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Abstract 1 

Anaemia, redistribution of iron, malnutrition and heightened systemic inflammation during HIV-2 

infection confer an increased risk of morbidity and mortality in HIV patients. We analysed 3 

information on iron status and inflammation from a randomised, double blind, controlled phase-III 4 

clinical trial in Lusaka, Zambia and Mwanza, Tanzania. Malnourished patients (n=1815) were 5 

recruited at referral to antiretroviral therapy (ART) into a two-stage nutritional rehabilitation 6 

programme, randomised to receive a lipid-based nutrient supplement with or without added 7 

micronutrients. Iron was included in the intervention arm during the second stage, given from 2-6 8 

weeks post-ART. Haemoglobin (Hb), serum C-reactive protein (CRP), serum ferritin and soluble 9 

transferrin receptor (sTfR) were measured at recruitment and 6 weeks post-ART. Multivariable 10 

linear regression models were used to assess the impact of the intervention, and the effect of 11 

reducing inflammation from recruitment to week 6, on Hb and iron status. There was no effect of 12 

the intervention on Hb, serum ferritin, sTfR or serum CRP. A one-log decrease of serum CRP from 13 

recruitment to week 6 was associated with a 1.81g/L increase in Hb (95% CI: 0.85, 2.76; p<0.001) 14 

and a 0.11 log decrease in serum ferritin (95% CI: -0.22, 0.03; p=0.012) from recruitment to week 15 

6. There was no association between the change in serum CRP and the change in sTfR over the 16 

same time period (p=0.78). In malnourished, HIV-infected adults receiving dietary iron, a reduction 17 

in inflammation in the early ART treatment period appears to be a precondition for recovery from 18 

anaemia.  19 

 20 

Introduction 21 

Independent risk factors for mortality amongst African patients starting antiretroviral therapy 22 

(ART) include anaemia(1), a failure to increase haemoglobin (Hb) within the first few months of 23 

ART(2), and malnutrition, represented by body mass index (BMI) < 18.5 kg/m2(3–5). Heightened 24 

systemic inflammation is a hallmark of both untreated and treated HIV infection(6), and higher 25 

levels of persistent inflammation despite treatment with ART(7) confer an increased risk of 26 

morbidity and mortality in HIV patients(8,9). Redistribution of iron during HIV infection can lead to 27 

increased iron sequestration in macrophages with an accompanying decline in iron available for 28 

tissue supply and erythropoiesis(7,10). This disordered iron metabolism has been associated with 29 

rapid progression of HIV(11–13), exacerbation of co-infections,(14) especially tuberculosis(15,16), and 30 

early death(17,18). Although ART is increasingly available, initiation of ART is associated with a 31 

high mortality: 17% of patients starting ART in sub-Saharan Africa die within one year and the 32 

majority within the first 3 months(19). Given the detrimental effects of anaemia, iron redistribution, 33 

malnutrition, and inflammation on early ART mortality, together with the fact that in Sub-Saharan 34 
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Africa the HIV disease burden remains vast(20) with a third of adults starting ART being 35 

malnourished in some African countries(3,21), the control of anaemia and normalisation of iron 36 

metabolism within this population remains a critical strategy for improving patient survival.  37 

Markers other than Hb are required to assess iron status. Serum ferritin can be used as a 38 

marker of body stores of iron(22) and soluble transferrin receptor (sTfR) to estimate tissue iron 39 

demand(23).  The determination of iron status in the presence of inflammation is notoriously 40 

challenging(24), with as yet no internationally agreed methodology(25). It is well known that 41 

inflammation alters many markers of iron status, including increasing serum ferritin as an acute 42 

phase protein(25). sTfR is less affected by the inflammatory response and can therefore be used to 43 

distinguish anaemia of inflammation (with elevated serum ferritin and normal-to-elevated sTfR) 44 

from iron deficiency anaemia (with low serum ferritin and high sTfR)(25,26). However, iron 45 

deficiency and inflammation often co-exist, complicating assessment of iron status and needs. 46 

Measurement of the acute phase proteins C-reactive protein (CRP) and α1-acid glycoprotein (AGP) 47 

can assist interpretation of the iron biomarkers in order to separate those patients with 48 

inflammation-induced iron sequestration from those who are both sequestering iron and iron-49 

deficient(27).  Hepcidin, the peptide hormone regulating iron metabolism through influencing the 50 

absorption of dietary iron and how iron is distributed among different cell types, can also be 51 

measured to help elucidate the complex interplay between anaemia, iron status and immunity(28).  52 

There are currently many unanswered questions about the range and characteristics of 53 

disordered iron metabolism among malnourished, HIV-infected adults, the preferred iron-related 54 

biomarkers for assessing health risks, and the effect of oral iron supplementation on iron status and 55 

health. The common assumption that low Hb requires therapeutic correction through iron 56 

supplementation may be erroneous in HIV since supplementation can exacerbate the risk of co-57 

infections and hasten disease progression. Paradoxically it is high serum ferritin that predicts a 58 

worse outcome despite the association of anaemia and mortality(18). Controversy therefore remains 59 

as to what extent iron supplementation amongst HIV-patients affects infection rates and 60 

mortality(29). Some interventions supplementing iron to HIV-positive adults have reduced anaemia 61 

without increasing viral load(30,31); longer-term outcomes were not assessed. This creates a 62 

therapeutic dilemma for the clinician as to how HIV-infected patients with anaemia should be 63 

treated. Given the clear link between anaemia and early ART mortality, the existing knowledge 64 

gaps jeopardise the health and survival of thousands of malnourished HIV/AIDS patients. 65 

Our study uses a clinical trial amongst malnourished adults starting ART to assess three 66 

main research questions. Firstly, what effect does a nutritional intervention including iron have on 67 

iron status? Secondly, does any impact depend on the baseline iron status of patients? Thirdly, does 68 

inflammation have an independent effect on changes in iron status? We hypothesised that the 69 
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nutritional intervention would improve iron status, indicated by an increase in haemoglobin 70 

accompanied by no change or a slight decrease in sTfR; effects on sTfR would depend on whether 71 

the anaemia was due primarily to chronic disease which has little effect on sTfR or to iron 72 

deficiency which results in increased sTfR(25).  We expected overall serum ferritin results to be 73 

harder to predict: decreasing in the correction of anaemia of inflammation but increasing for the 74 

correction of iron deficiency.  We speculated that failing to normalise systemic inflammation after 75 

starting ART would attenuate any improvements.  76 

 77 

Subjects and Methods 78 

 79 

Study design 80 

The study analyses information on iron status and inflammation from a randomised, double 81 

blind, controlled phase-III clinical trial in Lusaka, Zambia and Mwanza, Tanzania: the Nutritional 82 

Support for Africans Starting Antiretroviral Therapy (NUSTART) Trial (registered on the Pan-83 

African Clinical Trials Register as PACTR201106000300631). Details of the trial are described in 84 

full elsewhere(32,33). In brief, the NUSTART trial was conducted between August 2011 and 85 

December 2013 to assess the effect of a fortified lipid-based nutrient supplement (LNS; prepared by 86 

Nutriset, Malauney, France) on survival of malnourished patients starting ART. This paper focuses 87 

on two secondary outcomes: markers of iron status and inflammation. A total of 1815 patients were 88 

recruited at the two sites, using inclusion criteria of >18 years, BMI<18.5 kg/m2, CD4 count<350 89 

cells/µl or stage 3 or 4 AIDS, ART-naïve apart from those who received ART during standard 90 

prevention of mother-to-child transmission regimens, and informed consent. Self-reported 91 

pregnancy was an exclusion criterion.  92 

The trial intervention was based on established protocols for managing severe malnutrition 93 

in young children involving two phases aimed at stabilisation and then rehabilitation(34). Figure 1 94 

summarizes the NUSTART design. The first phase took place between referral and 2 weeks post-95 

ART initiation. Participants were randomized to receive vitamins and minerals, without iron as is 96 

done for malnourished children, in low calorie (30 g containing ~150 kcal/day) LNS (low dose 97 

LNS-VM) in the intervention group versus LNS without the vitamins and minerals (low dose 98 

control LNS) in the control group. This phase aimed to stabilise metabolism before trying to 99 

promote weight gain during the second phase. The second phase involved a 4-week intervention, 100 

starting 2 weeks after ART initiation and continuing to 6 weeks post-ART. Participants in the 101 

intervention group received a higher calorie (250g containing ~1400kcal/day) LNS containing the 102 

same added vitamins and minerals as in phase 1 plus iron as sulphate (high dose LNS-VM). The 103 

control group received the high dose LNS without the added vitamins, minerals, or iron (high dose 104 
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control LNS). Vitamin and mineral levels in both the high and low dose LNS-VM were mostly set 105 

at 3 times the UK recommended nutrient intakes (RNI) for adult women(35) with the exception of 106 

iron which was only in the second stage, high dose LNS and only at one RNI (14.7 mg/day) 107 

(nutritional composition details in Supplementary Material Table 1).  108 

The interval between referral for ART and starting ART was based on the individual 109 

patient’s readiness to start life-long drug treatment and practices of the different clinics from which 110 

the study recruited patients. Study personnel were not involved in deciding when to initiate ART 111 

and the duration of phase 1 reflects routine practice in these populations at the time. The median 112 

interval between referral for ART and starting ART for both arms was 21 days, (interquartile range 113 

[IQR] 15, 30). 55.4% of patients went on to take the ART regime Tenofovir (TDF)/ Emtricitabine 114 

(FTC)/ Efavirenz  (EVF), 16.0% took Zidovudine  (AZT)/ Lamivudine  (3TC)/ Nevirapine (NVP), 115 

9.2% took AZT/ 3TC/ EVF, 4.3% took TDF/ FTC/ NVP, 3.6% were on another regime and 11.5% 116 

had no ART regime information(32). 117 

The Data Safety and Monitoring Board (DSMB) statistician conducted the randomisation 118 

using 16 computer-generated blocks stratified by site. The contents of the LNS packets were 119 

assigned an allocation code (letters A to H), known only to the DSMB statistician and Nutriset, 120 

which were linked to study ID numbers using a randomisation code. This randomisation code was 121 

only known to the DSMB statistician and site-based pharmacists, none of whom had direct patient 122 

contact. The LNS and LNS-VM packets were delivered by Nutriset in lots assigned by allocation 123 

code. Clinic pharmacists labelled packets with study ID numbers as packets were dispensed. Clinic 124 

nurses (with no access to the allocation or randomisation code) then recruited eligible participants to 125 

the study using sequential IDs.  126 

 127 

Blood collection 128 

Patients were seen weekly from referral for ART until the ART initiation visit, then at 2, 6, 8, and 129 

12 weeks after starting ART. They were asked at each follow-up whether they were taking iron 130 

supplements in addition to the study supplement. Haemoglobin (Hb) and serum CRP were 131 

measured for all patients, whilst serum ferritin and sTfR were analysed on one fifth of the patients, 132 

referred to as the iron marker subsample and chosen systematically for every patient ID divisible by 133 

5. Haemoglobin was measured at recruitment and at 6 weeks post-ART. Iron markers and CRP 134 

were measured in serum from the recruitment and 6 weeks post-ART samples which were stored at 135 

-80ºC until batched analysis. The flow of participants included in the iron marker subsample from 136 

identification to analysis at baseline and week 6 is shown in Figure 2.  137 

 138 

Iron and inflammatory marker analysis 139 
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Hb levels were analysed by a portable haemoglobinometer (Hemocue®; Angelholm, Sweden) on 140 

fingerstick capillary blood samples from all patients. Anaemia severity cut-offs followed standard 141 

World Health Organisation categorisations(36). Mild anaemia was defined as Hb <120 g/L for 142 

women and <130 g/L for men. Moderate and severe anaemia categories used the same cut-offs for 143 

both sexes, defined as <110 g/L and <80 g/L respectively.  144 

Serum ferritin was measured by ELISA (AssayPro Human Ferritin ELISA Kit, Catalogue 145 

No. EF2003-1; St. Charles, MO, USA). The intra-assay and inter-assay coefficients of variability 146 

(CVs), respectively, were 2% and 7% in Mwanza and 5% and 23% in Lusaka. sTfR was measured 147 

by ELISA (Quantikine® IVD® Human sTfR Immunoassay, Ref DTFR1, R&D Systems, Inc. 148 

Minneapolis, USA). The intra-assay and inter-assay CVs were 2% and 4% in Mwanza and 3% and 149 

13% in Lusaka. Serum CRP was analysed by ELISA (AssayPro, St. Charles, MO, USA). The intra-150 

assay and inter-assay CVs were 3% and 37% in Mwanza and 6% and 32% in Lusaka. For all 151 

analytes values over the upper range of the standard curve were set to the top standard multiplied by 152 

the dilution factor. For all assays plates with poor precision were re-run. 153 

 154 

Sample size 155 

The original trial sample size was powered on the primary outcome (mortality). Our one in five 156 

subsample for the iron markers was sufficient to detect an inter-group difference of 0.35 standard 157 

deviations using 90% power. 158 

 159 

Data analysis  160 

Continuous variables were assessed for normality using normal probability plots and visual 161 

inspection of histograms. Hb and sTfR approximated a normal distribution and remained on the 162 

linear scale. Serum CRP and serum ferritin were skewed to the right and natural log-transformed. 163 

We considered using correction factors for ferritin derived from the methodology suggested by 164 

Thurnham et al.(27); however, since our population was extremely malnourished, and exhibited high 165 

levels of inflammation with very deranged iron metabolism, it was unclear whether correction 166 

factors derived from less ill populations were appropriate. We decided instead to simply adjust for 167 

CRP in regression analyses as has been done elsewhere(37).  168 

We compared baseline characteristics of those in the smaller sub-sample containing data on 169 

sTfR and serum ferritin (n=353) with those not in the sub-sample (n=1462) to assess the 170 

generalizability to the whole sample. The chi-squared test was used to compare proportions, 171 

independent t-tests to compare means of normally distributed data, and the Wilcoxon-Mann-172 

Whitney test to compare medians of non-parametric data. Sample sizes of all further analyses were 173 

set by the number of available samples at 6 weeks post-ART.  174 
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A variable was created to summarise the frequency of taking iron supplements in addition to 175 

the study supplement over the follow-up period; this was categorised as never consumed (62%), 176 

reported consumed at one follow-up (19%) and reported consumed at two or more follow-up visits 177 

(19%). We assessed the within-subject changes in markers of iron status and inflammation between 178 

baseline and week 6 by intervention arm using paired t-tests.  179 

For our first objective assessing the effect of the intervention on iron marker status at week 6 180 

we used multivariable linear regression. The first model adjusted only for the baseline value of the 181 

iron marker being assessed, the second model additionally adjusted for serum CRP at week 6 given 182 

our hypothesis that inflammation would affect iron markers, and the third model further adjusted for 183 

sex, site and being on TB treatment at recruitment as binary variables; taking iron supplements in 184 

addition to the study supplement as a categorical variable; and baseline BMI, age, CD4 count and 185 

length of time taken from recruitment to starting ART as continuous variables.  186 

For our second objective we repeated the third (fully adjusted) model analysis stratified by 187 

baseline values of the iron markers to determine whether these modified the effect of the 188 

intervention. We used a binary Hb category: normal Hb and mild anaemia vs. those with moderate 189 

and severe anaemia. Due to lack of internationally agreed cut-offs for serum ferritin and sTfR, as 190 

well as the specific context of our malnourished sample with heightened systemic inflammation, we 191 

divided these variables into two groups using the median value to create binary categories. We 192 

chose binary categories rather than continuous measures since we felt this would provide a more 193 

accessible way of interpreting overall trends that may have physiological significance. The test for 194 

interaction between the baseline iron marker category and intervention arm used a likelihood ratio 195 

test between the multivariable linear regression models with and without the interaction term. 196 

For our third objective we assessed to what extent inflammation was driving the changes in 197 

our iron markers independently of the intervention.  We investigated interrelations among the iron 198 

markers and serum CRP using Pearson correlation matrices. We then created a multiple linear 199 

regression model exploring the association between change in iron marker from baseline to week 6 200 

with change in serum CRP over the same timeframe, adjusting for trial arm, sex, site and being on 201 

TB treatment at recruitment as binary variables; taking iron supplements in addition to the study 202 

supplement as a categorical variable; and baseline BMI, age, CD4 count and length of time taken 203 

from recruitment to starting ART as continuous variables. 204 

Stata version 13.1 (StataCorp, College Station, TX, USA) was used for all analyses. 205 

 206 

Ethical considerations. This study was conducted according to the guidelines laid down in the 207 

Declaration of Helsinki. All NUSTART trial procedures, including the collection and analysis of 208 

the iron markers, were approved by the ethics committee of the London School of Hygiene and 209 
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Tropical Medicine, the University of Zambia Biomedical Research Ethics Committee (reference 210 

number 009-01-11), and the National Institute for Medical Research, Tanzania. Written informed 211 

consent or thumbprint was obtained from all patients before enrolment. 212 

 213 

Results 214 

 215 

Detailed baseline characteristics of the 1815 patients recruited are published elsewhere(32). In 216 

summary, one-third had BMI <16 kg/m2 and mean (SD) age was 35.8 (9.4) years. Only 10% of the 217 

patients were without anaemia at baseline, with two-thirds categorised as either moderately or 218 

severely anaemic. Table 1 shows the baseline characteristics for the subsample assessed for iron 219 

markers (n=353). Mean (SD) baseline Hb was lower amongst those in the iron marker sub-sample 220 

compared to those not included (93 (23) g/L vs. 96 (23) g/L, p=0.012). Median (IQR) serum CRP 221 

was higher amongst those in the sub-sample compared to those not included (71 (18,160) mg/L vs. 222 

57 (13,155) mg/L, p=0.004). Patient baseline characteristics in the iron subsample were very similar 223 

in the two treatment arms (Table 1), as was the case for the whole sample(32).  224 

In the control group from baseline to week 6 post-ART, patients gained a mean of 3 g/L Hb 225 

(p=0.029, n=369), decreased their serum ferritin by 100 μg/L (p=0.021, n=89), increased their sTfR 226 

by 4 nmol/L (p=0.045, n=101), but experienced no overall change in CRP levels (p=0.08, n=407) 227 

(Table 2). The intervention group displayed similar trends: patients gained a mean of 6g/L Hb 228 

(p=<0.001, n=383), decreased their serum ferritin by 141 μg/L (p=0.004, n=76), increased their 229 

sTfR by 4 nmol/L (p=0.030, n=85), and also experienced no overall change in CRP levels (p=0.36, 230 

n=431). There was no effect of the vitamins and minerals added to the intervention LNS on Hb, 231 

serum ferritin, sTfR or serum CRP in any of the three statistical models (Table 3). Note that sample 232 

sizes in Table 3, which used various adjusted models, were restricted to the patients who had no 233 

missing data in all the variables we adjusted for and therefore differ to those seen in Table 2, which 234 

used unadjusted data. 235 

Table 4 shows to what extent the intervention effect differed for patients based on their 236 

baseline iron marker category. The coefficient shows the change in week 6 iron marker associated 237 

with the intervention in comparison to the control within the baseline iron marker category strata. 238 

There was no evidence that the impact of the intervention on Hb at week 6 was affected by baseline 239 

iron marker category (p values >0.18 for interaction tests). Amongst those with moderate and 240 

severe anaemia at baseline, the intervention was associated with a decrease in 0.40 of log serum 241 

ferritin at week 6 (p=0.023).  However, evidence for an overall interaction between the intervention 242 

and baseline Hb on log serum ferritin was weak (p=0.12). There was no evidence of any interaction 243 
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between the intervention and baseline iron marker categories on sTfR at week 6 (p values >0.52 for 244 

interaction tests).  245 

At both baseline and week 6, Hb was negatively correlated with serum CRP, serum ferritin 246 

was positively associated with serum CRP and there was no correlation between sTfR with serum 247 

CRP (Table 5). At both time points sTfR was negatively correlated with Hb and serum ferritin. 248 

Serum ferritin was not correlated with Hb at baseline, but showed a weak positive correlation at 249 

week 6. 250 

Table 6 shows the associations between changes in serum CRP and changes in iron markers. 251 

A decrease in one-log of serum CRP from baseline to week 6 was associated with an increase of 252 

1.81g/L of Hb (95% CI: 0.85, 2.76; p<0.001) and a decrease of 0.11 log of serum ferritin (95% CI: -253 

0.20, 0.03; p=0.012) from baseline to week 6. There was no association between the change in 254 

serum CRP and the change in sTfR over the same time period (p=0.78). 255 

 256 

Discussion 257 

We hypothesised that the two-stage nutritional intervention involving a stabilisation phase followed 258 

by the provision of iron together with other micronutrients would help reverse anaemia of chronic 259 

disease and improve iron deficiency anaemia among malnourished, HIV-infected adults in sub-260 

Saharan Africa. Contrary to expectations, our results show the intervention with fortified LNS-VM 261 

made no overall difference to Hb or any iron markers. Furthermore, there was no obvious sub-262 

group, defined by baseline anaemia, serum ferritin or sTfR, which demonstrated any clinically 263 

meaningful improvement from the intervention. Although there was weak evidence to suggest that 264 

the effect of the intervention on serum ferritin at week 6 was dependent upon baseline levels of Hb, 265 

the reduction in log serum ferritin was small and there was no concomitant improvement in Hb or 266 

reduction in sTfR in this sub group, suggesting this finding was of no clinical significance.  267 

In unadjusted correlation analyses between the iron markers and CRP it was not surprising that 268 

serum ferritin, being a positive acute phase protein, was positively correlated with CRP at both time 269 

points. The negative correlation of sTfR with Hb and serum ferritin was also to be expected, due to 270 

sTfR being a marker of tissue iron deficiency and, more specifically, the requirement of iron for 271 

erythropoiesis(23). The linear regression model exploring the relationship between serum CRP and 272 

Hb suggested that reducing systemic inflammation between baseline and week 6 was associated 273 

with an increase of Hb over that time period. Iron metabolism involves a series of complex, tightly 274 

regulated mechanisms to ensure homeostasis, especially during infection or inflammation. Chief 275 

amongst these is the need to maintain iron tightly chaperoned in order to avoid oxidative damage 276 

and to limit its availability to pathogens(28). During HIV infection the chronic inflammation causes a 277 
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hepcidin-mediated redistribution of iron within the body, a process that becomes more pronounced 278 

as the HIV stage progresses(1,38). Up-regulated hepcidin inactivates ferroportin (the only iron-efflux 279 

channel in cells) causing decreased intestinal iron absorption as well as sequestration of iron in 280 

macrophages(28) thus blocking erythropoiesis. This leads to anaemia and possibly creates a niche for 281 

intra-cellular pathogens such as mycobacteria(14,39). Our results suggest that to reverse anaemia and 282 

normalise iron redistribution, the source of the innate immune activation first needs to be identified 283 

and addressed, and then only after systemic inflammation has been brought under control will an 284 

iron-containing nutritional intervention be likely to have an impact.   285 

Irrespective of whether the LNS was fortified with vitamins and minerals, it appeared that ART 286 

plus LNS improved haemoglobin levels and reduced serum ferritin. ART has been associated with a 287 

reduction in prevalence of anaemia in other studies(40–42), although some ART drugs, e.g. 288 

zidovudine(43) which was prescribed to 26% of NUSTART patients(33), have increased anaemia in 289 

some patients. However, in the NUSTART context the overall mean improvement of Hb and 290 

reduction of serum ferritin was modest. For there to have been enough of a functional improvement 291 

in the distribution and use of iron in the body we would have expected sTfR to at least remain stable 292 

if not drop, and yet in this context sTfR levels increased slightly. Irrespective of whether LNS was 293 

fortified with vitamins and minerals or not, the combination of LNS and ART for 6 weeks does not 294 

appear to sufficiently improve the iron profile of our patients or reduce their systemic inflammation. 295 

Our study carries several limitations. Patients in the sub-sample had lower baseline Hb and were 296 

more inflamed compared to those not in the sub-sample. This suggests the sub-sample patients were 297 

slightly sicker than those not included and may restrict our ability to extrapolate the results to the 298 

whole sample. Budget limitations precluded analysis of iron markers in the full cohort and analysis 299 

of results at other time points, for example, at the end of phase 1, as well as assessment of other 300 

potentially interesting markers such as hepcidin or AGP. Since there was no control group not 301 

receiving LNS (for ethical reasons) we are unable to separate the overall impact of ART and LNS 302 

on our outcomes.   303 

The level of iron fortification of the LNS during stage two was modest (1 RNI) in comparison to 304 

higher levels (usually 3 RNIs) of other micronutrients. This was a conservative approach to avoid 305 

potentially increasing the risks associated with higher serum ferritin stores. It would appear that the 306 

level of iron included in the fortified LNS was safe in this regard, since there was no overall 307 

increase in serum ferritin from the intervention. That said, we would recommend that iron dosage 308 

within fortified LNS not be increased in future research amongst similar populations before 309 

investigating the impact this modest fortification level has once inflammation has been successfully 310 

controlled. Further research is required: firstly, to determine whether non-nutritional interventions 311 

designed to reduce systemic inflammation are sufficient to correct anaemia of inflammation in HIV; 312 
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secondly, to assess whether a product with a different nutrient composition may also assist this 313 

process; and thirdly, to quantify the level of improvement in inflammation necessary before a 314 

nutritional intervention will improve iron deficiency anaemia.   315 

 316 

Conclusion 317 

Our large clinical trial of iron supplementation as part of a nutritional intervention showed no 318 

appreciable effect on Hb and iron metabolism, even when the majority of patients were anaemic at 319 

baseline. HIV-related inflammation resulting in disordered iron metabolism appears to severely 320 

attenuate the potential impact of receiving dietary iron in an intervention. Given the clear 321 

associations between anaemia, disordered iron metabolism and mortality amongst HIV-positive 322 

patients starting ART, it is of critical importance that strategies to reduce the level of systemic 323 

inflammation (going beyond the provision of ART) are investigated. Without the ability to control 324 

inflammation it would appear the impact of a nutritional intervention of this kind is likely to remain 325 

severely restricted.  326 
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Figure 1: Overview of the NUSTART trial design  476 

Abbreviations: ART, Antiretroviral therapy; LNS, lipid-based nutrient supplement; LNS-VM, LNS 477 

with added vitamin and mineral mix. 478 

 479 

Figure 2: Flow of subsample participants from identification to analysis of iron markers at baseline 480 

and week 6 post-ART. 481 

Abbreviations: ART, antiretroviral therapy; LNS, lipid-based nutritional supplement without added 482 

vitamins and minerals; LNS-VM, lipid-based nutritional supplement with added vitamins and 483 

minerals; BMI, body mass index; sTfR, soluble transferrin receptor. 484 

*Inclusion criteria: >18 years, BMI<18.5 kg/m2, CD4 count<350/µl or stage 3 or 4 AIDS, ART-485 

naïve apart from those who received ART during standard prevention of mother-to-child 486 

transmission regimes, and informed consent. Self-reported pregnancy was an exclusion criterion.  487 

† Note haemoglobin (Hb) and C-reactive protein (CRP) were collected from all patients at 488 

recruitment and 6 weeks post-ART. The flow diagram for the whole sample is published 489 

elsewhere(32) . Available samples at baseline: CRP, n=1762; Hb, n=1670. Available samples at week 490 

6: CRP, n=863; Hb, n=826.   491 
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Table 1: Baseline characteristics of the iron marker subsample by trial arm and overall summaries of those included in and excluded from the iron 

marker sub-sample 

Variable Level Iron marker  

sub-sample 

(overall) 

Iron marker 

sub-sample 

 (LNS-VM) 

 

Iron marker 

sub-sample 

 (LNS control) 

 

Not included in 

iron marker 

sub-sample 

(overall) 

P value  

Sub-sample vs. 

not in sub-

sample* 

N (%)  353 (100) 175  (49.6) 178 (50.4) 1462 (100)  

Site (Lusaka), n (%)  218 (62) 107 (61) 111 (62) 893 (61) 0.82 

Age (years), mean (SD)  36.0 (9.1) 36.4 (9.2) 35.7 (9.1) 35.8 (9.5) 0.67 

Female, n (%)  181 (51) 91 (52) 90 (51) 728 (50) 0.72 

BMI (kg/m2), mean (SD) All 16.4 (1.4) 16.5 (1.3) 16.4 (1.5) 16.5 (1.3) 0.58 

n (%) BMI <16 kg/m2 111 (31) 51 (29) 60 (33) 495 (34) 0.26 

n (%) BMI 16-16.9 kg/m2 103 (29) 56 (32) 47 (26) 365 (25)  

n (%) BMI 17-18.5 kg/m2 139 (39) 68 (39) 71 (40) 602 (41)  

Oedema, n (%)  12 (3) 6 (3.4) 6 (3.3) 54 (4) 0.79 

CD4 count (cells/µl), mean (sd) All 138 (100) 134 (99) 141 (101) 137 (100) 0.86 

Hb (g/L), mean (sd) All 93 (23) 93 (23) 93 (22) 96 (23) 0.012 

Hb group†                               n (%) Severe anaemia 98 (28) 51 (29) 47 (26) 300 (21) 0.011 

n (%) Moderate anaemia 141 (40) 68 (39) 73 (41) 669 (46)  

n (%) Mild anaemia 54 (15) 23 (13) 31 (17) 231 (16)  

n (%) Normal 26 (7) 15 (9) 11 (6) 151 (10)  

n (%) Missing 34 (10) 18 (10) 16 (9) 111 (7)  

Serum CRP (mg/L), median (IQR)  71 (18, 160) 69 (20, 160) 83 (16, 160) 57 (13,155) 0.014 

TB treatment pre-ART, n (%)  99 (28) 49 (28) 50 (28) 352 (24) 0.12 

Using Co-trimoxazole, n(%)  294 (84) 141 (81) 153 (86) 1192 (82) 0.43 

sTfR (nmol/L), mean (SD)  44 (18) 43.2 (17.6) 43.7 (19.0) N/A N/A 

Serum ferritin (µg/L), median (IQR) 752 (288, 1246) 722 (325, 1287) 754 (281, 1200) N/A N/A 
 

 

Abbreviations: LNS-VM, lipid-based nutritional supplement with added vitamins and minerals; LNS, lipid-based nutritional supplement without added vitamins and 

minerals; SD, standard deviation; BMI, body mass index; Hb, haemoglobin; CRP, C-reactive protein; TB, tuberculosis; ART, antiretroviral therapy; sTfR, soluble 

transferrin receptor.  
* Chi-squared test to compare proportions, independent t-tests to compare means of normally distributed data, and the Wilcoxon-Mann-Whitney test to compare 

medians of non-parametric data. 
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† Normal defined as ≥120g/L for women and ≥130g/L for men. Mild anaemia defined as Hb <120g/L for women and <130g/L for men. Moderate and severe 

anaemia categories defined as <110g/L and <80g/L respectively for both sexes.
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Table 2: Overview of changes in iron and inflammatory markers from baseline to week 6 by trial arm, unadjusted. 

 

Abbreviations: LNS, lipid-based nutrient supplement; LNS-VM, LNS with added vitamins and minerals; Hb, haemoglobin; CI, confidence interval; sTfR, soluble 

transferrin receptor; CRP, C-reactive protein 

*Only patients with week 6 data included therefore lower sample size than Table 1.  
† Paired t-test 

 

 

 LNS-VM (intervention)  LNS Control 

Variable  N* Baseline Week 6 P value†  N* Baseline Week 6 P value† 

Hb (g/L),  

mean (95% CI) 

383 98 (96, 100) 104 (102, 106) <0.001   369 100 (97, 102) 103 (100, 105) 0.029 

Serum ferritin (µg/l), 

geometric mean (95% CI) 

76 425 (329, 547) 284 (219, 368) 0.004  89 466 (373, 581) 366 (289, 463) 0.021 

sTfR (nmol/L),  

mean (95% CI) 

85 41 (38, 45) 46 (43, 50) 0.030  101 41 (38, 45) 45 (42, 48) 0.045 

Serum CRP (mg/L),  

geometric mean (95% CI) 

431 35 (30, 40) 32 (28, 37) 0.36  407 28 (24, 33) 33 (28, 38) 0.08 
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Table 3: Linear regression showing the effect of the intervention on haemoglobin, iron and inflammatory markers at week 6 with regression 

coefficients (B), 95% CIs and the corresponding P values, using three models of adjustment.  

  Model 1*  Model 2†  Model 3‡ 

Variable (week 6) N§ B|| 95% CI P 

value¶ 

 B|| 95% CI P 

value¶ 

 B|| 95% CI P 

value¶ 

Hb (g/L) 705 2.16 -0.91, 5.23 0.17  1.88 -1.13, 4.90 0.22  1.60 -1.30, 4.49 0.28 

Log serum ferritin  165 -0.20 -0.50, 0.09 0.18  -0.20 -0.49, 0.09 0.18  -0.19 -0.46, 0.07 0.14 

sTfR (nmol/L) 164 0.99 -3.57, 5.55 0.67  1.02 -3.55, 5.59 0.66  1.68 -2.95, 6.33 0.47 

Log serum CRP  838 -0.10 -0.29, 0.10 0.33      -0.11 -0.29, 0.08 0.26 
 

 

Abbreviations: B, regression coefficient; CI, confidence interval; Hb, haemoglobin; sTfR, soluble transferrin receptor; CRP, C-reactive protein 

*Adjusted for baseline value of the same dependent variable  
†Adjusted for the baseline value of the same dependent variable and log-CRP at week 6 for the iron markers.  
‡Adjusted for the baseline value of the same dependent variable, log-CRP at week 6 for the iron markers, sex, site, age, baseline CD4 count, being on TB medicine at 

recruitment, taking iron supplements in addition to the study supplement, length of time from recruitment to ART and baseline BMI. 

§Number restricted to the same sample as in the fully adjusted Model 3. 

||The coefficient shows the effect associated with the intervention on week 6 outcomes in comparison to the control.  

¶Two sample t-test  
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Table 4: Linear regression models showing the effect of the intervention on iron markers at week 6, stratified by baseline iron marker category* 

Dependent Variable 

(week 6) 

N Baseline iron marker 

category stratification† 

Coefficient‡ 95% CI P value§ P value (test for 

interaction)|| 

Hb (g/L) 705 Normal & mild anaemia 3.31 -1.82, 8.44 0.21 0.38 

Moderate & severe anaemia 0.58 -2.95, 4.10 0.75 

138 Ferritin below median 0.70 -7.56, 8.97 0.87 0.18 

Ferritin above median 8.73 -0.83, 18.28 0.07 

138 sTfR below median 3.59 -5.00,  12.19 0.41 0.61 

sTfR above median 6.64 -2.75, 16.04 0.16 

       

Log Serum ferritin  148 Normal & mild anaemia 0.05 -0.43, 0.54 0.83 0.12 

Moderate & severe anaemia -0.40 -0.74, -0.06 0.023 

165 Ferritin below median -0.08 -0.42, 0.26 0.63 0.30 

Ferritin above median -0.35 -0.76, -0.06 0.10 

165 sTfR below median -0.27 -0.63, 0.09 0.14 0.52 

sTfR above median -0.11 -0.48, 0.26 0.55 

       

sTfR (nmol/L) 147 Normal & mild anaemia 1.77 -6.77, 10.31 0.68 0.60 

Moderate & severe anaemia -0.91 -6.98, 5.17 0.77 

164 Ferritin below median 2.77 -3.05, 8.59 0.35 0.52 

Ferritin above median -0.06 -7.09, 6.97 0.99 

164 sTfR below median 2.74 -3.71, 9.19 0.40 0.59 

sTfR above median 0.32 -6.24, 6.88 0.92 
 

Abbreviations: CI, confidence interval; Hb, haemoglobin; sTfR, soluble transferrin receptor. 

* Adjusted for the baseline value of the same dependent variable, log-CRP at week 6 for the iron markers, sex, site, age, baseline CD4 count, being on TB medicine 

at recruitment, taking iron supplements in addition to the study supplement, length of time from recruitment to ART and baseline BMI. 
†Hb categories defined as normal ≥120g/L for women and ≥130g/L for men, mild anaemia <120g/L for women and <130g/L for men, moderate and severe anaemia 

<110g/L and <80g/L respectively for both sexes. Serum ferritin median = 752µg/l. sTfR median = 45 nmol/L.  
‡The coefficient shows the change in week 6 iron marker associated with the intervention in comparison to the control within the baseline iron marker category 

strata.  

§Two sample t-test  



23 
 

||Likelihood ratio test comparing models with and without the interaction between trial arm and baseline iron marker category.
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Table 5: Pairwise correlation matrix between iron markers and CRP at baseline and week 6, unadjusted†‡ 

 

 Log serum 

CRP 

Baseline 

Coefficient  

 

Hb 

Baseline 

Coefficient  

 

sTfR 

Baseline 

Coefficient  

 

Log serum 

ferritin 

Baseline 

Coefficient  

 

Log serum 

CRP 

Week 6 

Coefficient  

 

Hb 

Week 6 

Coefficient  

 

sTfR 

Week 6 

Coefficient  

 

Log serum 

ferritin  

Week 6 

Coefficient  

 

Log serum CRP, 

baseline 

1.00        

Hb, baseline -0.31** 1.00       

sTfR, baseline -0.10  -0.26** 1.00      

Log serum ferritin, 

baseline 

0.34** -0.02 -0.12* 1.00     

Log serum CRP,  

week 6 

0.30** -0.19** -0.15* 0.24** 1.00    

Hb, week 6 -0.13** 0.51** -0.10 0.11  -0.26** 1.00   

sTfR, week 6 -0.10  -0.14 0.32** -0.31** 0.00  -0.27** 1.00  

Log serum ferritin, 

week 6 

0.16* 0.20* -0.07 0.54** 0.24** 0.16* -0.22** 1.00 

 

Abbreviations: CRP, C-reactive protein; Hb, haemoglobin; sTfR, soluble transferrin receptor 
† Pearson’s correlation.  
‡ N: serum CRP baseline (1762), Hb baseline (1670), sTfR baseline (353), serum ferritin baseline (353), serum CRP week 6 (863), Hb week 6 (826), sTfR week 6 

(186), serum ferritin week 6 (165). Note that CRP and Hb were available for the whole trial sample, sTfR and ferritin only for the the subsample, and sample sizes 

for the individual variables are determined by the availability of completed week 6 data.   
*P<0.05 

**P<0.01 
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Table 6: Multivariable linear regression model showing the effect of a one-log decrease in CRP on change in iron markers from baseline to week 6* 

Variable (change from 

baseline to week 6) 

N Coefficient† 95% CI P value‡ 

Hb (g/L) 687 1.81 0.85, 2.76 <0.001 

Log serum ferritin 165 -0.11 -0.20, 0.03 0.012 

sTfR (nmol/L) 164 -0.24 -1.89, 1.42 0.78 

 

Abbreviations: CI, confidence interval; Hb, haemoglobin; sTfR, soluble transferrin receptor. 

*Adjusted for trial arm, sex, site, age, baseline CD4 count, being on TB medicine at recruitment, taking iron supplements in addition to the study supplement, length 

of time from recruitment to ART and baseline BMI. 
†The coefficient represents the change in iron marker from baseline to week 6 associated with a one-log decrease in CRP from baseline to week 6.  
‡Two sample t-test score result. 
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