Hazard ratio for discharge alive or 

death (95% CI)a 

 Excess 

LOS (95% 

CI)d 

 

Exposure 

 

Time adjustedb 

 
Fully 

adjustedc 

 
Time 

adjustedb 

 
Fully 

adjustedc 

 
Time 

adjustedb 

 

Fully adjustedc 

  

All CDI 

 

 0.66 (0.56-0.77)  0.72 (0.61-0.84)  1.98 (1.33-2.96)  1.75 (1.16-2.62)  0.73 (0.64-0.84)  0.79 (0.69-0.92)     7.2 (3.5-10.9) 

Severe CDIe 

 

 0.53 (0.39-0.71)  0.59 (0.44-0.79)  2.11 (1.17-3.79)  1.76 (0.95-3.25)  0.62 (0.49-0.76)  0.69 (0.54-0.85)  11.6 (3.6-19.6) 

Non-Severe CDI 

 

 0.73 (0.60-0.88)  0.79 (0.66-0.96)  1.91 (1.13-3.22)  1.74 (1.03-2.93)  0.80 (0.67-0.95)  0.86 (0.71-1.03)  5.3 (1.1-9.5) 

CI, confidence interval; LOS, length of hospital stay; CDI, Clostridium difficile infection. To estimate the hazard ratios for discharge alive and in-hospital death respectively, the observations 

on patients who experienced a competing risk event were censored, i.e. removed from the risk set used for the hazard calculation at time of occurrence of the event, based on the 

principles of the cause-specific hazard function.  

a. Cox regression model.  

b. Cox regression model with time to infection included as a time-dependent variable. 

c. Cox regression model with time to infection included as a time-dependent variable, and age (<65 and >65 years) and comorbidity (Charlson Comorbidity Index score <1 and ≥1) 

included as covariates.  

d. Multi-state model 

e. The estimates for non-severe and severe CDI were fitted by including CDI type as a three level time-dependent categorical variable (0. No infection; 1. Non-severe CDI and 2. Severe 

CDI) 
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Discussion 

 The findings of this study showed that HA-CDI resulted in a prolonged LoS of ~ 7 days. 

Moreover, the daily mortality rate of HA-CDI patients was almost twice that of non-HA-CDI infected 

patients, as has been suggested elsewhere[28]. In addition, we found that severe infection increased the 

average expected excess LoS associated with HA-CDI. Our LoS estimates are comparable to the median 

additional six days estimated by a Canadian study, which also adjusted for the time dependency of the 

impact of HA-CDI[8],   but contradict the findings of a recent study by Mitchell and co-workers (2013) 

using a comparable MSM conducted in an Australian hospital who suggested that HA-CDI did not result 

in excess LoS7.  As the MSM of Mitchell et al did not implicitly adjust for such potential confounders, 

difference in case-mix among the different hospital settings (UK and Australia) could have been 

responsible for the differences in measured excess LoS[29]. However, stratified MSM results (by age, and 

co-morbidity index score respectively) revealed that both younger and older HA-CDI patients had an 

increased average LoS of about 6-7 days, and patients of both co-morbidity groups had an increased 

expected LoS related to CDI, so this is not likely to be the reason. Moreover, the non-severe HA-CDI 

patients in our sample still had a significantly increased LoS of ~5 days, thus even the potential lack of 

severely infected patients in the Australian sample would have most likely resulted in an effect on LoS.  

However, with only three published studies using appropriate methods, little can be concluded with 

regards the heterogeneity in the findings. More appropriate analyses of existing datasets (e.g. those 

reviewed by Mitchell et al (2012)[2]) might be a sensible way forward.   

Our dataset was collected as part of routine record keeping in a large teaching hospital, which led to 

a number of limitations in our study. Firstly, the number of patients with HA-CDI was small, which 

resulted in relatively large standard errors for the risk group stratified MSM analysis. A larger dataset 

would have allowed sufficient power to sub-stratify the analysis further. Secondly, the co-morbidity index 

was calculated using only the primary diagnosis code of each patient, as more detailed information was 

not available to the researchers. Therefore, our analysis might not have fully adjusted for the effect of 

concomitant conditions. Finally, patients that spend a longer time in hospital are at increased risk of 

acquiring an HCAI other than HA-CDI, which could have extended their LoS rather than HA-CDI. 

However, considering the construction of the MSM, we expect this is accounted for: HA-CDI positive 



115 

 

patients which were in hospital at a given number of days post-onset were compared to admitted HA-

CDI negative patients still in hospital after this number of days. Thus, both these populations were 

arguably equally at risk of acquiring a HCAI other than HA-CDI.  

In conclusion, we present work confirming the heterogeneity among patients of the health and 

economic burden of CDI. To our knowledge, the results of our research have provided the first severity 

specific estimate of the additional LoS and excess mortality due to CDI. We believe that the techniques 

presented here could be applied, locally, nationally and regionally to provide policy makers with an 

estimate of the burden of CDI for their patient population and severity of CDI. 
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Supplementary material 

Supplementary table 2: Average length of stay post-infection and number of deaths stratified by ribotype 

PCR ribotype  Patients 
N (%) 

 Deaths 
N (%) 

 Severe infection 
N (%) 

 Mean LoS  
post-infection 

 IQR (Q1-Q3) 

001     6   (3.8)  0 (0.0)    2  (0.3)    9.8    4.8 - 36.0  

002    21 (13.4)  6 (28.6)    9  (42.9)  22.0    8.0 - 27.0 

005    14  (8.9)  2 (14.3)    3  (0.2)  19.6    3.5 - 30.8 

014/020    23 (14.6)  2 (8.7)    6  (0.1)  30.0  11.5 - 36.0 

015    17 (10.8)  2 (11.8)    6  (35.3)  24.4  10.0 - 30.0 

017     2   (1.3)  0 (0.0)    0  (0.0)    9.0    6.5 - 11.5 

018     4   (2.5)  0 (0.0)    1  (0.3)    8.8    4.8 - 10.5 

023     4   (2.5)  1 (0.3)    0  (0.0)  30.5    5.8 - 49.3 

038     3   (1.9)  1 (0.3)    0  (0.0)  47.0  10.0 - 65.5 

064     2   (1.3)  0 (0.0)    0  (0.0)    2.5    2.3 -   2.8 

078    10  (6.4)  3 (30.0)    4  (0.3)    9.2    1.5 - 16.0 

106     7   (4.5)  1 (14.3)    0  (0.0)  16.1    9.0 - 22.0 

Unknown/UT    44 (28.0)  6 (13.6)  15 (34.1)  20.0    6.8 - 23.3 

UT = PCR ribotyping not possible  
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Supplementary figure 3: Length of Stay HA-CDI cases stratified by HA-CDI PCR ribotype 
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Supplementary figure 4: MSM weights 

 

MSM  weights, i.e. the average difference in LoS of patients of HA-CDI infected and non-infected patients across all days are 
weighted relative to the frequency of the possible events (i.e. HA-CDI, discharge alive and in-hopistal death) on each day.  
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CHAPTER 5 
 

MATHEMATICAL MODEL OF THE POPULATION-LEVEL 
EFFECT OF CLOSTRIDIUM DIFFICILE VACCINATION AS 
PART OF AN INTEGRATED INFECTION CONTROL 
STRATEGY  
 

 

5.1 PREAMBLE TO RESEARCH PAPER 4 

 
The previous chapters have provided considerable insight for choosing and parameterising an 

appropriate modelling framework with which to address our final research objective: to evaluate the 

effectiveness of infection prevention and control strategies involving vaccination in an English setting. In 

research paper three (Chapter 4), CDI was shown to place a significant hospital burden through 

increasing patients’ hospitals stay and mortality[1]. Therefore, if a CDI vaccine were able to prevent 

hospital-onset CDIs, it could have a marked impact. Within the hospital, although ICUs can vary 

markedly in their case mix, the critically ill, and often immunosuppressed status of ICU patients 

necessitates high levels of antimicrobial usage. Hence, this population has been described as at increased 

risk of CDI acquisition[2–4], and could therefore act as a marker for whether vaccination is likely to be a 

valuable hospital infection and prevention tool. We therefore chose to have the focus of the model 

centred on the ICU.  

In research paper two (Chapter 3) it was shown that transmission from symptomatic carriers was 

present in English hospitals [5]. This justifies the use of a dynamic modelling framework to investigate the 

effectiveness of CDI vaccination in a hospital setting. Since the time of publication of research paper one, 

six additional dynamic transmission models have been published, in addition to the previous three 

mentioned. All nine models concerned hospital-spread of C. difficile, pre-dominantly using 

compartmentalised models[6-15], splitting the population into subgroups sharing particular characteristics 

of relevance for disease. A majority of the models assumed the hospital or ward population was resistant 

to colonisation and subsequent infection unless exposed to antibiotics [8, 9, 12, 13, 15]. As antimicrobial 
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usage remains the primary risk factor for CDI [16–18], and for the sake of model parsimony, 

incorporating such an assumption could be justified.  A more recent model allowed individuals to become 

colonised and develop CDI without the traditional pre-disposing factors[10, 11]. However limited data 

were provided, hindering the verification of the model’s biological plausibility. Though such occurrences 

have been observed (see Chapter 1), the frequency of CDI among non-traditional risk groups is 

unknown.  

Whilst admission and discharge from a homogenous source of individuals outside the hospital 

has been assumed in previous model frameworks[6, 8, 10–14], no model has incorporated readmission 

dynamics. As a consequence, all models, except one [6], have ignored relapse of CDI, for the primary 

reason that the probability of this occurring during the patient’s initial stay is low. This could be of 

relevance considering patients can remain colonised for an average period of one month or longer [19, 

20]. One possible area where vaccination could be effective is in preventing recurrent disease (defined as 

relapse), as suggested by Lee et al.[21]. Vaccination may also aid in preventing re-infection among 

frequently hospitalised patients. Moreover, the high prevalence of C. difficile carriage observed in LTCFs 

[22], suggests distinguishing between admissions from general community populations and LTCF 

populations should perhaps be considered in the evaluation of the impact the effectiveness of 

vaccination. In an individual-based model, patients can be tracked separately over time. Therefore this 

approach allows for the incorporation of readmission dynamics, as well as the incorporation of 

heterogeneity in risk factors associated with infection, such as observed higher levels of antibiotic usage in 

LTCF populations as compared to community populations[23–26]. Unfortunately, the lack of data on 

CDI incidence in settings outside the hospital (Chapter 1) limit the possibilities for incorporating a long-

term feedback loop between these settings, as was suggested in research paper one[27]. 

In this chapter, evidence generated from research paper one, two and three are combined to 

develop a mathematical dynamic transmission model to investigate the spread of nosocomial C. difficile, 

and evaluate the effectiveness of infection prevention and control strategies involving vaccination in an 

English setting. Extensive analysis of English national datasets and local level data from individual 

hospitals was conducted to inform key parameters and simulate the English ICU-setting as closely as 
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possible. Vaccine performance is evaluated under different strategies using the developed transmission 

dynamic model. Moreover, as shown in research paper two (Chapter 3), cross-transmission from 

symptomatic patients explained just a fraction of the variation in weekly CDI incidence observed. Hence, 

there remains considerable uncertainty around the alternative routes of CDI acquisition. To account for 

this, we performed scenario analysis, exploring the potential role of transmission from asymptomatic 

carriers. Similarly, to account for variation among ICUs with regards to levels of CDI risk, vaccine 

effectiveness is modelled under different scenarios of antibiotic usage and levels of cross-transmission. 

Hence, Chapter 5 meets objective four, as well as the overall objective of this thesis.  
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Abstract 

Background: Early clinical trials of a C. difficile toxoid vaccine show efficacy in preventing individual 

infection (CDI). However, the population-level impact of vaccination remains unknown. This study 

performed a model-based evaluation of the effectiveness of CDI infection control strategies involving 

vaccination, including potential indirect effects (prevention of onward transmission of the bacteria). 

Methods: A state-of-the-art dynamic model of CDI, simulating transmission and control on an individual-

patient level, with a focus on the Intensive Care Unit (ICU), was developed. The model incorporated data 

on patient movements between the hospital, community and long-term care facility (LTCF), using 

English national datasets and local level data from individual hospitals for model-parameterisation. We 

evaluated vaccination of: 1) patients with a previous CDI-occurrence in the ICU; 2) LTCF-residents; 3) 

Planned surgical admissions and 4) All three strategies combined. 

Findings: In our baseline scenario, 10.8 patients per 1000 admissions developed CDI in the ICU, of which 

31% was ICU-acquired. Immunising all three patient groups resulted in a 43% [interquartile range (IQR) 

42 – 44], reduction of ICU-onset CDI on average. Among the strategies restricting vaccination to one 

target group, vaccinating elective patients proved most effective (35% [34–36] reduction), but required 

146 [133 – 162] doses to prevent one case of CDI. Immunising LTCF residents was most efficient, 

requiring 14 [11 – 17] doses to prevent one case, but only reduced ICU-onset CDI by 9% [7 – 11]. Ward-

based transmission rates, antimicrobial consumption and the transmission potential of asymptomatic 

carriers had significant effects on CDI incidence in the population, and therefore effectiveness and 

efficiency of the vaccination strategies. 

Conclusions: Vaccination can aid markedly in CDI prevention. Strategy success depends on the interaction 

between hospital and catchment populations, and importantly, consideration of importations from 

elsewhere which we find to substantially impact hospital dynamics. The contribution of asymptomatic 

carriers to C. difficile acquisition should be an area of future investigation, as well as careful examination of 

groups at high risk for colonisation on admission and subsequent healthcare-onset CDI. Vaccination may 

be most effective in settings or patient groups where antimicrobial stewardship has not been (or can not 

be) implemented successfully.  
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Introduction 

Clostridium difficile is a Gram-positive, spore forming bacterium that is an important cause of 

gastrointestinal infection in Europe[28]. Since 2007, C. difficile infections (CDIs) have dropped 

dramatically in England, from 55,489 cases reported across the National Health Service (NHS) and 9.4 

cases per 10,000 bed days to 13,361 cases and 3.9 per 10,000 bed days in 2014/15[29]. Similar trends and 

rates are seen in other European countries[30], whereas in the US, despite observed reductions, incidence 

rates remain generally high, with nine hospital-onset cases reported per 10,000 bed days in 2014[31]. 

Prevention and control of CDI aims to reduce the organism’s acquisition and spread. Measures 

include environmental cleaning, isolation and hand hygiene, as well as efforts to decrease patients’ 

susceptibility to CDI, primarily through improved antimicrobial stewardship[32, 33].  Recently, vaccines 

targeting two C. difficile toxins  (TcdA and TcdB) have been developed[34–37] and, following promising 

results in  phase I and II clinical trials[34, 38],  Phase III trials are now underway[39].   These vaccines 

induce an IgG antibody response and therefore aim to prevent infection in colonised individuals[34, 40–

43]. A successful vaccine that prevented the primary, or recurrent, onset of CDI would directly reduce 

morbidity and mortality in the vaccinated individual but should also have a population-level effect, by 

reducing the spread of infectious spores from infected individuals into the environment, and thus 

preventing onward transmission of the bacteria. However, current evidence, based on highly 

discriminatory genetic typing-methods[44–46] as well as statistical modelling[5], suggests patients with 

symptomatic CDI are not the only contributors to hospital-onset CDI[47–49]. Such research makes it 

unclear which patient groups would be optimal to target with a C. difficile vaccine to prevent onward 

transmission and the development of CDI. Therefore, any examination of the overall impact of 

vaccination needs to account for C. difficile transmission, including the potential role of asymptomatic 

carriers [47–49].  

CDI places a substantial burden on healthcare systems, and previous economic burden studies of 

CDI have shown that direct healthcare costs due to excess length of hospital stay (LOS) were the main 

cost drivers of the infection[50–52]. Within the hospital, patients in the intensive care unit (ICU) are likely 

to benefit from additional CDI prevention measures, considering their increased risk for CDI[16, 53, 54]. 
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Although ICUs can vary markedly in their case mix, their critically ill status often causes a state of 

immunosuppression[55], and requires high levels of antibiotic prescribing[56]. Other risk factors 

associated with CDI, such as gastro-acid suppressants are frequently prescribed among ICU patients[57]. 

The elderly in long term care facilities (LTCF) are another high-risk population. Although there is 

no routine systematic surveillance of CDI in LTCF, nor is CDI testing performed routinely in this setting, 

evidence from individual LTCFs[22] have shown that carriage rates are high among these elderly 

residents. Admissions from LTCF have been associated with increased risk of hospital-onset CDI[58] and 

residing in a LTCF has been identified as an independent risk-factor for developing CDI[59]. Therefore, 

this group of individuals has been suggested as a potential target population for vaccination, as have 

elderly patients with planned elective surgery who share many of the underlying risk factors  (frailty, 

hospital admission and antimicrobial usage) in common with the LTCF cohort [39]. Moreover, 

considering about 20% of CDI patients experience recurrent CDI[60], either due to re-infection or 

relapse[61], and primarily as a result of continued exposure to factors disturbing the gut flora post 

identification of CDI[62], patients with a history of CDI are a potential third target group for vaccination.   

Transmission dynamic mathematical modelling is a well-established tool that can be used to 

extrapolate vaccination trial results to the population-level[63, 64]. In the case of C. difficile these methods 

would allow the exploration of vaccination while taking into account the different modes of 

acquisition[65]. To date, only a few attempts have been made to investigate the spread of C. difficile in the 

hospital setting by the application of dynamic-transmission models[6, 8–13, 15, 27]. One modelling study 

suggested that CDI vaccination could be cost-effective in preventing initial CDI in situations of relatively 

high CDI acquisition risk and/or low vaccine costs, but primarily in terms of recurrent CDI[21]. 

However, this study did not account for the indirect (i.e. population-) effects, nor investigated specific 

target groups for vaccination (other than (unspecified) patients at risk and patients with an earlier episode 

of CDI).  

The prevention of CDI through vaccination is likely to have the greatest impact on the health 

and economic burden of CDI when hospital-onset is prevented, in the ICU in particular. We thus 

investigated the effectiveness of the four strategies described below, in terms of preventing CDI in the 
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ICU. A dynamic transmission model was developed, that accounted for potential population-effects, as 

well as uncertainties related to the epidemiology of CDI. 

Methods 

Model framework 

A discrete-time, individual-based, stochastic, dynamic transmission model[66] was developed, 

simulating the transmission and control of CDI in a hypothetical 30-bed ICU in England serving a 

community of 100,000 individuals. Individual patient movements between the ICU, the hospital, 

surrounding community and long-term care facilities (LTCF) were modelled (see Figure 15 for model 

schematic).  

Figure 15: Model framework 

 

P = Patients protected from colonisation, hence infection; S = Patients susceptible to colonisation, hence infection; Cimm = Patients colonised 
with C. difficile that mount an immune response; Cn_imm= Patients colonised with C. difficile that fail to mount an immune response; I = Patients 
with CDI; LTCF = Long-term care facility  
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Transmission process 

Patients with a normal gut flora were assumed protected against C. difficile colonisation 

(represented by compartment P in Figure 15). Consumption of ‘high risk’ antimicrobials (defined as 

broad-spectrum penicillins, third generation cephalosporins, clindamycin, and quinolones) was assumed 

to result in susceptibility to colonisation (compartment S) because of their deleterious effect on the 

microbiota[67–69]. Each day, susceptible patients (S) could become colonised with C. difficile through 

transmission, with the daily risk of colonisation (λt) increasing linearly with the number of transmitting 

CDI patients in the ICU ward (Table 7). The per day probability of colonisation, given at least one CDI 

or colonised patient on the ICU described the likelihood of transmission through direct contact between 

susceptible and infectious patients, and indirect contact between susceptible patients, contaminated staff 

and the environment. It was assumed that contacts (with patients, staff or the environment) occurred 

randomly and were homogenously distributed among patients.  

Table 7: Model parameters and assumptions 

Parameter Description Base value Source  

 
  
Transmission parameters 

   

β1 Probability of transmission from infected patients, per day 0.0074 Fitted# 

β2 Probability of transmission from colonised patients, per day 0.0037 Fitted# 

λt Probability of a susceptible patient becoming colonised, per day 1-(1-β1)It(1-β2)Ct   

 
  
Patient parameters 

   

θ Incubation time (days) 18 (Gamma) [44, 48] 

s Duration of symptoms (days) 4 (Poisson) [20, 44, 70] 

c Duration of colonisation (days) 30 (Exponential) [19, 71] 

Licu Average length of ICU stay 6 [72] 

αgm 
Fraction of patients admitted from GM on antimicrobials on 
admission to the ICU 

0.081 PPS[73]*# 

αicu Fraction of patients on antimicrobials in the ICU on a given day 0.219 PPS[73]*# 

picu Probability of initiating high risk antimicrobials in ICU ward per 
day 

picu = 1-(1-αicu)1/Licu  

αltcf 
Fraction of patients directly admitted from LTCF on antimicrobials 
on admission to the ICU 

0.040 PPS[25, 26]* 

αcom 
Fraction of patients directly admitted from the community on 
antimicrobials on admission to the ICU 

0.012 PPS[23, 24]* 

fltcf = fcom 
Fraction of patients admitted to ICU from the LTCF/ community 
that develop a natural immune response against disease 

0.240 [74]* 

ai_ltcf Fraction of patients from LTCF that were infected on admission to 
the ICU 

0.050 H* 

ac_ltcf Fraction of patients from LTCF that were colonised on admission 
to the ICU 

0.010 H* 
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as_ltcf  Fraction of patients from LTCF that were susceptible on admission 
to the ICU 

altcf -( ai_ltcf + ac_ltcf) - 

ai_com Fraction of patients from the community that were infected on 
admission to the ICU 

0.003 H 

ac_com Fraction of patients from the community that was colonised on 
admission the ICU 

0.028 H 

as_com Fraction of patients coming from the community that was 
susceptible on admission to the ICU 

(1- altcf)-( ai_com + 
ac_com) 

- 

 
  
Movement parameters 

   

altcf Fraction of patients admitted from LTCF 0.040 PPS[75] 

adirect_icu Fraction of patients admitted directly into ICU from any 
community setting 

0.510 HES 

aelect_icu_ltcf Fraction of patients in the ICU that were admitted for elective 
surgery from LTCF 

0.110 HES  

aelect_icu_com Fraction of patients in the ICU that were admitted for elective 
surgery from community 

0.300 HES  

dn Daily probabilities of discharge from the ICU for protected, 
susceptible and asymptomatic patients  

Supplementary 
table 5 

[72, 76]  

di 
Daily probabilities of discharge from the ICU for infected patients  

Supplementary 
table 5 

[72, 76, 77] 

µn Daily probabilities of death in the ICU for protected, susceptible 
and asymptomatic patients  

Supplementary 
table 5 

[72, 76] 

μi= µn Daily probabilities of death in the ICU for infected patients 
Supplementary 

table 5 
[72, 76, 77] 

rltcf Probability of readmission for LTCF residents within three months 0.220 HES  

rcom Probability of readmission for community residents within three 
months 

0.120 HES  

τ Mean time between discharge and readmission (days) 29 (Exponential) HES  

 
 
 Vaccination parameters 

   

e 
The probability of vaccination resulting in successful acquired 
immunity (vaccine efficacy) 

1 A# 

ε Duration of vaccine-acquired immunity (years) 2 A 

aelect_hospital Fraction of hospital admission that are elective  0.504 HES[78] 

aicu Fraction of hospital admissions that involve an ICU stay 0.018 HES[79] 

Bltcf Median number of beds per LTCF 37 CQC 

Nltcf Total number of LTCFs in England with a size of ≥20 beds 8,639 CQC 

Ntrust Total number of acute Trusts reporting ICU records in England 143 HES[79] 

t Simulation time (years) 5 - 

* Included in probabilistic sensitivity analysis; # Included in scenario analysis. PPS = Point prevalence survey data 
(reference provided refers to which point prevalence data); H= Individual hospital data; HES = Hospital Episode 
Statistics; A = Assumption, CQC = Care Quality Commission data 
 

 
A proportion of patients can mount a natural immune response against C. difficile toxins, and are 

protected from infection[80, 81]. Therefore, a distinction was made between patients that remained 

asymptomatic (compartment C) and those that suffered from infection (compartment I) following an 

incubation period.  After successful treatment, patients lost their infection status but remained colonised 

with C. difficile. Colonisation status was lost after an average period of four weeks[19, 71]. About 20% of 
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patients experience recurrence[60, 61]; either due to re-infection or relapse[61], primarily as a result of 

continued exposure to factors disturbing the gut flora post identification of CDI[62].  To simulate relapse 

whilst still colonised, the model allowed recovered patients to have another episode of CDI following 

successive antimicrobial use but without transmission from another patient. Finally, post vaccination, 

patients are assumed protected from disease, however not from colonisation[81, 82]. 

Model assumptions 

1) 100% bed occupancy was assumed, i.e. discharge or death of a patient resulted directly in the 

admission of a new patient. 

2) Daily time-steps were used with patient discharges from the ward occurring at the beginning 

of each day. 

3) Patients could be admitted from the community or from a LTCF. Patients either resided in a 

LTCF or the community for the full simulation period (five years).  

4) At time of admission, a data-informed probability (Table 7) determined whether the ICU 

admission was directly from outside the hospital (i.e. from LTCF or community) or an 

internal hospital transfer.  The source of the admission determined the probability of having 

been prescribed antimicrobials outside the ICU. 

5) Transmission-events were simulated in the ICU, whereas a fixed importation rate of 

colonised and infected individuals from the community and LTCF was assumed. The time 

spent elsewhere in hospital (and thus the transmission elsewhere in hospital) prior to ICU 

admission is not captured in the model. However the importation rates were informed by 

ICU admission data (see model parameterisation), therefore implicitly incorporated 

acquisition during the time spent elsewhere in hospital. 

6) Patients could be discharged whilst still colonised with C. difficile. Once discharged, colonised 

patients recovered from C. difficile colonisation at a constant rate (Table 7) irrespective of 

whether they were immunised. 

7) The vaccine did not protect patients from colonisation. Vaccine derived immunity was 

assumed to last for a period of two years (internal communication with Sanofi Pasteur). 
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Intervention strategies  

We considered the following four strategies, comparing each to no vaccination (strategy 0):  

1) Vaccination of patients who have experienced an episode of CDI in the ICU, at the time of 

discharge from the hospital, as they are at risk of experiencing recurrent infection; 

2) Vaccination of LTCF residents in the catchment area of the hospital irrespective of whether 

they are to have planned elective surgery[39];  

3) Vaccination of patients with planned elective surgery in the hospital catchment area [39].  

4) Vaccination of all the above listed patient groups. 

Model output  

The absolute reduction in number of cases per 1000 admissions for each strategy compared to a 

strategy without vaccination (strategy effectiveness) was evaluated, as well as the number of doses 

required to avert one case in the ICU (strategy efficiency). Patients who acquired C. difficile colonisation in 

the ICU, and did not mount a natural or acquired immune response, but were discharged from the ICU 

pre-symptom-onset, were defined as new infections without ICU-onset. C. difficile imported in the ward 

comprised either community-acquired cases or cases readmitted to the ward after a colonisation/infection 

acquired in a previous ICU stay.  

Scenario analysis 

There exists considerable uncertainty in the transmission rates of C. difficile. Considering the 

current uncertain role of asymptomatic carriers in the transmission of C. difficile[46, 83], three assumptions 

were simulated, covering the transmission potential from these carriers as follows:  

1) Asymptomatic carriers transmitted at half the rate of symptomatic carriers (2:1); the “base 

case”;  

2) Asymptomatic carriers did not spread C. difficile (1:0);    

3) Asymptomatic carriers transmitted as efficiently as symptomatic carriers (1:1)    
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In addition, ICU-based acquisition rates of CDI vary across the country (median 0.8 [interquartile 

range: 0 – 2.1] per 1000 patient days) in 2013/14[84]. This could relate to heterogeneity in levels of 

successful infection prevention and control, or regional differences in prevalence of more transmissible 

strains such as BI/NAP1/027[85, 86]. To represent different hospital settings (see Model 

Parameterisation for analysis), intervention effectiveness was evaluated assuming:  

1) Average levels of transmission according to these estimates (AT); the “base case”  

2) High levels of transmission (HT). 

 On analysis of national data[73], hospitals and ICUs across the country vary in their 

antimicrobial prescribing practices (see Model Parameterisation for analysis). To consider this between-

ICU heterogeneity in antimicrobial consumption, the following scenarios were simulated and the 

effectiveness of vaccination evaluated in both settings: 

1) Average antimicrobial use (AA), the “base case”;  

2) Low antimicrobial use (LA). 

Given that currently any CDI vaccine is currently still facing clinical trials; the efficacy of a CDI 

vaccine is unknown. To account for this, vaccine performance was evaluated under: 

1) High vaccine-efficacy (100%), the “base case”; 

2) Medium vaccine-efficacy (70%); 

3) Low vaccine-efficacy (50%). 

Combinations of the above listed possibilities were simulated under the base case assumption for 

asymptomatic carriers (Symptomatic/ Asymptomatic transmissions (2:1)), representing the following ICU 

scenarios: 

- Scenario 1: Average transmission (AT) + Average antimicrobial use (AA) + High vaccine-

efficacy (100%); the “base-case” scenario 

- Scenario 2: High transmission (HT) + Average antimicrobial use (AA) + High vaccine-efficacy 

(100%); 
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- Scenario 3: Average transmission (AT) + Low antimicrobial use (LA) + High vaccine-efficacy 

(100%); 

- Scenario 4: High transmission (HT) + Low antimicrobial use (LA) + High vaccine-efficacy 

(100%); 

- Scenario 5: Average transmission (AT) + Average antimicrobial use (AA) + Medium vaccine-

efficacy (70%); 

- Scenario 6: Average transmission (AT) + Average antimicrobial use (AA) + Low vaccine-

efficacy (50%); 

In addition, the impact of the assumed transmission potential of asymptomatic carriers was 

investigated by simulating scenario 1 and 2 with the two alternative assumptions regarding asymptomatic 

transmission. The first – asymptomatic carriers did not spread C. difficile (1:0); and the second –

symptomatic carriers transmitted as efficiently as symptomatic carriers (1:1). In Supplementary table 3 the 

values used to represent these scenarios are given. Estimation of these values is further explained in the 

model parameterisation section. 

Probabilistic Sensitivity Analysis 

Uncertainty in parameter values other than asymptomatic transmission (see Table 7 for which 

parameters this concerned) was simulated using probabilistic sensitivity analysis, that is running the 

simulations multiple times with parameter values sampled from their distributions (Supplementary table 

4) using Latin hypercube sampling (LHS)[87] as follows. One thousand random samples were drawn 

covering the whole range of possible values for each parameter equally and combined at random to create 

1000 different parameter sets. As the model was stochastic, a different result could be expected for a 

given parameter set. Hence the medians of 100 simulation runs per parameter set were combined to 

obtain the overall median and interquartile range (IQR) of the model output encompassing parameter 

uncertainty.  
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Model parameterisation  

Table 7 summarises the model parameter values. These values were derived from new analysis of 

national and regional healthcare data and peer-reviewed research articles otherwise, discussed in more 

detail below. 

C. difficile transmission parameters (β1 and β2) 

Little is known about the transmission potential of patients infected or colonised with C. difficile. 

Therefore, the transmission potential from symptomatic carriers (β1) and asymptomatic carriers  (β2) was 

fitted to the median CDI acquisition rates in English critical care units in the financial year 2012/13 as 

measured in the Intensive Care National Audit & Research Centre Case Mix Programme (ICNARC) data. 

This data comprises, among others, ‘potential performance indictors’, such as unit acquired CDI, of 202 

NHS adult, general critical care units, defined as ICUs, combined ICU/high dependency units (HDUs) 

and combined general care/coronary care units admitting mixed medical/surgical patients predominantly 

aged older than 16 years[88]. 

The following three steps were applied. Firstly, we sampled 1000 parameter values for β1 from a 

uniform distribution over range 0 to 1 (as negative values were considered biological implausible) using 

LHS and let β2  depend on β1 according to β2 = β1/2. Secondly, we ran the model for each of these 1000 

values for β1 and β2 one hundred times (to minimise stochastic variation) whilst keeping all remaining 

model parameters at their base value (Table 7). Thirdly, we compared the median ICU-onset acquisition 

rates resulting from each set of one hundred model simulations against the median CDI acquisition rates 

in the ICNARC data, i.e. 0.8 [IQR: 0 – 2.1] per 1000 bed days[84], and evaluated which values of β1 (and 

thus β2) minimised the difference between the model output, and the data (Figure 16). This process was 

repeated for the two alternative assumptions for the transmission potential of asymptomatic carriers (i.e. 

1:0 (β2=0) and 1:1 (β2=β1)). Moreover, a similar step-wise process was followed for the scenario of high 

transmission, where β1 and β2 were fitted against the seventy-fifth percentile of the aforementioned CDI 

acquisition rates in the ICU, i.e. 2.1 cases per 1000 patient days (Figure 16). 
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Figure 16: Model output of 1000 values for β1 (and β2 = β1/2; β2 = 0 or β2= β1) 

 

Solid horizontal black line: median CDI acquisition rates in English ICUs (ICNARC data), representative for 

ICUs with average transmission.  Dashed horizontal black line: seventy-fifth percentile of CDI-acquisition rates 

in English ICUs, representative for ICUs with high CDI transmission. Blue dots: Model output for each of the 

values of β1 in the base case, where asymptomatic carriers have half the transmission potential compared to 

symptomatic carriers, i.e. β2 = β1/2 (scenario 2:1). Pink dots: Model output for each of the values of β1 in the 

scenario where asymptomatic carriers have no transmission potential, i.e. β2 = 0 (scenario 1:0). Green dots: Model 

output for each of the values of β1 in the scenario were asymptomatic and symptomatic carriers have equal 

transmission potential, i.e. β2 = β1 (scenario 1:1). Lower black dots: Best fit for β1 (and implicitly for β2) for each 

of the three asymptomatic transmission scenarios when transmission levels are at national average. Upper black 

dots: Best fit for β1 (and implicitly for β2) for each of the three asymptomatic transmission scenarios when 

transmission levels are high compared to the national average. 

 

Daily discharge and death probabilities (dn, di, µn and μi) 

Estimates for ICU-specific daily discharge probabilities and mortality risks for CDI-negative 

patients and asymptomatic carriers (dn and µn respectively) were derived from studies estimating these 

parameters for MRSA negative patients[72, 89], under the assumption that these MRSA negative patients 

did not suffer from CDI. For daily discharge probabilities of CDI positive patients (di) the daily discharge 

probabilities of CDI-negative patients were reduced by 28%, based on the findings of the previously 

presented Cox proportional hazards model estimating excess LoS associated with CDI[76] (see Chapter 
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4). These discharge probabilities were estimated using whole hospital data. A review of the literature 

identified two studies on excess length of stay (LoS) and mortality associated with CDI in the ICU 

specifically using appropriate methods [77, 90]. Using a Cox proportional hazard model, one study found 

reduced daily discharge probabilities for CDI patients as well (HR: 0.82 [95%CI 0.72 – 0.94]). The second 

study used a multistate model and found an excess ICU stay of 6 days (6.3 [2.0 – 10.6]) similar to our 

results. In contrast to our overall hospital estimate, both studies did not find an increased probability of 

death due to CDI in the ICU[77, 90]. Therefore, the daily risk of death in our model for CDI negative 

(μn) and CDI positive (μi) were assumed identical (Supplementary table 5) 

Antimicrobial prescribing in the hospital setting (αicu, αgm and picu) 

In the model, patients could be either admitted directly to the ICU from a community-setting (i.e. 

LTCF or community), or as a result of an internal-hospital transfer, from a GM ward. Therefore, the 

prescribing prevalence for GM (αgm) needed to be obtained, in addition to the daily risk of being 

prescribed antimicrobials in the ICU (picu). To obtain the national prevalence of ward-prescribing in 

England, a mixed-effects logistic regression model, with a normally distributed random-intercept (to 

account for clustering on a Trust level) and ward specialty included as an explanatory variable, was fitted 

to individual patient-level antimicrobial consumption data from a nation-wide point prevalence survey on 

health-care associated infections and antimicrobial use[73]. For this survey, data was collected from 99 

NHS acute Trusts in England on the number of patients on antimicrobials on the one single day the 

survey was conducted[73].  

For the analysis, antimicrobial usage data was restricted to CDI-associated antimicrobial classes 

only, i.e. broad-spectrum penicillins, third-generation cephalosporins, clindamycin, and quinolones. The 

mean probability of being on CDI-associated (or ‘high-risk’) antimicrobials for each ward specialty on a 

random single day (αw) was calculated using the logistic function, given by the inverse-logit: 

α𝑤 =  1/(1 + 𝑒𝑥𝑝(−𝑥𝑤)), 𝑤 =  𝐺𝑀, 𝐼𝐶𝑈 (Equation 1) 

where xw corresponds to the estimated regression coefficients for each ward specialty 

(Supplementary table 6). The within-hospital variance (σw
2) of these estimates was used as a proxy for the 
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second-order uncertainty around αw.  In the earlier mentioned probabilistic sensitivity analysis, 1000 

samples were randomly drawn from a normal distribution with mean = xw and standard deviation = √σw
2 

using LHS. As these estimates were fitted with a log-link, these 1000 randomly drawn samples were then 

transformed to the identity scale using equation 1. Considering xw was fitted to hospital antimicrobial 

consumption data of one single day, αw represents overall ward prescribing prevalence. This estimated 

prevalence for the GM ward was used to represent the risk of being on CDI-associated antimicrobials 

when admitted from a GM ward (αgm) to the ICU in our model. However, as our model explicitly 

simulated CDI-transmission dynamics in the ICU, and in daily time steps, αicu needed to be converted to 

a daily risk of being prescribed CDI-associated antimicrobials. Assuming each patient in the point 

prevalence data was receiving one CDI-associated antimicrobial only, and the average length of ICU stay 

(Licu) was six days[76], we used the following: 

       𝛼𝑖𝑐𝑢 = 1 − (1 − 𝑝𝑖𝑐𝑢)𝐿𝑖𝑐𝑢        (Equation 2) 

Where 1 - pw is the risk of avoiding a CDI-associated antimicrobial prescription in the ICU per day. 

Equation 2 can be rearranged to calculate daily risks of starting on CDI-associated antimicrobials for each 

patient: 

             𝑝𝑖𝑐𝑢 = 1 − (1 − 𝛼𝑖𝑐𝑢)1/𝐿𝑖𝑐𝑢      (Equation 3) 

Finally, for the scenario analysis, an alternative scenario of low hospital prescribing of CDI-

associated antimicrobials was represented by the twenty-fifth percentile of these estimates’ confidence 

intervals, calculated when including both the within (√σw
2) and between-Trust variation (√σ2

trust)( 

Supplementary table 6).  

Antimicrobial prescribing in the community and LTCF (αltcf and αcom) 

The fraction of LTCF residents and patients admitted from the community that received CDI-

associated antimicrobials prior to ICU admission (αltcf and αcom) were parameterised by European Centre 

of Disease Control (ECDC) point prevalence antimicrobial consumption data from the United Kingdom 

(UK), collected through The European Surveillance of Antimicrobial Consumption Network in 2010 and 
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2011[23, 24] and the Healthcare Associated infections in LTCF (HALT) point prevalence studies of 2010 

and 2013[25, 26]. These data report the Defined Daily Doses (DDD) of antimicrobials per 1000 

individuals using the Anatomical Therapeutic Chemical (ATC) Classification System 

(http://www.whocc.no). DDD represent the assumed average maintenance dose per day for a drug used, 

for its main indication in adults. The ACT classification system is developed by the World Health 

Organisation and divides drugs according to their therapeutic, pharmacological and chemical properties 

using five different levels, where level 1 corresponds to the main group and level 5 to the chemical 

substance. The ECDC point prevalence survey results are reported at ATC level 4. The DDD per 100 

population of the ATC level 4 groups J01D (other beta-lactam antibacterials); J01C (Beta-lactam 

antibacterials, penicillins); J01F (Macrolides, lincosamides and streptogramins); and J01M (Quinolone 

antibacterials) were combined to obtain an estimate of the proportion of patients receiving CDI-

associated antimicrobials in the community and LTCF (Supplementary table 7).  

Importation rates of colonised and infected patients (ai_ltcf, ac_ltcf, as_ltcf, ai_com, ac_com, as_com) 

The fraction of individuals admitted from the community/LTCF that were infected (ai_com/ai_ltcf), 

colonised (ac_com/ac_ltcf) or susceptible (as_com/as_ltcf) on admission were parameterised using ICU-screening 

data collected over 18 months from a 30-bed ICU ward in a large London teaching hospital[91]. The 

particular provenance status (i.e. community home or LTCF) of the patients was not collected as part of 

this study. As an alternative, it was assumed that 4% of the total admissions to the ICU were LTCF 

residents, as was shown by sentinel data collected from seven acute Trusts through The National One 

Week Prevalence Audit of MRSA[75]. For the patients that screened positive for colonisation and/or had 

symptomatic infection, provenance status was obtained by retrieval of the patients’ postcodes of 

residence, which were subsequently matched with LTCF postcodes (using Care Quality Commission data 

further explained later)[92]. 

Using this procedure, 53 of the admissions originated from LTCFs, and 30 of these were 

screened for C. difficile. On admission, infection prevalence among patients admitted from their own 

home (ai_com) was 0.3% (95%CI: 0.1 – 0.8) and colonisation prevalence (ac_com) 2.8% (1.8 – 4.3), whereas 

this was 0% (0 – 11.4) and 0% (0 – 11.4) respectively for patients from LTCFs (Supplementary table 8). 
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As shown in Chapter 1, a recent systematic review of the literature showed a significantly higher weighted 

mean prevalence of asymptomatic carriage in LTCFs of 14.8% (95% CI 7.6 – 24.0), though did find high 

levels of heterogeneity among individual care homes.  

For this reason, we constructed prior distributions for asymptomatic and symptomatic C. difficile 

importation rates from the LTCF, and updated them using the screening data. As a conservative estimate, 

it was assumed that importation rates of colonised (ac_ltcf) and infected (ai_ltcf) individuals from the LTCF 

could be 0-3 times higher than importations from the general community. Two beta distributions with 

shape parameters informed by the above screening data (Supplementary table 4) were used to represent 

community importation rates of infected and colonised cases respectively, whereas a triangular 

distribution (mode 1.5, min=0, max=3) represented the differences in importation rates between 

community and LTCF settings. Using LHS, 10,000 samples were randomly drawn from the beta and 

triangular distributions, and multiplied to obtain a prior distribution for ac_ltcf and ai_ltcf. The probability 

distributions of these priors were updated using the probability distribution of the data (i.e. LTCF 

importation rates according to the above screening data), represented by a binomial distribution (k=0 and 

n=30), in order to obtain posterior distributions for the desired importation rates (Supplementary table 

4).  

Patient movement parameters (adirect_icu, aelect_icu_ltcf, aelect_icu_com, rltcf, rcom and τ)  

Hospital Episode Statistics (HES) contains individual patient-level data for all admissions (i.e. 

spells) to NHS acute Trusts in England. A fraction of this data is publicly available through 

(http://www.hscic.gov.uk/). However, to inform parameters describing: the fraction of individuals that 

was admitted directly into the ICU (adirect_icu); the fraction of ICU admissions that concerned 

LTCF/community patients that were originally admitted electively to the hospital (aelect_icu_ltcf,/aelect_icu_com); 

the readmission rates of LTCF residents and patients admitted from their own home (rltcf,/rcom) and mean 

time elapsed between ICU readmissions (τ), more detailed data was required. For this reason, a HES 

extract involving all admissions with at least one episode in the ICU (i.e. treatment specialty defined as 

‘critical care’) from the financial year April 2012/13 to April 2013/14 was requested. 

http://www.hscic.gov.uk/


144 

 

In HES, a hospital spell (i.e. hospital stay) contains multiple episodes, where a patient starts a 

new episode when treated by a consultant from a different treatment specialty. The proportion of patients 

that had their first episode defined as a critical care treatment specialty, informed the fraction of direct 

admissions into the ICU (adirect_icu), which was used to calculate the risk of antimicrobial exposure outside 

the ICU as explained earlier.  

The HES ‘admission method’ and ‘admission source’ data fields informed the fraction of ICU 

admissions that concerned LTCF/community patients that were originally admitted electively to the 

hospital.  That is, aelect_icu_ltcf was the proportion of spells with an ‘Elective’ admissions method and the 

admission source coded as one of the following:  

- 54) NHS run nursing home, residential care home or group home; 

- 65) Local authority Part 3 residential accommodation: where care is provided (from 1996-97); 

- 85) Non-NHS (other than Local Authority) run residential care home (from 1996-97); 

- 86) Non-NHS (other than Local Authority) run nursing home (from 1996-97) 

- 88) non-NHS (other than Local Authority) run hospice.  

aelect_icu_com concerned all elective spells with admission source coded as: 

- 19) The usual place of residence, including no fixed abode.  

Readmission rates (rltcf,/rcom) and readmission time (τ) were defined by the fraction of patients 

that had a readmission to the ICU within three months (considering the colonisation time of C. difficile is 

rarely found longer than three months[19, 71]), and the mean number of days between these 

readmissions. 

Number of vaccines required for strategy 1 (Patients with a history of CDI in the ICU) 

 The number of vaccine doses required for strategy 1 (vaccinating patients that experienced an 

episode of CDI in the ICU, 𝑣𝐶𝐷𝐼_𝑇𝑟𝑢𝑠𝑡), was calculated through a counting process incorporated in the 

model. Over the five year simulation time, for each patient, at the time of ICU-discharge, the model 

checked whether the patient had experienced an episode of CDI (which could have concerned either an 
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importation or an ICU-acquired infection) and if so, and the patient had not been vaccinated within the 

previous two years, added an additional vaccine dose to the cumulative total.  

Number of vaccines required for strategy 2 (Patients admitted from a LTCF) 

To calculate the number of vaccine doses required for strategy 2 (vaccinating residents of 

LTCFs), two publicly available data sources were used, held by the Care Quality Commission (CQC) and 

Health & Social Care Information Centre (HSCIC) respectively. The former comprises logistical data on 

English care homes, such as care home type, postcode and bed numbers[92]. HSCIC is the provider of 

England’s Hospital Episode Statistics (HES). Adult Critical Care data forms part of HES and provides 

details on the number of NHS acute Trusts with reported ICU records[79]. Hence, these datasets 

provided insight into 1) the total number of LTCFs in England, using the care home criteria for elderly 

residents as defined by the CQC (Nltcf); 2) the total number of acute Trusts with reported ICU admissions 

(NTrust); and 3) the mean LTCF bed size (Bltcf, see Table 7 for parameter values). 

Assuming all LTCFs and acute Trusts are homogenously scattered across the country, the 

number of residents requiring vaccination per acute Trust (RTrust) was then defined by: 

𝑅𝑇𝑟𝑢𝑠𝑡 =  
𝑁𝑙𝑡𝑐𝑓

𝑁𝑇𝑟𝑢𝑠𝑡
𝐵𝑙𝑡𝑐𝑓             (Equation 4) 

Our simulation period (t) comprised five years, and it was assumed a booster vaccine was needed 

every two years (ε). Provided that none of the LTCF was admitting new residents, the number of 

residents multiplied by the simulation period divided by the timing a booster vaccine was required gave 

the average number of vaccines required per acute Trust over the full simulation period. 

𝑣𝑙𝑡𝑐𝑓_𝑇𝑟𝑢𝑠𝑡 =  𝑅𝑡𝑟𝑢𝑠𝑡
𝑡

𝜀
                  (Equation 5) 

The model captured the transmission dynamics in the ICU, not elsewhere in hospital. As a result, 

using 𝑣𝑙𝑡𝑐𝑓_𝑇𝑟𝑢𝑠𝑡 as a measure for calculating the number vaccines required to prevent one healthcare-

onset CDI case would underestimate the vaccine efficiency of this strategy. For this reason, we decided to 

adjust 𝑣𝑙𝑡𝑐𝑓_𝑇𝑟𝑢𝑠𝑡 for the proportion of admissions that included an ICU stay (aicu). The total number of 
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ICU admissions per Trust in the financial year 2013/14[79] were divided and weighted by the total 

number of HES admissions[78] to obtain the weighted mean proportion of yearly admissions that 

comprised an ICU admission (aicu). The average number of vaccines required per ICU over the full 

simulation period was then given by:    

𝑣𝑙𝑡𝑐𝑓_𝐼𝐶𝑈 =  𝑎𝑖𝑐𝑢𝑣𝑙𝑡𝑐𝑓_𝑇𝑟𝑢𝑠𝑡                (Equation 6) 

Number of vaccines required for strategy 3 (Patients admitted for elective surgery) 

For strategy 3 (vaccinating elective patients), only a small fraction of ICU admissions is 

planned[79]. However, elective hospital patients could experience an ICU episode during their hospital 

stay. Therefore, regardless of whether a vaccine would target ICU or high-risk hospital ward populations; 

this strategy will involve vaccination of all elective hospital patients. 

To calculate the number of vaccine doses required for this strategy (𝑣𝑒𝑙𝑒𝑐𝑡_𝑇𝑟𝑢𝑠𝑡 ), publicly 

available HES data was used. HES Admitted Patient Care data from 2013/14[78] provided detail on the 

total number of yearly admissions, and the yearly number of elective admissions per acute Trust. The 

mean of the latter multiplied by the simulation period represented the per acute Trust vaccine doses 

required for this strategy. For similar reasons as explained in the previous section, this number was scaled 

to the ICU setting using aicu. 

 𝑣𝑒𝑙𝑒𝑐𝑡_𝐼𝐶𝑈 =  𝑎𝑖𝑐𝑢𝑣𝑒𝑙𝑒𝑐𝑡_𝑇𝑟𝑢𝑠𝑡               (Equation 7) 

Number of vaccines required for strategy 4 (all combined) 

For strategy 4, as the three target groups were not mutual exclusive, 𝑣𝑙𝑡𝑐𝑓_𝐼𝐶𝑈,  𝑣𝑙𝑡𝑐𝑓_𝑇𝑟𝑢𝑠𝑡 and 

𝑣𝑒𝑙𝑒𝑐𝑡_𝐼𝐶𝑈 were combined and deducted by the fraction of admissions that concerned LTCF patients 

(altcf). Here, 𝑣𝐶𝐷𝐼_𝑇𝑟𝑢𝑠𝑡 was calculated as before, but with the model run under the assumption that all 

LTCF and elective patients were vaccinated, thus protected from developing CDI in the ICU. 

 

Results 
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Simulation Results: Base Case Scenario 

The vaccine impact (for four strategies) was first modelled using our base case scenario, where 

asymptomatic carriers are half as infectious as symptomatic carriers, the ward was assumed to have 

average transmission parameters, and antimicrobial prescribing was at the English national average, 

estimated as described in the methods section. 

No vaccination 

In the base case scenario, without vaccination (strategy 0), the median number of new 

symptomatic and asymptomatic C. difficile acquisitions in the ICU was 13.9 [IQR: 13.1–14.9] per 1000 

admissions (Figure 17). 7.7 [6.8–8.6] became symptomatic, of which symptom-onset in the ICU occurred 

in 3.3 [2.9–3.7] cases per 1000 admissions (Figure 18).   

Figure 17: Symptomatic and asymptomatic ICU- acquired C. difficile per 1000 admissions shown for all four 
vaccination strategies  

 

Model outcomes at baseline for strategy 0 (no vaccination); strategy 1 (CDI history); strategy 2 (LTCF residents); 
strategy 3 (elective patients) and strategy 4 (all combined). The middle line in the box represents the median of 
1000 model parameter sets, and upper and lower areas of the box indicate the seventy-fifth and twenty-fifth 
percentiles. Left set of boxes: Total ICU acquisitions (colonised and infected) per 1000 admissions for all strategies; 
middle set of boxes: Total ICU acquisitions that result in asymptomatic carriage (i.e. no symptom onset in- or 
outside the ICU) per 1000 admissions for all strategies; right set of boxes: Total ICU acquisitions that result in 
symptomatic infection (symptom onset in- or outside the ICU) per 1000 admissions for all strategies.  
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Figure 18: Absolute number of imported and ICU-acquired CDI cases in the ICU per 1000 admissions for all four 
vaccination strategies   

 

Model outcomes at baseline for strategy 0 (no vaccination); strategy 1 (CDI history); strategy 2 (LTCF residents); 
strategy 3 (elective patients) and strategy 4 (all combined). The middle line in the box represents the median of 
1000 model parameter sets, and upper and lower areas of the box indicate the seventy-fifth and twenty-fifth 
percentiles. Left set of boxes: ICU acquisitions that result in ICU-onset of symptoms per 1000 admissions for all 
strategies; middle set of boxes: ICU importations with ICU-onset of symptoms per 1000 admissions for all 
strategies; right set of boxes: ICU acquisitions that result in asymptomatic carriage (no symptom-onset in the ICU) 
oer 1000 admissions for all strategies. 

 

In addition, 7.5 infections per 1000 admissions were imported from outside the ICU. A low 

fraction (6.7%) of these were readmissions of patients who developed CDI in their current stay, following 

acquisition of C. difficile colonisation or infection during a previous ICU admission (Supplementary table 

9).  

Vaccine programme effectiveness  

Vaccinating all target populations (strategy 4) resulted in a 43% [IQR: 42 – 44] reduction in ICU-

onset cases over five years, equal to 4.7 [4.3 – 5.1] ICU-acquired and imported CDI cases per 1000 

admissions when compared to strategy 0 (Table 8). Of the strategies restricting vaccination to one target 

group (strategies 1, 2 and 3), vaccinating all patients awaiting elective surgery (strategy 3) yielded the 

largest net reduction (35% [34–36] over a five-year period) in ICU-onset cases. Strategy 1 (vaccinating 

patients after recovery from a CDI episode in the ICU) saw a 1% [0 – 3] reduction over five years. 
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Vaccinating LTCF patients (strategy 2) saw a 9% [7 – 11] reduction in ICU-acquired and imported CDI 

over five years. For all four strategies, the majority of ICU-onset cases prevented were importations. This 

was particularly true for strategy 1 (80%) and 2 (76%) (Table 8). 

Table 8: Number of ICU-onset cases prevented per 1000 admissions and doses required to avert 1 case of ICU-onset 
CDI for all scenarios 

 Transmission Symptomatic: Asymptomatic (2:1) 

Scenario  ICU-onset CDI 

cases 

prevented/1000 

admissions 

(Effectiveness) 

Proportion of the 

ICU-onset cases 

prevented that 

were ICU-acquired 

Doses required to 

avert one ICU-

onset CDI case 

(scaled to ICU) 

(Efficiency) 

Scenario 1 (AT + AA + VE = 

100%) 

   

 1) History of CDI in ICU 0.1 [0 – 0.3] 0.20 83 [33 – NA] 

 2) LTCF residents 1.0 [0.8 – 1.2] 0.24 14 [11 – 17] 

 3) Elective patients 3.8 [3.5 – 4.2] 0.36 146 [133 – 162] 

 4) All combined 4.7 [4.3 – 5.1] 0.34 124 [113 – 137] 

Scenario 2 (HT + AA + VE = 

100%) 

   

 1) History of CDI in ICU 0.5 [0.2 – 0.8] 0.34 43 [27 – 115] 

 2) LTCF residents 1.6 [1.3 – 2.0] 0.50 8 [7 – 10] 

 3) Elective patients 7.9 [7.1 – 8.8] 0.64 72 [65 – 80] 

 4) All combined 9.4 [8.4 – 10.4] 0.61 63 [57 – 70] 

Scenario 3 (AT + LA + VE = 

100%) 

   

 1) History of CDI in ICU - - - 

 2) LTCF residents 0.8 [0.6 – 1.0] 0.19 17 [14 – 23] 

 3) Elective patients 2.8 [2.6 – 3.0] 0.29 199 [183 – 219] 

 4) All combined 3.5 [3.2 – 3.7] 0.26 168 [156 – 181] 

Scenario 4 (HT + LA + VE = 

100%) 

   

 1) History of CDI in ICU - - - 
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 2) LTCF residents 1.1 [0.9 – 1.4] 0.40 12 [10 – 16] 

 3) Elective patients 5.0 [4.5 – 5.5] 0.56 112 [103 – 125] 

 4) All combined 5.9 [5.4 – 6.5] 0.54 99 [91 – 108] 

Scenario 5 (AT + AA + VE = 

70%) 

   

 1) History of CDI in ICU - - - 

 2) LTCF residents 0.8 [0.6 – 1.0] 0.24 17 [14 – 23] 

 3) Elective patients 2.8 [2.5 – 3.0] 0.37 204 [187 – 225] 

 4) All combined 3.4 [3.1 – 3.8] 0.34 171 [152 – 189] 

Scenario 6 (AT + AA + VE = 

50%) 

   

 1) History of CDI in ICU - - - 

 2) LTCF residents 0.6 [0.4 – 0.7] 0.23 23 [17 – 34] 

 3) Elective patients 2.0 [1.8 – 2.3] 0.36 283 [251 – 313] 

 4) All combined 2.6 [2.3 – 2.9] 0.33 228 [207 – 259] 

 

We assumed that vaccination did not provide direct protection against C. difficile colonisation. 

Nonetheless, introduction of vaccination saw a decreased ward-based risk of patients acquiring both 

symptomatic and asymptomatic C. difficile. This can be seen by a reduction in the median total number of 

ICU-acquisitions of 3% [0 – 5], 13% [11 – 16] and 16% [14 – 18] for strategies 2, 3 and 4. Due to this 

population-effect of the vaccine, the reduction in the number of ICU-acquisitions that became 

symptomatic (either in the ICU or post-discharge) was higher than the increase in the number of ICU-

acquisitions that resulted in colonisation for these three strategies (Figure 17).  In the ICU, this meant 

that, post-vaccination, a reduction was observed in both ICU-acquired CDI, as well as colonisations 

(Figure 18), as, when no vaccination was introduced, a large proportion (42%) of patients that remained 

asymptomatic in the ICU, developed symptoms post-discharge.  
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Vaccine programme efficiency  
 
Among the four strategies investigated, strategy 2 was the most efficient, i.e. required the lowest 

number of doses to avert one case of ICU-onset CDI in the base case scenario (Table 8). This was 

followed by strategy 1, but as this strategy included model simulations where no reduction was observed 

(considering the low number of readmissions of previously positive patients that experience subsequent 

onset, Supplementary table 9), this was also the most uncertain strategy. Strategy 3 required over ten times 

more doses than strategy 2, and hence was the least efficient. Finally, vaccinating all target groups 

required over eight times more doses than strategy 2 to prevent one case (Table 8). 

Simulation Results: Scenario analysis 

Vaccine impact (for four strategies) was modelled in six alternative scenarios, as shown in Table 

8. In the following sections, vaccine performance in these scenarios in terms of effectiveness and 

efficiency is discussed. 

Scenarios of high transmission 

Among all six scenarios investigated, the CDI vaccination programmes proved most effective 

and efficient when transmission was high and antimicrobial usage was at the national average (scenario 2, 

see Table 8). Under these assumptions, without vaccination, the median number of new symptomatic and 

asymptomatic C. difficile acquisitions in the ICU was four times higher than in the base case scenario, i.e. 

55.9 [IQR: 52.0 – 59.7] per 1000 admissions, of which 12.6 [11.2 – 14.0] had ICU-onset (Supplementary 

table 10).  

As a result of the higher incidence in the ICU, the probability of previously colonised or infected 

patients being readmitted to the ICU increased (Supplementary table 10), resulting in five times more 

cases being prevented for strategy 1 compared to the base case (Table 8). Two times more ICU-onset 

cases were prevented through vaccination for strategies 3 and 4 (Table 8) as these strategies became more 

effective in preventing onward transmission (Figure 19). Strategy 2 became just 50% more effective. 

Hence, fewer doses of vaccine were required to prevent one CDI case in the ICU for strategies 1, 3 and 4 

in particular, than were needed under base case assumptions. Nonetheless, in scenario 2, as well as among 
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all other scenarios investigated, vaccination of LTCF residents remained the most efficient strategy (Table 

8).  

Figure 19: Absolute number of imported and acquired cases prevented for strategies 1, 2, 3 and 4 

 

A: Model output in Scenario 1 (Base case); B: Model output in Scenario 2 (HT + AA + 100% VE); 

C: Model output in scenario 3 (AT + LA + 100% VE); D: Model output in scenario 4 (HT + LA + 100% VE) 

 

The relative effectiveness of all strategies was only slightly higher compared to the base case, with 

a 45%, 38%, 8% and 2% reduction in ICU-onset CDI for strategy 4, 3, 2 and 1 respectively. 
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Scenarios of low antimicrobial consumption 

In scenario 3, antimicrobial prescribing in the ICU (αicu) and GM (αgm) were reduced with 32% 

and 36% respectively. Consequently, without vaccination, the median number of new symptomatic and 

asymptomatic C. difficile acquisitions in the ICU was 25% lower than in the base case scenario, i.e. 8.3 

[IQR: 6.7 – 9.6] per 1000 admissions, of which 2.0 [1.5 – 2.5] had ICU-onset (Supplementary table 11). 

With such lowered levels of high-risk antimicrobial prescribing, vaccination reduced ICU-onset 

CDI incidence for strategies 2, 3 and 4 (Table 8), with close to similar relative reductions compared to the 

base case (9%, 34% and 42% respectively, i.e. a one percentage decrease for strategy 3 and 4). However, 

considering the lower incidence of ICU–acquired CDI incidence, strategies 3 and 4 required more doses 

in particular to avert one case (Table 8), as they prevented less onward-transmission (Figure 19). The 

impact of antimicrobial usage on these strategies efficiency was even further pronounced when 

transmission was high (scenario 4 compared to scenario 2, (Figure 19)).  

Scenarios of low vaccine efficacy 

With vaccine efficacy reduced to 50% (scenario 6), reductions in ICU-onset CDI were still 

observed. To illustrate, 24% of ICU-onset CDI cases were prevented in strategy 4, compared to 42% at 

the base case of 100% vaccine efficacy. However, with 64%, 94% and 84% more vaccine doses required 

for strategies 2, 3 and 4 respectively, the vaccine strategies’ efficiency was significantly reduced (Table 8).  

Simulation Results: impact of asymptomatic carriers 

We simulated three scenarios for asymptomatic transmission, where the transmission from an 

asymptomatic case (relative to that from a symptomatic case) was varied, namely, 1) half as transmissible 

(the base case scenario), 2) no asymptomatic transmission, and 3) equally transmissible. This section 

discusses how the transmission potential of asymptomatic carriers interacts with the population-level 

effect of the vaccine.  

Under all three scenarios for asymptomatic transmission, vaccination decreased the ward-based 

risk of C. difficile acquisition (symptomatic and asymptomatic) (Figure 20). Intuitively, post-vaccination, 
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reduction in ward-based acquisition was mostly seen when asymptomatic carriers were not transmitting 

(up to 51% [49 – 53] for strategy 4) as, under this assumption, by reducing the number of CDI cases in 

the ICU the transmission source was more successfully contained.  

Figure 20: Total number of ICU-acquired cases (symptomatic and asymptomatic) per 1000 admissions shown for all 
four vaccination strategies, and all three assumptions for asymptomatic transmission  

 

The middle line in the box represents the median of 1000 model parameter sets, and upper and lower areas of the 
box indicate the seventy-fifth and twenty-fifth percentiles. 1:0: no asymptomatic transmission; 2:1: asymptomatic 
carriers are half as transmissible compared to symptomatic carriers; 1:1: asymptomatic and symptomatic carriers are 
equally transmissible. 

However, when transmission of asymptomatic and symptomatic carriers was equal, this so-called 

indirect- or population-effect of vaccination was marginal, with a reduction of less than 4% for all 

strategies (compared to 16% in the base case, Figure 20).  

As a result, under the equal asymptomatic transmission assumption, vaccination resulted in a 

slight increase of asymptomatic carriers (as the vaccine did not provide direct protection against 

colonisation) in the ICU for the most effective strategies 3 (6% [3 – 9]) and 4 (7% [4 – 9]), whereas under 

the base case and no asymptomatic transmission assumption, a decrease was observed (Figure 21A). 

Nonetheless, in terms of the CDI-onset cases prevented in the ICU, the efficiency was only less than 10% 

lower for all strategies (as shown in Supplementary table 12) under the equal transmission assumption 

compared to the base case asymptomatic transmission assumption.  

In the scenario with no asymptomatic transmission, the marked decrease in ICU-acquisitions 

mentioned earlier resulted in a reduction in asymptomatic carriers in- and also outside the ICU. The latter 

was not observed under the base case asymptomatic transmission scenario (Figure 21B).  
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Figure 21: Change in symptomatic and asymptomatic ICU-acquired C. difficile per 1000 admissions shown for all four 
vaccination strategies, and all three assumptions for asymptomatic transmission; A) In the ICU; B) In- and outside the 
ICU   

A 

 

B 

 

Black points: median absolute reduction in symptomatic cases (x-axis) and increase in symptomatic cases (y-axis) of 
the 1000 parameter sets. Transparent ellipses plot the 95% coverage intervals. 1:0: no asymptomatic transmission; 
2:1: asymptomatic carriers are half as transmissible compared to symptomatic carriers; 1:1: asymptomatic carriers are 
equally transmissible.
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Consequently, the least effective strategies (strategy 1 and 2) required fewer vaccines doses 

compared to base case scenario to prevent one CDI case (30% fewer in the case of strategy 1 and 29% 

fewer in the case of strategy 2). This was also true, albeit less pronounced, for strategy 3 and 4, which 

required 14% and 15% fewer doses respectively. As was shown previously, strategies 1 and 2 prevented 

primarily imported cases. This was less true for strategies 3 and 4, which saw a higher proportion of 

acquired ICU-onset CDI prevented than the other two strategies (Table 8). This distinction became less 

apparent when there was no asymptomatic transmission, i.e. strategy 1 and 2 became relatively more 

effective in preventing acquired ICU-onset CDI (as was shown by a higher relative increase in the 

proportion of acquired ICU-onset cases prevented for strategy 1 and 2, Supplementary table 12).  

 

Discussion 

This study presented the first dynamic-transmission model-based evaluation of the projected 

effectiveness of different vaccination strategies on CDI incidence in a high CDI-risk hospital setting. We 

observed that immunising all three patient groups (LTCF residents, elective patients and patients with a 

history of ICU-onset CDI) was the most effective strategy studied. With ~17 CDI cases observed 

annually in our simulated 30-bed ICU (representing current average incidence rates in England[84]), this 

would equal a prevention of ~seven ICU-onset cases per year. Of the three individual target groups, 

vaccinating all patients awaiting elective surgery yielded the largest net reduction in ICU-onset cases.  

A full cost-effectiveness analysis of any putative CDI vaccine was beyond the scope of this study. 

However, we did consider efficiency – measured as the number of vaccination doses needed to prevent 

one case of CDI. We found that vaccinating LTCF residents proved the most efficient in terms of doses 

per case prevented, primarily as asymptomatic colonisation is frequent among the elderly residents of 

LTCF[22], and due to the high rates of antimicrobial prescribing in this group compared to the rest of the 

population[24, 26]. However, it should be noted that the low total number of admissions from LTCF 

resulted in only a small reduction of the overall risk of colonisation in the ICU. Therefore the proportion 

of admissions from the LTCF is an important consideration in the generalisability of our findings. 
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This study is the first to model numerous scenarios to examine the impact of asymptomatic 

transmission on vaccination. We found that the ranking of each of the strategies, from most to least 

effective in prevention of CDI for each of the asymptomatic transmission scenarios did not change, the 

overall impact of vaccination differed markedly. The potential implications of this are further discussed 

below.  

An important finding from this study was the impact of antimicrobial prescribing. In settings 

with ICU-acquired CDI incidence comparable to the English national average[84]; antimicrobial 

stewardship can help prevent onset among asymptomatically imported cases as well as successfully reduce 

onward transmission. With lower levels of high risk antimicrobial prescribing, the efficiency of 

vaccination was greatly reduced and the converse was also true. Therefore, we would suggest that 

vaccination may be most efficient (and perhaps cost-effective) in settings where antimicrobial stewardship 

has not been (or can not be) implemented successfully.  

Comparison of our findings with previous modelling and molecular studies 

Only one previous modelling study by Lee et al, has quantified the impact of CDI vaccination in a 

comparative manner.  They found that a CDI vaccine was most likely to be cost-effective when only 

patients that had experienced a CDI episode[21] were immunised. In our study, vaccinating patients with 

a history of CDI (in the ICU) had close to no effect on CDI incidence in the ICU, and required ~80 

doses to prevent one case. It is likely, however, that our findings differ from those of Lee et al due to the 

differences in the models’ underlying assumptions. Lee and colleagues assumed that recurrent CDI would 

always occur in hospital or result in hospitalisation. In our model, active admission of recurrent cases was 

not incorporated; primarily as such patients are unlikely to be admitted to the ICU. Moreover, in the 

absence of vaccination, less than one case per 1000 admissions of the patients with a recurrent ICU-onset 

CDI was seen, either in the same episode or after re-admissions. This was for two reasons: firstly we 

observed a low number of relapses during a hospital stay, secondly, the risk of ICU readmission when 

colonised was low, as the mean colonisation time, as observed by others [19, 20]) equalled the average 

number of days between ICU-admissions in England as according to HES data (~1 month).  
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In our study, the balance between ICU-importation and ICU-acquisition of CDI drove the 

projected effectiveness of vaccination. Previous statistical and molecular studies have questioned the 

importance of in-hospital transmission from symptomatic patients in the development of CDI in endemic 

settings[5, 44, 45]. Molecular studies have showed high genetic diversity between symptomatic in hospital 

cases, and have found a genetic and epidemiological to another symptomatic source for only a minority of 

hospital-onset cases (i.e. 19 – 25%)[45, 93, 94]. We showed that, when fitting a highly data-driven model 

to English national average ICU acquisition rates (allowing for asymptomatic transmission), and 

using English ICU data-informed colonisation and infection importation rates, the majority (69%) of 

ICU-onset cases were imported from outside the ICU. These importations concerned primarily patients 

that were asymptomatic on admission and developed symptoms following exposure to antimicrobials. A 

recent study also showed that toxigenic C. difficile colonisation on ICU admission was an independent 

risk-factor for developing CDI in the ICU, with the risk of CDI in the ICU mediated by the exposure to 

antimicrobials[95]. This suggests that, the identification and targeting of patients groups at heightened risk 

of colonisation, becomes increasingly important when ward-based CDI-onset is not primarily driven by 

ward-based acquisitions. Vaccinating LTCF residents would be an example of such target populations [58, 

59]. Our findings showed that strategy two was the most efficient strategy, regardless of the level of 

transmission or antimicrobial usage assumed. However, as these patients only formed a fraction of ICU-

admission, our findings imply that such targeted approach should be multifaceted, and informed by 

previous, e.g, [96] and future studies on other risk factors associated with colonisation.  

When acquisition risk through ICU-based transmission was high in our model, e.g. as a 

consequence of high prevalence of BI/NAP1/027[85], the majority of cases were acquired (61%). Not 

surprisingly, under such conditions, the efficiency of the vaccination strategies was increased markedly, in 

particular when vaccinating elective patients, which due to the level of induced herd immunity[97], had 

the greatest population effect. Similarly, Lee et al showed cost-effectiveness of vaccination against first 

occurrence of CDI is highly sensitive to the risk of acquiring CDI[21].  
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Strengths 

 A major strength of our study was that this study has been the first to incorporate data-driven 

patient movements between the hospital, community and LTCF to simulate the dynamics of C. difficile 

transmission. Hence, heterogeneity in risk factors associated with the infection was allowed for, such as 

observed higher levels of antimicrobial usage in LTCF populations, than in community populations. 

Moreover, our individual-based model enabled detailed examination of the complex balance between 

importation and acquisition of CDI and its interaction with vaccine effectiveness. Extensive analysis of 

numerous English national datasets and local level data from individual hospitals was conducted to 

inform key parameters and simulate the English ICU-setting as closely as possible. Great effort was 

invested in obtaining robust parameter estimates, such as for the excess length of stay and ward-based 

antimicrobial prescribing. We carefully propagated parameter uncertainty, e.g. second order uncertainty 

observed in the statistical analysis of antimicrobial usage data was used to inform distributions for the 

probabilistic sensitivity analysis. Also, natural immunity against C. difficile among the critical ill is highly 

uncertain – limited data from a small study including severely ill patients was used as a proxy [74] – which 

was incorporated in our model output. This is particularly important, as the degree of natural immunity in 

the studied population is key in predicting vaccine effectiveness and efficiency (also shown by the 

sensitivity of our model output to the presumed immunity, data not shown). Finally, we investigated a 

high number of different scenarios, hence allowing for enhanced generalisability of our findings. 

Limitations  

This study had several limitations. The calculated number of vaccine doses for strategy 2, 3 and 4 

are approximations, and in particularly for strategy 2, was likely to be an underestimate, as we did not 

account for the high mortality rates among LTCF residents and frequent new admissions to the cohort 

[98]. Secondly, while we considered importations from and infection-onset post ICU discharge, our 

model only evaluated CDI-dynamics in the ICU. Incorporation of discharge and (re)admission dynamics 

elsewhere in the hospital may have improved the effectiveness of some strategies (notably vaccinating 

CDI cases) in preventing healthcare-onset CDI. Also, our model did not incorporate transmission 

dynamics outside the ICU. Hence, onward transmission prevented from cases with symptom-onset or 
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recurrence outside the ICU was not captured, resulting in a potential underestimation of vaccine 

effectiveness in terms of preventing hospital- as well as community-onset CDI. Data to realistically 

inform such a holistic model is currently limited. Therefore, any such model would have been highly 

theoretical and its results uncertain. The United States is among the few that has conducted population-

based surveillance of CDI on a wider national scale[99, 100]. Similarly, a surveillance programme for 

hospital-level antimicrobial prescribing data has only recently been implemented in England[101], and 

while antimicrobial prescribing volume is reported at a general practice level, there is no routine linkage to 

community CDI surveillance or information at a patient level. Such a model would have also allowed for 

the investigation of the potential unintended effect of vaccination. We observed that, when asymptomatic 

carriers contributed to transmission, the number of colonisations outside the ICU increased (though to a 

lesser extend than the decrease in infections). These asymptomatic cases are more likely to remain 

unobserved than symptomatic cases, and when transmission-events from such individuals is present, 

might have unintended consequences for the transmission of C. difficile and CDI incidence outside the 

ICU. When asymptomatic carriers were non-transmissible, this increase in colonisations was not present. 

Therefore, until we are more certain about the role of asymptomatic patients in the transmission of CDI, 

it is difficult to define the true effectiveness of vaccination, as well as any infection prevention control 

strategy.   

Conclusions 

Through careful modelling of the admission and discharge dynamics between healthcare and 

community settings, this study has provided useful insight in how and where respective vaccination 

strategies involving different target groups are most likely to have an impact on CDI incidence rates. 

Vaccinating LTCF residents and elective patients may aid in preventing CDI in high-risk hospital settings 

such as the ICU. However in settings with comparable ICU-acquisition and antimicrobial usage rates to 

England, this would require a high number of vaccine doses, primarily considering the low efficiency of 

vaccination elective patients. This calls for more careful examination of potential target groups at risk for 

colonisation on admission and subsequent healthcare-onset CDI. A future hospital and community cost-

effectiveness analysis, comparing the effectiveness of our selected vaccination programmes to existing 
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strategies such as antimicrobial stewardship could aid in determining whether and how a vaccine could be 

cost-effective. 
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Supplementary material 
 

 

Supplementary table 3: Values used in scenario analysis 

Scenario β1 β2 αicu αgm e 

Scenario 1 (AT+AA+VE=100%) 0.0074 0.0037 0.219 0.081 1 

Scenario 2 (HT+AA+VE=100%) 0.0196 0.0098 0.219 0.081 1 

Scenario 3 (AT+LA+VE=100%) 0.0074 0.0037 0.149 0.052 1 

Scenario 4 (HT+LA+VE=100%) 0.0196 0.0098 0.149 0.052 1 

Scenario 5 (AT+AA+VE=70%) 0.0074 0.0037 0.219 0.081 0.7 

Scenario 6 (AT+AA+VE=50%) 0.0074 0.0037 0.219 0.081 0.5 
Asymptomatic 1:0  
(and AT+AA+VE=100%) 

0.0169 0.0533 
0.219 0.081 1 

Asymptomatic 1:1 
(and AT+AA+VE=100%) 

0.0047 0.0126 
0.219 0.081 1 

 

 

Supplementary table 4: Values used in probabilistic sensitivity analysis 

Parameter Description Distribution LHS 

αicu Fraction of patients on antimicrobials in the ICU on a given day Logitnormal(-1.274; SD 0.08) 

αgm 
Fraction of patients admitted from GM on antimicrobials on 
admission to the ICU Logitnormal(-2.431; SD 0.06) 

αltcf 
Fraction of patients directly admitted from LTCF on antimicrobials on 
admission Beta(0.040; SD 0.006) 

αcom 
Fraction of patients directly admitted from the community on 
antimicrobials on admission Beta(0.012; SD 0.004) 

fltcf = fcom 
Fraction of patients admitted to ICU from the LTCF/ community that 
develop a natural immune response against disease Beta(0.240; SD 0.077) 

ai_ltcf 
Fraction of patients from LTCF that were infected on admission to 
ICU 

Posterior distribution (see 
methods) 

ac_ltcf 
Fraction of patients from LTCF that were colonised on admission to 
ICU 

Posterior distribution (see 
methods) 

 

 



 170 

Supplementary table 5: Daily probability of discharge and death in the ICU ward for CDI- and CDI+ patients 

Time 

(days) 

Daily ICU discharge 

probability CDI- 

Daily ICU discharge probability 

CDI+ (↓28%) 

Daily ICU death probability 

CDI-/CDI+ 

0 0.00000 0.00000 0.00000 

1 0.08547 0.06154 0.02610 

2 0.16822 0.12112 0.04064 

3 0.23596 0.16989 0.02714 

4 0.17647 0.12706 0.02583 

5 0.16071 0.11571 0.02491 

6 0.12766 0.09191 0.02668 

7 0.07317 0.05268 0.01765 

8 0.07895 0.05684 0.01885 

9 0.14286 0.10286 0.01893 

10 0.20000 0.14400 0.02631 

11 0.04167 0.03000 0.01367 

12 0.04348 0.03130 0.01637 

13 0.18182 0.13091 0.02334 

14 0.05556 0.04000 0.02143 

15 - - 0.02229 

16 - - 0.01598 

17 - - 0.01847 

18 - - 0.01474 

19 - - 0.01289 

20 - - 0.01387 

21 - - 0.02734 

22 - - 0.01204 

 

 

Supplementary table 6: Model estimates of the mixed-effect logistic regression model 

Ward specialty  xw 

 

√σ2 √σ2
trust 𝛼𝑤 =  1/(1 + 𝑒𝑥𝑝(−𝑥𝑤)) 25th percentile  

(incorporating √σ2
trust) 

ICU -1.274 0.08 0.401 0.219 0.149 

General medicine -2.431 0.06 0.403 0.081 0.052 
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Supplementary table 7: Antimicrobial use in the community and LTCF 

 Community LTCF 

 DDD/100 N (per 100 residents) 

 2010  2011  2010   2013  

 
Number of eligible individuals included in 

sample 

59,255,000 63,232,700 7,498 3,954 

  J01C BETA-LACTAM 

ANTIBACTERIALS, PENICILLINS 

0.856 0.872 166 (2.21) 109 (2.76) 

J01D OTHER BETA-LACTAM 

ANTIBACTERIALS 

0.055 0.042 62 (0.83) 29 (0.73) 

J01F MACROLIDES, LINCOSAMIDES 

AND STREPTOGRAMINS 

0.273 0.281 29 (0.39) 27 (0.68) 

J01M QUINOLONE ANTIBACTERIALS 0.046 0.043 24 (0.32) 9 (0. 23) 

Total 1.230 1.238 281 (3.75) 174 (4.40) 

 

Supplementary table 8: Importation rates of infected and colonised individuals 

Status Cases Total 

screened 

Total 

admissions 

Proportion Lower# Upper# 

Carrier ICU 20 744 1332 0.027 0.017 0.041 

Infected ICU 4 744 1332 0.003 0.001 0.008 

Carrier ICU AND LTCF 0 30 53 0 0 0.114 

Infected ICU AND LTCF 0 30 53 0 0 0.114 

Carrier ICU and Community 20 714* 1279* 0.028 0.018 0.043 

Infected ICU and community 4 714* 1279* 0.003 0.001 0.008 

* Under the assumption that four per cent of the total admissions are patients from LTCFs; # 95% confidence 
intervals calculated using the Wilson score method[102]
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Supplementary table 9: Model outcome per 1000 admissions for each of the different vaccination strategies and scenarios under average transmission assumptions 

Average transmission levels + Average antimicrobial use + VE = 100% + Asymptomatic transmission 2:1  (Base case scenario) 

Outcome 

Number of cases per 1000 
admissions 

(Median [IQR]) 
Strategy: 0 

 

Difference 
(Median [IQR]) 

Strategy: 1 
 

Difference 
(Median [IQR]) 

 Strategy: 2 
 

Difference 
(Median [IQR]) 

 Strategy: 3 
 

Difference 
(Median [IQR]) 

 Strategy: 4 
 

Total ICU acquisitions 
infections + colonisations   

13.9 [13.1 – 14.9] 0.1 [-0.2 – 0.4] 0.4 [0.1 – 0.8] 1.9 [1.5 – 2.3] 2.2 [1.9 – 2.8] 

New colonisations 6.2 [5.8 – 6.8] 0 [-0.1 – 0.2] 0.1 [-0.1 – 0.3] 1.2 [0.9 – 1.5] 1.2 [0.9 – 1.4] 

New infections   7.7 [6.8 – 8.6] 0 [-0.1 – 0.2] 0.5 [0.3 – 0.7] 3.1 [2.7 – 3.5] 3.4 [3.0 -3.9] 

   ICU-onset 3.3 [2.9 – 3.7] 0 [-0.1 – 0.1] 0.3 [0.1 – 0.4] 1.4 [1.2 – 1.6] 1.5 [1.3 – 1.8] 

   No ICU-onset 4.4 [3.9 – 4.9] 0 [-0.1 – 0.1] 0.3 [0.2 – 0.4] 1.7 [1.5 – 1.9] 1.9 [1.6 – 2.2] 

Total imported infections 7.5 [7.1 – 8.1]     

Community-acquired 7.0 [6.6 – 7.5] 0 [-0.1 – 0.1] 0.7 [0.5 – 0.8] 2.2 [2.0 – 2.4] 2.8 [2.6 – 3.0] 

Readmission of previously 
colonised/infected case 

0.5 [0.5 – 0.6] 0.1 [0.1 – 0.2] 0.1 [0.0 – 0.1] 0.3 [0.3 – 0.4] 0.4 [0.4 – 0.4] 

Total imported 
colonisations  

20.8 [20.3 – 21.4]     

Community-acquired 18.6 [18.1 – 19.1] 0 [-0.1 – 0.1] 0.6 [0.4 – 0.8] 1.8 [1.6 – 2.0] 2.3 [2.0 – 2.3] 

Readmission of previously 
colonised/infected case 

2.2 [2.1 – 2.3] 0.1 [0.1 – 0.2] 0 [-0.1 – 0.1] 0.1 [-0.1 – 0.1] 0 [0 – 0.1] 

Relapse/recurrence on readmission  0.1 [0.1 – 0.1] 0.1 [0.1 – 0.1] 0 [0 – 0] 0.1 [0.1 – 0.1] 0.1 [0.1 – 0.1] 

Model output in the base case scenario (assuming average transmission levels, asymptomatic carriers have half the transmission potential compared to symptomatic carriers (2:1), 
and average levels of antimicrobial prescribing); Red arrows: increase compared to a strategy 0 (no vaccination); black arrows: decrease compared to strategy 0
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Supplementary table 10: Model outcome per 1000 admissions for each of the different vaccination strategies and scenarios under high transmission assumptions 

High transmission levels + Average antimicrobial use + VE = 100% + Asymptomatic transmission 2:1 (scenario 2) 

Outcome 

Number of cases per 1000 
admissions 

(Median [IQR]) 
Strategy: 0  

 

Difference 
(Median [IQR]) 

Strategy: 1 
 

Difference 
(Median [IQR]) 

 Strategy: 2 
 

Difference 
(Median [IQR]) 

 Strategy: 3 
 

Difference 
(Median [IQR]) 

 Strategy: 4 
 

Total ICU acquisitions 
infections + colonisations   

55.6 [52.0 – 59.7] 0.4 [-0.4 – 1.2] 1.3 [0.6 – 2.1] 7.0 [6.0 – 7.7] 8.3 [7.2 – 9.5] 

New colonisations 25.1 [22.8 – 27.2] 0.1 [-0.5 – 0.2] 0.6 [0.2 – 1.0] 4.9 [4.0 – 6.0] 5.0 [4.1 – 6.1] 

New infections   30.6 [27.0 – 34.2] 0.3 [-0.2 – 0.7] 1.9 [1.4 – 2.4] 12.0 [10.4 – 13.5] 13.3 [11.7 – 15.0] 

   ICU-onset 12.6 [11.2 – 14.0] 0.2 [-0.1 – 0.4] 0.8 [0.6 – 1.1] 5.1 [4.4 – 5.7] 5.7 [5.0 – 6.5] 

   No ICU-onset 18.0 [15.9 – 20.2]  0.1 [-0.1 – 0.4] 1.1 [0.7 – 1.4] 6.8 [6.0 – 7.7] 7.6 [6.7 – 8.6] 

Total imported infections 8.3 [7.6 – 8.8]         

Community-acquired 7.0 [6.5 – 7.4] 0 [-0.1 – 0.1] 0.7 [0.5 – 0.8] 2.2 [2.0 – 2.3] 2.8 [2.6 – 3.0] 

Readmission of     
Previously colonised/ infected case 

1.3 [1.1 – 1.4] 0.1 [0.1 – 0.2] 0.1 [0.1 – 0.2] 0.7 [0.5 – 0.8] 0.9 [0.8 – 1.0] 

Total imported 
colonisations  

23.0 [22.3 – 23.7]         

Community-acquired 18.5 [18.0 – 19.0] 0 [-0.2 – 0.2] 0.6 [0.4 – 0.8] 1.8 [1.6 – 2.0] 2.3 [2.0 – 2.6] 

Readmission of     
Previously colonised/ 
infected case 

4.5 [4.3 – 4.7] 0.3 [0. 2– 0.4] 0 [-0.1 – 0.1] 0.3 [0.2 – 0.4] 0.3 [0.2 – 0.4] 

Relapse/recurrence on readmission  0.3 [0.3 – 0.4] 0.3 [0.3 – 0.4] 0 [0 – 0.1] 0.1 [0.1 – 0.3] 0.3 [0.3 – 0.4] 

Model output in scenario 2; Red arrows: increase compared to a strategy 0 (no vaccination); black arrows: decrease compared to strategy 0. 
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Supplementary table 11: Model outcome per 1000 admissions for each of the different vaccination strategies and scenarios under low antimicrobial use assumptions 

Average transmission + Low antimicrobial use + VE = 100% + Asymptomatic transmission 2:1  (scenario 3) 

Outcome 

Number of cases per 1000 
admissions 

(Median [IQR]) 
Strategy: 0  

 

Difference 
(Median [IQR]) 

 Strategy: 2 
 

Difference 
(Median [IQR]) 

 Strategy: 3 
 

Difference 
(Median [IQR]) 

 Strategy: 4 
 

Total ICU acquisitions 
infections + colonisations   

8.5 [8.1 – 8.8] 0.2 [0 – 0.4] 0.9 [0.7 – 1.1] 1.1 [0.9 – 1.3] 

New colonisations 3.8 [3.5 – 4.1] 0.1 [0 – 0.2] 0.9 [0.7 – 1.0] 0.9 [0.7 – 1.1] 

New infections   4.7 [4.2 – 5.1] 0.3 [0.2 – 0.4] 1.8 [1.6 – 2.0] 2.0 [1.8 – 2.2] 

   ICU-onset 2.0 [1.8 – 2.2] 0.1 [0.1 – 0.2] 0.8 [0.7 – 0.9] 0.9 [0.8 – 1.0] 

   No ICU-onset 2.6 [2.4 – 2.9] 0.2 [0.1 – 0.2] 1.0 [0.8 – 1.1] 1.1 [1.0 – 1.2] 

Total imported infections 6.3 [5.9 – 6.6]       

Community-acquired 5.9 [5.5 – 6.2] 0.6 [0.4 – 0.7] 1.8 [1.7 – 2.0] 2.3 [2.2 – 2.5] 

Readmission of     
Previously colonised/ infected case 

0.4 [0.3 – 0.4] 0 [0 – 0.1] 0.1 [0.1 – 0.3] 0.3 [ 0.1 – 0.3] 

Total imported 
colonisations  

21.4 [21.0 – 21.9]        

Community-acquired 19.5 [19.1 – 19.9] 0.5 [0.3 – 0.7] 1.5 [1.3 – 1.7] 1.9 [1.7 – 2.1] 

Readmission of     
previously colonised/infected case 

1.9 [1.9 – 2.0] 0 [0 – 0.1] 0 [-0.1 – 0.1] 0 [0 – 0.1] 

Relapse/recurrence on readmission  0 [ 0 – 0] 0 [0 – 0] 0 [0 – 0] 0 [0 – 0] 

Model output in scenario 3; Red arrows: increase compared to a strategy 0 (no vaccination); black arrows: decrease compared to strategy 0.
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Supplementary table 12: Scenario analysis for asymptomatic transmission 

  Average transmission High transmission 

 

ICU-onset CDI 
cases 
prevented/1000 
admissions 

Proportion of the 
ICU-onset cases 
prevented that were 
acquired 

Doses required to 
avert one ICU-onset 
CDI case (scaled to 
ICU) 

ICU-onset CDI 
cases 
prevented/1000 
admissions 

Proportion of the 
ICU-onset cases 
prevented that were 
acquired 

Doses required to 
avert one ICU-onset 
CDI case (scaled to 
ICU) 

Symptomatic: 
Asymptomatic (2:1)  

          

Scenario 1 (AA + VE = 
100%) 

          

 1) History of CDI in ICU 0.1 [0 – 0.3] 0.20 83 [33 – NA] 0.5 [0.2 – 0.8] 0.34 43 [27 – 115] 

 2) LTCF residents 1.0 [0.8 – 1.2] 0.24 14 [11 – 17] 1.6 [1.3 – 2.0] 0.50 8 [7 – 10] 

 3) Elective patients 3.9 [3.5 – 4.2] 0.36 146 [133 – 162] 7.9 [7.1 – 8.8] 0.64 72 [65 – 80] 

 4) All combined 4.7 [4.3 – 5.1] 0.34 124 [113 – 137] 9.4 [8.4 – 10.4] 0.61 63 [57 – 70] 

 Symptomatic: 
Asymptomatic (1:0) 

          

Scenario 1 (AA + VE = 
100%) 

          

 1) History of CDI in ICU 0.2 [0 – 0.4] 0.37 58 [15 – NA] - - - 

 2) LTCF residents 1.3 [1.0 – 1.6] 0.38 10 [8 – 13] 2.5 [2.0 – 3.1] 0.64 5 [4 – 7] 

 3) Elective patients 4.5 [4.0 – 5.2] 0.45 125 [110 – 141] 10.7 [9.2 – 12.6] 0.72 53 [45 – 62] 

 4) All combined 5.5 [4.8 – 6.2] 0.42 105 [93 – 121] 12.6 [10.6 - 14.7] 0.70 47 [40 – 45] 

Symptomatic: 
Asymptomatic (1:1) 

      

Scenario 1 (AA + VE = 
100%) 

          

 1) History of CDI in ICU 0.1 [0 – 0.3] 0.04 89 [37 – NA] - - - 

 2) LTCF residents 0.9 [0.7 – 1.1] 0.18 15 [12 – 19] 1.4 [1.1 – 1.8] 0.45 9 [8 – 12] 

 3) Elective patients 3.6 [3.3 – 3.9] 0.31 157 [146 – 172] 7.1 [6.4 – 7.7] 0.61 80 [73 – 88] 

 4) All combined 4.4 [4.0 – 4.8] 0.28 132 [123 – 144] 8.5 [7.7 – 9.3] 0.58 70 [64 – 77] 
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Supplementary table 13: Model outcome per 1000 admissions for each of the different vaccination strategies and scenarios for asymptomatic transmission 

 
Average transmission + Average Antimicrobial use + 100% VE +  

asymptomatic 1:0 
Average transmission + Average Antimicrobial use + 100% VE + 

asymptomatic 1:1 

Outcome 

Number of 
cases  

(Median 
[IQR]) 

Strategy: 0 

Difference 
(Median 
[IQR]) 

 Strategy: 1 

Difference 
(Median 
[IQR]) 

 Strategy: 2 

Difference 
(Median 
[IQR]) 

 Strategy: 3 

Difference 
(Median 
[IQR]) 

 Strategy: 4 

Difference 
(Median 
[IQR]) 

Strategy: 1 

Difference 
(Median 
[IQR]) 

Strategy: 2 

Difference 
(Median 
[IQR]) 

Strategy: 3 

Difference 
(Median 
[IQR]) 

Strategy: 4 

Total ICU 
acquisitions 
infections + 
colonisations   

13.9 [13.1 – 14.9] 0.3 [0.2 – 0.8] 1.6 [1.1 - 2.1] 6.1 [5.1 - 7.0] 7.3 [6.2 – 8.4] 0.1 [-0.3 – 0.3] 0.1 [-0.2 – 0.4] 0.1 [-0.2 – 0.4] 0.5 [0.3 – 0.9] 

New colonisations 6.2 [5.8 – 6.8] 0.1 [0.1 – 0.3] 0.4 [0.2 – 0.7] 1.3 [1.0 - 1.6] 1.9 [1.6 – 2.2.] 0 [-0.1 – 0.2] 0.3 [0.1 – 0.4]  0.3 [0.1 – 0.4]  2.2 [1.9 – 2.5] 

New infections   7.7 [6.8 – 8.6] 0.2 [0.1 – 0.4] 1.1 [0.8 – 1.5]   4.7 [3.8 – 5.7] 5.3 [4.3 – 6.3] 0 [-0.2 – 0.2] 0.3 [0.2 – 0.5]  0.3 [0.2 – 0.5]  2.8 [2.4 – 3.1] 

   ICU-onset 3.3 [2.9 – 3.7]  0.1 [0.1 – 0.2]  0.5 [0.3 – 0.7] 2.0 [2.3 – 3.3] 2.3 [1.9 – 2.8] 0 [-0.1 – 0.1] 0.2 [0.1 – 0.3]  0.2 [0.1 – 0.3]  1.3 [1.1 – 1.4] 

   No ICU-onset 4.4 [3.9 – 4.9] 0.1 [0 – 0.2] 0.6 [0.4 – 0.8]  2.7 [2.2 – 3.3] 3.0 [2.5 – 3.7] 0 [-0.1 – 0.1] 0.2 [0.1 – 0.3] 0.2 [0.1 – 0.3] 1.5 [1.3 – 1.7] 

Total imported 
infections 

7.5 [7.1 – 8.1]                

Community-
acquired 

7.0 [6.6 – 7.5] 0 [0 – 0.1] 0.7 [0.5 – 0.8]  2.0 [2.0 – 2.4] 2.8 [2.6 – 3.0] 0 [-0.1 – 0.1] 0.7 [0.5 – 0.8]  0.7 [0.5 – 0.8]  2.8 [2.6 – 3.0] 

Readmission of 
previously 
colonised/infected 
case 

0.5 [0.5 – 0.6] 0.1 [0.1 – 0.1] 0.1 [0 – 0.1] 0.3 [0.3 – 0.4] 0.4 [0.4 – 0.5] 0.1 [0.1 – 0.1]  0.1 [0 – 0.1]  0.1 [0 – 0.1]  0.4 [0.4 – 0.4] 

Total imported 
colonisations  

20.8 [20.3 – 
21.4] 

               

Community-
acquired 

18.6 [18.1 – 19.1]  0 [-0.2 – 0.1]  0.6 [0.4 – 0.8]  1.8 [1.6 – 2.0] 2.3 [2.0 – 2.5] 0 [-0.2 – 0.1] 0.6 [0.4 – 0.8]  0.6 [0.4 – 0.8]  2.3 [2.0 – 2.5] 

Readmission of 
previously 
colonised/infected 
case 

2.2 [2.1 – 2.3]  0.1 [0 – 0.4]  0.1 [0 – 0.1] 0.2 [0.2 – 0.3] 0.2 [0.2 – 0.3] 0 [-0.2 – 0.1] 0 [-0.1 – 0.1]  0 [-0.1 – 0.1]  0.1 [0.1 – 0.2] 

Relapse/recurrence 
on readmission  

0.1 [0.1 – 0.1] 0.1 [0.1 – 0.01  0 [0 – 0] 0.1 [0.1 – 0.1] 0.1 [0.1 – 0.1] 0.1 [0.1 – 0.1] 0 [0 – 0]  0 [0 – 0]  0.1 [0.1 – 0.1]  
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CHAPTER 6 

 

DISCUSSION 

 

 

The primary objective of this thesis was to evaluate the effectiveness of C. difficile vaccination 

strategies in preventing hospital-onset CDI.  

This chapter summarises the main findings of the thesis (section 6.1), the implications for the 

prevention and control of C. difficile (section 6.2), strengths and limitations of the work conducted other 

than those described in the preceding chapters (section 6.3), and finishes with areas of future investigation 

(section 6.4). 

6.1 SUMMARY OF THE MAIN FINDINGS 

The systematic review (research paper one)[1] presented in Chapter 2 showed that mathematical 

dynamic-transmission models have become an increasingly popular tool to help understand the patient-to-

patient spread of nosocomial pathogens and predict the impact of prevention and control strategies 

(Chapter 2).  Despite the global nature of the burden of HCAI, modelling studies have been primarily 

limited to high-income settings, with MRSA the main subject of study. Up until 2011, C. difficile had rarely 

been modelled. This was despite many countries, such as the US and the UK, prioritising C. difficile, 

infection control programmes. The model developed here is similar to models of MRSA, where there has 

been a shift from a hospital scenario to one where such pathogens are considered within the whole 

healthcare economy e.g. by including the interactions between the home, hospital and other healthcare 

settings such as LTCFs[1]. Both healthcare delivery and pathogen epidemiology provide an ever-changing 

landscape and it is vital for credibility that such models are revisited regularly and revised based on the 

best data available.  
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Research using, amongst other techniques, whole genome sequencing previously revealed that 

transmission from symptomatic cases only explained a minority of the CDI-acquisitions in an English 

hospital and its catchment area community[2–4]. These observations were supported by analysis of the 

national English CDI surveillance data from a few settings (research paper two[5]). A statistically 

significant correlation between reported CDI incidence in different weeks suggested nosocomial C. difficile 

transmission from symptomatic cases was a source of CDI in English hospitals, although the weak 

correlation suggests that the extent of transmission was less than had previously been thought. In 

addition, this analysis provide evidence, for the first time, for seasonal patterns in reported CDI incidence 

in England, with an observed peak in winter (when more antimicrobials are prescribed)[5]. Hence, by 

making a novel use of routinely collected mandatory data, this thesis has provided clinically relevant 

insights into the epidemiology of CDI. 

A majority of previous studies quantifying the health and economic burden of CDI have done so 

using inappropriate methodology, and even the few studies that have used robust methods have shown a 

wide variation in outcome. Having adjusted for time-dependent bias and competing risks, CDI was shown 

to impact the predicted hospital stay of patients with moderate and severe symptoms (research paper 

three[6]). In addition, comparable mortality rates were seen for severe and moderate CDI patients, 

whereas the excess LoS was more than doubled for the former, albeit with overlapping confidence 

intervals. Hence, this study has provided the first severity specific estimate of the additional LoS and 

excess mortality due to CDI, as well as the first robust estimates of the burden of CDI in an English 

hospital-setting[6].  

Finally, the results of an individual-based “state-of-the-art” dynamic transmission model in an 

English ICU (with epidemiological parameters informed by the findings of the statistical models in 

Chapters 3 and 4, and with data-driven patient movement between the community, LTCF and ICU) 

showed that in settings with in-hospital acquisition rates comparable to the national average, immunising 

three patient groups: LTCF residents, elective patients and patients with a history of CDI in the ICU, 

resulted in a 43% reduction of ICU-onset CDI. Such a strategy would require a relatively high number of 

vaccine doses (i.e. over a 100 doses to prevent one case), suggesting this might be an inefficient use of 
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infection prevention and control resources in English ICUs, however a full cost-effectiveness analysis will 

have to provide more conclusive insight. It was shown that CDI dynamics in the high-risk ward setting 

were driven by importation of colonised patients. A targeted strategy involving patients at high risk of 

colonisation on admission, such as LTCF residents proved more efficient. However, a critical fraction of 

this group would have to be identified in order for vaccination to have a population-effect on CDI-

dynamics. As risk factors associated with colonisation, are likely to be multifaceted (e.g. recent 

hospitalisation, frequent antimicrobial use, previous ICU stay[7, 8]), this might prove difficult to translate 

into a practical and feasible vaccination strategy. Nevertheless, this should be an area of further 

investigation.  

This thesis also found that the effectiveness of vaccination proved highly sensitive to the levels of 

ward-based patient-to-patient transmission and antimicrobial usage, with effectiveness increasing as either 

transmission or antimicrobial use increased. Therefore, it was concluded that vaccination might be most 

efficient (and perhaps cost-effective) in settings where implementation of antimicrobial stewardship prove 

to be a challenge.  

Finally, the work presented here highlighted the critical need for improving our understanding of 

the role of asymptomatic carriers in the transmission-dynamics of C. difficile. Vaccination could 

successfully induce a herd-immunity effect in the ICU, i.e. reduce the ward-based C. difficile acquisition risk 

from asymptomatic and symptomatic patients. Nonetheless, if asymptomatic carriers contribute to the 

transmission-dynamics of C. difficile, and assuming that the vaccine did not provide direct-protection 

against asymptomatic carriage, an increase in colonisations outside the ICU was not prevented.  Hence, 

and due to the unique set-up of the mathematical modelling framework used, this thesis provided the first 

insight into the potential unintended consequences of vaccination. 

 

6.2 IMPLICATIONS FOR HEALTH POLICY AND CLINICAL PRACTICE  
 

Existing CDI prevention and control measures, such as improved hand hygiene, isolation and 

environmental cleaning of hospital rooms occupied by CDI positive cases, have primarily focused on 
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containing the transmission from symptomatic carriers (Chapter 1). Chapter 3 suggested that transmission 

from this group of patients is only likely to explain a fraction of CDI incidence in English hospitals 

(otherwise one would expect to see far more clustering of cases in space and time). As discussed in 

Chapter 1, asymptomatic carriers have been suggested as potential contributors to C. difficile acquisition 

since the early 1990s [9–11]. Increased availability of advanced genetic typing methods have allowed for 

more detailed and reliable investigation, and suggested likewise[12], although more research is needed [13]. 

If asymptomatic carriers are at least in part responsible for C. difficile and CDI acquisition, the number of 

new acquisitions due to each asymptomatic case must be low to match the observations of wide genetic 

variability, as discussed also in Chapter 3[5]. Similarly, using less discriminatory molecular typing (i.e. 

restriction enzyme analysis (REA)[14] and arbitrarily primed PCR[15]), it was shown that in non-epidemic 

settings, C. difficile isolates revealed wide genotypic diversity, with little evidence for direct or indirect 

cross-transmission between symptomatic[15], but also between asymptomatic and symptomatic 

patients[14]. Chapter 5 showed, when simulating CDI transmission-dynamics using a model that was 

fitted to ICU-acquisition rates representative of the English national average, a large fraction of the 

healthcare-onset CDI are likely to be imported from outside the ICU. There are wider questions now 

being asked regarding the possible sources of C. difficile due to its recovery from diverse environmental 

sites such as meat and vegetables consumed by humans[16–19], as well as water and soil[20]. Moreover, 

farm and domestic animals have been documented to carry C. difficile with overlapping ribotypes to 

humans[21–23]. However, evidence on the transmission risk from these alternative sources has been 

inconclusive to date [24]. 

These existing uncertainties on human acquisition sources of C. difficile emphasise the importance 

of efforts other than barrier precautions such as isolation and deep cleaning, i.e. those that focus on 

decreasing patients’ susceptibility to C. difficile (producing CDI or colonisation). CDI vaccination could be 

an example of such strategy (although the current toxoid vaccines under development are not thought to 

prevent colonisation), as well as antimicrobial stewardship. Where adequate surveillance is in place, it is 

evident that in some countries, such as the US, CDI incidence remains high[25, 26]. According to a recent 

population-based surveillance study about half a million people annually continue to suffer from CDI, 

including 29,000 deaths [25]. In the US between 2011 to 2013, the C. difficile strain BI/NAP1/027 
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continued to be reported most commonly[27]. In Chapter 5, it was shown that under these conditions, a 

CDI vaccine could have a considerable population-effect, and the use of a strategy of vaccination of a 

large group of patients, e.g. those due for elective surgery, increased significantly in efficiency compared to 

when assuming lower CDI acquisition rates. However, widespread overuse and inappropriate 

antimicrobial prescribing has been documented in many countries including the US[28, 29]. Although not 

the primary aim of this thesis, Chapter 5 revealed that the reduction of ‘high risk’ antimicrobials could 

help reduce both healthcare onset-CDI in imported colonised patients, as well as help reduce healthcare 

acquisition. In previous studies, hospital-based antimicrobial stewardship programmes are associated with 

reductions in CDI rates of up to 60%[30, 31]. In England, the dramatic reductions observed have been 

largely attributed to the significant decline in cephalosporin and quinolone use (Chapter 1). However, the 

exact impact of this measure is difficult to quantify with certainty considering the parallel timing of a 

bundle of government-led measures (i.e. mandatory-surveillance, increased compliance with isolation and 

hand hygiene, target-setting). Future mathematical modelling could help quantify the relative effectiveness 

of individual- and bundled implementation of existing (and new) interventions, and provide further insight 

in how and where antimicrobial stewardship could be valuable as well as feasible. 

There will be situations where reduction of consumption of antimicrobials associated with CDI 

proves unsuccessful, or impossible. Antimicrobial prophylaxis (including the use of cephalosporins (e.g. 

cefazolin) and fluoroquinolones) is recommended for patients at high risk for surgical site infections when 

undergoing certain invasive procedures such as colectomy, hip replacement and cardiac operations[32, 33], 

and has been associated with an increased risk for CDI[32, 34]. Moreover, patients with chronic illness 

such as renal failure[35, 36] may be vulnerable to primary and recurrent CDI due to their frequent 

exposure to antimicrobials, and hospitalisation, as well as presence of other risk factors associated with the 

infection (e.g. immunosuppression and gastro-acid suppressants).  Further clinical trials are needed to 

assess how the vaccine performs among patients with such chronic co-morbidities. Moreover, for any 

future vaccine strategy design, the time required to mount an adaptive immune response post active 

immunisation requires careful attention. The latest clinical trial data suggest there is a need for three doses 

to provoke an antibody response in patients over 65 years old[37], diminishing the vaccine’s suitability for 
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strategies requiring a rapid immune response. Future modelling research could help identify whether 

vaccination of these and potential other cohorts of vulnerable patients proves feasible (see section 6.4). 

Despite the significant reduction in cephalosporin and fluoroquinolone use, overall frequency of 

antimicrobial prescribing remained stable in England, with increases in piperacillin/tazobactam, co-

amoxiclav and carbapenem use[38–40]. An emergence of extended spectrum beta-lactamase (ESBL)-

producing Enterobacteriaceae has been noted, with resistances now observed nationally and globally against 

the next-line antimicrobials of choice, the carbapenems[41, 42].   This calls for further efforts including the 

monitoring of local and national prescribing and consumption data to aid reduction in the inappropriate 

and overuse of antimicrobials[28, 29].    

In Chapter 5, through extensive data analysis and model parameterisation, it was shown that CDI-

onset in the ICU is unlikely to be primarily driven by ward-based acquisitions, but instead importations. 

Admission screening might aid in early recognition of cases “imported” into the ICU. Recent modelling 

studies concluded that screening patients on admission for asymptomatic carriage could reduce new 

acquisitions by 40-50% and hospital-onset CDI by 10-25%[43], and might be cost-effective[44].  Both 

studies incorporated strong assumptions on the transmissibility of asymptomatic carriers relative to 

symptomatic patients (i.e. equal). As shown in Chapter 5, the presumed infectiousness of the latter group 

has a considerable impact on predicted intervention effectiveness. This calls for further investigation on 

the relative role of alternative transmission routes, before CDI prevention and control policies are 

expanded to include such measures (see section 6.4).  

 

6.3 STRENGTHS AND LIMITATIONS 

 

 
In the preceding chapters, the strengths and limitations of the different sub-studies have been 

discussed. In the section below, more general strengths and limitations of the thesis are acknowledged 

with regards to its overall scope, the data used and the generalisability of the findings.  
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6.3.1 STRENGTHS 

 

This thesis provided the first detailed account of the existing dynamic modelling studies in the 

field of hospital epidemiology (Chapter 2). This should provide an improved understanding of the quality 

of HCAI transmission models, as well as directions for further modelling work to address existing and 

emerging HCAI, such as multi-drug resistant Gram-negative bacteria. 

 

Secondly, by making use of routinely collected mandatory data, this thesis investigated, for the 

first time, the contribution of in-hospital CDI transmission on a national level (Chapter 3). As has recently 

been shown for E. coli bloodstream infections[45], the approach can be easily implemented in settings 

outside England, as well as for alternative infectious agents. 

 

Thirdly, this thesis provided the first and only robust estimates of the excess LoS due to CDI in a 

European-setting (Chapter 4). Also, this thesis assessed the interaction between CDI disease severity and 

excess LoS and mortality, which had not been previously quantified. As excess bed-days are the main 

drivers of associated costs[46], and affect the transmission-dynamics of the bacterium, the work presented 

here has provided accurate estimates to help inform future (cost-)effectiveness analysis of vaccination, as 

well as other therapies (e.g. faecal transplantation [47]), and new antimicrobial therapies [48] in the 

pipeline.  

 

Finally, Chapter 5 presented the first dynamic-transmission model-based evaluation of the 

projected effectiveness of different vaccination strategies on CDI incidence in a high CDI-risk hospital 

setting. A major strength of the approach employed was the incorporation of data-driven patient 

movements between the hospital, community and LTCF to simulate the dynamics of C. difficile 

transmission. This enabled detailed examination of the complex balance between importation and 

acquisition of CDI and its interaction with intervention effectiveness. Moreover, the extensive analysis of 

numerous data sources to inform (and the explicit inclusion of associated uncertainties) sets an example 

for future modelling work. The model structure can be easily adapted to alternative settings, and extended, 

e.g. to include patient movement patterns in the hospital, provided appropriate data is available.  
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6.3.2 LIMITATIONS 

 

The work presented in this thesis had its focus limited to nosocomial CDI, and within the 

hospital, to the ICU-setting.  Hence, the work presented here might have missed potential uses of 

vaccination outside this setting.  

The model attempted to incorporate C. difficile dynamics between hospital and community settings 

by including readmission dynamics from LTCFs and the general population. However, fixed importation 

rates from community settings were used. Thus, the effectiveness of vaccination policies were probably 

underestimated in the model, as one would expect a lower importation rate from these settings after 

vaccination is adopted. Moreover, the model could not discriminate between the locations of CDI-onset, 

i.e. elsewhere in hospital or in the community. Ideally, the model would have included patient movements 

between the ICU and other hospitals wards, as well as include a dynamic account of the transmission 

outside the ICU (i.e. other hospital wards as well as in the community). This would have allowed for the 

effectiveness of vaccination in the prevention of onward transmission within the hospital as a whole as 

well as community-settings.  

For example, in LTCFs where C. difficile carriage can be high [49], and implementation of 

traditional prevention and control measures such as environmental decontamination and isolation are 

more challenging, vaccination could help reduce community-onset of diarrhoea. The rationale for the 

narrow scope taken was two-fold. First of all, individual-based models are computationally demanding. 

This combined with the high number of model permutations deemed necessary (due to the uncertainty in 

the epidemiology of CDI, patient characteristics, as well as the heterogeneity between ICU-settings) 

resulted in a computationally expensive analysis. Modelling a wider hospital population would have 

increased the computational time significantly, let alone inclusion of community and LTCF dynamics. 

Secondly, extensive data analysis was performed to ensure representation of an ICU in England as closely 

as possible. Limited data is available on C. difficile incidence and transmission in community-settings. 

Therefore, a holistic dynamic hospital-community model would have been highly theoretical and 

potentially damaged the validity of what has been achieved.  
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Although the model included heterogeneity in risk factors associated with CDI between the 

general community and LTCF populations, no further details differences in term of risk profiles among 

the ICU patients were included. For example, elective patients were assumed to be at equal risk of 

exposure to antimicrobial use as the rest of the ICU population. As mentioned earlier, for certain surgical 

procedures, antimicrobial prophylaxis is a common prescription. Including more heterogeneity in risk 

would allow for further investigation of potential vaccine populations. However, this would be highly data 

demanding.     

Finally, this thesis did not include a cost-effectiveness analysis, therefore could not provide conclusive 

results on whether vaccination would be a cost-effective use of infection prevention and control 

resources. 

 

6.4 AREAS OF FURTHER RESEARCH 

 

An additional extension to the presented model would be enhanced incorporation of heterogeneity in 

patients based on risk factors associated with the infection such as reason for admission (including type of 

elective surgery), age, and co-morbidity. This may aid in optimising the identification of target groups 

most likely to benefit from vaccination. Moreover, an evaluation of the cost-effectiveness of the 

investigated vaccination strategies was beyond the scope of this thesis, but would be an obvious future 

step. As this model did not investigate the full scope of CDI vaccination (such as prevention of 

community onset and transmission), a future cost-effectiveness approach could extend the model 

presented here by including patient movement patterns between hospital wards as well as dynamic-

transmission between healthcare- and community-settings. This would require further understanding of C. 

difficile transmission dynamics in both hospital- and community-settings. Studies involving the screening of 

patients on hospital admission for C. difficile colonisation, combined with whole genome sequencing of 

isolates from asymptomatic and symptomatic cases, could provide more conclusive insight into the 

contribution of asymptomatic carriers in the transmission-dynamics of the bacterium[50]. However, such 

studies are costly (although are becoming more affordable) and may be, at least for now, unfeasible. As 
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shown in Chapter 2, using formal fitting techniques, mathematical models have proven capable of 

estimation of the various sources of acquisition routes of healthcare-associated bacteria, provided the 

colonisation status of all patients on admission is known [51, 52]. Therefore, a suggested future area of 

research could involve the application of these models using on-admission screening data, e.g.[53].   In 

addition, further understanding is needed on the C. difficile dynamics in community settings. Useful data 

could be drawn from household studies, involving the screening of household members of patients found 

positive for symptomatic or asymptomatic C. difficile, as has recently been done to investigate the spread of 

Gram-negative bacteria[54]. These could help inform meta-population models of C. difficile that could 

quantify the patient-to-patient spread in the community. Estimated (transmission) parameters from these 

structurally more parsimonious models (as opposed to the model presented here) could be used to inform 

the aforementioned holistic model.  

Also, an improved general understanding of the health needs of patients in LTCF is required. In 

Europe, antimicrobial use and healthcare-associated infection surveillance in these settings has been 

limited to ad hoc point prevalence surveys [55, 56]. The US has recently implemented a comprehensive 

population-based surveillance for CDI, which incorporates a separate definition for LTCF onset cases 

[25]. To identify the need for prevention and control measures in these settings, national surveillance 

systems should be expanded to surveillance of CDI outside hospital-settings, as has been initiated in the 

US. 

Antimicrobial stewardship can help prevent onset among asymptomatically imported cases as well 

as successfully reduce onward transmission. Similar conclusions have been drawn based on retrospective 

observations (e.g. the decline in C. difficile rates observed in England), and statistical analyses[30, 31]. 

However, infection prevention and control intervention strategies are commonly implemented 

simultaneously, making the quantification of the relative effectiveness of the implemented strategies 

challenging. Future mathematical modelling could help quantify the relative effectiveness of individual- 

and bundled implementation of existing (and new) interventions, and provide further insight into how and 

where antimicrobial stewardship could be valuable as well as feasible. 
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Finally, further research is needed to understand differences between studies in the effect of CDI 

on patient LoS. In Chapter 4, it was shown that neither difference in age and co-morbidity, nor in the 

severity of the CDI infection explained why in a Canadian study, using robust methods, CDI was found to 

increase patients’ stay[57] but not in an Australian study[58]. This thesis concurs with the Canadian study, 

finding an excess LoS of approximately one week due to CDI.  All three studies concern single hospital-

settings, with relatively small datasets, resulting in more uncertain estimates. A recent study, conducted in 

the US, used retrospective data from 120 acute care facilities and found, similarly to this thesis, that 

severity of CDI had an increased impact on LoS[59]. The data comprised a detailed account of patient 

characteristics (age, sex, ICU stay on admission) and facility characteristics (teaching hospital or not, bed 

size, rural location or not, census region). Interestingly, when fitting a multi-state model to sub strata of 

data (as was done in this thesis), differences in the impact of CDI were observed within the US census 

regions, similarly to the differences described above (i.e. less than one day increase up to ~5 day increase 

in LoS across regions). As accounting for multiple co-variates in a multi-state model remains a 

computationally challenging task to date, these results did not show the interaction between the above 

listed factors. Using similarly rich data to fit e.g. a Cox proportional hazards model as done in this thesis 

could identify whether these patient and/or facility characteristic could explain these regional differences. 

If not, this might hint at other factors, such as hospital practice on e.g. infection prevention and control, 

which should be area of further investigation. 
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APPENDIX A: OVERVIEW OF ALL CDI VACCINE CLINICAL TRIALS 

Vaccine Sponsor 

Start 

date 

End 

date Phase Trial number 

Study 

group Country Intervention Primary endpoint(s) Ref 

ACAM-

CDIFF™ 

Sanofi 

Pasteur 

Jul 

2005 

Mar 

2006 I 

NCT0012780

3 

Adults 

18 to 55 US   

Placebo vs 3 dose values of toxoid 

vaccine respectively (i.e. 2μg, 

10μg, 50μg). Doses provided on 

day 0, 28 and 56 

1) Solicited injection 

site erythema and 

tenderness post-

vaccination; 2) 

Treatment-emergent 

adverse events [87,290] 

  

Nov 

2005 

Feb 

2006 I 

NCT0021446

1 

Adults 

>= 65 US 

Placebo vs 3 dose values of toxoid 

vaccine respectively (i.e. 2μg, 

10μg, 50μg). Doses provided on 

day 0, 28 and 56 

1) Treatment-emergent 

adverse events [87,290] 

  

Mar 

2006 

Jun 

2006 I 

NCT0077295

4 

Adults 

18 to 55 ? 

Placebo vs 2 dose values of toxoid 

vaccine respectively (i.e. 50μg, 

100μg). Doses provided on day 0, 

28 and 56 

1) Treatment-emergent 

adverse events [87,290] 

  

Feb 

2009 

Jun 

2012 II 

NCT0077234

3 

Adults 

18 to 85 US, UK 

Placebo vs low dose with adjuvant 

vs high dose with adjuvant vs high 

dose without adjuvant. Doses 

provided on day 0, 7 and 28 

1) Recurrence of CDI 

~13w post-vaccination 

 

https://clinicaltrials.gov/ct2/show/NCT00127803?term=clostridium+difficile&rank=4
https://clinicaltrials.gov/ct2/show/NCT00127803?term=clostridium+difficile&rank=4
https://clinicaltrials.gov/ct2/show/NCT00214461?term=clostridium+difficile&rank=33
https://clinicaltrials.gov/ct2/show/NCT00214461?term=clostridium+difficile&rank=33
https://clinicaltrials.gov/ct2/show/NCT00772954?term=clostridium+difficile&rank=1
https://clinicaltrials.gov/ct2/show/NCT00772954?term=clostridium+difficile&rank=1
https://clinicaltrials.gov/ct2/show/NCT00772343?term=clostridium+difficile&rank=5
https://clinicaltrials.gov/ct2/show/NCT00772343?term=clostridium+difficile&rank=5
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Oct 

2010 

Mar 

2013 II 

NCT0123095

7 

Adults 

40 to 75 US 

Placebo vs low dose with adjuvant 

vs low dose without adjuvant vs 

high dose with adjuvant vs high 

dose without adjuvant. Provided 

on day 0, 7 and 30. Moreover, 

high dose with and without 

adjuvant are also provided on day 

0, 30 and 180 in two separate 

groups 

1) Safety profile in each 

study group; 2) 

immune response to 

toxoid A and B 

 

  

Jul 

2013 

Jun 

2014 I/II 

NCT0189683

0 

Adults 

40 to 75 Japan Placebo vs toxoid vaccine 

1) Safety profile in each 

study group; 2) 

immune response to 

toxoid A and B 

 

  

Jul 

2013 

Dec 

2017 III 

NCT0188791

2 

Adults 

>= 50 

Australia, Brazil, 

Canada, Chile, 

Colombia, Finland, 

France, Germany, 

Republic of Korea, 

Mexico, Peru, Puerto 

Rico, Singapore, 

Sweden, Taiwan, UK, 

US Placebo vs toxoid vaccine 

1) Efficacy of vaccine 

in preventing CDI 

onset after at least 1 

injection 

 

IC84 

Valneva 

(was 

Intercell) 

Dec 

2010 

Apr 

2013 I  

NCT0129638

6 

Adults 

>= 65 Austria, Hungary 

2 dose values of IC84 (75μg and 

200μg) with and without alum (4 

groups in total). Provided on day 

0, 7, 28 and 56 

1) Treatment-emergent 

adverse events 

 

VLA84 Valneva 

Dec 

2014 

Oct 

2015 II 

NCT0231647

0 

Adults 

>= 50 Germany, US 

Placebo vs 3 dose values of 

VLA84. Provided on day 0, 7 and 

28 

1) Seroconversion rate 

on Day 56; 2) 1) 

Seroconversion rate for 

IgG against toxin A  

 

https://clinicaltrials.gov/ct2/show/NCT01230957?term=clostridium+difficile&rank=2
https://clinicaltrials.gov/ct2/show/NCT01230957?term=clostridium+difficile&rank=2
https://clinicaltrials.gov/ct2/show/NCT01896830?term=clostridium+difficile&rank=19
https://clinicaltrials.gov/ct2/show/NCT01896830?term=clostridium+difficile&rank=19
https://clinicaltrials.gov/ct2/show/NCT01887912?term=clostridium+difficile&rank=26
https://clinicaltrials.gov/ct2/show/NCT01887912?term=clostridium+difficile&rank=26
https://clinicaltrials.gov/ct2/show/NCT01296386?term=clostridium+difficile&rank=86
https://clinicaltrials.gov/ct2/show/NCT01296386?term=clostridium+difficile&rank=86
https://clinicaltrials.gov/ct2/show/NCT02316470?term=clostridium+difficile&rank=45
https://clinicaltrials.gov/ct2/show/NCT02316470?term=clostridium+difficile&rank=45
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and B on Day 56   

Adjuvanted 

vaccine Pfizer 

Jan 

2014 

Jul 

2015 I 

NCT0205272

6 

Adults 

50 to 85 US, Canada 

Placebo vs vaccine with adjuvant 

provided at month 0, 1 and 3 vs 

vaccine with adjuvant on day 1, 8 

and 30 

1) Proportion of 

subjects reporting local 

reactions and their 

severity; 2) Proportion 

of subjects reporting 

systemic events and 

their severity 

 

  

Jul 

2014 

Apr 

2016 II 

NCT0211757

0 

Adults 

55 to 85 Us, Canada 

Placebo vs 2 dose values of 

vaccine (low and high). Provided 

on day 1, 8 and 30 

1) Neutralizing 

antibody levels at Day 

37; 2) local reactions 

and their severity; 3) 

Systemic reactions and 

their severity; 4) 

Treatment-emergent 

adverse events  

 

- GSK 

Feb 

2013 

Jul 

2015 - 

NCT0171653

3 

Adults 

>= 18 US, Canada 

CDI recurrence group vs not 

recurrence group. Blood sampling 

done at day 0, 14, at recurrence (if 

applicable) and end of follow up. 

Moreover, stool sampling at day 0, 

14 and at recurrence (if applicable) 

C. difficile immune 

response as measured 

in blood samples at day 

14 

  

https://clinicaltrials.gov/ct2/show/NCT02052726?term=clostridium+difficile&rank=71
https://clinicaltrials.gov/ct2/show/NCT02052726?term=clostridium+difficile&rank=71
https://clinicaltrials.gov/ct2/show/NCT02117570?term=clostridium+difficile&rank=9
https://clinicaltrials.gov/ct2/show/NCT02117570?term=clostridium+difficile&rank=9
https://clinicaltrials.gov/ct2/show/NCT01716533?term=clostridium+difficile&rank=57
https://clinicaltrials.gov/ct2/show/NCT01716533?term=clostridium+difficile&rank=57

