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Missing data are a commonly occurring threat to the validity and efficiency of epidemiologic studies. Perhaps the

most common approach to handlingmissing data is to simply drop those records with 1 or moremissing values, in so-

called “complete records” or “complete case” analysis. In this paper, we bring togetherearlier-derived yet perhaps now

somewhat neglected results which show that a logistic regression complete records analysis can provide asymptot-

ically unbiased estimates of the association of an exposure of interest with an outcome, adjusted for a number of con-

founders, under a surprisingly wide range of missing-data assumptions. We give detailed guidance describing how

the observed data can be used to judge the plausibility of these assumptions. The results mean that in large epide-

miologic studies which are affected by missing data and analyzed by logistic regression, exposure associations may

be estimated without bias in a number of settings where researchers might otherwise assume that bias would occur.

complete case analysis; logistic regression; missing data; odds ratio

Abbreviations: BMI, body mass index; CRA, complete records analysis; MAR, missing at random; MCAR, missing completely at

random; MNAR, missing not at random.

Missing data are a pervasive issue in epidemiologic stud-
ies, reducing statistical power to detect associations of interest
and potentially biasing estimates. In a recent systematic re-
view of studies using questionnaires in leading epidemiologic
journals, over 90% suffered from missing data to some extent
(1). There now exist a plethora of statistical techniques for an-
alyzing partially observed data sets, including multiple impu-
tation (2–4) and inverse probability weighting (5). However,
the most commonly used approach (1) is complete records
analysis (CRA), often referred to as complete case analysis.
Whether estimates are biased by missing data depends on

the relationships between the chance of data being missing
and the variables involved in the analysis. Many readers will
be familiar with the acronyms MCAR, MAR, and MNAR,
first developed by Rubin (6) for classifying the mechanisms
causing data to be missing (7). It is well known that if data
are missing completely at random (MCAR), meaning that
missingness is independent of the variables involved in the
analysis, CRA is asymptotically (i.e., in large samples) un-
biased, and that generally it is biased if data are not MCAR.

However, it is perhaps less widely appreciated that CRA can
be asymptotically unbiased for some or all of the parameters
in certain situations where data are missing at random (MAR)
or even missing not at random (MNAR) (8–10).
Whether a CRA produces asymptotically unbiased estimates

depends both on the type of missingness mechanism present
and on the form of the analysis to be undertaken. In this article,
we focus on the common situation where the analysis consists
of fitting a logistic regressionmodel for a disease outcome, with
an exposure of interest and a number of confounders as covar-
iates. Logistic regression is a popular approach for modeling
binary outcome data, for a number of reasons. First, in case-
control studies, in which participants are sampled with a prob-
ability that depends on the disease outcome, logistic regression
permits valid estimation (although the intercept parameter has a
different interpretation from that in a cohort study). Second, the
logistic function is the canonical link function for a binary out-
come, so logistic regression enjoys certain favorable properties.
In the present article we review and extend earlier results

(10–12), which we have found to be rather neglected recently,
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showing that CRA estimates of exposure odds ratios from
logistic regression are asymptotically unbiased under a sur-
prisingly wide range of missingness mechanisms. We then
provide guidance as to how the observed data can be used to
investigate the missingness mechanism, thereby indicating
whether the CRA exposure odds ratio estimate is likely to
be asymptotically unbiased. The results have important impli-
cations for the analysis of epidemiologic studies suffering
from missing data: In some settings where researchers might
believe a CRA is biased due to data not being MCAR, a CRA
logistic regression analysis may in fact produce asymptoti-
cally unbiased exposure odds ratio estimates.

We first describe the conditions under which CRA logistic
regression gives asymptotically unbiased estimates of the ex-
posure odds ratio, which slightly extends the previous results
(10–12). Next, we describe a set of simulations based on data
from a cohort study of professional flight crew in the United
Kingdom, illustrating these results. Third, we give detailed
guidance for how to use the observed data to draw conclu-
sions about the missingness mechanism(s) and thereby to
help decide whether CRA logistic regression will produce
an asymptotically unbiased exposure odds ratio estimate.
We conclude with a discussion.

VALIDITY OF EXPOSURE ODDS RATIO ESTIMATES

FROM CRA LOGISTIC REGRESSION

The outcome model

To describe when a CRA logistic regression analysis will
produce asymptotically unbiased estimates of the exposure
odds ratio, we assume that in the population of interest the bi-
nary outcome Y (typically representing the occurrence of an
event of interest) follows a logistic regression given exposure
X and confounders C:

logitðPðY ¼ 1jX;CÞÞ ¼ β0 þ βXX þ βCC: ð1Þ

We assume that data are available from a set of study partic-
ipants. If the data come from a cohort study, in the absence of
missing data we obtain asymptotically unbiased estimates of
the population values of β0, βX, and βC. If the data are from a
(unmatched) case-control study, as is well known, estimates
of the adjusted covariate associations βX and βC are asymptot-
ically unbiased, but the intercept β0 depends on the sampling
fractions of cases and controls (13).

Missingness

We now suppose that for some participants, data for one or
more of the variables involved in the logistic regression are
missing. We let R denote a binary indicator of whether a par-
ticipant has Y, X, and C observed and thus has a complete
record (R = 1) or an incomplete record (R = 0). CRA then
consists of fitting the logistic regression model to the com-
plete records, that is, using data from those participants for
whom R = 1. Whether CRA produces asymptotically un-
biased estimates depends on the dependence of the binary
indicator R on the variables Y, X, and C. Note that we do not
specify which variables suffer from missingness—the results

that follow are not dependent on where the missingness oc-
curs, and therefore, as noted by Westreich (10), they apply
regardless of whether or not the data are MAR or MNAR.

If R is independent of Y, X, and C, the data are MCAR. In
this case, the complete records form a random subsample of
the target sample, so any parameters which would have been
estimated without bias in the absence of missing data will
continue to be estimated without bias.

Unfortunately, data are rarelyMCAR in epidemiologic stud-
ies, and thus an important question is what types of missing-
ness lead to bias in the CRA estimate of the exposure odds
ratio. In a previous paper published in the Journal, Vach and
Blettner (11) considered the case of a binary exposure and a
single partially observed categorical confounder and described
missingness conditions under which the CRA estimate of the
exposure odds ratio from logistic regression is asymptotically
unbiased. In fact, their results apply more generally, and they
apply irrespective of whether it is the outcome, the exposure,
or the confounder which has missing values. The following
results also have links to those of Hernán et al. (12), who con-
sidered the issue of selection bias from acausal diagram perspec-
tive, although for the most part they considered a setting more
general than the logistic regression setting considered here; the
symmetry of the logistic link means that some results that
hold for logistic regression do not apply in general. Westreich
(10) also used causal diagrams to discuss selection bias and
bias due to missing data, emphasizing that the odds ratio can
be asymptotically unbiased when other association measures
are biased, although his presentation considered a setting
with no confounders.

We now describe the situations in which the CRA esti-
mates of βX, and sometimes the estimates of β0 and/or βC,
are asymptotically unbiased. The results are summarized in
Table 1. Derivations are given in Web Appendix 1 (available
at http://aje.oxfordjournals.org/).

Outcome-dependent missingness

If missingness depends only on the outcome, that is, P(R =
1jX, Y, C) = P(R = 1jY), estimates of βX (and βC) are asymp-
totically unbiased, while estimates of the intercept are biased.
This result is, of course, the primary reason that the odds ratio
is used as an association measure in case-control studies (14),
in which selection into the study corresponds to having a
complete record, with the probability of selection depending
on case/control status.

Covariate-dependent missingness

CRA is also asymptotically unbiased under covariate-
dependent missingness, that is, P(R = 1jX, Y, C) = P(R = 1jX,
C). In fact, this result applies not only to logistic regression
but more generally to any regression method in which the
model specifies the distribution of outcome Y given covari-
atesX andC (e.g., linear regression) (15). Intuitively the result
can be understood by the fact that when one fits a regression
model for an outcome Y given covariates X and C, one is only
estimating some aspect (e.g., the mean) of the distribution of
Y separately in different strata defined by the covariates.
While covariate-dependent missingness means the complete
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records are not a random sample, it ensures that (in cohort/
cross-sectional studies) within strata defined by the covari-
ates, the distribution of Y is representative of the stratum-
specific population distribution of Y.

Missingness dependent on the outcome and

a confounder

Suppose now that missingness depends on Y and C but
given these is independent of X, that is, P(R = 1jX, Y, C) =
P(R = 1jY, C). Then CRA is again asymptotically unbiased
for βX (but generally is biased for β0 and βC). Intuitively
this result holds, because when we adjust for C, the exposure
association can be thought of as being estimated separately in
strata defined by C. When missingness depends on Y and C,
the stratum-specific odds ratio for exposure is not altered (in
expectation), such that we again obtain asymptotically un-
biased estimates of βX.

Missingness dependent on the exposure and

the outcome

In general, if missingness depends jointly on X and Y (and
possibly C), CRA is biased for βX. Intuitively this can be un-
derstood by the fact that such mechanisms affect (within the
complete records) the distribution of exposures differently in
persons with Y = 1 from those with Y = 0.
There is, however, a class of mechanisms in which miss-

ingness depends jointly on X and Y but for which CRA is
still asymptotically unbiased for βX. Specifically, this is the
case if P(R = 1jX, Y, C) = s(X, C)t(Y, C) for some functions
s(X,C) and t(Y,C) (10). This result can be viewed as following
from combining the preceding results on covariate-dependent
missingness and missingness dependent on the outcome and
a confounder in turn. Moreover, s(X, C) might depend only
on X, so that s(X, C) = s(X), and t(Y, C) might depend only
on Y, so that t(Y, C) = t(Y).
Missingness mechanisms satisfying this condition might

arise in practice when missingness occurs in 2 variables (or
sets of variables), such that to have a complete record a par-
ticipant must have both variables observed. For example,
suppose that participants with the outcome of interest are

more difficult to follow up to have their outcome observed,
such that missingness in Y is dependent on Y. Next, suppose
that the exposure is less likely to have been observed for those
participants with high exposure levels. In this scenario, CRA
would be asymptotically unbiased for βX, with P(R = 1jX, Y,
C) = s(X)t(Y) for suitable functions s(X) and t(Y), which re-
spectively determine how the probabilities that X and Y are
observed depend on X and Y. Notice that here data would
be MNAR, yet the exposure odds ratio is still estimated with-
out bias (asymptotically).

Interaction

Thus far, we have assumed a model with main “effects” of
exposure X and confounders C. In some settings, one or more
components ofCmay act as modifiers for the association of X
with Y, such that interest lies in a logistic regression model
which includes interactions between X and one or more com-
ponents of C. All of the preceding results still apply in this
case, where instead of a single exposure odds ratio βX, the lo-
gistic regression model estimates stratum-specific exposure
odds ratios, with strata defined by combinations of one or
more of the components of C.

Model misspecification

The results described above assume that the logistic regres-
sion outcomemodel is correctly specified. In practice, models
will generally be misspecified to some extent. For example,
the confounders Cmay be included in the model in the incor-
rect functional form, or the exposure association may in truth
vary with a component of C, while in the outcome model we
assume no interaction. The question then arises as to whether
missingness biases our estimates relative to the values which
would have been unbiasedly estimated (asymptotically) in
the absence of missing data.
Unfortunately the preceding results do not apply in general

when the outcome model is misspecified. For example, in the
casewhere interaction is present but is not included in the out-
comemodel, the estimated exposure odds ratio in the full data
is an average association, averaged over the distribution of the
confounders. Performing a CRA means averaging across the

Table 1. Bias of Estimates Derived From Complete Records Analysis Logistic Regression Under Different

Missingness Assumptions

Quantity on Which
Missingness Is Dependent

Parameter

β0 βX βC

Neither Y nor X nor C Asymptotically unbiased Asymptotically unbiased Asymptotically unbiased

Outcome (Y ) Biased Asymptotically unbiased Asymptotically unbiased

Covariates (X, C, or both) Asymptotically unbiased Asymptotically unbiased Asymptotically unbiased

Outcome (Y ) and
confounders (C)

Biased Asymptotically unbiased Biased

Outcome (Y ), exposure (X ),
and possibly confounders (C)

Biased Biaseda Biased

a Biased in general. However, if P (R = 1jX, Y, C) = s (X, C)t (Y, C) for some functions s (X, C) and t (Y, C), with R
being the complete record indicator, then the exposure association is again estimated without bias (asymptotically).
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confounder distribution of the complete records, which will
generally differ from the confounder distribution in the full
data, resulting in an estimate which is biased as an estimate
of the population “parameter” that would be estimated in
the absence of missing data. However, provided that the out-
come model is only mildly misspecified, we would expect
any such biases to be small and therefore for the results to
hold approximately. This is illustrated empirically below. In
cases where the outcome model is severely misspecified, the
“parameters” being estimated in the absence of missing data
are of questionable use, so additional biases caused by miss-
ingness are arguably of secondary concern.

Results for other types of regression models

Thus far, we have considered bias for exposure associa-
tions in logistic regression. As we noted above, covariate-
dependent missingness does not cause bias in CRA more
generally (15), including in linear regression for continuous
outcomes and Cox proportional hazards models for time-to-
event outcomes. Furthermore, it is known that Cox proportional
hazards models produce estimates similar to those of logistic
regression when the follow-up period is the same for all par-
ticipants and the event rate is low (16). This approximate
equivalence implies that when follow-up is the same across
participants and the event rate is low, the results regarding
when CRA logistic regression produces asymptotically un-
biased exposure association estimates also apply to Cox
regression, with the outcome Y corresponding to the event
indicator. Thus, provided that follow-up is similar across par-
ticipants and the event rate is low, a CRA Cox regression
would be expected to give approximately asymptotically un-
biased exposure association estimates when P(R = 1jX, Y,
C) = s(X, C)t(Y, C).

ASSESSING THE PLAUSIBILITY OF MISSINGNESS

ASSUMPTIONS IN PRACTICE

In practice, we must use a combination of exploratory data
analysis and contextual knowledge to judge the plausibility
of different missingness assumptions. Suppose that either a
subset of the confounders C1 (where C = (C1, C2)), the expo-
sure, or the outcome is partially observed. In each case a lo-
gistic regression model can be fitted in which the dependent
variable is a binary indicator of whether the partially ob-
served variable(s) is (are) recorded or missing, and the inde-
pendent variables are the remaining fully observed variables
in the outcome model. The results of this logistic regression
model for missingness can inform the plausibility of the dif-
ferent missingness assumptions. Table 2 summarizes what
might be reasonably concluded from this analysis regarding
the missingness mechanism, and hencewhether CRA logistic
regression would be expected to produce an asymptotically
unbiased estimate of the exposure odds ratio. Web Appendix
2 gives a detailed explanation of these results and provides
guidance for the common situation in which more than 1 var-
iable is partially observed.

We note that when investigating themissingness mechanism,
one should not focus solely on statistical significance—in
small studies, strong mechanisms may not reach statistical

significance due to lower power, while in large studies an as-
sociation between missingness and a variable might be sta-
tistically significant yet sufficiently small in magnitude to
deem anyeffect on bias negligible.We also emphasize that the
guidance given as to which missingness mechanisms are
plausible in light of analysis of missingness cannot be defin-
itive. In particular, for the class of mechanisms where CRA is
biased ( joint dependence on X and Y), it is possible to con-
struct situations where associations cancel out in such a way
that the missingness may appear to belong to one of the other
(non-bias-causing) classes. This points to the importance of
contextual knowledge, together with appropriate sensitivity
analysis (17), in applications.

ILLUSTRATIVE ANALYSIS

Study data

To illustrate the preceding results, we analyzed data from a
cohort study of professional flight crew (pilots, flight engi-
neers, and navigators) in the United Kingdom (18, 19). The
study aimed to include all United Kingdom residents who

Table 2. Guidance for Investigation and Implications of Missingness

Mechanisms in Complete Records Analysis Logistic Regression

Quantity With Which
Missingness Is Found to

Be Associated

Plausible
Missingness
Mechanism(s)

Bias in CRA
Estimate of βX

Missingness in a Confounder C1

C2 C2 Asymptotically
unbiased

X, and possibly C2 X and C2 Asymptotically
unbiased

Y, and possibly C2 Y and C2 Asymptotically
unbiased

X, Y, and possibly C2 X and Y Generally biased
C and X Asymptotically

unbiased
C and Y Asymptotically

unbiased

Missingness in the Exposure X

C C Asymptotically
unbiased

Y Y Asymptotically
unbiased

C and Y C and Y Asymptotically
unbiased

X and Y Generally biased
X and C Asymptotically

unbiased

Missingness in the Outcome Y

X X Asymptotically
unbiased

C C Asymptotically
unbiased

X and C X and C Asymptotically
unbiased

Y and C Asymptotically
unbiased

X and Y Generally biased

Abbreviation: CRA, complete records analysis.
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held a professional flight crew license at some point between
1989 and 1999, and it made use of the Medical Records Sys-
tem of the United Kingdom Civil Aviation Authority. In total,
16,327 flight crew members were recruited into the study. For
the analyses presented here, the start of follow-up was defined
as the date of issuance of the first valid license in the medical
record database for each crew member. The Medical Records
System contains data from routine health surveillance exami-
nations given to each crew member every 6 or 12 months.
Flight crew are subject to a number of occupational expo-

sures which may potentially be related to increased risk of ad-
verse outcomes. For the illustrative analyses presented here,
we used the data to estimate the association between each crew
member’s number of flying hours at baseline, as a proxy for
the crew member’s exposure to cosmic ionizing radiation,
and his or her subsequent risk of death in the following 15
years. Confounders adjusted for were age, sex, smoking status,
body mass index (BMI; weight (kg)/height (m)2), and type of
flight route (no commercial flights, United Kingdom, Europe,
or world). Baseline exposure and confounder information
was obtained from the health examination corresponding to
the crew member’s date of the first valid license (issued dur-
ing the study period). We then linked crew members’ records
to the United Kingdom’s health registers to obtain vital status
information up to 2006. The exposure (X) incurred during
each crew member’s number of accrued flying hours at base-
line was categorized as 0 (<400 hours), 1 (400–5,499 hours),
or 2 (≥5,500 hours), using the original cohort study’s tertiles.
We adjusted for age using a piecewise linear function with
knots at 30, 40, 50, and 60 years, while BMI was categorized
with cutpoints at 20, 25, and 30.
Some individuals (n = 3,585) were censored for vital status

prior to 15 years, although the majority of these persons (n =
2,616) had follow-up of at least 10 years. Proper analysis of
the data required this to be accounted for using survival anal-
ysis techniques. For the purposes of the illustrative analysis
presented here, we ignored censoring and took as the out-
come whether each individual was observed to die during
his or her follow-up period of up to 15 years. Of the 16,327
persons followed, 354 died during follow-up. Information on
exposure was missing for 42 individuals, route type was
missing for 43, and 643 had missing BMI. Following the
strategy outlined in the previous section and expanded on
in Web Appendix 2, we ignored the small proportions of
missing values in the route-type and number-of-flight-hours
variables and focused on investigating missingness in BMI
using a logistic regression model for the indicator of its miss-
ingness, including the outcome, exposure, and other confound-
ers as covariates. This showed that age, route type, number of
flying hours, and sex were related to missingness in BMI but
that conditional on the exposure and other confounders, there
was no evidence of an association betweenmissingness in BMI
and the outcome. An assumption of covariate-dependent miss-
ingness was thus plausible, such that the CRA estimate of the
exposure association (and indeed other covariate associations)
should have been asymptotically unbiased. After dropping the
644 individuals missing data on BMI, route type, or number of
flying hours, the data set contained 15,683 records. We refer to
this as the “full data,” since, as we describe below, we next
made further data artificially missing in order to explore the

extent to which the theoretical results were borne out when
applied to a real data set.

“Full data” estimates and CRA estimates under different

missingness mechanisms

The first row of Table 3 shows the log odds ratio estimates
for the associations of 400–5,499 flying hours versus <400
hours and ≥5,500 flying hours versus <400 hours with mor-
tality, adjusted for the confounders, based on the “full data”
from 15,683 aircrew. Next, for 8 different missingness mech-
anisms, we simulated a complete record indicator R for each
study participant and fitted the logistic regressionmodel using
the resulting complete records. This was repeated 10,000
times for each of the 8 missingness mechanisms. Table 3
shows themean of the exposure log odds ratio estimates across
the 10,000 repetitions, the mean standard error, and the percent
bias for each mechanism. For each mechanism, the overall
probability of having a complete record was approximately
0.5, except for the last mechanism, for which the probability
was 0.25. Except for the MCARmechanism, each mechanism
assumed a reasonably strong dependence for the probability of
having a complete record on one ormore of the death-indicator
outcome (Y), the confounder age (C), or the categorical flying-
hours exposure (X).
For data MCAR (mechanism 1), the average estimates

were close to those based on full data, as we would expect.
With missingness dependent on outcome (mechanism 2),
the average estimates of the exposure log odds ratiowere again
close to the full data estimates. With missingness dependent
on age (mechanism 3), both coefficients were reduced some-
what, with downward biases of around 10%. This is likely
due to the fact that in the full data, the (adjusted) odds ratio
for increasing flying hours was lower in the older crew mem-
bers, so the outcome model was to some extent misspecified.
Under mechanism 3, the complete records had, on average,
an age distribution with a higher mean value, and since in
older crew members the flying-hours association was some-
what smaller, we saw a slight reduction in average estima-
ted coefficients. For the mechanism dependent on exposure
(mechanism 4), the probability of having a complete record
increased with decreasing flight hours, and the CRA expo-
sure odds ratio estimates again had little bias.
In mechanism 5, missingness depended jointly on age and

flying hours, with complete records being more likely for
older participants and those with low flying hours (or both).
The net effect of this was that the participants with complete
records had a higher mean age, such that exposure odds ratio
estimates were somewhat (6% and 9%) lower than those from
the full data. In mechanism 6, for those crew members who
survived, increasing age increased the probability of having a
complete record, whereas in those who died the opposite was
true. This meant that among the complete records, the mean
age of persons who died was reduced in comparison with the
full data, and consequently the exposure log odds ratio esti-
mates were dominated by the associations among the younger
crew, which, as previously noted, were larger. This led to up-
ward biases of 19% and 28% for the two log odds ratios.
A dramatic difference was seen for mechanism 7, which

depended jointly on the outcome and flying hours (161%
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and 293% upward biases). Under this mechanism, the CRA
suggested that longer flying hours had a much larger associ-
ation with death than the full data estimates. This was a con-
sequence of our choosing a mechanism in which, among
persons who died (Y = 1), the probability of having a com-
plete record was set to be higher if the crew member had a
higher number of flying hours, whereas in those who did
not die (Y = 0), this probability was set to be lower if the num-
ber of flying hours was higher. In the final mechanism (mech-
anism 8), missingness depended on outcome and exposure,
but independently, such that estimates were again quite close
to the full data estimates (upward biases of 4% and 6%).

Overall, consistent with theory, we have seen that estimates
are (on average) reasonably close to those from full data under
all missingness mechanisms except when missingness de-
pends jointly on outcome and exposure in a nonindependent
way. Our results support our view that—in the large majority
of situations—substantive conclusions would only be materi-
ally affected under missingness mechanisms of this type.

DISCUSSION

In this article, we have drawn together a number of earlier
results to show that for a correctly specified logistic regression
model, CRA estimates of exposure associations can be as-
ymptotically unbiased under a surprising range of selection/
missing-data mechanisms. Specifically, exposure odds ratios
are estimated without bias (asymptotically) provided that miss-
ingness does not depend jointly on exposure and outcome, and

even then, special cases exist where bias does not result. As
Westreich noted previously (10), these conditions apply irre-
spective of which variable(s) containsmissing values, and thus
apply whether or not the data are MCAR, MAR, or MNAR.

In epidemiologic studies, we recommend that researchers
use both data analysis and contextual knowledge to make
judgments about missing-data mechanisms. We have given
detailed guidance as to how the observed data can be used
to examine the plausibility of different missingness assump-
tions. However, as we have emphasized, it is essential that
such analyses be combined with contextual knowledge in
order to judge the overall plausibility of a missingness as-
sumption. A useful tool in this process is the directed acyclic
graph, which can encode beliefs about how variables affect
each other and missingness (10, 12, 20). Once an appropriate
directed acyclic graph has been constructed, standard rules
for manipulating such graphs can be used to deduce whether
the missingness mechanism falls within one of the classes in
which the CRA logistic-regression exposure odds-ratio esti-
mate is asymptotically unbiased.

We emphasize that we are not claiming that CRA will be
asymptotically unbiased generally—in the flight crew analy-
ses, we empirically demonstrated the potential for serious
biases (mechanism 7). Moreover, for other types of analyses,
such as longitudinal studies in which interest lies in esti-
mating the marginal mean of an outcome measure at a partic-
ular point in time, CRA is asymptotically unbiased only
under very strong (and typically implausible) missingness
assumptions.

Table 3. Log Odds Ratios for the Adjusted Association Between Number of Flying Hours (Categorized) and Mortality Among United Kingdom

Flight Crew Members, 1989–1999a,b

Missingness

Mechanism

Quantity on Which Missingness

Is Dependent
P(R = 1)c

No. of Flying Hours

400–5,499 vs. <400 ≥5,500 vs. <400

Log OR (SE) % Bias Log OR (SE) % Bias

N/A (full data) N/A 0.64 (0.22) N/A 0.70 (0.23) N/A

1 Nothing (MCAR) expit(0) 0.65 (0.32) 1.3 0.72 (0.32) 2.4

2 Death indicator (Y ) 1 if Y = 1 0.65 (0.23) 1.4 0.72 (0.23) 2.5

0.485 if Y = 0

3 Age (C) expit((age − 37.32)/10.79) 0.58 (0.29) −9.0 0.63 (0.27) −9.9

4 Flying hoursd (X ) expit(−(flyhrscat − 1)) 0.65 (0.28) 0.9 0.72 (0.30) 2.4

5 Age and flying hours (C and X ) expit(−(flyhrscat − 1) + (age − 37.32)/10.79) 0.60 (0.27) −6.4 0.64 (0.26) −9.1

6 Death indicator and age (Y and C) expit((age − 37.32)/10.79) if Y = 0 0.77 (0.36) 19.1 0.90 (0.42) 28.0

expit(−(age − 37.32)/10.79) if Y = 1

7 Death indicator and flying hours
(Y and X )

expit(−(flyhrscat − 1)) if Y = 0 1.67 (0.40) 160.6 2.76 (0.36) 292.5

expit(flyhrscat − 1) if Y = 1

8 Death indicator and flying hours
(Y and X ), conditionally
independently

expit(−(flyhrscat − 1)) if Y = 1 0.66 (0.29) 3.5 0.74 (0.31) 5.9

expit(−(flyhrscat − 1)) × 0.485 if Y = 0

Abbreviations: MCAR, missing completely at random; N/A, not applicable; OR, odds ratio; SE, standard error.
a Simulations based on imposing artificial missingness on data from the Medical Records System of the United Kingdom Civil Aviation Authority.

Data were obtained from a cohort study of professional pilots, flight engineers, and navigators who held a professional flight crew license in the United

Kingdom at some point between 1989 and 1999 (18, 19).
b Estimates (SEs) from the full data and averages obtained across 10,000 replications under various missingness mechanisms.
c expit(t ) = exp(t )/(1 + exp(t )).
d flyhrscat = 0 if flying hours <400, 1 if 400 ≤ flying hours <5,500, and 2 if flying hours ≥5,500.
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Even when CRA is asymptotically unbiased, it is not effi-
cient, since it discards the observed data in the incomplete re-
cords. In some settings where missingness affects a number
of variables in the analysis model, the complete records may
constitute only a small proportion of the original sample,
such that CRA estimates are very imprecise. If the assumed
missingness mechanism satisfies the MAR assumption,
multiple imputation can be used to obtain more efficient es-
timates (2–4). Furthermore, in this case, results from CRA
can be compared with those from multiple imputation—
material differences may be symptomatic of misspecification
in the imputationmodel, or a sign that themissingness assump-
tions made by one or another method are violated. If covariates
are believed to be MNAR with missingness dependent on the
covariates (and given these, independent of the outcome),
methods which give more precise estimates than CRA have re-
cently been proposed (21). For more general MNAR mecha-
nisms, Lin and Lyles (22) recently proposed an approach based
on collecting a “reassessment sample,” whereby additional
data collection is performed to obtain a subset of those expo-
sure values which were originally missing, thus enabling iden-
tification of the MNAR mechanism. In the absence of such
additional data, whenever there is a nontrivial proportion of
missing data and there is doubt regarding themissingnessmech-
anism, sensitivity analyses should be considered (3, 23, 24).
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