
Alexander, N (2015) What’s more general than a whole popula-
tion? Emerg Themes Epidemiol, 12. p. 11. ISSN 1742-7622 DOI:
10.1186/s12982-015-0029-4

Downloaded from: http://researchonline.lshtm.ac.uk/2287476/

DOI: 10.1186/s12982-015-0029-4

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alterna-
tively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSHTM Research Online

https://core.ac.uk/display/42633825?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchonline.lshtm.ac.uk/2287476/
http://dx.doi.org/10.1186/s12982-015-0029-4
http://researchonline.lshtm.ac.uk/policies.html
mailto:researchonline@lshtm.ac.uk


ANALYTIC PERSPECTIVE Open Access

What’s more general than a whole
population?
Neal Alexander

Abstract

Statistical inference is commonly said to be inapplicable to complete population studies, such as censuses, due to
the absence of sampling variability. Nevertheless, in recent years, studies of whole populations, e.g., all cases of a
certain cancer in a given country, have become more common, and often report p values and confidence intervals
regardless of such concerns. With reference to the social science literature, the current paper explores the circumstances
under which statistical inference can be meaningful for such studies. It concludes that its use implicitly requires a target
population which is wider than the whole population studied — for example future cases, or a supranational
geographic region — and that the validity of such statistical analysis depends on the generalizability of the
whole to the target population.

If Czech history could be repeated, we should of
course find it desirable to test the other possibility
each time and compare the results. Without such
an experiment, all considerations of this kind
remain a game of hypotheses [1].

Introduction
Classical frequentist statistics relies on the notion of a
sampling population to justify probability statements
such as p values or confidence interval coverage. A sam-
pling population is a source of variation over putative
repeated samples, as illustrated in Fig. 1. For such vari-
ation to occur, the sample must be smaller than the popu-
lation, otherwise ‘sampling errors disappear altogether’ [2]
(p659) and p values tend to zero. This is formalized in the
finite population adjustment, which reduces standard
errors towards zero as the size of the sample approaches
that of the population [3] (p436). This adjustment is rarely
used because, in the classical framework, the sample is
much smaller than the population. Sometimes this
inequality is simply asserted — e.g., ‘We cannot study all
the population’ [4]. However, advances in computerization
of health information, for example through national can-
cer registries [5] and mass genotyping [6], have made it

more feasible to study groups which can reasonably be
called ‘whole populations’. Although missing data can
rarely, if ever, be ruled out, some studies, for example
based on cancer registries, have achieved very low levels
[7, 8]. The social sciences recognise repeated sampling to
be inapplicable to certain kinds of whole population stud-
ies [9]. For example, when studying characteristics of the
ten largest cities in a given country, based on data aggre-
gated from the latest national census, re-doing the study
would not subject the data to sampling variation. To
understand how statistical inferential might, nevertheless,
be applicable to whole population studies, we need to
distinguish different uses of the word ‘population’.
One way to preserve sampling-based statistical infer-

ence is to adduce a group that is even more general than
the whole population that was studied. This kind of
wider group is called here a target population, although
the term is sometimes used as a synonym for the sam-
pling population [10]. The target population is the group
‘about which conclusions are to be made’ [11] but, when
it differs from the sampling population, it is not subject
to the sampling variation formalism. Some authors
define target populations to be real [12] (p361) while for
others they do not necessarily exist, at least not yet. For
example, Kirkwood and Sterne say that enumeration of a
target population may be impossible because it ‘often
includes not only all persons living at present but also
those that may be alive at some time in the future’ [13]
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(p10). Despite being currently intangible, such target
populations can be important to the application in hand,
the cited authors’ example being future recipients of an
experimental vaccine. Target populations (in this sense)
are sometimes called superpopulations, which comprise
‘all possible persons that ever were or ever could be
targets of inference’ [12].
In the following sections we look at attempts to re-

tain statistical inference in whole population studies,
then argue that the problem is better seen as one of
generalizability.

Population-free statistics?
Attempts have been made to justify statistical inference to
whole populations by resorting to alternative techniques, in
particular the bootstrap, and Bayesian estimation [9, 14].
The bootstrap generates variation by sampling the

original data with replacement. This can actually be
carried out in practice, unlike the notional repeated
sampling of a population. However the validity of the
bootstrap depends on ‘independent identical sampling from
an unknown distribution’ [15] so the original data are
themselves still assumed to result from a sampling process.
Bayesian inference is based on a priori probability

distributions (‘priors’) and a likelihood model for data
and parameters. The meaning of the prior probabilities
does not rely on sampling properties of populations. By

applying Bayes’ theorem to the model and available data,
inference is made about the parameters, for example in
the form of credible intervals, i.e., percentile ranges
calculated from the parameters’ posterior distributions.
If we already have complete data on the whole popula-
tion, then statements about probabilities must refer to
something wider. Since we have complete data on the
population why do summary statistics not suffice, with-
out confidence or credible intervals? For some situations
summary statistics will suffice (see Table 1). If they do
not, it is because we are interested in a wider group than
the original ‘whole’ population, namely the target popu-
lation. At the technical level, Bayesian analysis can be
run without giving any thought to this target population
but this does not mean that the results are validly applic-
able to it. Moreover, many Bayesian problems allow
‘matching’ priors which replicate frequentist results [16].
It would seem vacuous to consider one approach valid
and the other invalid when they can be designed to give
the same results. Similarly, inference, whether Bayesian or
not, may also be expressed in terms of parameters of a
hypothesised data generating mechanism, often expressed
as a probability model. This can be done even when the
data comprise a whole population but if the parameters
are not estimated perfectly then more could be learned
from further data, i.e., from the target population, assum-
ing the same data generating mechanism applies.

Fig. 1 The classical situation of a sample (small dashed circle) drawn from a population (large solid circle). The darker shading represents units
with a characteristic of interest
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Representativeness and generalizability
The above reasoning suggests that the validity of either
frequentist or Bayesian inference depends on the extent to
which the group being studied — whether or not it is a
whole population — is representative of the target popula-
tion. Porta [10] allows a sample to be representative of a
population if it is ‘typical in respect of certain characteris-
tics, however chosen’, i.e., without requiring a particular
selection method such as random sampling. Hence a
study group can potentially be representative of a given
target population, and its findings generalizable to it, even
if the target population is not amenable to sampling.
The current paper argues that the problem of inferential

methods in whole populations is most usefully understood
as one of generalizability (Fig. 2). Thinking in these terms
helps show that inferential methods are meaningless for
some situations while for others their use is at least argu-
able (see Table 1).
Lack of information on generalizability has been identi-

fied as a limiting factor in the translation of research
findings to policy [17–19]. The CONSORT guidelines
for clinical trials [20], and STROBE for observational

Table 1 Consider the following two examples of a binary
outcome with complete population coverage

Presidential election: there is 100% turnout in a national presidential
election, with each vote being either for candidate A or candidate B.

Cancer registry: male or female sex is registered for all cases in a national
registry which has 100% coverage of the type of cancer in question.

In the election example, is it meaningful to estimate a sampling error
for the proportion voting for candidate A? The answer seems to be
clearly ‘no’. This is because the purpose of the election is
to choose a president, which is done on the basis of the observed
proportion of votes cast. Any kind of interval estimate serves no
purpose because there is no generalizability beyond the election.

In the cancer registry example, is it meaningful to estimate a sampling
error for the proportion of cases who are female? Some would say ‘no’
on the basis that it’s a complete population enumeration with no
sampling error. Similar examples in the literature show that some
authors would say ‘yes’. This implies an attempt to generalize beyond
the population observed, but what is this wider target population?
Conceivably future cases, or a wider, supranational geographical area,
although often this is left unspecified.

Fig. 2 In a whole population study, the sample (dashed circle) has become so large as to coincide with the population (solid circle). The use of
confidence intervals, p values, or similar probability statements implies a claim to generalizability to some group beyond the study population:
namely the target population, represented by the area outside the two circles. As in Fig. 1, presence or absence of a characteristic is indicated by
darker or lighter shading. Authors of whole population studies often do not try to delimit their generalizability. In the figure, such indeterminacy
is represented by the target population fading away from the original population: we may not know to what spatial or temporal range the
findings may be applicable. Similarly, we may not be able to judge whether the prevalence of the characteristic remains similar in the target
population, rather than increasing or decreasing (as it does to the bottom left and top right, respectively, of the figure)
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studies [21] mandate discussion of generalizability but
give no guidance on how to assess it. Point 21 of
STROBE, for example, is ‘Discuss the generalisability
(external validity) of the study results’. Several frame-
works for assessing generalizability have been proposed
[17, 22–24]. Inferential analysis of whole population stud-
ies is justified only as far as such studies are generalizable,
yet reporting of generalizability in other kinds of study is
often poor [18, 19]. The extent to which this also applies
to whole population studies is briefly assessed in the fol-
lowing section.

Literature review on generalizability of whole population
studies
A literature review was carried out to assess the extent
to which whole population studies assess their own
generalizability. The search term ‘whole population [TI]’
was used in PubMed on 25 February 2015, restricted to
publications in 1994 or later, yielding 64 publications.
They were retained if containing primary data on stud-
ies of humans, and reporting p values or confidence in-
tervals in the abstract. The full text of each of the
resulting 13 studies was reviewed for description of its
generalizability or external validity (Table 2). The popula-
tions were typically either whole countries (e.g., Iceland)
or subnational administrative regions of different sizes

(e.g., Western Australia, Isle of Wight). Only two papers
[25, 26] made reference to wider target populations to
which the results might be generalized, and which might
give meaning to the p values and/or confidence intervals
used. These findings can only be suggestive because a
limitation of the search is that it does not cover all studies
which the current paper would call ‘whole population’.
For example, the previously-cited Danish National Acute
Leukemia Registry [7] has estimated coverage of more
than 98 %, and a PubMed search for its name yields 11
studies, but none of these met the current search criteria.
Among the studies which were identified, however, few
are concerned about their generalizability despite the fact
that, on the reasoning of the current paper, the validity of
their statistical inference depends on it. In particular
none of them mentioned the STROBE guidelines which
mandate that generalisability be considered.

Conclusions
Whole population studies often calculate p values and
confidence intervals which have no explicit theoretical
basis. This is a problem that social sciences have, perhaps,
confronted more directly than epidemiology [9, 27]. Having
concluded that purely statistical workarounds are futile,
should we eschew inferential statistics altogether and con-
centrate instead on descriptive statistics [28]? The current
paper advocates a less absolute position; that the conclu-
sions of whole population studies are valid to the extent
that their study populations are representative of a wider
target population. Hence the problem is converted into
one of generalizability. In turn this should be manifest in
each study’s research question. For example, who is
intended to benefit from analysis of national cancer registry
data to be applied; future cases in the same country, and/
or those further afield? If the former, making this explicit
may highlight needs for particular statistical methods, such
as time series analysis on the existing data disaggregated by
time. Some target populations may not be possible to
sample, e.g., because they lie in the future. Similarly, causal
inference deals with unobserved or counterfactual out-
comes [29, 30], and can be cast in terms of target and
source populations [31], and is a promising approach for
analysis of whole population studies.
In epidemiology, although aspirations to generaliza-

bility are not always met, groundwork has been done on
its objective assessment [17, 22–24, 32]. For inferential
statistics of whole population studies to be more mean-
ingful, they should fully comply with existing guidelines
on reporting generalizability [20, 21], and these guide-
lines should themselves be updated to reflect the devel-
oping best practice.
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Table 2

Publication
Year

Reference
Number

Population Assessment of
generalizability or external
validity

2015 [26] Western Australia ‘We are confident about the
generalisability of our analytic
findings on associations with
stimulant medication use
Australia-wide’

2014 [33] Western Australia none

2014 [25] North East
Scotland

‘Our results could be
generalisable to young
children across the UK'

2014 [34] Western Australia none

2013 [35] Western Australia none

2012 [36] Western Australia none

2012 [37] Western Australia none

2012 [38] Iceland none

2011 [39] Western Australia none

2010 [40] Scotland none

2004 [41] ‘Top End’ of the
Northern Territory
of Australia

none

2001 [42] Isle of Wight,
United Kingdom

none

1998 [43] Isle of Wight,
United Kingdom

none
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