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Predictability of epidemic 
malaria under non‑stationary conditions 
with process‑based models combining 
epidemiological updates and climate variability
Manojit Roy1,2, Menno Bouma3,4, Ramesh C. Dhiman5 and Mercedes Pascual1,6*

Abstract 

Background:  Previous studies have demonstrated the feasibility of early-warning systems for epidemic malaria 
informed by climate variability. Whereas modelling approaches typically assume stationary conditions, epidemiologi-
cal systems are characterized by changes in intervention measures over time, at scales typically longer than inter-
epidemic periods. These trends in control efforts preclude simple application of early-warning systems validated by 
retrospective surveillance data; their effects are also difficult to distinguish from those of climate variability itself.

Methods:  Rainfall-driven transmission models for falciparum and vivax malaria are fitted to long-term retrospective 
surveillance data from four districts in northwest India. Maximum-likelihood estimates (MLEs) of model parameters are 
obtained for each district via a recently introduced iterated filtering method for partially observed Markov processes. 
The resulting MLE model is then used to generate simulated yearly forecasts in two different ways, and these forecasts 
are compared with more recent (out-of-fit) data. In the first approach, initial conditions for generating the predictions 
are repeatedly updated on a yearly basis, based on the new epidemiological data and the inference method that 
naturally lends itself to this purpose, given its time-sequential application. In the second approach, the transmission 
parameters themselves are also updated by refitting the model over a moving window of time.

Results:  Application of these two approaches to examine the predictability of epidemic malaria in the different 
districts reveals differences in the effectiveness of intervention for the two parasites, and illustrates how the ‘failure’ of 
predictions can be informative to evaluate and quantify the effect of control efforts in the context of climate vari-
ability. The first approach performs adequately, and sometimes even better than the second one, when the climate 
remains the major driver of malaria dynamics, as found for Plasmodium vivax for which an effective clinical interven-
tion is lacking. The second approach offers more skillful forecasts when the dynamics shift over time, as is the case of 
Plasmodium falciparum in recent years with declining incidence under improved control.

Conclusions:  Predictive systems for infectious diseases such as malaria, based on process-based models and climate 
variables, can be informative and applicable under non-stationary conditions.
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Background
Millions of people living in the highlands and desert 
fringes around the tropics in Africa, Asia and South 

America are affected by seasonal and epidemic malaria, 
which occurs in areas of marginal environmental condi-
tions for the development of the parasite and the popu-
lation dynamics of the Anopheles mosquito vector. It is 
in these regions, where either local rainfall or tempera-
ture limit the population growth of the vector and the 
parasite’s development within the vector, that climate 
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variability has the highest potential to strongly impact 
disease dynamics [1–5]. Thus, climate variability is fun-
damental to early-warning systems, and so are the conse-
quences of longer-term trends in climate [5–8]. The ability 
to forecast and identify epidemic events is important to 
timely implementation of effective control policies, as rec-
ognized by efforts to develop malaria early-warning sys-
tems (MEWS) [9, 10]. In addition, process-based models 
that incorporate climate provide a basis for quantitatively 
evaluating the impact and effectiveness of intervention 
in the context of climate variability [11]. Given the inter-
annual variability of rainfall and temperature, it is other-
wise a challenge to determine whether any apparent fall 
(or rise) in disease incidence differs from what would be 
expected due to changes in the climate variables them-
selves, rather than in control efforts [12].

Extensive epidemiological and meteorological records 
spanning the past two decades in desert and semi-arid 
regions of northwest India provide an opportunity to 
further test predictive process-based models of epi-
demic malaria across multiple districts and for the two 
parasites, Plasmodium falciparum and Plasmodium 
vivax. Progress has recently been made with mathemati-
cal models that combine epidemiological processes and 
seasonal rainfall to represent the transmission dynamics 
of both falciparum and vivax malaria in semi-arid dis-
tricts of India, validated by long-term surveillance data 
for the Kutch district in the state of Gujarat [3, 4, 13]. 
The parameterization of these models from surveillance 
records relies on recently developed inference methods 
for time series data [14, 15]. Investigation of the predicta-
bility of these models with ‘out-of-fit’ data remains unex-
plored however, especially under the changing conditions 
of recently intensified intervention.

Any prediction obtained from fitting such models 
to retrospective long-term data is expected to be use-
ful if the dynamics of the system do not change much 
over time. In recent decades, however, improved socio-
economic conditions and disease control policies that 
are revised every few years [16, 17], are often reflected 
in the shifting patterns of incidence, and these multiyear 
non-stationarities appear as a challenge to predictability. 
In particular, rapid diagnostic kits in hard-core malari-
ous areas and indoor residual spraying (IRS) for con-
trolling adult indoor resting mosquitoes, were adopted 
as national policies in India in 2005.  Artemisinin-
based combination therapy (ACT) was also introduced 
that year for treating falciparum malaria in high-risk 
areas.  The subsequent policy revision in 2010 recom-
mended universal use of ACT against P. falciparum, and 
complete treatment of confirmed malaria cases in place 
of presumptive treatment while waiting for confirmation 
of diagnosis. To a large degree, these measures have been 

effective in bringing down the incidence of falciparum 
malaria in subsequent years.  Besides control itself, other 
drivers of malaria non-stationarity in arid Northwest 
India include land-use change associated with irrigation 
projects, which can enhance the availability of breeding 
sites for the vector but also provide additional wealth, 
and therefore increase or decrease disease risk depending 
on temporal scale [18, 19].

 Anticipating changes in incidence patterns is difficult 
for models that do not explicitly include control efforts 
and/or trends in socio-economic conditions, and there-
fore, for systems whose overall intervention efforts are 
not easily available or quantifiable over time.  In addition, 
climate variability too operates over multiple time scales 
and introduces trends in disease incidence that con-
founds the evaluation of intervention programmes over 
multiple years.

In this paper, previously developed transmission mod-
els for falciparum and vivax malaria [3, 4] are used  to 
obtain maximum likelihood estimates (MLE) of model 
parameters by fitting them to long-term surveillance 
data from four districts in northwest India. The resulting 
MLE model is then used to generate forward simulations 
that are compared with more recent (out-of-fit) data. 
Two issues are investigated regarding model prediction 
in the context of non-stationary transmission dynamics: 
(1) distinguishing between the respective roles of (inter-
annual) climate variability and intervention methods 
in generating these non-stationarities, in particular the 
recent declining trends in incidence; and (2) improv-
ing predictability in the presence of such shifting condi-
tions. These questions are addressed by generating model 
simulations with two different forecasting approaches. In 
the first one, the estimated initial conditions for the for-
ward simulations are updated by incorporating the most 
recent data using a particle filtering technique. This pro-
cedure substantially improves the model’s forecasting 
ability, compared to simply simulating forward starting 
with the estimated initial conditions at the beginning of 
the record. Because the models explicitly include a cli-
mate driver (rainfall) but not control efforts, deviations 
between the simulation and the out-of-fit data can be 
used to quantify the impact of recent intervention meas-
ures in the context of climate variability. In the second 
approach, transmission parameters are also updated by 
refining the fit of the model over the most recent data 
in a moving window of time. Updating parameters on 
such a sliding timetable can sequentially adapt the model 
to the data and potentially improve its predictability as 
underlying socio-economic conditions, or intervention 
policies and efforts, change over time. In conclusion, the 
relative merits and limitations of these two methods are 
discussed, together with what the findings reveal about 
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the current population dynamics of the two parasites in 
response to control and in the context of rainfall variabil-
ity in the region.

Methods
Data
The malaria data were obtained from the surveillance 
records for the district of Kutch in the state of Gujarat, 
and for those of Barmer, Bikaner and Jaisalmer in the state 
of Rajasthan. These four districts are located in the arid 
desert fringes of northwest India. The data, provided by 
the National Vector Borne Disease Control Programmes 
(in Rajasthan and Gujarat) through the National Insti-
tute of Malaria Research (in India), consist of monthly 
confirmed P. falciparum and P. vivax cases (from blood 
slides of patients visiting public health services and active 
surveillance) from January 1986 to December 2011 for 
Kutch, and from January 1986 to December 2009 for 
Barmer, Bikaner and Jaisalmer. (Hereafter, the two para-
sites are referred to as Pf and Pv respectively). Because 
of marginal environmental conditions for malaria trans-
mission resulting from the arid climate in the region (see 
Additional file  1), yearly and inter-annual variability in 
rainfall generates pronounced variation in the size of sea-
sonal epidemics (Fig. 1), as described in [3, 4]. Monthly 
rainfall data were recorded at local weather stations in 
each district, and supplied by the Indian Meteorological 
Department in Pune (India). Yearly population data were 
obtained via interpolation of the decadal census data 
between 1991 and 2011.

Models and method
The human component of the human-mosquito trans-
mission model, for both Pf and Pv, is formulated by divid-
ing the population into classes based on infection status 
as follows: S, for naive individuals who are susceptible 
to both infection and disease; E, for exposed or inocu-
lated humans who are not yet infectious; I, for infectious 
humans that can transmit the pathogen to the vector; 
and Q, for individuals that have acquired some degree 
of immunity from disease and are therefore asympto-
matic but still weakly infectious (Fig.  2). In a previous 
formulation the Q class was represented by two differ-
ent classes to differentiate between individuals who are 
infectious and those who have recovered but are pro-
tected from clinical malaria upon re-infection [3]. That 
loop in the model keeps individuals away from contrib-
uting to reported cases while effectively implementing 
a reservoir of infection. Consideration of a single class, 
to account for a reservoir with a memory of patterns of 
infection in the recent past, provided a simpler and still 
accurate model, given the problem of parameter iden-
tifiability for processes associated with state variables 

(number of individuals in the corresponding classes) that 
remain unobserved [4]. The Pv model (Fig. 2b) addition-
ally incorporates the relapse mechanism via a chain of 
n(=3) dormant classes H1…n for humans who carry liver-
stage hypnozoites [4]. Emergence of individuals from this 
chain into the I class generates infections in the absence 
of vector transmission and also primes the system for 
transmission earlier in the next rainy season than for Pf .

Given the absence of mosquito data, the vector dynam-
ics are incorporated implicitly by a chain of multiple 
classes (two classes are used here, see Fig. 2) that effec-
tively implement a distributed lag time between the frac-
tion of the infected human population and the force of 
infection experienced by a susceptible individual. Techni-
cally, this lag is Gamma-distributed with mean τ, and it 
accounts for the developmental delay of malaria parasites 
within surviving mosquitoes. Variability in the dynam-
ics that is driven exogenously arises from fluctuations in 
mosquito abundance and behavior, and is incorporated 
with three components: seasonality, rainfall (as a climate 
covariate), and environmental noise. Seasonal rainfall, as 
a climate driver of malaria, is known to have a complex 
relationship with the population dynamics of the disease 
[20] (see Additional file  2 for plots of monthly rainfall 
in their actual scales; fig. 1 shows these plots in relative 
scale).   For the region under study and following previ-
ous analyses [3, 4], a cumulative rainfall function was 
constructed from the original monthly data by aggre-
gating precipitation over the preceding 5 and 4 months 
respectively for the Pf and Pv model. Additionally, for the 
Pf model, a threshold amount of 200mm was subtracted 
from the cumulative rain, and the resulting time series 
was used as the climate covariate (see supplement of [3, 
4] for more details).

Each transmission model is formally related to the data 
by assuming that only a fraction ρ of new infections are 
detected by the surveillance methods, and introducing 
a measurement model that transforms these new infec-
tions into observed cases with a negative binomial dis-
tribution (see Additional file  3).  The reporting fraction 
ρ was estimated along with other model parameters as 
described below.

To estimate model parameters, likelihood-based infer-
ence was carried out via a recently introduced iterated 
filtering method for calculating MLEs [3, 4, 13–15]. The 
method consists of executing two nested loops, with the 
outer loop essentially iterating an inner, ‘filtering’ loop, 
and in so doing generating a new, and improved, estimate 
of the parameter values at each iteration. The filtering 
loop is sequential in time (along the time series); it imple-
ments a selection process for a large number of ‘particles’ 
over time, via a sequential Monte Carlo filter. For each 
time step, a particle can be seen as a one-step simulation 
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characterized by its own set of parameters that perform 
a random walk. Particles can survive or die as a result of 
a resampling process, with probabilities determined by 
their likelihood given the data (see supplement of [3], 
and [14, 15] for more details). The algorithm is known 
as ‘MIF’ and implemented in the R package ‘pomp’ [21]. 
This step-wise resampling serves to update the estimate 
of the parameters and state of the system (that is, the val-
ues of the state variables that are unmeasured) with the 
data up to the current time point. Thus, the resampling of 
particles (or  ‘particle filtering’) over time can be used to 

update the estimated initial states of the system for for-
ward simulation. When used together with the outer loop 
(‘iterated filtering’), estimates of the parameters are also 
updated by the data.

To assess the forecasting abilities of the model, each 
model for Pf and Pv was fitted to the early portion of 
the data, between January 1986 and August 2004 (18+ 
years), to obtain the MLE parameters, and simulated pro-
jections with the resulting MLE models were compared 
to the remainder of the data (out-of-fit data). The simula-
tion procedure was carried out in two different ways:
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Fig. 1  Malaria case data. a–d Monthly case data for P. falciparum (in red) and P. vivax (in brown, right vertical axis) are shown for Kutch, Barmer, 
Bikaner and Jaisalmer districts, respectively, along with the corresponding rainfall time series (in dashed line, rescaled to fit in the plot window; see 
Additional file 2 for the rainfall time series in their actual scale). The data for Kutch span January 1986–December 2011, and those for the other 
districts span January 1986–December 2009. All data exhibit strong seasonal patterns driven by monsoon rainfall, as well as interannual variability



Page 5 of 14Roy et al. Malar J  (2015) 14:419 

1.	 In the first method, the original MLE model was used 
with updated initial states (particles) at August of 
each year between 2004 and 2008 (2010 for Kutch), 
and simulated forward over the next 12 months (Sep-
tember–August). Departures between the yearly pro-
jections and the out-of-fit data can be used to evalu-
ate the impact of recent intervention efforts in the 
context of the observed multiyear rainfall variability.

2.	 In the second method, the model was refitted to the 
data over a moving time window of 4  years, start-
ing with the window of September 2000–August 
2004 (and shifting to the right by 1  year at a time). 
The resulting (updated) parameters, together with 
the updated initial states at August of each year, 
were then used to simulate forward over the next 
12 months as before. This refitting procedure param-
eterizes non-stationarities in the data at the time 
scale of the sliding window. To focus on the changes 
in the transmission intensity, only a sub-set of the 
parameters directly related to the force of infection 
(the seasonality coefficients b1...6 and rainfall coeffi-
cient br, see Additional file 3) were re-fitted, with the 
rest of the parameters held constant at their original 
MLE values.

The forecast method 2 is expected to be useful if the 
shifting patterns in the data are driven by changing con-
trol policies (with exceptions discussed below). On the 
other hand, when climate remains the primary driver 
of the dynamics, method 1 would suffice for prediction 

purposes and its success would be an indication that 
any trend is not the result of intervention. Choosing the 
month of August for the initial states and forecasting 
from the month of September is motivated by the major 
(post-monsoon) transmission season for malaria in India 
that usually occurs between September and December 
[3, 4].

A large number (typically 10,000) of simulations were 
generated with these two methods over the interval 
between September 2004 and December 2009 (2011 
for Kutch), and monthly predictions were compared to 
the data over this interval. Using 3- and 5-year refitting 
windows for method 2 did not provide any additional 
advantage, so results are shown for a 4-year window. A 
time window shorter than 3 years does not have enough 
information in the data for the refitting to be useful, and 
a window longer than 5 years fails to capture short-term 
non-stationarities in the data. The choice of window 
length is further addressed in Discussion.

Hindcasting was used to examine two aspects of the 
fitted model’s prediction skill. First, a generalized R2 sta-
tistic was applied to measure forecasting skill, by com-
paring prediction error in total incidence (aggregated 
for the transmission season between September and 
December) between the process-based model and the 
simplest model of a ‘typical’ season given by the mean of 
the observed cases, with both errors normalized by the 
prediction variance of the former  model. The predic-
tion value ŷt was obtained by first accumulating the cases 
over a season (year t) for each of the simulations and 

a b

Fig. 2  Malaria transmission models. a, b Model diagram for the population dynamics of falciparum and vivax malaria are respectively shown. Com-
partments for the human population are represented as squares, and those related to the force-of-infection via the mosquito vector (classes λ1…m 
for m = 2) are represented as circles, with arrows indicating the direction of transition between classes. The per-capita rate of transition is included 
next to each arrow (see Additional file 3 for model equations and description)
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computing the median for that given time from all these 
runs. The skill measure is defined as follows (see supple-
ment of [3]):

where yt denotes observed cases, accumulated over Sep-
tember to December for the year t, μ is the mean of the 
observed cases over the years [yr1,yr2], and vt is the pre-
diction variance for year t. This variance weights the cor-
responding accuracy of the prediction in a given year by 
the precision of the model. Thus, years whose predictions 
are more precise (vary less) are given higher weights. This 
skill measure tells how much better the model’s ability to 
predict is compared to that of trivially using the mean: a 
positive value (≤1) indicates better prediction skill and a 
negative or zero value indicates poor skill.

Second, the model’s skill was evaluated in terms of the 
probability of predicting the occurrence of an epidemic 
‘event’. An event is defined as the total number of cases 
in the fall months (September–December) of a given 
year exceeding a pre-specified threshold, such as their 
historical median in each district (two other event sizes, 
exceeding the historical 75th and 90th percentiles, are 
considered in Additional file 3). These thresholds repre-
sent the user’s definition of a large fall outbreak, and the 
model-predicted probability is computed over the 10,000 
independent forecasts for each of the two methods 
described above. One can then assess the model’s skill as 
a binary classifier predicting whether or not a large out-
break would occur in a given year, for each of the future 
years (post-2004), in terms of the probability p exceeding 
a threshold θ (e.g., p  >  θ =  0.5), and then compare the 
resulting predicted outbreaks with the observed ones in 
the data. The accuracy of prediction over a time span of 
several years (both pre- and post-2004) is computed as a 
ratio of the total number of true positive (TP) and true 
negative (TN) events predicted by the model over these 
years, and the total number of observed positive (P) and 
negative (N) events during the same time:

A value close to or equal 1 indicates high accuracy of 
prediction.

Results
Figures 3, 4, 5 and 6 illustrate the comparisons between 
model predictions and data for Kutch, Barmer, Bikaner, 
and Jaisalmer, respectively. The top panel presents plots 
for Pf , and the bottom panel shows similar plots for Pv. 

(1)Skill = 1−

∑yr2
t=yr1

(

yt − ŷt
)2
/

vt

∑yr2
t=yr1

(

yt − µ

)2
/

vt

∈ [−∞, 1],

(2)Accuracy =
TP+ TN

P+N
∈ [0, 1]

In these plots, data are contrasted with both the ‘past’ 
(over January 1986–August 2004) and ‘future’ (Septem-
ber 2004 onwards) simulations. Past simulations are 
carried out with the original MLE model and sequen-
tial yearly updating of initial states at August of each 
year between 1986 and 2003 (as for method 1). The two 
future simulation plots in each panel are created using 
the two forecasting methods (see “Methods”) , with only 
updated initial states in the top ones (labelled ‘original 
MLE’ for method 1), and both updated initial states and 
parameters in the bottom ones (labelled ‘refitted MLE’ 
for method 2). The past simulation results are included 
to illustrate the hindcast performance of the models (see 
also [3]), and model predictability is evaluated here with 
the future simulations only, by comparison with the out-
of-fit data. Hereafter the terms ‘future simulation’ and 
‘forecast’ will be used interchangeably.   

Comparing Pf data with the future simulations for the 
Kutch district (Fig. 3a, b, blue plots) illustrates the rela-
tive merits of the two methods. The data (in red) show a 
pronounced declining trend in incidence over this period, 
and observed cases are almost non-existent during the 
last 3 years between 2009 and 2011. Although this decline 
can be attributed to major changes in the national anti-
malarial drug policy implemented during 2007-08, for 
example introducing ACTs for diagnosed Pf infections 
[16, 17], comparison to the forecasts can quantify the 
effect of intervention while taking into account the cli-
mate variability during that period. The forecast method 
1, which only updates the initial states but not the model 
parameters, consistently overestimates the data over this 
interval, as expected from an effect of the new drug pol-
icy. The discrepancy between the out-of-fit data and the 
median simulation from the method 1 (Fig. 3a) is indica-
tive of the effectiveness of these recent control measures 
against Pf in this region. By contrast, method 2, which 
updates both the initial states and parameters, and thus 
incorporates this improved control, agrees with the data 
quite well over the same time period, thereby substan-
tially improving predictability despite this trend (Fig. 3b).

The Kutch Pv plots (Fig. 3c, d, blue plots) show a con-
trasting result, with predictions close to the observed 
case possibly for two reasons. First, it is well known that 
relapses often play a major role as a hidden reservoir in 
maintaining vivax malaria, especially in northwest India 
[4, 22], and thus the predictability of the vivax model may 
depend more on its relapse component (Fig. 2b, also see 
[4]), and less on factors that modify transmission inten-
sity such as control efforts against the vector. Thus, the 
population dynamics of the disease are expected to be 
more resilient to control. Second, given the well-docu-
mented inadequacies of currently available treatments 
against relapses and more virulent strains [22–24], one 
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would not expect a strong effect of such kinds of con-
trol (see “Discussion”). Method 2 is, therefore, unlikely to 
significantly improve the quality of prediction for vivax 
malaria over method 1, as found here.

The Barmer Pf data (Fig. 4a, b) exhibits a high degree of 
intermittency in the occurrence of large outbreaks, with 
mostly small outbreaks and occasional large flare-ups, 

for example in the fall of 1994. Fitting the models to such 
intermittent data can be difficult: for example, in year 
2004 (in the past simulation), the MLE model generates 
a large fall outbreak driven by strong monsoon rain that 
year (see Fig.  1b), although the observed epidemic was 
small. Method 1 predicts an even larger outbreak in 2006, 
which is also the year that experienced the strongest 
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Fig. 3  Comparison of model simulations with case data for Kutch. In all plots, monthly case data are shown in red, past simulations are in black (for 
the median of 10,000 simulations, with their corresponding 10–90 % confidence intervals, in light grey), and future simulations are in blue (10–90 % 
CI in light blue). a, b Present the results for falciparum malaria, and c, d for vivax malaria. Each panel consists of two plots, both including the same 
‘past’ simulation but different future simulations corresponding respectively to those of method 1 (labelled ‘original MLE’) and method 2 (labelled 
‘refitted MLE’)
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monsoon over the entire time span (Fig.  1b), while 
method 2 however forecasts a much smaller outbreak 
that year. Both methods correctly predict the subsequent 
low incidence.

The Barmer Pv plots (Fig.  4c, d) highlight a different 
contrast between the forecast methodologies presented 
here. The forecast from method 1 already agrees with 
the data quite well (Fig.  4c, blue plot), which suggests 
the inadequacy of recent control efforts against vivax 
malaria, as mentioned above. Thus a correction of the 

model with method 2 is not needed, and can even cause 
a deviation from observations, biased by shorter patterns 
in a smaller window (such as the two large epidemics of 
2001 and 2003) (Fig. 4d). The outcomes of both methods 
are presented here to illustrate their differences; in prac-
tice, the goal is not the comparison of the two methods 
per se, but the question of whether one should further 
refine the fit or not.

The Bikaner Pf plots (Fig. 5a, b), much like the Kutch 
plots discussed before (Fig.  3a, b), illustrate the relative 
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Fig. 4  Comparison of model simulations with case data for Barmer. See the caption of Fig. 3 for description
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superiority of method 2 over method 1, when applica-
tion of the latter, and the data itself, both reveal apparent 
non-stationarities. For the Pv data though (Fig. 5c, d), as 
for those of Kutch earlier, the difference between the two 
methods is minimal.

The Jaisalmer Pf plots (Fig.  6a, b) are similar to the 
Bikaner ones described above, and the forecasting abili-
ties of the two methods differ in a similar way. As for the 
Jaisalmer Pv plots (Fig. 6c, d), method 2 appears to gener-
ate better forecasts in the more recent years.

The MLE values of the estimated model parameters 
for all districts are consistent with estimates presented 
in previous studies for Pf and Pv malaria in Kutch [3, 4], 
which is expected given the similarities of the prevailing 
climatic and other environmental conditions.   In par-
ticular, the reporting fraction ρ is estimated to fall in the 
range of 1-3%, a low value that is consistent with a high 
degree of under-reporting [3, 4].

Table  1 presents the skill measure (expression  1) for 
the past period and for the two methods and the future 
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Fig. 5  Comparison of model simulations with case data for Bikaner. See the caption of Fig. 3 for description
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Table 1  Skill measures

Values of prediction skill are shown for Kutch, Barmer, Bikaner and Jaisalmer

‘Past’ skill is computed for the years 1986–2003, and the two future skills are computed for the years 2004–2011 for Kutch, and 2004–2009 for the other districts

Future skills for the two forecast methods are labelled Future(1)   and Future(2), respectively

Kutch Barmer Bikaner Jaisalmer

Pf Pv Pf Pv Pf Pv Pf Pv

Past 0.985 0.901 0.992 0.997 0.840 0.807 0.802 0.994

Future(1) −2.027 0.567 0.653 0.926 −0.225 0.644 0.591 0.555

Future(2) 0.463 0.785 0.979 0.749 0.064 0.709 0.913 0.407
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simulations, for each of the four districts (see “Meth-
ods”). The high skill values in the past for both Pf and Pv 
are indicative of the quality of the model fitting to the ret-
rospective data. Comparing the two future skills for each 
district shows they can be positive or negative, encom-
passing a wide range of performance. For example, for 
Kutch and Bikaner, the forecasts with method 2 show a 
much higher skill than those with method 1 in predict-
ing Pf malaria, but perform only moderately better for Pv 
malaria, consistent with the findings of Fig.  3. For Bar-
mer and Jaisalmer Pv, on the other hand, method 1 has a 
higher skill than method 2, also as expected. This shows 
that there is no reason to refine the fit when there is no 
apparent trend or systematic deviation of the predictions; 
this can overly weight recent patterns in an unnecessary 
way, as mentioned before.

Table  2 shows the accuracy of predicting whether 
or not a large fall outbreak will occur in a given year 
(see “Methods”), over the same past and future periods 
and four districts as in Table  1. In all cases, method 2 
offers higher accuracy in predicting falciparum malaria, 
whereas method 1 is at least as accurate for vivax malaria 
if not better (in Bikaner), in agreement with the findings 
presented before. Similar results are found when the out-
break size is defined in terms of historical 75th and 90th 
percentile of observed fall cases (see Additional file 3).

Discussion
In regions that experience substantial climate variability, 
it is difficult to determine whether any particular change 
in the temporal patterns of malaria incidence results from 
intervention efforts or simply from the climate conditions 
per se. A further challenge arising from non-stationary 
temporal patterns is their lack of predictability based on 
models that are parameterized and validated with retro-
spective data. This paper addresses these two issues with 
a comparative assessment of two different forecasting 
approaches applied to climate-driven transmission mod-
els for falciparum and vivax malaria, and long-term sur-
veillance data from four districts in northwest India. Both 
approaches make use of a particle filtering technique to 

update the estimated initial conditions of yearly forecasts 
based on the data up to that time, thus partially improv-
ing the model’s prediction skill. The second approach fur-
ther updates the transmission parameters of the model 
by refitting them to the data over a moving time window. 
This additional updating procedure helps account for fac-
tors such as socio-economic development or improved 
control policies (not included in the model).

Results presented here indicate conditions under which 
assimilating data in these two ways can help improve 
forecasts and also be informative on the effect of inter-
ventions. In particular, the first approach provides the 
means to evaluate the impact of control efforts in the 
context of climate variability. An example of this appli-
cation was shown for the district of Kutch where the 
model clearly overestimates the observed cases of Pf in 
recent years (Fig.  3a). By contrast, model predictions 
closely capture the observed cases of Pv in most districts, 
including Kutch. Thus rainfall variability per se can ade-
quately explain the inter-annual variability in the size of 
seasonal outbreaks of Pv but not Pf. This difference can 
be accounted by the adoption of an effective drug treat-
ment (ACT) for the latter parasite, whereas the use of an 
ineffective drug treatment combined with its ability to 
relapse, make the former more resilient to intervention. 
Control efforts targeting the vector such as IRS ( Insecti-
cide Residual Spraying) also appear inadequate [25].

Thus the choice between the two methods depends 
on the particular knowledge and questions about the 
introduction of new intervention measures and recent 
changes in incidence.  When such changes are absent (or 
unknown), the first approach would be the method of 
choice.   When its application results in prediction fail-
ures (despite good retrospective skill), or when changes 
in control measures and policies are known to occur, 
a switch to the second method would be warranted for 
more reliable prediction.

One potential limitation of the refitting procedure is 
the somewhat arbitrary choice of the length of the mov-
ing time window used to update transmission param-
eters. As noted before, too short or too long a window, 

Table 2  Prediction accuracy

Accuracy of predicting the occurrence of a large fall outbreak in a given year is shown for the four districts and past and future years (other details are the same as 
those in Table 1)

Kutch Barmer Bikaner Jaisalmer

Pf Pv Pf Pv Pf Pv Pf Pv

Past 0.778 0.722 0.722 0.778 0.833 0.778 0.778 0.722

Future(1) 0.5 0.875 0.833 1 0.5 0.667 0.5 0.667

Future(2) 0.875 0.875 1 0.833 0.667 0.667 0.833 0.667
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relative to the extent of the prevailing inter-annual vari-
ability in the data, is misleading for prediction purposes. 
It is unlikely however that analyses relying on retrospec-
tive records alone would allow one to identify an opti-
mal time scale, except perhaps in simple situations. For 
example, the anti-malarial drug policy in India has been 
revised every few years in recent decades [17], which 
may suggest the use of a time scale that closely follows 
the evolution of such updates. However, other socio-eco-
nomic developments, such as land-use practices related 
to irrigation and agriculture in arid regions of northwest 
India, also impact malaria trends at slower time scales 
[18, 19, 26]. In other (less complex) situations, it may be 
possible to extract a candidate time scale from the data 
itself, by examining the question of window size system-
atically using the retrospective data, in combination with 
power spectrum analyses that are localized in time, such 
as the wavelet spectra [18, 27, 28].

It is also apparent from the results that the recurrent 
updating of parameters (approach 2) works better in those 
districts whose non-stationarity consists of a decreas-
ing rather than an increasing trend. This is because mul-
tiyear increases in the size of outbreaks tend to be local 
in time and often followed by a reversal, which leads to 
over-predicting malaria burden at the transition. One 
likely explanation is that local increases typically generate 
reactive intervention responses [29]. Although such cycles 
are possible when intervention relaxes after an apparent 
decrease in malaria burden, long-term trends reflecting 
socio-economic improvements and/or the adoption of a 
new intervention, against which the vector or the parasite 
have not yet evolved resistance, tend to be sustained at a 
longer scale and therefore are more easily corrected for.

The yearly predictions generated by either approach 
are produced by driving the model with actual climate 
variables (rainfall data). However, to be operationally 
useful, such predictions need to be generated for future 
times whose relevant climate data are not yet available. A 
default approach to handle this issue is to rely on a syn-
thetic 12-month long climate series obtained by averaging 
the corresponding monthly values over previous years. In 
yearly forecasts from the end of the monsoons, this works 
well because most of the relevant rainfall has already been 
observed. This limits, however, the lead time of outbreak 
prediction. An alternative, and potentially better, strat-
egy that would afford longer and more flexible lead times, 
would consist of first generating seasonal climate forecasts 
[2] and then using these to drive the transmission model. 
The accuracy of this approach would clearly depend on the 
accuracy of the climate forecasts themselves.  In the same 
vein, the usefulness of the methods presented here strongly 
depends on the quality of the initial fit to the ‘training’ data 
set.

One simplification adopted in the model for both falci-
parum and vivax malaria is the consideration of a single 
partially immune class (Q), which ignores the details of 
an age-stratified immunity distribution, but still proves 
sufficient in capturing the transmission dynamics in 
this epidemic region.   Such formulation may potentially 
limit the scope of this modeling framework in areas with 
higher transmission intensity, where host immunity from 
repeated infection is likely to play a complex and more 
important role.

 Prediction with models that combine climate variabil-
ity and epidemiology is likely to be successful in seasonal, 
low transmission regions, at the edge of the distribu-
tion of the disease, in arid regions and highlands [30].  It 
is also here that the temporal patterns of incidence are 
most variable at interannual time scales, and this vari-
ability can be exploited to inform the parameterization 
of the models from retrospective surveillance data.  Nev-
ertheless, the extent to which one can extend this kind 
of forecasting beyond these fringe areas when additional 
epidemiological data is available, especially on the age 
distribution of cases, remains unexplored.   Clearly, for 
highly endemic areas where there is seasonality but very 
weak interannual variability in incidence, early-warning 
systems for predicting ‘outbreaks’ are no longer of inter-
est.  There may still be variation however in the seasonal 
patterns themselves in response to climate variability as a 
recent study illustrates [31].

 The definition of outbreak size used to evaluate predic-
tion accuracy/performance is by no means unique [32], 
and can potentially affect the outcome of the methods 
presented here.   The prediction accuracy was evaluated 
here by using different thresholds to define the occur-
rence of an outbreak when cases surpass a given value.   
Such a threshold was specified to a priori mimic the situ-
ation of a choice based on a level of incidence the public 
health system considers of concern.  Alternatively, ROC 
(Receiver Operating Characteristics) curves could be 
used for this purpose [33].   Moreover, the skill measure 
itself does not rely on a threshold and uses the number of 
cases themselves; hence, it does not depend on the defi-
nition of an outbreak as a discrete event.

 It is certainly possible to devise more elaborate models 
of malaria than those used here, to account for detailed 
description of the processes underlying the dynamics 
in such a complex infection [29, 34]. In the absence of 
specific data on the levels of intervention and relevant 
socio-economic changes, these models do not solve the 
problem of non-stationary dynamics. Furthermore, these 
more complex models quickly become difficult, if not 
impossible, to parameterize and validate from time series 
data. In this regard, the simpler models used here pro-
vide an effective means of projecting the expected future 
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course of the system given the information contained in 
retrospective temporal patterns. They are particularly 
useful to quantify deviations from this expectation, and 
therefore, detect the effect of intervention in a way that 
controls for climate variability, as discussed before.

The WHO’s Roll Back Malaria global strategic initiative 
stipulates a target for MEWS to detect 60 % of epidem-
ics within 2  weeks [35]. For climate-based early warn-
ings and forecasting systems, a major challenge is that 
of translating promising scientific studies of well-dem-
onstrated climate-malaria relationships into operational 
predictive models [3]. As this study demonstrates, one 
approach towards this objective is to make better use of 
state-of-the-art statistical methodologies to ‘train’ these 
models with long-term surveillance data and to recur-
rently assimilate new data in systems that are unavoid-
ably non-stationary.
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