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ABSTRACT

FunTree is a resource that brings together protein
sequence, structure and functional information, in-
cluding overall chemical reaction and mechanistic
data, for structurally defined domain superfamilies.
Developed in tandem with the CATH database, the
original FunTree contained just 276 superfamilies fo-
cused on enzymes. Here, we present an update of
FunTree that has expanded to include 2340 super-
families including both enzymes and proteins with
non-enzymatic functions annotated by Gene Ontol-
ogy (GO) terms. This allows the investigation of how
novel functions have evolved within a structurally
defined superfamily and provides a means to anal-
yse trends across many superfamilies. This is done
not only within the context of a protein’s sequence
and structure but also the relationships of their func-
tions. New measures of functional similarity have
been integrated, including for enzymes comparisons
of overall reactions based on overall bond changes,
reaction centres (the local environment atoms in-
volved in the reaction) and the sub-structure sim-
ilarities of the metabolites involved in the reaction
and for non-enzymes semantic similarities based on
the GO. To identify and highlight changes in func-
tion through evolution, ancestral character estima-
tions are made and presented. All this is accessible
through a new re-designed web interface that can be
found at http://www.funtree.info.

INTRODUCTION

In order to understand how proteins have evolved to per-
form their function requires bringing together diverse data
ranging from protein sequences and structures through
functional descriptors, such as reaction chemistry and
mechanistic properties of enzymes. Bringing together this
information is crucial in the light of the continuous flood

of genomic data as insights into the evolution of protein
function provide one of the best routes for predicting func-
tions of uncharacterised proteins (1). Few resources cur-
rently bring together in-depth analysis of evolutionary his-
tory with relationships in protein function (e.g. metabolite
characteristics) or take connections between overall reac-
tions into consideration (e.g. similarities between reaction
centres, bond order changes and sub-structures). A number
of studies have been undertaken on collections of protein
superfamilies whose membership predominantly consists of
enzyme structures and sequences and numerous studies on
single superfamilies (2–4).

To meet this challenge FunTree (5) was developed to
bring together protein structures from the CATH (6) clas-
sification of domains, sequences from UniProt (7) and
CATH-Gene3D (8), as well as functional and chemical in-
formation from a variety of sources including the manu-
ally curated MACiE (9) and Catalytic Site Atlas (CSA) (10)
databases. Focused on enzyme function evolution, it cata-
logued 276 enzyme containing structurally defined domain
superfamilies. Here we present an update to FunTree that
has expanded to cover all types of protein function, not just
enzymes, in over 2,340 CATH superfamilies.

EXPANDING THE DATASET

The first version of FunTree focused on 276 enzyme con-
taining structurally defined domain superfamilies. Due
to difficulty in aligning and superimposing all domains
within large, structurally variable superfamilies imposed
by the many structural decorations outside the common
structural core, FunTree used a method to group struc-
tural domains and augment them with domain sequences
from CATH-Gene3D to form structurally similar groups
(SSGs). It used a combination of CORA, Profit (Mar-
tin, A.C.R. and Porter, C.T., http://www.bioinf.org.uk/
software/profit/), Blastp and FUGUALI (also part of the
FUGUE (11) software) to generate robust structurally in-
formed multiple sequence alignments of structurally similar
groups (SSGs) that could be used in the subsequent phy-
logenetic analysis. To bring more structures and sequences
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Figure 1. An overview of the protocol for using FunFams derived from a new agglomerative clustering technique combined with structural superimpo-
sitions to generate a structurally informed multiple sequence alignment that can be used in the phylogenetic analysis. Pairs of most similar sequences
(colored circles) are aligned and iteratively pairs of most similar alignment profiles are aligned. Structures associated with sequences contained within the
agglomerative profiles are structurally aligned. Based on this alignment the other sequences within the profile are integrated into the structural alignment
based on the fixed profile.

Figure 2. An overview of the data presented at the leaves of the trees within FunTree.
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Figure 3. The interactive visualization of the relationships between functions present in the superfamily related to the top 10 most similar reactions. The
E.C. classification is rendered as circular rooted tree, with the leaves are colored by primary E.C. class. E.C. numbers that are found in the superfamily are
pushed out of the circle and are colored blue. Links between these and their 10 most similar functions as calculated by EC-Blast are highlighted in blue,
tracing the path through the tree between them. By hovering over a function within the superfamily, highlights in red the connections to the top 10 most
similar reactions, which are also listed on the right.

together and to reduce the number of SSGs a new clus-
tering and alignment method was implemented. In sum-
mary, structurally coherent relatives are defined as those
that superpose within 9Å RMSD. CATH identifies SSGs
comprising relatives within a superfamily clustering within
this threshold. Structural representatives from across the
superfamily were selected from CATH functional families.
Functional families (FunFams) are identified within each
superfamily using a novel agglomerative clustering method
(12) that groups sequences sharing similar sequence pat-
terns that relate to specificity determining positions in the
family. Using CORA (13) to generate structural superim-
position of the structural representative, the FunFam pro-
files for each structural representative are integrated into the
structural alignment using MAFFT (14) to generate a struc-
turally informed multiple sequence alignment. A summary
of this new protocol is shown in Figure 1.

In employing this new protocol the average number of
SSGs within a superfamily has reduced, while the number
of sequences and structures that can be included within an
alignment has greatly increased as the method allows for
remoter homologues to be included. This is a result of our
ability to confidently associate sequences with each other

and to confidently align then through structural represen-
tatives. This has resulted in alignments that contain very
large number of sequences (thousands or even tens of thou-
sands). To make the phylogenetic analysis tractable and the
resulting trees easy to view and navigate a filtering algo-
rithm has been implemented to select suitable representa-
tives of subsequent analysis. The program attempts to op-
timise the number of sequences to less than 600 while still
maximising phylogenetic diversity, structural coverage and
novel functional representation. Many SSGs though do not
require any filtering and all sequences and structures are in-
cluded. Overall these changes have allowed 2340 superfam-
ilies to be processed.

COMPARING PROTEIN FUNCTIONS AND ANCES-
TRAL CHARACTER ESTIMATION

One of the major additions to FunTree is the inclusion of
Gene Ontology (GO) annotations (15). These are taken
from the sequence’s UniProt record where the record has
been reviewed by a curator and has extended FunTree from
not only looking at novel function evolution for enzymes
but to all types of protein function. GO term identifiers
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Figure 4. The interactive visualization showing the results of the ancestral character estimation. The tree is rendered as a circular rooted tree. By hovering
over the functional annotation at the leaf of the tree, the ancestral nodes from the leaf back to the root are highlighted with the percentage likelihood values
for that function at each node. By hovering over a node the function that has the maximum likelihood value is displayed.

are displayed, like the enzymes Enzyme Commission (E.C.)
number (16) on the tree and linked to GO or IntEnz (17)
respectively for full descriptions of the terms. For enzymes
the E.C. number is displayed in preference to the GO term.

As well as displaying functional annotations, compar-
isons of the functions are made. For GO annotations, a se-
mantic similarity measure is made using the Wang method
implemented in the GOSemSim R package (18). An all-by-
all similarity matrix is calculated for each GO term associ-
ated with a sequence within the SSG. The results are clus-
tered using a hierarchical clustering method implemented
in the PVClust package in R (19). The results are displayed
on the tree as a colored circle shown at the leaves of the tree,
where the color is graduated so that similar colors have simi-

lar functional similarities and very different colors have very
different functional similarities.

It is important to note that both E.C. and GO annota-
tions are made at the level of the gene product, though the
functional unit they are describing are often smaller, fre-
quently comprising of a single domain. Though domains
are regularly considered to be the functional unit, more
complex functional units composed of multiple domains or
gene products (molecular machines) exist. As FunTree is
based on CATH structural domains, E.C. and GO terms
may be ascribed to a domain derived from the gene product
and therefor may not contribute exclusively to that function
and care needs to be taken when analysing these ‘confusion’
domains.
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Figure 5. An overview of the tiles presented within FunTree that link to the various data visualizations. At the superfamily level, the multi-domain archi-
tectures, EC-distribution and EC-Blast results are available. At the SSG level the phylogenetic tree, ancestral character estimations, taxonomic distribution,
functional clustering tree and alignments are available. On the left, the interactive browser to move between superfamily and SSG levels.

For enzymes the overall reactions are compared using
the IUBMB reactions describing each of the E.C. num-
bers. Like the GO annotations, each reaction is compared
to each other within a SSG using the EC-Blast algorithm
(20). Briefly, this uses atom-atom mapping to determine
bond changes and reaction patterns, using a variation of the
Dugundji-Ugi matrix model. Comparisons are made using
three types of normalized similarity scores. The first, bond
order, compares the changes in the number and type of
bonds that are being broken and formed. Secondly, the reac-
tion centre metric compares the local chemical environment
around the centre of the reaction, i.e. the atoms covalently
linked to the atoms forming the bond that is broken/formed
in a reaction. Thirdly, the substrates and products of the
reactions are compared using a common sub-graph detec-
tion algorithm. This is in addition to the comparisons of
metabolites made in the original FunTree, though this is
now only displayed though a separate metabolite similar-
ity tree as a cumulative measure is made by the third type

of EC-Blast similarity measure. Again, similar to how GO
similarities are displayed, each of the EC-Blast similarity
measures are displayed at the leaves of the tree colored by
the level of similarity to each other within the tree. A sum-
mary of the information contained at the leaves of a tree is
shown in Figure 2.

In addition to calculating the all-by-all reaction similari-
ties within an SSG, EC-Blast has pre-calculated the all-by-
all similarities of all known biochemical reactions and has
implemented a method for ranking the most similar reac-
tions to a given reaction. At the superfamily level, a new
visualization of the results of this ranking is displayed show-
ing the relationships between the top ten hits for each of the
reactions (as represented by an E.C. number) present in the
superfamily. An example of this visualization is shown in
Figure 3.

As well as displaying sequence functions and their sim-
ilarities, the functional annotations are used to calculate
the ancestral function for each node within the tree. Leaves
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without a function annotation are pruned from the tree. An-
cestral character estimations are made using the discrete an-
cestral character estimation algorithm with an equal rates
model as implemented in the APE package in R (21). At
each node in the tree, maximum likelihood estimation is
made of the most probable function. It should be noted that
the ancestral function is assumed to be one of the modern
functions observed at the leaves of the tree. This permits
the functional changes from parent node to a child node
to be traced through the tree and to catalogue the changes
in function based on the EC number. The results of this are
displayed in an interactive visualisation (Figure 4).

UPDATED DATA PRESENTATION AND NAVIGATION

In expanding and improving FunTree, the website has been
completely redeveloped. To make all the data visualizations
interactive and responsive, data is served as JSON objects
and rendered on the client side. It uses the D3 javascript li-
braries (http://d3js.org) to generate a number of improved
and new visualizations. As well as the new data views de-
scribed in the previous sections, the phylogenetic trees that
lie at the heart of FunTree have been improved. Main-
taining the zoom, panning and hyperlinking functionality
found in the original FunTree that rendered the trees using
the GoogleMaps API, nodes can now be collapsed and ex-
panded, new data can be easily added to the leaves and a
improved and more accurate cartoon of the multi domain
architecture has been added.

At the superfamily level, an interactive web interface em-
ulating ArchSchema (22) to visualize relationships in multi-
domain architecture has been implemented. Using a force-
directed graph, it self organizes a graph of MDAs present in
the superfamily, where nodes are unique MDAs, connected
by increasing complexity of the domain architecture (cen-
tred on the MDA that consists of the single superfamily do-
main). Also at the superfamily level, the E.C. hierarchy is
rendered as a rooted circular tree. Nodes and branches that
represent the E.C. numbers present in the superfamily are
highlighted.

At the SSG level a number of new data views have been
developed including trees that show the relationships in sim-
ilarity of the reactions, GO terms and metabolite similarities
of the functions catalogues within the SSG. Additionally,
the taxonomic composition of the sequences presented in
the tree is shown as a radial plot displaying the taxonomic
lineage and relative abundance of the taxa class. Finally a
new display of the multiple sequence alignment using the
BioJS (23) module is presented. This allows, amongst other
things, the user to highlight the alignment as desired using
a range of coloring schemes, a consensus sequence logo to
be displayed and an alignment overview window, which can
be used to zoom into a particular part of the alignment. An
overview of the new interface is shown in Figure 5.

SUMMARY

The recent developments in FunTree presented here have
expanded the number of superfamilies analyzed to cover
most of the superfamilies defined in CATH. By including
GO annotations as well as calculating ancestral character

estimations, it is possible to investigate the evolution of
novel functions across all types of protein function. The ad-
dition of different measures of functional similarity, espe-
cially the novel measures of reaction similarity, allows the
user to gauge how big a change has occurred between func-
tions. In the context of enzymes, displaying the most sim-
ilar reactions can provide insights into new functions that
could be performed by members of the superfamily but have
yet to be observed. Being able to explore and contextualize
the evolution of protein function provides insights that will
be useful in predicting the function of uncharacterized se-
quences as well as the design of new synthetic enzymes.
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