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Abstract 
 

Current malaria vector control strategies in Africa target indoor resting and biting mosquitoes 

and rely heavily on a small number of insecticides. These interventions have lead to the 

selection of insecticide resistance, behavioural adaptations of the vectors and leave naturally 

exophilic species nearly untouched. Gravid Anopheles gambiae s.l. female searching for an 

oviposition site would be a novel target for vector control. However, little is known about the 

oviposition-site selection behaviour (criteria) of this mosquito.  

The major aim of the presented research was to investigate if gravid An. gambiae s.l make 

informed choices when selecting an oviposition site and to identify physical, chemical and 

biological parameters associated with these choices under standardized experimental and 

natural field conditions. 

Standardized field tests and dual-choice oviposition bioassays were used to evaluate 

responses to soil and rabbit food pellets infusions and habitat water and also to test if bacteria 

and the volatile chemicals that bacteria produce are relevant to habitat selection. A case–

control approach was used to study natural aquatic habitats on Rusinga Island in Lake 

Victoria during the long rainy season in 2012 to compare the characteristics of habitats 

colonized (cases) and not colonized (controls) by early instar Anopheles larvae. Factors 

evaluated included biological characteristics of the sites, zooplankton, invertebrate fauna, 

physical parameters, nutrients, bacteria communities and volatile chemicals released from the 

water. Multivariate analyses were used to investigate associations between oviposition site 

characteristics and habitat selection by Anopheles.  

The experimental work illustrated that wild and caged An. gambiae s.l. females discriminate 

between potential aquatic habitats for oviposition and gravid An. gambiae s.l. female select 

suitable habitats using preferred and avoided chemical cues from water bodies. It furthermore 

emphasizes that natural infusions can be used to manipulate the oviposition behaviour of An. 

gambiae s.l.. In the field no evidence was found that bacteria from natural habitat water were 

involved in habitat selection. Although chemical cues were highly diverse analysis suggests 

that cases and control habitats differ in the headspace volatile profile of the water. High 

turbidity >200 nephelometric turbidity units (NTU) was the only environmental factor 

strongly associated with cases. Other risk factors were higher grass coverage (positive 

association), and the abundance of creeping water bugs of the family Naucoridae and fish 

(negative associations). 

This study demonstrates that gravid An. gambiae females choose suitable habitats for 

oviposition using a complex system of chemical and visual cues from water bodies. Habitats 

preferred by An. gambiae exhibited distinct and measurable characteristics that can be 

potentially exploited to attract and kill gravid females to improve malaria vector monitoring 

and control. 
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Chapter 1 Introduction 

1.1 Malaria 

Malaria is among all parasitic diseases in humans the one with the greatest impact on 

populations worldwide in terms of lives lost and social and economic burden (Witty 2004; 

Warburg et al. 2011). It is widespread in tropical and subtropical regions, including parts of 

America, Asia, and Africa. The World Health Organization reported 198 million cases 

globally in 2014 resulting in 584,000 deaths. The biggest burden of malaria is found in sub-

Saharan Africa, where an estimated 90% of malaria deaths occur in children under the age of 

5, who accounted for 78% of the deaths reported (WHO 2014).  

Malaria is caused by Plasmodium (Haemosporida: Plasmodiidae) parasites and transmitted by 

Anopheles (Diptera: Culicidae) mosquitoes. Five species of the genus Plasmodium cause all 

malaria infections in human beings. Most cases are caused by either P. falciparum or P. 

vivax, but infections can also be caused by P. ovale, P. malariae, and, in parts of Southeast 

Asia, by the monkey malaria P. knowlesi (Kantele & Jokiranta 2011; White et al. 2014). Only 

around 41 of more than 400 Anopheles species are able to transmit malaria between humans 

at a level of major concern to public health (Harbach 2013).  

The most competent malaria vector mosquitoes are found in sub-Saharan Africa and belong 

to the Anopheles gambiae species complex which consists of nine species (Edmondson 1959; 

Gillies & Coetzee 1987) and the Anopheles funestus species complex which also consists of 9 

species. Members of a species complex have different behaviour, larval habitat requirements 

and vectorial capacity to transmit the disease (Gillies & De Meillon 1968; Gillies & Coetzee 

1987). Anopheles gambiae sensu stricto (s.s.) and An. arabiensis of the An. gambiae complex 

(An. gambiae sensu lato (s.l.) and An. funestus s.s. of the An. funestus complex are the most 

effective malaria vectors worldwide because they are long lived and robust to environmental 

change, occur in high densities in tropical climates, breed readily in a large variety of 

available larval habitats and have a strong preference for biting humans when no control 

measures stop them from doing so (Gillies & De Meillon 1968; Gillies & Coetzee 1987; 

Sinka et al. 2012). To transmit malaria, a female Anopheles must bite a person carrying 

Plasmodium gametocytes and live long enough to allow the parasite to complete its sexual 

development which ends as sporozoites in the mosquito salivary glands; this sporogonic cycle 
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takes 10-12 days in An. gambiae s.l.. Consequent bites can then infect a healthy person with 

Plasmodium (Figure 1.1).  

 

Source: NIH/NIAID (http://www.niaid.nih.gov/topics/Malaria/Pages/lifecycle.aspx) 

 

Figure 1.1. Life cycle of malaria parasite: 

(1) A female Anopheles mosquito carrying malaria-causing parasites feeds on a human and 

injects the parasites in the form of sporozoites into the bloodstream. The sporozoites invade 

liver cells. (2) The sporozoites grow, divide, and produce thousands of haploid merozoites, 

per liver cell. (3) The merozoites exit the liver cells and re-enter the bloodstream, beginning a 

cycle of invasion of red blood cells, asexual replication, and release of newly formed 

merozoites. This multiplication results in illness and complications of malaria. (4) Some of 

the merozoite-infected blood cells leave the cycle of asexual multiplication and develop into 

sexual forms, called gametocytes that circulate in the bloodstream. (5) When a mosquito bites 

an infected human, it ingests the gametocytes. In the mosquito gut, the infected human blood 

cells burst, releasing the gametocytes, which develop further into mature sex cells called 

gametes. Male and female gametes fuse to form diploid zygotes, which develop into actively 

moving ookinetes that burrow into the mosquito midgut wall and form oocysts. (6) Growth 

http://www.niaid.nih.gov/topics/Malaria/Pages/lifecycle.aspx
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and division of each oocyst produces thousands of active haploid sporozoites. After 10-12 

days (for Plasmodium falciparum), the oocyst bursts, releasing sporozoites into the body 

cavity from which they travel to and invade the mosquito salivary glands. The cycle of 

human infection re-starts when the mosquito takes a blood meal, injecting the sporozoites 

from its salivary glands into the human bloodstream (taken from (WHO 1957)) 

Malaria control measures aim to prevent morbidity and mortality and to reduce the 

socioeconomic loss due to the disease. Control measures currently used, target either the 

malaria parasites through early diagnosis and treatment of malaria with effective medicines or 

they target the mosquito vector with the aim to prevent transmission (WHO 2014).  

1.2 Vector control 

1.2.1. The history of vector control 

Since the discovery of the malaria parasite in human blood by Alphonse Laveran and later the 

establishment of the role of mosquitoes in malaria transmission by Sir Ronald Ross at the end 

of the 19
th

 century, numerous regional and global efforts have been carried out in order to 

control, eliminate and eventually eradicate this disease (Najera 2001). In 1913 Malcom 

Watson, studying a malaria outbreak in the lowland areas of Malaysia, noticed that not all 

Anopheles mosquitoes were able to carry the parasite and thus to transmit the disease. In 

particular, he demonstrated that in Malaysia the main carrier of the parasite was An. 

umbrosus which bred in pools of stagnant water in the jungle; he then proved that the 

abolition of these pools by drainage and cultivation of the land reduced malaria incidence 

significantly. Furthermore he demonstrated that malaria could be eradicated guided by the 

study of the ecology of Anopheles mosquitoes (Watson 1913). This strategy focused on the 

mosquito vector and malaria epidemiology was later known as “species sanitation” and was 

effectively implemented in Indonesia and North Holland (Najera 2001). Early in the 1900’s 

malaria control was carried out on a regional scale and often as part of larger programs 

targeting other vector borne diseases. Integrated vector management was frequently practiced 

in these early programs including draining of swamps, treating standing water with petroleum 

oils or Paris Green, screening of windows and doors and spraying with pyrethrum extracts 

(Imbahale et al. 2012; WHO 2014). 

Early successes and tools were rapidly forgotten after the discovery of dichloro-diphenyl-

trichloroethane (DDT) during the second war world (Johannesen, Dunn & Morrell 2014). 
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DDT was the first insecticide with a long lasting residual effect used to kill mosquitoes 

resting on house walls. It could be applied every six months overcoming the problem faced 

with pyrethrum extracts that needed weekly application. This attribute allowed malaria 

control programs to be cost-effective and to be extended to many rural areas (Najera, 

Gonzalez-Silva & Alonso 2011). The enormous success in combating vector borne diseases 

with this insecticide however, led to a decline in the interest for funding studies focusing on 

mosquito biology and to an increase in supporters of the idea that malaria could be wiped out 

from every place using a single tool; in this case the spraying of houses with the residual 

insecticide DDT (Johannesen, Dunn & Morrell 2014).  

The World Health Organization (WHO) launched the Global Malaria Eradication Program in 

1955. This program relyed on the use of DDT for vector control and the use of Chloroquine 

for the treatment of infected individuals (WHO 1957). These new tools yielded extraordinary 

results in countries with temperate climates and stable economies where malaria was 

eradicated but failed in most of the tropical countries that were included in the program i.e. 

Haiti and Nicaragua. In addition, in countries like India and Sri Lanka the campaign 

interrupted outbreaks for as long as the program was implemented but once the interventions 

stopped malaria cases went back to normal and often a recrudescence effect was observed 

(WHO 1959). Furthermore, this global campaign excluded most of the countries from sub-

Saharan Africa. Failure to eradicate malaria in some of the areas where it was attempted was 

attributed to the emergence of drug resistance in humans, mosquito resistance to DDT and 

lack of community participation (WHO 1978). In 1977 the goal of eradication was officially 

abandoned and replaced by the aim of malaria control. It was recognized that one single 

approach was not advantageous in decreasing transmission and that a profound knowledge of 

malaria epidemiology (i.e. parasite, human, vector) is required at local levels for tailored 

attacks of the disease (Sharma 2012).  

 

1.2.2. Current vector control in sub-Saharan Africa relies on strategies targeting 

Anopheles vectors indoors 

After the eradication campaign the international community was slow to respond and the 

number of cases of malaria increased worldwide. New research foci were the development of 

drugs and vaccines and the improvement of health systems. For vector control only 

insecticide-treated nets (ITNs) were intensively investigated (Lengeler 2004). In 1998 WHO 

launched The Roll Back Malaria initiative that was further supported by the Millennium 
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Development Goals with the aim to reduce global malaria cases from 2000 levels by 50% in 

2010 and by 75% in 2015 (WHO 1999). This initiative was funded by the Global Fund to 

Fight AIDS, Tuberculosis and Malaria, the World Bank, and the US President’s Malaria 

Initiative (WHO 2000). The strategy of Roll Back Malaria was based on prompt diagnosis 

and treatment with artemisinin combination therapies (ACTs) and vector control. Two 

approaches were recommended for attacking the mosquitoes; insecticide treated nets (ITNs) 

and indoor residual spraying (IRS) (GMAP 2008). These vector control interventions target 

exclusively mosquitoes that feed and rest inside human dwellings as is the case with the 

major African malaria vectors; An. gambiae s.s. and An. funestus s.s. (Gillies & De Meillon 

1968). The result of these interventions has been remarkable in reducing the number of cases 

and deaths caused by malaria in various parts of the world including a number of countries in 

Africa (Lengeler 2004; Okiro et al. 2007; Protopopoff et al. 2007; Pluess et al. 2010). As a 

consequence of this success the enthusiasm for malaria elimination and eradication has 

reappeared once again on the global agenda (Tanner & de Savigny 2008).  

1.2.3 The importance of the development and use outdoor vector control strategies   

The current vector control strategies (IRS, ITNs) have shown to be effective in saving lives 

worldwide however, the same strategies are facing challenges that need to be overcome if 

malaria elimination is to be achieved. These obstacles include the development of pyrethroid 

resistance in the major Anopheles vectors (Ranson et al. 2009; Ranson et al. 2011). This is 

particularly worrying given that this is the only type of insecticide approved for ITNs so far. 

Behavioural avoidance of the house environment where insecticides are present is another 

serious concern. Furthermore, vectors show a considerable plasticity in their behaviour which 

allows them to respond with some flexibility to the vector control measures. It has been 

shown that historically anthropophagic vectors accept other blood-meal hosts when given no 

choice, that more outdoor feeding and early evening feeding takes place when people are not 

protected (Sharma et al. 2008; Ferguson et al. 2010; Reddy et al. 2011; Riehle et al. 2011) 

and that current vector control interventions leave the more exophilic vectors like  An. 

arabiensis (Tirados et al. 2006; Oyewole et al. 2007; Bayoh et al. 2010) and secondary 

vectors like An. coustani and An. rivulorum less affected by indoor interventions (Ikeshoji 

1966; Najera 2001) maintaining low but stable malaria transmission in many areas (Killeen 

2014).  

Malaria elimination will require the addition of new vector control tools that target the 

mosquito outside the house (Figure 1.2). To develop these tools however, extensive research 
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is required to understand the behaviour of adult vectors in the outdoor environment. It is 

surprising that apart from the blood feeding behaviour little is known about how sub-Saharan 

Anopheles mosquitoes select and exploit other resources like aquatic habitats, mates, sugar 

sources and resting sites (Ferguson et al. 2010). A series of potential new and improved 

vector control tools tackling multiple points in the mosquito life cycle have been summarized 

recently by (Killeen 2014). These include spatial repellents, house screening, repellent 

clothing, insecticide-treated cattle, toxic sugar baits and improved larval source management 

practices (Figure 1.2). 

 

 

 

Source Killeen 2014 (http://www.malariajournal.com/content/13/1/330) 

 

Figure 1.2. Life cycle of malaria vector mosquitoes showing different behaviours that 

enable them to avoid conventional control strategies and targets for novel intervention 

strategies 

1.2.4 Renewed interest in larval source management and selection of aquatic habitats by 

Anopheles gambiae s.l. 

Recent field evaluations of larval source management using larvicides under various eco-

epidemiological conditions in Africa showed that hand-applied larviciding reduced 
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transmission by 70-90% where the majority of aquatic mosquito larval habitats were defined 

and aquatic surface areas not too extensive (Fillinger et al. 2008; Fillinger et al. 2009b) and 

that the addition of larviciding to ITNs has a significant added benefit in reducing malaria 

incidence (Trexler et al. 2003b; Fillinger et al. 2009a). However, it has also been recognized 

that larval control programs using larvicides require well established and managed programs, 

a large and trained labour force and a frequent re-application of larvicides to all aquatic 

habitats in the target area (Tusting et al. 2013). 

Field studies have demonstrated that the colonization of aquatic habitats by An. gambiae s.l. 

larvae differ over space and time (Fillinger et al. 2009b; Ndenga et al. 2011; Imbahale et al. 

2012). Since not all aquatic habitats have the same chance of being chosen by female vectors 

for oviposition, individual habitats differ in their capacity for generating adult mosquitoes 

(Muirhead-Thomson 1945; Muirhead-Thomson 1951; Fillinger et al. 2004; Mutuku et al. 

2006). As a result, researchers have been advocating a more selective approach by targeting 

anti-larval interventions at larval habitats favoured by An. gambiae s.l. to make this 

intervention more cost-effective (Gu & Novak 2005; Gu et al. 2006; Gu, Utzinger & Novak 

2008).  

At present, however, it is not possible to identify the most productive Anopheles larval 

habitats. Although studies show that clear heterogeneities of productivity exist, the data are 

not adequate to provide the basis for rational targeting (Killeen et al. 2006). We do not know 

precisely what factors are responsible for these differences nor whether these factors, once 

identified, would be suitable for directing control activities.  

Large-scale longitudinal studies in the floodplains of the Gambia River, rural lowland and 

highland areas in Kenya and in urban Dar es Salaam in Tanzania (Fillinger et al. 2008; 

Majambere et al. 2008; Ndenga et al. 2011) have shown that on any given sampling date only 

20-50% of aquatic habitats contained anopheline larvae. In these scenarios it is common to 

find a large number of similar habitats close to human hosts that would seem suitable 

breeding sites, yet some of them are either consistently free of larvae or their colonization 

changes over space and time leaving only a small fraction with larvae (Muirhead-Thomson 

1945; Muirhead Thomson 1951; Majambere et al. 2008).  

Risk factor analyses of habitat characteristics identifiable under operational conditions (e.g. 

habitat type, habitat size, vegetation cover) failed to reveal any factors that could consistently 

predict sites preferred by An. gambiae s.l. (Majambere et al. 2008). Nevertheless, site 
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selection is unlikely to occur at random since laboratory studies indicate that there are several 

cues which are used by gravid female for oviposition (Bates 1940; McCrae 1984; Bentley & 

Day 1989; Sumba et al. 2004; Sumba et al. 2008). 

1.3 Oviposition behaviour in mosquitoes  

The heterogeneous distribution of larvae is likely to result from a combination of two factors; 

selection of oviposition site by the female mosquito and the survival of larvae in the aquatic 

habitat. Whilst a number of studies have investigated risk factors for indoor-biting 

mosquitoes (Watson 1913; Pinault & Hunter 2012), there are few that have specifically 

investigated the reverse journey that a gravid female makes from a dwelling to a breeding 

site.  

Oviposition behaviour is associated with a complex interaction of physical and chemical cues 

emanating from a potential oviposition site that is perceived by gravid mosquitoes when 

looking for a water body to lay their eggs. This behaviour might be mediated by long-range 

cues that help the mosquito to identify different habitats; some of these cues (vegetation, 

shade, light reflection) are probably evaluated visually before the mosquito makes contact 

with water (Bentley & Day 1989). Short distance cues are probably based on chemicals 

released from water bodies (attractants and repellents), which guide mosquitoes to locate 

suitable habitats and make oviposition choices (Takken & Knols 1999).  

Early laboratory studies demonstrated that gravid anophelines responded to different light 

and dark contrasts and brightness (Bates 1940; McCrae 1984). Anopheles atroparvus, An. 

arabiensis and An. gambiae s.s. were shown to prefer laying eggs on dark backgrounds rather 

than pale ones (Bates 1940; McCrae 1984; Huang et al. 2005; Balestrino et al. 2010).  

The physical conditions and composition of the substrate are also important. It was shown 

that Anopheles gambiae s.s. preferred to lay eggs in oviposition sites containing calcium 

(Bates 1940), mud and turbid water (McCrae 1984) and some studies have shown that more 

eggs were laid in water from a natural breeding site than tap or distilled water (McCrae 1984; 

Sumba et al. 2004). These data suggest that soil factors can also mediate olfactory oviposition 

behaviour in anophelines, however the evidence is sketchy (Takken & Knols 1999). 

1.3.1 The potential role of semiochemicals in oviposition site selection 

Olfactory cues are involved in important behaviours of female mosquitoes and there is good 
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evidence that oviposition is also governed by semiochemicals (Takken & Knols 1999). From 

all the external signals that a mosquito can perceive, chemicals provide important information 

about the location, suitability or physiological state of conspecifics, hosts or breeding sites 

(Logan & Birkett 2007). 

Semiochemicals are chemicals that influence the behaviour and physiology of insects (Dicke 

& Sabelis 1988). Mosquitoes chemosensory organs primarily consist of diverse cuticular 

extensions called sensillae located primarily on the antennae and maxillary pulps (Mclver 

1982). Sensillae have porous surfaces that open to an array of olfactory receptor neurons 

(ORNs), each with unbranched and multi-branched sensory dendrites. The dendrites are 

suspended in lymph within the sensilla lumen containing odour binding proteins (OBPs). 

Olfactory molecules that move into the sensilla through the pores bind to OBPs and are 

carried through to dendrites of ORNs. The ORNs then convey signals to the insects central 

nervous system (CNS) causing changes in behaviour or physiology of the mosquito (Su, 

Menuz & Carlson 2009). Olfactory receptor neurons can be sensitive to a few chemicals or to 

a wider range of compounds (Carey et al. 2010).  

In oviposition, it is hypothesized that the chemicals emanating from a water body guide the 

female to the breeding site and upon landing and contact with the water surface stimulates the 

female to lay her eggs (Bentley & Day 1989). Such chemicals can be divided into two broad 

groups: those that attract or repel mosquitoes from a distance, and those that mediate the 

actual act of oviposition. Attractants and repellents are volatile compounds acting over a 

distance whilst those involved in the initiation of oviposition may be non-volatile chemicals. 

The process of oviposition can be briefly summarized as a pathway of behaviours where the 

mosquito receives stimulation to take flight, orientates the flight upwind in response to 

attractants, arrestment and sampling of a site, and finally, oviposition stimulation (Isoe, 

Millar & Beehler 1995). 

Chemical cues can originate from natural water bodies as breakdown products of bacterial or 

algae origin, from the eggs themselves as an oviposition pheromone or released by other 

organisms like predators (Laurence & Pickett 1982; Ponnusamy et al. 2008a; Silberbush et 

al. 2010). These sources of stimuli might result in the aggregation of eggs in sites suitable for 

larval development (McCall & Cameron 1995). Until now the evidence for the involvement 

of semiochemicals in oviposition site selection is limited to very few mosquito species. 

Numerous compounds have been described as being involved in the oviposition behaviour in 
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few species of the genera Culex and Aedes although just a few of them have been confirmed 

as oviposition attractants (Table 1). 

The first and most studied oviposition pheromone was identified in mosquitoes of the genus 

Culex. Initially observations showed the egg rafts attracted gravid females of Cx. tarsalis, Cx. 

molestus and Cx. quinquefasciatus to lay eggs at the same oviposition sites, later it was found 

that the increment observed in the oviposition of Culex spp. occured due to droplets present 

on the egg’s apex (McCall & Cameron 1995). Gas chromatography coupled to mass 

spectrometry revealed that the active compound in the droplets was erythro-6-acetoxy-5-

hexadecanolide (AHD) (Laurence & Pickett 1982). The pheromone was synthesized and its 

efficacy tested in a field site in Tanzania. Pheromone alone caught as many gravid 

mosquitoes as a standard grass infusion and was active for 9 days (Mboera et al. 2000). 

 

In contrast chemical mediation of oviposition site selection in An. gambiae s.l. is poorly 

understood. Gravid female mosquitoes have been shown to detect 3-methyl-indole, indole, p-

cresol, o-cresol, phenol, m-cresol 4-methylcyclohexanol and 2-propyl phenol in 

electrophysiological studies (Blackwell & Johnson 2000). These compounds are therefore 

thought to be important cues for gravid An. gambiae s.l. and are frequently referred as 

putative attractants. There is however, a huge gap in evidence showing that these chemicals 

actually elicit a behavioural response and more importantly the type of response they might 

elicit. Nevertheless, if a better understanding of the chemical cues used by gravid females is 

gained this would increase the possibilities to implement novel strategies for vector control.  

 

Perhaps the better examples of how the identification of semiochemicals can improve 

dramatically control of an insect target comes from agriculture. When it became clear that 

insects used their chemical senses to communicate with conspecific and other species of 

animals or plants it was possible to develop semiochemical-based pest management that were 

environmentally and human friendly (El-Sayed et al. 2006). These methods have shown to be 

advantageous because many if not most semiochemicals are relatively nontoxic to vertebrates 

as well as beneficial insects and also its high selectivity to the targets species. The most 

successful semiochemical-based-pest management approaches include mass trapping, 

attractant (lure) & Kill and Push-Pull strategies (de Fran a et al. 2013).   
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Mass trapping uses species-specific synthetic chemical lures (pheromones and host/food 

attractants), to attract insects to a trap where they would be confined and die. Mass trapping 

using odour-baited traps is one of the older approaches to direct control of insects for 

population control and eradication (Steiner 1952; El-Sayed et al. 2006). As an extension of 

the mass trapping strategy, “Attract and Kill” approaches have been created by using sex 

pheromones or food attractant in combination with a killing agent (insecticide). This is a very 

efficient system, given that the insect can be directed to a selected point where it will get in 

contact with the insecticide allowing reducing of amount of insecticide applied i.e. there is no 

need to cover the whole crop (Charmillot, Hofer & Pasquier 2000). These systems have been 

successfully used against several pests like the boll weevil, Anthonomus grandis; apple 

maggot, Rhagoletis pomonella and the codling moth, Cydia pomonella among others 

(Bostanian & Racette 2001). 

One of the major developments in chemical ecology is the understanding that semiochemicals 

should not be used alone, but in combination with biological control agents. Probably the best 

example is the Push-Pull strategy, which involves “pushing” the insect away from the 

economic crops, and “pulling” them onto a trap crop where their population is reduced by a 

natural enemy (Foster & Harris 1997). This strategy is based in a profound understanding of 

chemical ecology, agrobiodiversity, plant-plant and plant-insect interactions (El-Sayed et al. 

2006). In Eastern Africa Push-Pull is effectively used to control pests (Stemborers) and 

weeds affecting maize and sorghum crops. This strategy is based in the intercropping of the 

cereal crop with a repellent intercrop such as Demodium (Push), and with an attractive trap 

plant such as Nepier grass (Pull) planted as a border crop and this intercrop (Cook, Khan & 

Pickett 2007; Hassanali et al. 2008). Beside this, push-pull strategy has been applied in the 

control of Helicoverpa sp. in cotton, thrips on chrysanthemums and the Colorado potato 

beetle Sitona lineatus (de Fran a et al. 2013). 

In mosquitoes, preliminary “push-pull” studies have been done in semi-field systems or in 

small scale trials with promising results (Barbosa et al. 2010; Obermayr et al. 2012; Salazar 

et al. 2012), however, the knowledge about the semiochemicals and its role in oviposition 

behaviour remain incipient. 
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Table 1.1 Infusions, bacteria and semiochemicals that mediate oviposition response in mosquitoes 

 

Source Bacteria identified Chemicals identified Mosquito species Response Authors 
Manure infusion   Ae. aegypti var. 

queenslandis 

Attraction (O'Gower 1963) 

Log pond infusion 

Grass infusion 

 0-cresol 

alpha-Ethyl-p-methoxybenzyl 

alcohol 

Ethyl methylcarbamate 

Phenethyl methylcarbamate 

alpha-conidendrol tetraacetate 

N-Ethyl-o-veratrylamine 

2,6 Dimethoxyphenol-ethylene 

oxide  

Cx. quinquefasciatus 

Cx. tarsalis  

Attraction 

No effect 

(Gjullin, Johnson & Plapp 

1965) 

Hay infusion Aerobacter aerogenes No identified  Cx. pipiens 

quinquefasciatus 

Attraction (Hazard, Mayer & Savage 

1967) 

 Pseudomonacea  Capric acid Culex restuans 

Culex pipiens 

Culex tarsalis 

Aedes aegypti 

Attraction (Maw 1970) 

Breeding site water Pseudomonas aeroginosa  Intermediate metabolites of 

Capric and pelargonic acids 

Culex pipiens fatigans 

Culex molestus 

Aedes aegypti 

Attraction (Ikeshoji 1966) (Ikeshoji, 

Saito & Yano 1975) 

Betula papyrifera infusion  P-cresol Aedes triseriatus  Attraction  (Bentley et al. 1979) 

Purina® Laboratory chow infusion  Acetic acid 

Propionic acid 

Isobutyric acid 

Butyric acid 

Isovaleric acid 

Caproic acid 

Cx. quinquefasciatus 

Cx. tarsalis 

 

Repellence (Hwang, Kramer & Mulla 

1980) 

  Fatty acids from C5 to C13  

Nonanoic acid* 

Cx. quinquefasciatus 

Cx. tarsalis 

Ae. Aegypti 

Repellence  (Hwang et al. 1982) 

Egg rafts  Erythro-6-acetoxy-5-

hexadecanolide (AHD) 

Cx. quinquefasciatus Oviposition pheromone  (Laurence & Pickett 1982) 

 Bacillus cereus 

Pseudomonas aeruginosa 

 Ae. aegypti  Stimulation/Attraction (Hasselschwert & Rockett 

1988) 

Bermuda grass infusion  phenol 

4 Methylphenol 

4 Ethylphenol 

Cx. quinquefasciatus  Stimulation/Attraction (Millar, Chaney & Mulla 

1992) 
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indole 

3 Methyl indole (skatole) 

Hay infusion 

Larval rearing water 

Field collected larval water 

 3 Methyl indole 

4 Methylphenol 

4 Ethylphenol 

indole 

phenol 

Ae. aegypti 

Ae. albopictus  

Moderate responses to 

infusions and chemicals 

(Allan & Kline 1995) 

Bermuda grass infusion    Cx. quinquefasciatus 

Cx. tarsalis 

Attraction  (Isoe et al. 1995; Isoe & 

Millar 1995) 

Oak leafs infusion   Ae. albopictus 

Ae. triseriatus 

Stimulation/Attraction (Trexler, Apperson & 

Schal 1998) 

 Bacillus cereus 

Pseudomonas aeruginosa 

 Ae. albopictus  Stimulation/Attraction (Pavlovich & Rockett 

2000) 

Larval conditioned water  Heneicosaene  Ae. aegypti Oviposition attractant 

pheromone 

(Mendki et al. 2000) 

Bacteria filtrates Bacillus cereus 

Pseudomonas 

fluorescens 

Bacillus thuringiensis 

Bacillus sphaericus  

Bacillus megaterium 

Azospirillum brasilense 

 Cx. quinquefasciatus  Attraction/No effect (Poonam, Paily & 

Balaraman 2002) 

Larval rearing water 

Soil contaminated cotton towels 

Oak leaf infusion 

Psychrobacter immobilis  

Sphingobacterium 

multivorum  

Bacillus species  

 Ae. albopictus  Attraction (Trexler et al. 2003b) 

  4 Methylphenol 

3 Methyl indole 

Ae. albopictus Repellence (Trexler et al. 2003a) 

Grass (Panicum maximun) infusion   Ae. aegypti 

Ae. albopictus 

Stimulation/Attraction (Santana, Roque & Eiras 

2006) 

Breeding site  Stenotrophomonas 
maltophilia 

 An. gambiae s.s. Repellence (Huang et al. 2006a) 

Long chain fatty acids   Hexadecyl pentanoate, 

Tetradecyl heptanoate  

Tridecyl octanoate  

Ae. aegypti 

Ae. albopictus 

Repellence (Sharma et al. 2008) 

Bamboo leaf infusion 

White-oak leaf infusion 

14 spp most of them 

Gammaproteobacteria 

18 spp most of them 

Gammaproteobacteria 

Nonanoic acid 

Decanoic acid 

Dodecanoic acid 

Tetradecanoic acid 

Tetradecanoic acid, methyl ester 

Hexadecanoic acid 

Hexadecanoic acid, methyl ester 

Ae. aegypti Attraction (Ponnusamy et al. 2008a) 
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Octadecanoic acid 

Midguts and breeding sites Vibrio metschnikovii 

Proteus sp. 

Micrococcus sp. 

Bacillus sp. 

Exiguobacterium sp. 

Comamonas sp. 

 An. gambiae s.s, Attraction (Lindh et al. 2008) 

Long chain fatty acids  Octadecyl propanoate, 

Heptadecyl butanoate, 

Hexadecyl pentanoate,  

Tetradecyl heptanoate 

Anopheles stephensi Repellence (Sharma et al. 2009) 

Conditioned water with Notonecta 

maculate 

 n-heneicosane  

n-tricosane 

Culiseta longiareolata  Repellence (Silberbush et al. 2010) 

Synthetic analyses - Antennal 

transcriptome profiles 

 2-propyl phenol 

4-methylcyclohexanol 

An. gambiae s.s Attraction 

Repellence  

(Rinker et al. 2013) 

Substrates in bold are recognized as oviposition attractants 
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1.3.2. Microbial organisms as a source of volatile chemicals released from aquatic 

habitats 

It has long been known that infusions made of manure, grass and food pellets attract 

gravid females of Cx. quinquefasciatus and Ae. aegypti to oviposition sites (O'Gower 

1963; Hazard, Mayer & Savage 1967; Hwang, Kramer & Mulla 1980). In addition is has 

been shown that the attraction is mediated by bacteria communities present in the 

infusion (Hazard, Mayer & Savage 1967). In 1975 Ikeshoji and co-workers discovered 

that bacteria of Pseudomonaceae family were responsible for production of oviposition 

attractants for Ae. aegypti and Cx. molestus through metabolism of capric and pelargonic 

acid previously added to the water (Maw 1970; Ikeshoji, Saito & Yano 1975). 

The importance of bacteria and their volatiles in the egg laying behaviour of some 

mosquito species has been corroborated in studies investigating the responses of gravid 

females to odours from bacterial cultures or filtrates. For instance, Pseudomonas 

aeruginosa and Bacillus cereus attracted gravid Ae. aegypti (Hasselschwert & Rockett 

1988), whilst P. fluorescens and several different Bacillus species were attractive to Cx. 

quinquefasciatus, Ae. aegypti and Ae. albopictus (Pavlovich & Rockett 2000; Poonam, 

Paily & Balaraman 2002; Trexler et al. 2003a). In addition, indirect evidence for 

microbial involvement in production of oviposition attractants has been observed by 

reduction or elimination of the bacteria from test solutions (Benzon, Apperson & Clay 

1988). 

Again, for An. gambiae s.l. our knowledge on the involvement of microbial organisms in 

the oviposition site selection is extremely poor, limited to a hand full of papers of a 

restricted number of researchers implemented under artificial laboratory conditions 

without sufficient replication. Sumba and co-workers showed that gravid females laid 

60% more eggs on wet papers above soil and water from natural habitats (containing 

bacteria and other microbes) than on wet paper above the same substrate that had been 

heat sterilized (Sumba et al. 2004). Otienoburu demonstrated that Lake Victoria water, 

which is one of the major sources of water in An. gambiae s.l. habitats around the shores 

of Lake Victoria, increased egg numbers compared with distilled water (Otienoburu et 

al. 2007). These studies two support the theory that microbials are involved in the 

oviposition choice of gravid females. The specific volatiles that mediate the responses 

have, in most studies, not been determined. Recently, positive responses from An. 

gambiae s.s. have been shown to bacteria isolated from An. gambiae s.s. breeding sites 

or their midguts. Six bacterial species stimulated a positive oviposition response (Lindh 
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et al. 2008). In contrast, Huang and collaborators tested a mixture of cultured bacteria 

also isolated from a natural larval habitat against bacteria-free nutrient agar and against 

expectations, gravid An. gambiae s.s. females avoided the bacteria and laid eight times 

more eggs in bacteria free nutrient agar than in mixed cultures of bacteria. Four bacteria 

species were presented in the mixture and when tested individually, only one species, 

Stenotrophomonas maltophilia, had a significant impact on the oviposition response by 

significantly lowering the number of eggs laid in the presence of the bacteria compared 

with bacteria-free controls (Huang et al. 2006a).  

In order to test if microbial communities present in soil and water from a vibrant 

Anopheles breeding site produce volatiles chemicals that mediate oviposition behaviour 

in An. gambiae s.s. it is necessary to elucidate the role of microorganisms under 

standardized laboratory conditions to confirm if previous results can be replicated and  

under field conditions where it is expected that microbial communities are complex and 

affected by a large number of water quality parameters. 

1.4 Rationale  

Current vector control interventions in sub-Saharan Africa are insufficient to achieve 

malaria elimination in most areas due to residual transmission maintained by vectors 

with a more exophilic behaviour as well as due to the increasing threat of insecticide 

resistance (Ranson et al. 2011; Killeen 2014). Interventions that target outdoor vector 

populations without insecticides or with insecticides not used in the indoor environment 

are urgently needed to complement front-line interventions (Ferguson et al. 2010). 

Understanding the oviposition site selection of the major sub-Saharan malaria vectors of 

the Anopheles gambiae species complex could contribute significantly to the 

development of new and improved interventions by targeting the gravid females in 

search of an oviposition site and by targeting the most productive breeding sites 

rationalizing larval control interventions.   

In addition, the identification of oviposition cues opens the possibility of exploring new 

perspectives to the control of Anopheles mosquitoes. The combination of oviposition 

attractants and larvicides might also be useful for the surveillance and control of vectors 

that feed outdoor. In this case gravid females would be directed to breeding sites 

previously treated with a larvicide that will kill the offspring of the egg-laying female.  

This “Attract and Kill” strategy provides a method of control that avoids traps becoming 

breeding sites. “Push–pull” schemes could also be implemented that use repellent 
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compounds to push vectors away from oviposition sites close to their hosts and attractive 

compounds that would guide them to specific traps for their capture.  

To date the understanding of oviposition site selection in An. gambiae s.l. is very limited 

and restricted to experimental work implemented in the laboratory, mostly in small 

confined cages. Whether the behaviour in the laboratory can be extrapolated to their 

natural behaviour remains to be proven. In the natural environment of mosquitoes many 

cues interact. For example visual and chemical stimuli are likely to interact in a way that 

is unknown in the uncontrolled system. Factors like cage or cup size, different ways of 

presenting the substrate and the use of different strains of colony mosquitoes may all 

influence the oviposition response.  

The evidence collected previously support the hypothesis that bacteria play a role in the 

oviposition choice of gravid An. gambiae s.l. females. There have been however, very 

few studies investigating the effect of bacteria and their volatiles on An. gambiae s.l. 

oviposition responses. To date all of the studies have been performed solely on bacteria 

collected from aquatic habitats containing larvae but no attempt has been made to 

compare the bacterial community of aquatic habitats that contain An. gambiae s.l. larvae 

with those that do not have larvae present in the water. There is no published work on 

the chemical headspace emitted from habitat water versus sterilized water or even from 

natural habitats that could provide evidence that chemical cues (from bacteria or in 

general) are involved in the habitat selection. Therefore, the study of oviposition 

behaviour in An. gambiae s.l. is fundamental to gain understanding on the ecology of 

this primary malaria vector and required to understand larvae distribution and survival in 

the field. 

1.5 Overall aim and hypotheses 

The aim of this thesis was to investigate the oviposition site selection in Anopheles 

gambiae sensu lato, the major malaria vectors in sub-Saharan Africa under controlled 

conditions and in field settings in Western Kenya.  

The research was driven by the following hypotheses: 

Hypothesis 1: Gravid An. gambiae s.l. females make choices when looking for a site to 

oviposit in. Females evaluate the suitability of a habitat using chemical cues from water 

bodies; these oviposition choices made by a gravid female benefit the offspring and 

cannot be modified by experience in one generation. 
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Hypothesis 2: Microbial communities present in soil and water from a vibrant Anopheles 

breeding site produce volatiles chemicals that mediate oviposition behaviour in An. 

gambiae s.s.. 

Hypothesis 3: Natural aquatic habitats without Anopheles gambiae s.l. larvae (controls) 

differ significantly from habitats that are well colonized by early instar larvae (cases) in 

their bacteria communities and in their profile of volatile chemicals released from the 

water.  

Hypothesis 4: Specific physical, chemical and biological characteristics of natural 

aquatic habitats colonised by Anopheles larvae can be associated with the bacteria and 

chemical profiles and can assist in predicting habitat selection by gravid females in 

natural settings. 
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2.1 Abstract 

Background: The non-random distribution of Anopheles larvae in natural habitats 

suggests that gravid females discriminate between habitats of different quality. Whilst 

physical and chemical cues used by Culex and Aedes vector mosquitoes for selecting an 

oviposition site have been extensively studied, those for Anopheles remain poorly 

explored. Here the habitat selection by Anopheles gambiae sensu lato (s.l.), the principal 

African malaria vector, was investigated when presented with a choice of two infusions 

made from rabbit food pellets, or soil. 

Methods: Natural colonization and larval survival was evaluated in artificial ponds 

filled randomly with either infusion. Dual-choice, egg-count bioassays evaluated the 

responses of caged gravid females to (1) two- to six-day old infusions versus lake water; 

(2) autoclaved versus non-autoclaved soil infusions; and assessed (3) the olfactory 

memory of gravid females conditioned in pellet infusion as larvae. 

Results: Wild Anopheles exclusively colonized ponds with soil infusion and avoided 

those with pellet infusion. When the individual infusions were tested in comparison with 

lake water, caged An. gambiae sensu stricto (s.s.) showed a dose response: females 

increasingly avoided the pellet infusion with increasing infusion age (six-day versus lake 

water: odds ratio (OR) 0.22; 95% confidence interval (CI) 0.1-0.5) and showed 

increasing preference to lay eggs as soil infusion age increased (six-day versus lake 

water: OR 2.1; 95% CI 1.4-3.3). Larvae survived in soil infusions equally well as in lake 

water but died in pellet infusions. Anopheles gambiae s.s. preferred to lay eggs in the 

non-autoclaved soil (OR 2.6; 95% CI 1.8-3.7) compared with autoclaved soil. There was 

no change in the avoidance of pellet infusion by individuals reared in the infusion 

compared with those reared in lake water. 

Conclusion: Wild and caged An. gambiae s.l. females discriminate between potential 

aquatic habitats for oviposition. These choices benefit the survival of the offspring. It 

could be demonstrated that the choice of habitat is mediated by chemical cues based on 

both preference and avoidance. These cues, if identified, might be developed for ‘push-

pull’ strategies to improve malaria vector monitoring and control. 
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2.2 Background 

Selection of suitable oviposition sites is a critical step in the life history of mosquitoes 

(Refsnider & Janzen 2010). This is a process whereby individuals select and occupy a 

non-random set of aquatic habitats. Habitat selection is of major importance for the 

interpretation of spatial and temporal distributions of populations, and for understanding 

intra and inter-specific relations that influence the abundance of individuals (Morris 

2003; Rejmankova et al. 2005). Organisms without any parental care are likely to 

choose habitats based on a set of innate or learned cues in order to maximize the survival 

and fitness of their offspring (McCall & Eaton 2001; Rejmankova et al. 2005).  

Mosquitoes utilize a wide range of aquatic niches for oviposition, including natural 

ponds, puddles, stream fringes, marshes, tree-holes and plant axils, man-made pits, 

drains, rice fields and containers (Laird 1988). Field studies have shown that mosquitoes 

are discriminating in selecting sites for egg deposition (Muirhead-Thomson 1945; 

Macan 1961) and that oviposition choices made by gravid females are a key factor in 

determining larval distribution (Bates 1940; Muirhead-Thomson 1940a; Muirhead-

Thomson 1940b; Wallis 1954). Although different species are found in the same type of 

habitat, oviposition site selectivity is considerably species specific (Bentley & Day 

1989). Immature stages of Anopheles gambiae sensu lato, the major malaria vectors in 

sub-Saharan Africa, are typically described as inhabiting very small, temporary sunlit 

pools and puddles without vegetation (Muirhead Thomson 1951; Gillies & De Meillon 

1968; Gimnig et al. 2001; Minakawa, Sonye & Yan 2005). Reviews of the literature and 

recent research on larval ecology have however, shown that this is a gross 

oversimplification of the wide range of habitats colonised by this species (Holstein 1954; 

Fillinger et al. 2004; Fillinger & Lindsay 2011), a fact recognised over half a century 

ago by Holstein who reviewed the ‘extraordinary diversity of the breeding-places’ of An. 

gambiae s.l. (Holstein 1954) . Numerous studies have described how the presence of An. 

gambiae s.l. larvae (Fillinger et al. 2004; Majambere et al. 2008; Fillinger et al. 2009b; 

Munga et al. 2009; Ndenga et al. 2011) and the capacity of individual habitats for 

generating adult mosquitoes  (Bates 1940; Muirhead-Thomson 1945; Muirhead-

Thomson 1951; Fillinger et al. 2004; Mutuku et al. 2006) differs markedly over space 

and time, yet statistical analyses of these surveys failed to reveal any risk factors that 

could consistently predict sites preferred by An. gambiae s.l. (Fillinger et al. 2004; 

Majambere et al. 2008; Fillinger et al. 2009b; Munga et al. 2009; Ndenga et al. 2011). 

This might lead to the conclusion that this species randomly deposits its eggs in a large 
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range of habitats and that the heterogeneous distribution of larvae results from the 

survival of larvae in the aquatic habitat (Muirhead-Thomson 1940a; Muirhead-Thomson 

1940b) rather than the adults’ choice. 

Surprisingly, fully gravid malaria vectors looking for suitable larval habitats have been 

grossly understudied (Ferguson et al. 2010). Compared with the wealth of knowledge of 

the physical and chemical factors used by gravid culicines for selecting an oviposition 

site (Bentley et al. 1979; Hwang et al. 1982; Laurence & Pickett 1982; Beehler, Millar 

& Mulla 1992; Millar, Chaney & Mulla 1992; Beehler, Millar & Mulla 1994; Millar et 

al. 1994; Isoe et al. 1995; Isoe & Millar 1995; Mendki et al. 2000; Ganesan et al. 2006; 

Ponnusamy et al. 2008a; Seenivasagan et al. 2009; Ponnusamy et al. 2010a) those 

potentially used by the world’s most deadly malaria vector remain almost unexplored. 

Whereas many publications recognize that the distribution of larvae between seemingly 

suitable aquatic habitats is probably due to the choice of the gravid female (Bates 1940; 

Kennedy 1942; Muirhead-Thomson 1945; Muirhead-Thomson 1951; McCrae 1984; Gu 

et al. 2006) and that this choice probably impacts on the fitness of her offspring there is 

little empirical evidence to support these assertions. Most recent research has evaluated 

the characteristics of aquatic habitats associated with the presence and absence of larvae 

(Gimnig et al. 2001; Fillinger et al. 2009b; Gouagna et al. 2012; Kweka et al. 2012; 

Munga, Vulule & Kweka 2013) but the understanding of the behaviour of gravid female 

An. gambiae s.l. when searching for an oviposition site remains, at best, sketchy (Bates 

1940; McCrae 1984; Sumba et al. 2004; Huang et al. 2005; Huang et al. 2006b; Huang 

et al. 2007; Lindh et al. 2008; Sumba et al. 2008; Kweka et al. 2011).  

Laboratory studies demonstrated that physical conditions of the aquatic habitats 

influence oviposition site selection in An. gambiae s.l. with females preferring dark 

backgrounds to pale ones, muddy water to clear water and fully hydrated substrates 

(Bates 1940; McCrae 1984; Huang et al. 2005; Balestrino et al. 2010). Turbidity has 

been suggested as an important physical cue for oviposition behaviour in An. gambiae 

s.l. although the evidence for this is contradictory (Ye-Ebiyo et al. 2003; Paaijmans et al. 

2008). 

Even less is known about the chemical cues and their interaction with physical factors. 

Water vapour is itself an attractant to gravid mosquitoes (Okal et al. 2013). It has been 

shown that gravid An. gambiae s.l. are sensitive to bacteria-derived odours (Sumba et al. 

2004; Huang et al. 2006a; Lindh et al. 2008) which have been associated with increased 

(Sumba et al. 2004; Lindh et al. 2008) and reduced (Huang et al. 2006a) egg numbers 



 

36 

 

compared to sterile media in cage bioassays. Whilst over 20 putative oviposition 

semiochemicals have been suggested in the literature based on the analyses of bacteria- 

or habitat-derived volatile chemicals and electro-antennogram studies (Blackwell & 

Johnson 2000; Lindh et al. 2008) there is no report of any inducing a behavioural 

response in gravid females (increasing or decreasing the oviposition response) except for 

water vapour (Okal et al. 2013).  

Here the oviposition behaviour of An. gambiae s.l. was explored to test the hypotheses 

that a gravid An. gambiae s.l. female evaluates the suitability of a habitat using chemical 

cues from water bodies, that oviposition choices made by a gravid female benefit the 

offspring and that this choice cannot be modified by experience in one generation.  

Habitat selection by gravid An. gambiae s.l. was tested by presenting a choice of two 

infusions; one made with soil from an area where natural habitats occur frequently, and 

one made with rabbit food pellets. Rabbit food pellets are frequently used as diet for 

mosquito larvae in insectaries (Haeger & Provost 1964; Rasgon 2012) and infusions 

made of grass, hay and other plant material, including rabbit food pellets have shown to 

be attractive to a range of mosquito species and have been used in gravid traps (Nguyen, 

Su & Mulla 1999; Jackson et al. 2005a; Silver 2008; McPhatter & Debboun 2009). It 

was aimed to explore whether Anopheles gambiae s.l. might also be drawn to rabbit 

pellets infusion. 

Natural colonization and larval survival was evaluated in artificial ponds filled randomly 

with either infusion. As a consequence of field observations, two choice egg count 

bioassays were used to explore the pattern of oviposition seen in the field. Experiments 

were designed to address the following questions: 1) Do gravid An. gambiae s.l. females 

discriminate between different habitats when searching for an oviposition site?, 2) Does 

the oviposition choice benefit the survival of their offspring?, 3) Are gravid females 

guided by preference and/or avoidance? 4) Are oviposition choices likely to be based on 

chemical and/or physical cues? and 5) Is the choice made by a gravid female influenced 

by her olfactory memory of her larval habitat? 
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2.3. Methods 

2.3.1. Study site 

Experiments were carried out at the International Centre for Insect Physiology and 

Ecology (ICIPE), Mbita, on the shores of Lake Victoria, Western Kenya (geographic 

coordinates 0° 26’ 06.19” South; 34° 12’ 53.13” East; altitude 1,137 meters above sea 

level). Mbita has a typical tropical climate; temperatures oscillate between 18-28 °C and 

there is an annual rainfall of 1,436 mm (based on data from ICIPE meteorological 

station for 2010-2012). Two rainy seasons occur annually, the long rainy season between 

March and June and the short rainy season between October and December. Malaria is 

endemic in the area and transmitted by three vectors, which are in order of their 

abundance: An. arabiensis, An. gambiae s.s., and An. funestus (Minakawa et al. 2012).  

2.3.2. Mosquitoes 

Open-field trials were conducted with wild anopheline and culicine females that 

oviposited in tubs of water sunk into the ground. These were colonized within three 

days. Laboratory experiments were carried out with insectary-reared An. gambiae s.s. 

(Mbita strain) supplied by ICIPE’s insectary and reared following standard operating 

procedures. Briefly, larvae were reared in round plastic tubs (diameter 0.6 m) filled with 

water from Lake Victoria and fed Tetramin® fish food twice daily. Larvae were 

collected randomly from several tubs on the day of experiment. Gravid mosquitoes were 

prepared by selecting 300 female and 300 male mosquitoes, two to three days old, from 

their rearing cages at 12.00 h and keeping them in 30×30×30 cm netting cages at 25-

28°C and 68-75% relative humidity. To avoid mosquito desiccation, cotton towels 

(folded to 25x12 cm) were saturated with tap water and placed over the cages. 

Mosquitoes were starved of sugar for seven hours before blood feeding and allowed to 

feed on a human arm for 15 minutes at 19.00 h on the same day. Ethical approval from 

this procedure was obtained from the Observational/Interventions Research Ethics 

Committee of the London School of Hygiene and Tropical Medicine (LSHTM Ethics 

Ref: 8557). After feeding mosquitoes were provided with 6% glucose solution ad 

libitum. A plastic vial (25 ml) with a piece of paper towel folded into a wick was used to 

provide 10 ml of 6% glucose.  The whole procedure was repeated 24 hours later to 

ensure a high proportion of mosquitoes fully gravid. After the first blood meal unfed 

female mosquitoes were removed from the cages. Fed female mosquitoes were kept 

together with males for two days after the second blood meal before using them in an 

experiment (i.e. females 4 - 5 days after first blood meal). In the afternoon (16.30 h) of 
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the day of an experiment 45-100 (depending on experiment and availability) visually 

presumed gravid females, that is with an enlarged, pale white abdomen, were selected 

from the holding cage. A small proportion of these mosquitoes were probably not gravid 

because most females needed two blood meals to be fully gravid and some are never 

gravid even after three feeds (Gillies 1958; Lyimo & Takken 1993). Whilst two meals 

were provided it could not be guaranteed that two meals were taken by all females. This 

might be the reason that not all mosquitoes exposed to oviposition medium in 

experiments laid eggs (responded), therefore the number of responders was smaller than 

the number tested. Non-responders were excluded from the analyses.  

2.3.3. Experimental procedures 

2.3.3.1. Do gravid An. gambiae s.l. females discriminate between different habitats 

when searching for an oviposition site? 

To explore natural colonization of habitats by wild mosquitoes 20 artificial habitats were 

created by implanting 20 plastic tubs (40 cm diameter 20 cm deep) into an open-sunlit 

field during the long rainy season in May 2011. The tubs were placed in four lines of 

five tubs each 4 m apart (Fillinger, Knols & Becker 2003). Two different substrates were 

randomly offered in the artificial habitats. Half of the tubs (10) received 30 g of rabbit 

food pellets (Scooby® rabbit and rodent food, Nairobi) containing hay and grains from 

maize, wheat, barley, cotton, sunflower, soya bean meal, and traces of molasses, 

vitamins and minerals. The remaining half of the tubs (10) received 2 kg of dry soil 

taken from a field at ICIPE. Soil texture was characterized as a silty clay loam according 

to the United States Department of Agriculture (USDA) texture triangle (Brown) using 

the detergent method (Whiting et al.) to separate and quantify soil mineral particles of 

different size. A volume of 15 L of non-chlorinated tap water pumped from Lake 

Victoria, henceforth referred to as tap water, was added to each tub. The two treatments 

are henceforth referred to as pellet and soil infusion. To study the oviposition response 

of wild mosquitoes the tubs were monitored daily between 8.00 and 10.00 h by dipping 

five times per tub with a standard dipper (350 ml). Two different dippers were used for 

the two treatments to avoid contamination. Four dips were taken from the edge of the 

tubs and one from the middle. The content of each dip was emptied into a white plastic 

bowl and all early instars (1
st
 and 2

nd
 stage larvae) counted and recorded for both 

culicine and anopheline mosquitoes. All larvae and the water were returned to the 

respective tub. The tubs were followed for 16 days. Artificial habitats were searched for 

pupae and collected daily to prevent any emergence of potential disease vectors. Pupae 
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were allowed to emerge in cages in the laboratory and any anophelines emerging 

identified to species using morphological keys (Gillies & De Meillon 1968; Gillies & 

Coetzee 1987) and for specimens of the An. gambiae complex using the ribosomal 

DNA-polymerase chain reaction (PCR) method (Scott, Brogdon & Collins 1993).  

Table 2.1. Summary details of dual choice egg-count bioassays to evaluate 

oviposition choices in An. gambiae s.s. 

 

Dual choice 

cage egg-count 

bioassays sets 

Treatments No. of 

rounds 

(replicat

es)  

Total no. of 

females that laid 

eggs for all 

rounds (total 

number 

mosquitoes set 

up) 

Control Test 

Set 1: 

Pellet infusions 

 

tap water 

tap water 

tap water 

tap water 

tap water 

2 day old pellet infusion 

4 day old pellet infusion 

6 day old pellet infusion 

3 

66 (75) 

64 (75) 

67 (75) 

68 (75) 

Set 2:  

Soil infusions  

tap water 

tap water 

tap water 

tap water 

tap water 

2 day old soil infusion 

4 day old soil infusion 

6 day old soil infusion 

9 

153 (225) 

161 (225) 

160 (225) 

171 (225) 

Set 3:  

Vision versus 

olfaction in soil 

infusions 

tap water 

tap water 

tap water 

autoclaved 6 day old 

soil infusion 

tap water 

6 day old soil infusion 

autoclaved 6 day old soil 

infusion 

6 day old soil infusion 

12 

186 (220) 

150 (220) 

157 (220) 

169 (220) 

Set 4: 

Olfactory 

memory – pellet 

infusions 

Tap water reared An. gambiae females 

tap water 6 day old pellet infusion 1 31 (45) 

Pellet infusion reared An. gambiae females 

tap water 6 day old pellet infusion 1 37 (45) 
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2.3.3.2. Does the oviposition choice benefit the survival of their offspring? 

Larval survival was assessed by introducing individual insectary-reared first instar An. 

gambiae s.s. larvae in infusions collected from the tubs set up in the field. Infusion 

samples were taken after 1, 6, 11 and 16 days. One hundred ml of infusion was collected 

from each of the 10 tubs per treatment and pooled per treatment in a plastic bottle. Tap 

water was used as a control. First instars were introduced in 100 ml plastic cups 

containing 50 ml of pellet infusion, soil infusion or tap water. Twenty larvae were 

exposed individually per treatment per day. Larvae were fed every second day with 

finely ground Tetramin ® Baby fish food. Food was provided with a blunt toothpick that 

was first wetted in tap water and then dipped quickly, not more than 1 mm deep into the 

ground food, and then dipped onto the surface of the test water. Larval development was 

monitored daily and the time of death or time to pupation and emergence recorded. This 

experiment was implemented under ambient conditions in a semi-field system (80m
2
) 

with screened walls and a glass roof (Knols et al. 2002). 

2.3.3.3. Are gravid females guided by preferences or avoidance? 

Based on the analysis of the field data a series of two-choice egg-count bioassays were 

designed to investigate if the response of wild gravid females observed in the field was 

based on avoidance or preference of an infusion or both. 

Gravid females were selected from insectary cages and transferred individually to 

30x30x30 cm cages. In each cage two glass cups (Pyrex®, 100 ml, 70 mm diameter), 

surrounded by tightly fitting aluminium cylinders, so that mosquitoes could see only the 

water surface, were filled with 100 ml of either the control or test medium and placed in 

diagonal corners of the cage. Prior to use cups and cylinders were cleaned with 

detergent, then autoclaved and kept in an oven at 200°C for at least two hours. The 

position of oviposition cups containing the test medium was alternated between adjacent 

cages to control for possible position effect. The placement of the first test cup was 

randomly allocated for one of the four cage corners in the first cage. Subsequent test 

cups were rotated in the next possible corners in a clockwise direction relative to the 

position of the preceding cup. One control cup was added in each cage diagonal to the 

test cup to complete a two choice set up. The experiments were carried out in makeshift 

sheds (Figure 2.1) that exposed the mosquitoes to ambient light, temperature and relative 

humidity but protected the cages from rain.  
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Figure 2.1. Location of egg-count bioassays. A. Sheds (10 m long × 5 m wide × 2.8 m 

high) with walls made of reed mats and a roof made of translucent corrugated 

polycarbonate sheets. B. Interior of a shed. In each shed two tables hold up to 25 

standard cages each, allowing 40 cm of space between adjacent cages.  

Two sets of experiments were carried out consecutively (Table 2.1, Set 1 and 2). In the 

first set oviposition choice was evaluated for 2, 4 and 6 day old pellet infusions 

compared with tap water. In the second set the oviposition choice was evaluated for 2, 4 

and 6 day old soil infusions compared with tap water. In both sets of experiments 

internal controls were used to validate the two choice experiment. Here equal numbers 

of cages were set up where both cups in a cage contained tap water and were labelled 

randomly as control and test cup, assuming that gravid females lay eggs in both cups in 

an equal proportion. 

Infusions were prepared in a similar way as for the field tests. Fifteen litres of tap water 

were either incubated with 30 g of pellets to prepare a pellet infusion or incubated with 2 

kg of soil to prepare a soil infusion. Infusions were prepared in a plastic tub (40 cm 

diameter 20 cm depth) 6 days, 4 days and 2 days before the day of experiment in order 

to test all ages in parallel. Tubs were covered with mosquito proof netting and kept in 

makeshift sheds at ambient conditions but protected from rain. Experiments were 

implemented over 3-9 rounds depending on the availability of gravid females and the 

response rate per round (Table 1) with fresh batches of infusions and different batches of 

mosquitoes for every round. On the day of experiment infusions were sieved through a 

clean piece of cotton cloth to remove large debris remaining from the pellets or soil. 

A B 
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Fifteen to 25 replicate cages per treatment were set up per round. A single gravid female 

was introduced per cage at 17.30 h. The next morning between 8.00- 9.00 h the absence 

or presence and the number of eggs was recorded for the control and test cup in each 

cage.  

Turbidity, conductivity, dissolved oxygen and pH were measured in five cups per 

treatment in four different batches of pellet, soil infusions, and tap water using a 

turbidity meter (TURB 355IR, WTW Germany) and a multimeter (Multi 340i, WTW, 

Germany). In addition one batch of pellet, soil infusion and tap water was tested for 

Ammonium (NH4+), carbonate hardness, total hardness, nitrate (NO3
-
), nitrite (NO2

-
) 

and phosphate (PO4
3-

) content using Aquamerck® test kits from the compact laboratory 

for water testing (Aquamerck® No.111151, Germany). 

2.3.3.4 Are oviposition choices likely to be based on chemical cues? 

Soil infusions differed strongly in colour and turbidity from tap water. To assess if the 

oviposition response observed was based on visual or chemical cues a third set of dual 

choice egg-count bioassays were implemented with six day old soil infusions (Table 2.1, 

Set 3) comparing the relative attractiveness of autoclaved and non-autoclaved infusion 

(Sumba et al. 2004; Ponnusamy et al. 2011). The experiment followed the same 

experimental procedures as described above. After filtering the infusion through a cloth 

on the day of experiment, the infusion was split in two equal volumes and half 

autoclaved at 120°C for 20 minutes to kill bacteria potentially involved in releasing 

oviposition semiochemicals (Sumba et al. 2004; Ponnusamy et al. 2010b) and to reduce 

the amount of volatile chemicals from the solution whilst maintaining the colour and 

turbidity of the infusion. After autoclaving the infusion was left to cool to ambient 

temperature before setting up the cage bioassays. The oviposition choice of individual 

gravid females was evaluated for six day old soil infusion versus tap water, autoclaved 

six day old soil infusion versus tap water and for autoclaved versus non-autoclaved six 

days old infusion.  

In order to confirm that autoclaving sterilized the infusion, samples (1 ml) of both 

infusions were taken for bacterial cultures. Samples were serially diluted (tenfold) two 

times in distilled water. After dilution, 100 µl of each of the x1 (undiluted), x10
-1

 and 

x10
-2

 dilutions was spread separately onto the surface of duplicate Lysogeny Broth (LB) 

agar-plates (LB Lennox-Fisher Scientific) (Bertani 2004). Plates were incubated 

overnight at 30
o
C and the presence of colonies recorded. 
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The same physical and chemical parameters were measured for the autoclaved infusion 

as described above for the non-autoclaved pellet and soil infusions.  

2.3.3.5. Is the choice made by the gravid female influenced by her olfactory memory of 

her larval habitat? 

A fourth set of experiments (Table 2. 1, Set 4) was designed to assess the possibility that 

a gravid female’s choice for an oviposition site might be influenced by her olfactory 

memory of her larval habitat, as has been suggested for culicine species (McCall & 

Eaton 2001; Kaur, Lai & Giger 2003). 

To test this, approximately 2000 An. gambiae s.s. eggs were dispensed in 1.5 L of two-

day old pellet infusion and another 2000 eggs in tap water and reared under the same 

conditions to the adult stage. The infusion and tap water in the rearing pans was replaced 

every two days with fresh two-day-old infusion or tap water until all surviving larvae 

pupated. Larvae were fed with Tetramin® fish food twice daily following routine 

insectary procedures. Pupae were collected in a cup with 100 ml of rearing water and 

placed in 30x30x30 cm cages for emergence. Gravid females for cage bioassays were 

obtained as described above.  

Dual choice cage bioassays were carried out in parallel with gravid An. gambiae s.s. 

reared in the infusion and gravid An. gambiae s.s. reared in tap water. A single mosquito 

was offered a choice between six-day-old pellet infusion or tap water. Forty-five 

replicates were set up in parallel for both treatment groups as described above.  

2.3.4. Sample size considerations 

The sample size (number of responders) in the four sets of cage experiments differed for 

a number of reasons. Due to adverse climate conditions affecting the mosquito supply 

during the pellet infusion bioassays the production of colony-reared mosquitoes was 

low. Nevertheless, two-sample comparison of proportions power calculation showed that 

66 responders in each arm in the pellet infusion bioassays (Table 2.1, set 1) was 

sufficient to detect a 23% increase or decrease in the proportion of eggs laid in the 

treatment compared with the tap water only experiment with 80% power at the 5% level 

of significance. The effect of the pellet infusion observed on oviposition response was 

much stronger than 23%. In the soil infusion experiments (Table 2.1, Set 2 and Set 3), a 

minimum of 150 responders in each arm were analysed. This was sufficient to detect a 

15% increase or decrease in the proportion of eggs laid in the treatment as compared to 

the tap water only experiment at the same power and significance level. This level of 
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accuracy was deemed appropriate for investigating significant behavioural cues affecting 

the oviposition choice. The evaluation of olfactory memory required the mosquitoes to 

be reared in pellet infusion where larval mortality was nearly 98%. Therefore, only 45 

females could be tested, out of which only 31 and 37 responded in the two treatments. 

(table 2.1, Set 4). The hypothesis for this experiment was that the preference of gravid 

females could be changed and therefore at least double the proportion of eggs laid in 

pellet infusion by infusion reared females as compared to the tap water reared females. 

With 31 responders in each arm the experiment was powered (80%) to detect a change 

in the proportion of 35%.  

2.3.5 Statistical analyses 

All data were analysed in R statistical software version 2.13.1 (R Development Core 

Team 2011). The one sample proportion test function was used to estimate the 95% 

confidence intervals (CI) for the proportion of larvae surviving in pellet infusion, soil 

infusion and tap water. Pupation time of larvae exposed to different treatments was 

calculated using the following formula: (Ax1)+(Bx2)+(Cx3)...(Gx10)/Total number of 

pupae collected, where A, B, C...G are the number of pupae collected on day 1,2,3 to 10. 

Dual choice egg-count bioassays were analysed using generalized linear models (glm-

function) with a quasibinomial distribution fitted to account for the overdispersion. In 

the first three sets of experiments the proportion of eggs laid in test cups in the cages 

with equal treatments (tap water in both cups) were compared with the proportion of 

eggs laid in test cups in cages with two different treatments. It was hypothesised that 

gravid females presented with an identical treatment would lay in both cups in an 

approximately equal proportion (p=0.5). The statistical analysis aimed to reveal if the 

test treatment of interest (e.g. infusions of different age) received an increased or 

decreased proportion of the total number of eggs laid when compared to the tap water 

only treatment. Therefore, the treatment choice (e g. tap water only cages, cages with 

infusion versus tap water) and the round of experiment were included as fixed factors to 

analyse their impact on the outcome (proportion of eggs laid in test cup). A similar 

analysis was used for the fourth set of experiments to compare the proportion of eggs 

laid in test cups (pellet infusion) by gravid females that were reared in hay infusion 

during their larval development compared to the proportion of eggs laid in test cups by 

gravid females that were reared in tap water. The mean proportion of eggs laid in test 

cups in different treatments and their 95% CIs were calculated as the exponential of the 

parameter estimates for models with no intercept included. Similarly, multiple 

comparisons of treatments were calculated based on the model parameter estimates. 



 

45 

 

2.4 Results 

2.4.1. Gravid An. gambiae s.l. females discriminate between habitats when 

searching for an oviposition site 

Mosquitoes oviposited in the artificial ponds shortly after they had been set up since 

early instar larvae were found from day three and larvae hatch approximately 24-48 

hours after eggs are laid. Ponds with pellet infusion were colonized exclusively and in 

high densities by culicine mosquitoes. No anopheline larvae were detected over the 16 

day observation period. In sharp contrast, early instar anophelines were consistently 

found from day 3 to day 16 in the soil infusion ponds (Figure 2.2). Based on the pattern 

of larval abundance, peak oviposition occurred 6-10 days after setting up the ponds. 

Anophelines nearly always occurred in higher densities than culicines. Anopheline larval 

densities are naturally relatively low, with approximately 1-3 larvae/dip in natural 

habitats in the study area (Fillinger et al. 2004). In the present study an average of 10 

(95% CI 5-18) early instar larvae/dip was recorded, indicating that the soil infusion 

ponds were a highly favourable habitat.  

All pupae collected from the artificial habitats belonged to the Anopheles gambiae 

complex. PCR-based species analysis revealed that nearly all the wild An. gambiae s.l. 

were An. arabiensis (98%, 49/50).  

 

Figure 2.2. Natural colonization of artificial habitats. Daily average of early instar 

larvae in (A) Pellet infusions (B) Soil infusions. 
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2.4.2. The female’s choice of oviposition site benefits the survival of her offspring 

Anopheles gambiae s.s. larvae survived equally well in soil infusion and tap water 

irrespective of the age of the infusion. In contrast, larvae placed in pellet infusion only 

survived in the one day old infusion in similar numbers but survival was reduced by over 

60% (P<0.001) in pellet infusions six days and older compared with tap water or soil 

infusions of the same age (Figure 2.3). Mean pupation time for survivors did not 

significantly differ between treatments or ages of the infusion and was on average 7.5 

days (95% CI 6.6-8.3). 

 

 

Figure 2.3. Survival of An. gambiae s.s. larvae to the pupal stage kept in different 

infusions or tap water.  Error bars show 95% confidence intervals. 

 

2.4.3. Gravid female An. gambiae s.s. show avoidances and preferences when 

selecting an oviposition site 

An approximately equal proportion of females laid eggs in test and control cups when a 

choice of tap water in two separate cups was provided. Fewer females laid their eggs in 

pellet infusion as it aged, whilst for soil infusion the opposite was the case with an 
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0

20

40

60

80

100

Day 1 Day 6 Day 11 Day 16

P
ro

p
o

rt
io

n
 la

rv
a

l s
u

rv
iv

a
l

Lake water Soil infusion Pellet infusion



 

47 

 

Similar results were seen for the proportions of eggs laid. The distribution of eggs 

between tap water and two day old pellet infusion did not significantly differ from the 

distribution between the two cups with tap water only. Pellet water however became 

unattractive from day 4 (Figure 2.4). It was 85% less likely for an egg to be laid in the 

test cup in the treatments that contained six-day-old pellet infusion versus tap water than 

it was when both cups contained tap water. In contrast to the pellet infusion, larger 

proportions of eggs were laid in the test cups with increasing age of the soil infusion. An 

egg was more than twice as likely to be laid in the test cup in the treatments that 

contained six-day-old soil infusions compared with tap water than it was when both cups 

contained tap water (Figure 2.4).  

 

Figure 2.4. Proportion of gravid An. gambiae s.s. laying eggs in infusions of 

different ages compared with control water.  (A) Pellet infusion experiment (B) Soil 

infusion experiment. Dark line in the middle of the boxes represents the median 

response rate of the gravid females to the test cup. 

On average, individual females laid 63 eggs (95% CI 60-65) (Figure 2.5) irrespective of 

the experiment and treatment. Notably, 18% (95% CI 11-26%) of gravid females laid 

eggs in both cups provided in a cage, a behaviour known as skip oviposition in other 

mosquito species (Colton, Chadee & Severson 2003) but rarely reported for An. gambiae 

s.s. (Chen, Fillinger & Yan 2006). The average number of eggs laid by skip-ovipositing 

females and by females that chose only a single cup was similar. Whilst the percentage 
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choices and in all soil infusion treatments this behaviour was affected by the pellet 

infusion. Only a few An. gambiae s.s. females skip-oviposited in the four and six day old 

pellet infusion treatments (6%, 95% CI 3-9%). 

 

Figure 2.5. Oviposition response of caged An. gambiae s.s. to pellet and soil 

infusions of different incubation times and non-autoclaved and autoclaved 6 day 

soil infusion. P values are given for comparisons between treatments containing lake 

water in both cups with treatments that contained infusion in the test cup. Multiple 

comparison of treatments for each set of experiments: Treatments denoted with the same 

letter are not significantly different.  

Pellet and soil infusions differed in key physical and chemical parameters. All pellet 

infusions had a strong smell to the human nose, were low in turbidity and had a slightly 

green colour but differed little in appearance compared with tap water in the oviposition 

cups. In contrast, soil infusions did not have any smell to the human nose, were light 

brown in colour and turbid, providing a strong visual contrast to the tap water. Pellet 

infusions were also characterized by relatively high conductivity, low pH and oxygen 

deprivation. In contrast conductivity of soil infusions was approximately half that of 
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pellet infusions, was saturated with dissolved oxygen and had a higher pH (Table 2.2). 

The variability of these measures between infusions of different incubation times within 

a treatment group was relatively low and does not appear to explain the differences in 

the behavioural responses. The only factor that changed over time was turbidity in the 

soil infusion and notably the most preferred six day old infusion was less turbid than the 

others.  

The increased carbon and total hardness of the pellet infusion corresponded with the 

increased conductivity levels and the high ammonium and phosphate levels compared 

with the soil infusion (Table 2.2).  

2.4.4. Chemical cues from the infusions are responsible for the oviposition choice in 

cage bioassays 

Since soil infusions differed in appearance from the tap water, an additional set of 

experiments was carried out to evaluate whether the attractiveness of this infusion was 

due to visual cues. Cage experiments with two equal choices of tap water confirmed an 

equal distribution of eggs between control and test cup. Notably, when gravid females 

had a choice between tap water and autoclaved soil infusion a slight avoidance of the 

autoclaved infusion was observed (Figure 2.4). The autoclaving may have altered some 

chemical properties of the infusion accounting for this slight repellent effect. 

The oviposition preference for six day old soil infusion compared with tap water was 

also confirmed in this set of experiments with nearly identical odds ratios as before of 

2.2. The preference for the six day old infusion was confirmed when given a choice 

between autoclaved and non-autoclaved infusions of similar colour and turbidity. The 

odds of an egg being laid in the six day old infusion when provided with autoclaved 

infusion of the same age as an alternative choice was approximately 40% higher (2.6) 

than it was when the alternative was tap water (2.2). This increase can be explained by 

the repellent effect of the autoclaved infusion which in addition to the pulling effect of 

the soil infusion now adds a pushing effect of the autoclaved infusion. Nevertheless, the 

difference in the two odds ratios was not significant.  

 

 

 



 

50 

 

Table 2.2. Physical and chemical properties of pellet and soil infusions 

 

  Oviposition substrates in choice experiments 

Parameter 

Tap 

water 

Pellet infusions Soil infusions 

2 days 4 days 6 days 2 days 4 days 6 days 

Auto-

claved 

Turbidity 

(NTU) 

1 22 17 25 222 97 73 137 

(0.6-1.4) (20-23) (14-19) (20-29) (197-248) (92-102) (61-84) 

(108-

166) 

Conductivity 

(uS/cm) 

107 477 553 543 173 207 237 266 

(105-

110) 

(462-

491) 

(547-

559) 

(532-

555) (171-176) 

(203-

212) 

(233-

242) 

(258-

274) 

Dissolved 

oxygen (mg/l) 

4 0.3 0.7 0.3 5.3 6 6.3 4.8 

(2.7-5.3) 

(0.21-

1.4) (0.9-1.4) (0.2-0.4) (5.0-5.6) (5.7-6.3) (6.0-6.6) (4.6-5.1) 

pH 

8.1 6.3 6.7 7.4 7.7 7.9 8 8.9 

(7.9-8.1) (6.2-6.3) (6.5-6.9) (7.3-7.5) (7.6-7.7) (7.8-7.9) (7.9-8.0) (8.8-8.9) 

Ammonium 

(mg/l) 0 

  

5 

  

0 0 

Nitrate (mg/l) 10 10 10 10 

Nitrite (mg/l) 0 0 0.025 0.025 

Phosphate 

(mg/l) 0 3 1.5 1.5 

Carbonate 

hardness 

(mmol/l) 0.1 3.9 2.7 2.5 

Total hardness 

(mmol/l) 0.1 1.5 0.7 0.7 

 

Results from this set of experiments suggest that chemical cues are involved in the 

oviposition responses observed. If the preference for the 6 day old soil infusion over tap 

water was based on turbidity and/or colour of the infusion alone a similar response in the 

choice tests with autoclaved versus non-autoclaved infusion should have been seen as in 

the choice tests with tap water versus autoclaved infusion. Due to the slight repellence of 

the autoclaved infusion the odds of finding an egg in the non-autoclaved six day old 

infusion should have been approximately 1.3 (decreased choice for autoclaved infusion 

by 30% or increased choice of fresh infusion by 30%).  Nevertheless, the remaining odds 

of 2.2 can only be explained by chemical cues being either involved in attracting the 

female from a short distance or stimulating the female to lay eggs on contact with water. 

Physical and chemical water parameters were similar for autoclaved and non-autoclaved 

soil infusions. Bacteria cultures from autoclaved infusions confirmed that samples did 
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not contain any bacteria that could grow on LA plates as opposed to the non-autoclaved 

infusion where colonies of at least 3 different morphologies were observed.  

2.4.4. The oviposition choice of the gravid female is not influenced by her olfactory 

memory of her larval habitat 

Rearing An. gambiae s.s. in two to four day old pellet infusion did not alter their 

oviposition response towards the infusion (P=0.392). Gravid females reared in tap water 

and gravid females reared in pellet infusion show an equally strong avoidance of the six 

day old pellet infusion provided in choice experiments.  

 

Figure 2.6. Egg laying responses of An. gambiae s.s. reared in tap water or in pellet 

infusion to tap water and pellet infusion. 

2.5 Discussion 

The results confirm that wild and caged An. gambiae s.l. females can discriminate  

between potential aquatic habitats for oviposition and make clear choices when 

presented with contrasting oviposition media. These choices benefit the survival of the 

offspring. Although the experimental design does not allow to conclude whether the 

stimuli acted over a distance (attractants and repellents (Dethier, Barton & Smith 1960)) 

or on contact with the oviposition medium (stimulants and deterrents (Isoe, Millar & 

Beehler 1995)) it could be demonstrated that the choice of breeding site is guided by 

both avoidance and preference. The exclusive way however, in which the artificial ponds 

were chosen in the field, where they were set up relatively close to each other, suggest 
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that these characteristics were detected by both culicines and anophelines from a 

distance rather than on contact.  

Muddy water has previously been suggested to increase oviposition response of gravid 

An. gambiae s.s. in cages when offered together with clear water (McCrae 1984), 

however here presented cage experiments could not confirm this observation. The 

difference in turbidity between tap water and infusions cannot explain the avoidance and 

preference observed at short range in the cages. Two day and 6 day old pellet infusions 

did not differ in their turbidity but significantly differed in the oviposition response they 

elicited. Similarly, all soil infusions should have elicited equally strong responses from 

gravid females if turbidity was an important oviposition cue at short range. On the 

contrary, the six day old soil infusion remained equally preferred for oviposition when 

tested against a turbid and autoclaved infusion than when tested against clear tap water. 

The results suggest that chemical and not visual cues were responsible for the responses 

observed in the cage experiments. The previously published preference of muddy water 

(McCrae 1984) may have been based on chemical cues associated with the muddy water 

which was taken from a natural habitat. The possibility however, that visual cues played 

a role in the selection of oviposition sites by wild mosquitoes in field experiments 

especially when searching for water bodies from a distance cannot be entirely excluded. 

 

It is likely that the chemical cues used by mosquitoes to avoid pellet infusions and to 

prefer soil infusions were of microbial origin, which is supported by the lack of 

attraction of the autoclaved soil infusion compared to clear tap water. It is most likely 

that the observed oviposition choices were rooted in the water quality of the habitat and 

consequently the associated microorganisms and chemicals in the water. The physical 

and chemical water parameters measured for the two infusions suggest that they 

represented aquatic habitats in different stages of decay. Contrary to the expectation at 

the onset of the experiment, pellet infusions created a habitat type in a severe state of 

decomposition. High ammonia and phosphate levels are characteristic of recently 

inundated organic material (Palmer 2002). The odour of the pellet infusion is associated 

with fermentation of organic material by facultative and anaerobic bacteria. This leads to 

depletion of the oxygen supply and a decrease in pH as a result of accumulation of 

organic acids in the water (Gerhardt 1959; Sigee 2005; Cunha et al. 2010). The soil 

infusion had the characteristics of a less nutrient rich habitat containing relatively little 

organic matter. This limits the removal of oxygen by aerobic heterotrophic 

microorganisms and hence the water column will stay aerobic (Sigee 2005).  
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Anaerobic fermentation products of organic matter have been previously shown to be 

highly attractive to a number of gravid culicine species such as Culex stigmatosoma 

(formerly peus) (Gerhardt 1959), Culex quinqefasciatus (Kramer & Mulla 1979; Millar, 

Chaney & Mulla 1992; Mboera et al. 1999; Burkett-Cadena & Mullen 2007; McPhatter 

& Debboun 2009), Culex pipiens (Jackson et al. 2005a), Aedes agypti (Santana, Roque 

& Eiras 2006; Ponnusamy et al. 2010b) and Aedes albopictus (Trexler, Apperson & 

Schal 1998; Zhang & Lei 2008). These infusions have been associated with a range of 

bacteria such as Aerobacter aerogenes, Pseudomona aeruginosa, Bacillus cereus 

(Hazard, Mayer & Savage 1967; Ikeshoji, Saito & Yano 1975; Hasselschwert & Rockett 

1988) and volatile chemicals produced by them including 4-methylphenol, 3-

methylindole, carboxylic acids and their methyl esters (Millar, Chaney & Mulla 1992; 

Allan & Kline 1995; Trexler et al. 2003a; Ponnusamy et al. 2008a). It is likely that 

similar factors were responsible for the strong repellent/deterrent effect on gravid An. 

gambiae s.l. females.  

 

Most stagnant water bodies will show increasing signs of decomposition over time but 

the speed and extent of this will depend largely on habitat quality (Ruppel, Setty & Wu 

2004). Therefore, it is argued that habitat age or permanence alone is not a good 

predictor for the oviposition response of An. gambiae s.l. as has been suggested (Munga, 

Vulule & Kweka 2013). For example the content and input of organic matter, source of 

water and frequency of fresh water inflow will affect the composition of the biotic 

community and chemical and physical characteristics of an aquatic habitat (Palmer 

2002; Ruppel, Setty & Wu 2004; Sigee 2005). This might explain why in some 

environments semi-permanent and permanent habitats are just as well colonised as 

temporary habitats traditionally thought to be the preferred An. gambiae s.l. habitats 

(Gillies & De Meillon 1968; Fillinger et al. 2004; Minakawa et al. 2012). Habitats made 

of pellet infusion were avoided by anophelines from an early habitat age, whilst 

interestingly, the highest preference of the soil infusion was recorded on day six in the 

laboratory and between day six and 10 in the field after the habitats were well 

established, contradicting the idea that An. gambiae s.l. is a pioneer species colonizing 

temporary habitats immediately after their occurrence (Gillies & De Meillon 1968).  

Typically, it is reported that An. gambiae s.l., although largely a generalist, is not found 

in heavily polluted waters (Symes 1940; Holstein 1954). Hancock (Hancock 1930) 

further observed that An. gambiae s.l. avoided water with a low pH when it was also 
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accompanied with high organic matter content. Addition of freshly cut vegetation (i.e. 

grass cuttings) to aquatic habitats has also been shown to prevent the larval development 

of An. gambiae s.l. [16]. The results from the experiments with pellet infusions support 

these observations. On the other hand, there have been recent reports of An. gambiae s.l. 

colonizing polluted habitats especially in urban areas (Awolola et al. 2007; Castro et al. 

2010; Kudom, Mensah & Agyemang 2012). Clearly, the degree of avoidance or 

acceptance of a polluted habitat by An. gambiae s.l. depends on the extent and nature of 

pollution (Holstein 1954). Results show that two-day-old pellet infusions were not 

rejected by anophelines and even four-day-old infusions still received a considerable 

proportion of the oviposition responses despite their adverse water characteristics. This 

supports the idea that An. gambiae s.l. has a very high tolerance level of what they 

accept as oviposition sites, especially in the absence of better alternatives in close 

vicinity as is often the case in urban environments and in contrast to the here presented 

field experiment where good habitats were offered right next to the unfavoured ones.  

Importantly, An. gambiae s.l. appears to have an innate propensity to avoid specific 

chemical cues that were emitted from the pellet infusion. Rearing An. gambiae s.s. from 

egg to pupae in this infusion did not alter this behaviour. Gravid females that had 

experienced the pellet infusion during larval development avoided the infusion for 

oviposition as much as the females that had no prior experience of it. This suggests that 

the environment in which An. gambiae s.s. develop as larvae does not determine the 

preferred oviposition site when they return to lay eggs. This is in contrast to published 

work on Cx. quinquefasciatus where it was demonstrated that rearing the larvae in an 

infusion made from guinea-pig faeces cancelled their innate preference for a hay 

infusion (McCall & Eaton 2001).   

The cage bioassays with individual gravid females allowed a number of interesting 

observations that are rarely reported since the majority of studies with An. gambiae s.s. 

have been done with groups of mosquitoes where the actual number of females laying 

per cage is unknown (McCrae 1984). The occurrence of skip oviposition in gravid An. 

gambiae s.s. and how this is affected by chemical cues was demonstrated. Furthermore, 

the design revealed that the mean number of eggs laid per female in a cage was similar 

irrespective of the experiment and treatment; only the distribution between cups differed 

when two different choices were presented. This indicates that gravid females did not 

retain their eggs in the presence of an unfavoured substrate when they were offered a 

suitable alternative choice. It also shows that the preferred soil infusion did not stimulate 
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individual females to lay more eggs than they would do in tap water. Testing individual 

females also excludes potential aggregation effects. Whilst from the field experiments it 

might have been possible that gravid females selected habitats that already received eggs 

from conspecific females, cage bioassays with individual females showed the same 

avoidance and preference behaviour than observed in the field confirming that 

conspecifics alone cannot explain the observed choice.   

The potential involvement of microbial activity in breaking down organic matter and 

producing semiochemicals that impact on the oviposition responses of gravid An. 

gambiae s.s. was deduced partly by the lack of attraction of An. gambiae s.s. to a sterile 

soil infusion. This must however be interpreted with caution since autoclaving the 

infusion might not only have killed the microbes but affected the chemistry of the 

resulting infusion, possibly altering the response of gravid mosquitoes by chemical 

changes rather than biological changes (Ponnusamy et al. 2010b).  

 

Batch-to-batch variations were recorded in the response of gravid mosquitoes to the 

infusions, resulting for example in some rounds showing a high preference and other 

rounds only a moderate preference for the soil infusion. This variation can be attributed 

to differences in the quality and amounts of odorants released from the infusions and 

stochastic events. Fresh infusions were prepared for every test round with different 

batches of pellets and soil. Especially, for the soil it is highly likely that there were 

differences in the soil condition as well as differences in the species composition of the 

microbial community associated with the natural materials over time. It has been 

previously shown that natural infusions can be an inconsistent source of odorants for 

oviposition site seeking mosquitoes and therefore every batch needs to be verified to be 

behaviourally active before it can be used for subsequent experiments (Ponnusamy et al. 

2010b). Ideally, if semiochemicals were to be used for monitoring and/or controlling 

gravid malaria vectors specific chemically defined oviposition cues would be preferred 

over natural infusions to ensure a consistent response in gravid females either pushing 

them away from human population (Seenivasagan et al. 2010; Siriporn & Mayura 2012) 

or pulling them towards a gravid trap (Seenivasagan et al. 2009; Seenivasagan, Sharma 

& Prakash 2012).   

 

Whilst the observed avoidance behaviour towards the organically rich pellet infusion 

was strong and in the same range as reported for other species in response to 

unfavourable chemical cues (Seenivasagan et al. 2010; Siriporn & Mayura 2012; 
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Tennyson et al. 2012), the observed preference in the cages for the soil infusion was 

relatively weak and it is questionable whether it could compete with other suitable 

habitats from a larger distance. Nevertheless, consistent response derived from over 150 

replicates in two experiments represents likely a genuine effect. Further investigations 

are in progress to characterize the bacteria communities associated with the infusions 

and the volatile chemicals emitted from the infusions and detected by gravid An. 

gambiae s.s. using gas-chromatography coupled to mass-spectrometry and coupled gas 

chromatography-electroantennogram detection .  

 

It must be cautioned that not all soils and all rabbit food pellets will lead to the same 

physical and chemical parameters than the here presented infusions. Therefore the two 

infusions of this study only serve as specific examples for two highly contrasting media. 

Further work is needed to screen other soil samples to see if the observed response is a 

response common for all soil infusions prepared under standard conditions and if the 

same bacteria and chemical profiles can be detected, or, which is more likely, that there 

are significant differences depending on the source of the soil.  

2.6 Conclusion 

This work illustrates that a gravid An. gambiae s.l. female selects a suitable habitat for 

oviposition using chemical cues from water bodies. It furthermore emphasises that 

natural infusions can be used to manipulate the oviposition behaviour of An. gambiae 

s.l.. Soil infusions have the potential to be used to bait gravid traps for the collection of 

An. gambiae s.l., although further work must be carried out to determine whether the 

observed preference was based on the specific soil type tested or whether similar 

responses can be achieved with any soil. The low An. gambiae s.l. catching efficacy 

reported for gravid traps operationally used for Culex and Aedes monitoring might partly 

be explained by the infusions routinely used in these traps i.e. fermented hay infusions, 

rabbit food pellet and cow manure infusions (Lewis 1974; Lampman & Novak 1996; 

Jackson et al. 2005b). The identification of the chemicals responsible for the preference 

of the soil infusion might be exploited to bait gravid traps specifically for the collection 

An. gambiae s.l.. 
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Chapter 3 Do volatile chemicals of 
microbial origin from natural 
Anopheles gambiae s.s.breeding site 
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3.1 Abstract  

Background: Metabolites of bacterial origin serve as chemical cues for some Aedes and 

Culex species in their selection of aquatic habitat as oviposition site. Consequently, it 

has been suggested that similar cues are used by Afro-tropical malaria vectors however 

the empirical evidence is limited. Here we sought to test the hypothesis that the presence 

of microbial organisms in a larval habitat and the volatile chemicals they produce are 

used by gravid Anopheles gambiae sensu stricto (s.s.) for habitat selection.  

Methods: Egg-laying response of gravid females was compared in two choice egg-count 

bioassays to (i) substrates made of distilled water and fresh soil versus distilled water 

and versus sterilized soil and distilled water (sterilization was done by autoclaving in 

polyethylene (PE) bags and in glass for comparison) and (ii) to fresh and sterilized water 

from a natural Anopheles breeding site. Dynamic headspace collection and solid phase 

micro extraction were carried out to trap volatile chemicals released from test substrates. 

Gas-chromatography coupled with mass-spectrometry was used to identify volatile 

compounds and to analyse any association between behavioural observations and 

chemicals released from the oviposition substrates. 

Results: Eight times more Anopheles gambiae s.s. females laid eggs in substrates 

prepared from fresh soil when given a choice to lay in soil autoclaved in PE bags 

(P<0.001). No preference was however, shown when infusions from fresh soil and soil 

sterilized in glass were offered as oviposition choices (p=0.496). When offered a choice 

between soil sterilized in PE bags and distilled water, seven times more females laid 

eggs in distilled water (p<0.001), while the females did not show any preference for 

either distilled water or infusion with soil autoclaved in glass flasks (p = 0.057). Gravid 

females did not show any preference for fresh habitat water and laid equally in fresh and 

sterilized water (p=0.379). Headspace analyses showed that autoclaving soil in PE bags 

nearly completely removed volatiles from the headspace, whilst autoclaving in glass 

added a large number of volatiles compared to the fresh sample. Similarly, micro-filtered 

water contained a larger number of volatile compounds in the headspace than the fresh 

water sample.  Comparison of the chromatograms did not suggest that key chemicals 

were removed from the sample by removing micro-organisms.  

Conclusions: Whilst the volatile headspaces of oviposition substrates were modified by 

the sterilization method, no evidence was found that the removal of microorganisms 

changed the volatiles released from the substrates and consequently the oviposition 
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response. Elimination of microorganisms from soil and water collected from a natural 

Anopheles larval habitat did not affect the oviposition choice of gravid An. gambiae s.s.. 

However, soil substrates prepared from soil autoclaved in PE bags were avoided for 

oviposition possibly due to the absence of any chemical cue released from this substrate. 

3.2 Background 

Knowledge of the oviposition behaviour of mosquitoes is restricted to a few species of 

the genera Culex and Aedes that have been extensively studied due their important role 

in arbovirus transmission (Sardelis et al. 2001; Turell et al. 2001; Goddard et al. 2002). 

Gravid traps have been successfully developed for surveillance of these species that are 

particularly attracted to oviposition sites with high organic matter content (Reiter 1983; 

Reiter 1986; Allan & Kline 2004). Consequently, a range of fermented infusions made 

from various plants were identified to attract gravid females (Gjullin, Johnson & Plapp 

1965; Millar, Chaney & Mulla 1992; Allan & Kline 1995; Isoe et al. 1995; Santana, 

Roque & Eiras 2006). Evidence has been provided that volatile microbial metabolites 

are the cues responsible for the attraction (Hazard, Mayer & Savage 1967; Bentley et al. 

1979; Hwang, Kramer & Mulla 1980; Ponnusamy et al. 2010a).  

Subsequently, it has been hypothesized that the African malaria vector Anopheles 

gambiae s.l. also selects oviposition sites based on metabolites produced by microbes 

living in the water or soil of a potential larval habitat. However, little data exists to 

support this hypothesis (Sumba et al. 2004; Huang et al. 2006a; Lindh et al. 2008). 

The first study investigating this question (Sumba et al. 2004) compared the oviposition 

response in two choice cage bioassays of gravid An. gambiae s.s. females to sterile and 

non-sterile substrates made from soil and water collected from a semi-permanent 

Anopheles breeding site on the shores of Lake Victoria in Western Kenya. On average 

mosquitoes laid 3 times more eggs in unmodified substrates than in sterilized ones. The 

authors conclude “that microbial populations in breeding sites produce volatiles that 

serve as semiochemicals for gravid An. gambiae” (Sumba et al. 2004). The authors 

however could not restore the attractiveness towards a sterile substrate after inoculation 

with bacterial suspensions isolated from the water and soil. Later, nine species of 

bacteria isolated from the soil and water used in the previous study were identified 

(Lindh et al. 2008). These bacterial isolates were tested individually in two choice cage 

bioassays to assess the oviposition preferences of An. gambiae s.s. In these assays higher 

egg numbers were reported in response to five of the nine isolates (Lindh et al. 2008). 
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These two studies are to date the only published evidence that bacteria derived volatile 

chemicals are involved in attracting gravid females or stimulating egg-laying in 

Anopheles gambiae s.s..  

When however the previous isolates from Lindh (Lindh et al. 2008) stored in glycerine 

were tested recently, the original response could not be replicated, conversely some of 

those previously described to induce increased egg-laying were now avoided (Lindh, 

personal communication). A third study, also conducted in western Kenya (Huang et al. 

2006a), tested a mixture of cultured bacteria also isolated from a natural larval habitat 

against bacteria-free nutrient agar to quantify the oviposition response of An. gambiae 

s.s.. Against expectation, gravid females avoided the bacteria and laid eight times more 

eggs in bacteria free nutrient agar than in mixed cultures of bacteria. Four bacteria 

species were presented in the mixture and when tested individually, only one species, 

Stenotrophomonas maltophilia, had a significant impact on the oviposition response by 

significantly lowering the number of eggs laid in the presence of the bacteria compared 

with bacteria-free controls. Whilst these results support the proposition that gravid An. 

gambiae s.s. females are receptive to bacteria derived volatile chemicals, it does not 

provide evidence that the site selection is mediated by bacteria present in this habitat.  

Based on the limited and inconsistent data available, it was sought to closely replicate 

previous work to accept or reject the hypothesis that microbial communities present in 

soil and water from a vibrant Anopheles breeding site produce volatiles chemicals that 

mediate oviposition behaviour in An. gambiae s.s.. 

Two-choice cage bioassays were used to quantify the oviposition response of gravid An. 

gambiae s.s. females to non-sterile and sterile substrates from a natural habitat that 

contained early instar Anopheles larvae at the time of substrate collection. In addition, 

substrates were tested in comparison to a control solution, distilled water. The volatile 

chemical headspace was collected from all oviposition media to identify any association 

between behavioural observations and chemicals released from the substrates. 

Experiments were carried out to address the following questions:  

1. Do gravid An. gambiae s.s. females prefer to lay eggs in substrates made from fresh 

soil from a natural breeding site (containing microorganisms) compared with substrates 

made from autoclaved soil or distilled water only (sterile)?  
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2. Do gravid An. gambiae s.s. females prefer to lay eggs in habitat water from a natural 

breeding site (non-sterile) as compared with micro-filtered water or distilled water 

(sterile)? 

3. Do sterile and non-sterile test substrates differ in their chemical profile of their 

headspace, therefore suggesting that the removal of microbes removes oviposition cues?  

4. Are the volatile chemicals released from the test substrates associated with the 

oviposition response of gravid An. gambiae s.s.? 

3.3 Materials and methods 

3.3.1 Study site 

All experiments were done at the International Centre for Insect Physiology and Ecology 

(ICIPE), Mbita, on the shores of Lake Victoria, Western Kenya (geographic coordinates 

0° 26’ 06.19” South; 34° 12’ 53.13” East; 1,137 meters above sea level).  

Soil and water for the experiments were collected from a semi-permanent water body, 

380 m from the shores of Lake Victoria in Lwanda Nyamasare village (0°29’089”South, 

34°17’848” East) 10 km northeast of ICIPE-Mbita (Figure 3.1.A.), approximately at the 

same location where samples were taken for the study by Sumba (Sumba et al. 2004; U. 

Fillinger, personal communication). Prior to the experiment and on every day of sample 

collection it was confirmed by dipping 10 times (Standard 350 ml dipper, Clarke 

Mosquito Control Products, USA) that the aquatic habitat was colonized by early instar 

Anopheles larvae (>5 larvae/dip), as a proxy indicator for oviposition.  

3.3.2. Preparation of soil samples 

Approximately 20 kg of soil was dug up from the damp but not immersed edge of the 

breeding site. The vegetation was carefully removed with a shovel and then the bare soil 

layer dug up not deeper than 10 cm. The soil was then transported to ICIPE-Mbita where 

it was spread on a cement floor and dried in the sun for one hour (Figure 3.1.B.). The 

soil was then divided in two equal parts: 10 kg was kept in a cool and dry place (fresh 

habitat soil) and the remaining 10 kg sterilized by autoclaving as described below. Fresh 

soil samples were collected for every round of cage bioassays.  
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Figure 3.1. Water and soil collection and preparation of two choice tests. A. 

Anopheles spp. breeding site in Lwanda Nyamasare, western Kenya. B. Drying of soil 

after collection at ICIPE-Mbita C. Two autoclaving methods: lumpy soil in polyethylene 

(PE) bag and macerated soil in glass flask. D. Two-choice experimental cage, 

oviposition cup with filter paper to minimize the visual difference of the oviposition 

substrates.  

The procedures of autoclaving soil are rarely described in detail in experimental papers, 

including that of Sumba et al 2004. Searching the world wide web for standard operating 

procedures, most used plastic biohazard bags to autoclave soil (Razavi-darbar & Lakzian 

2007). Some microbiology and phytology research papers however, reported autoclaving 

soil in a thin layer spread in a glass container (Balkwill & Casida 1979; Paolillo 1984). 

Both methods were used here for comparison in two sets of experiments (Figure 3.1.C.).   

Method 1: Soil samples were autoclaved in Fisherbrand™ polyethylene biohazard 

autoclave bags (10 kg of soil per bag) at 121°C and 1.4kg/cm
2
 pressure for 20 minutes 

(Vertical autoclave C 120L, Webeco, Germany). After sterilization, samples were 

allowed to cool without opening the bag before being used to prepare oviposition media.  
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Method 2: Soil samples were macerated and passed through a net (mesh 2 mm) to 

achieve a homogeneous size of soil particles. Soil samples were then divided in three 

equal parts and placed in three conical glass flasks of 5 L (Figure 3.1.C.). The soil was 

then autoclaved in the flasks as described above.  

3.3.3. Preparation of water samples 

Ten litres of habitat water was collected from the surface of the habitat using a clean 

plastic jar. Water was passed through a cotton cloth to remove water organisms 

including mosquito larvae and poured into 5 L jerry cans before transportation to the 

laboratory. Half of the sample (5 L) was used unmodified for the experiment and the 

other half (5 L) sterilized by micro-filtration. Large particles were first removed by 

passing the habitat water through a filter paper (Whatman no.1) with the help of a 

vacuum suction pump and supernatant water was then filtered through a cellulose nitrate 

membrane pore size 0.20 µm (Nalgene™) filter in a sterile disposable filter unit. 

In order to confirm that autoclaving and micro-filtration sterilized the media, samples of 

both substrates were taken for bacterial cultures. Soil samples were moisturized with 

sterile distilled water (1g in 5 ml). After homogenization, 100 µl of each substrate was 

spread separately onto the surface of duplicate Lysogeny Broth (LB) agar-plates (LB 

Lennox-Fisher Scientific; Bertani 2004). Additionally, 100 µl of distilled water was 

spread as a control. Plates were incubated overnight at 30ᴼC and the presence of colonies 

recorded. Bacteria cultures from autoclaved soil, micro-filtered water and distilled water 

confirmed that samples did not contain any bacteria that could grow on LB plates as 

opposed to fresh soil where colonies of at least seven different morphologies were 

observed. 

Distilled water was prepared daily at the ICIPE-Mbita laboratories in the morning of the 

experiments with a GFL glass water distiller (GFL Glass Mono Distiller 2208, 

Germany). The raw water used for distillation was chlorinated tap water. Tap water at 

ICIPE-Mbita is pumped from Lake Victoria approximately 50 m from the shore and 

approximately 10 m deep into a settlement tank. From there, water goes to a treatment 

tank to be chlorinated before it is pumped into a water tower for domestic and laboratory 

use.  
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3.3.4 Two choice egg-count bioassays 

Cage bioassays were carried out under semi-field conditions in make-shift sheds (10 m 

long × 5 m wide × 2.8 m high) as previously described (Herrera-Varela et al. 2014). The 

cages were protected from rain but otherwise exposed to natural fluctuations of 

temperature, relative humidity, wind and light. 

Experiments were carried out with insectary-reared An. gambiae s.s. (Mbita strain) 

supplied by ICIPE’s insectary and reared following standard operating procedures. 

Gravid mosquitoes were prepared by selecting 300 female and 300 male mosquitoes, 

two to three days old, from their rearing cages at 12.00 h and keeping them in 30×30×30 

cm netting cages at 25-28°C and 68-75% relative humidity. To avoid mosquito 

desiccation, cotton towels (folded to 25x12 cm) were saturated with unchlorinated tap 

water and placed over the cages. Mosquitoes starved of sugar for seven hours were 

allowed to feed on a human arm for 15 minutes at 19.00 h on the same day. After 

feeding mosquitoes were provided with 6% glucose solution ad libitum. A plastic vial 

(25 ml) with a piece of paper towel folded into a wick was used to provide 10 ml of 6% 

glucose. This procedure was repeated the following day. After the first blood meal unfed 

females were removed from the cages while fed females were kept together with an 

equal number of males for 72 hours before using them in an experiment. On the day of 

an experiment 150 visually presumed gravid females (enlarged, pale white abdomen) 

were selected at 16.30 h from the holding cage. It has been shown (Gillies 1958; Lyimo 

& Takken 1993) that most females need two blood meals to reach full gravidity and 

some do not reach gravidity even after three feeds.  

Females were transferred individually to 30x30x30 cm cages. In each cage two glass 

cups (Pyrex®, 100 ml, 70 mm diameter), surrounded by tightly fitting aluminium 

cylinders, were filled with 100 ml or 100 g of either the control or test medium and 

placed in diagonal corners of the cage. A round filter paper (Whatman No. 1) was placed 

on top of each cup allowing contact with the oviposition substrate. The purpose of the 

aluminium collars and filter paper were to exclude visual differences between the two 

test substrates (Figure 3.1. D.). Position of oviposition cups containing the test medium 

was alternated between adjacent cages to control for any position effect. The placement 

of the first test cup was randomly allocated for one of the four cage corners in the first 

cage. Subsequent test cups were rotated in the next possible corners in a clockwise 

direction relative to the position of the preceding cup. One control cup was added in 

each cage diagonal to the test cup to complete a two choice set up. Each cup contained 
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either 100 g of fresh habitat soil or 100 g autoclaved habitat soil or 100 ml of habitat 

water or 100 ml micro-filtered habitat water, or 100 ml distilled water. Soil substrates 

were moistened with 50 ml of distilled water so that a thin layer of water covered the 

soil. All glassware used in the bioassays was cleaned with detergent, autoclaved at 

121°C for 20 minutes and afterwards kept in a drying oven (Heraeus T5050 EK, Atlanta-

Georgia) at 200°C for at least two hours before use in an experiment.  

In order to validate the two choice bioassays, cages were set up with both oviposition 

cups containing equal treatments following a previously described approach (Herrera-

Varela et al. 2014). Both cups were filled with 100 ml unchlorinated-tap water. The 

underlying assumption is that gravid females presented with an identical substrate in 

both cups are equally likely to lay in either cup (p=0.5) but stochastic events will lead to 

a certain variability of the 1:1 outcome. This is considered the baseline or reference. If 

one treatment is preferred over the other treatment in the same cage, a significant 

diversion from the 1:1 distribution is expected. Table 3.1 summarizes the experiements 

implemented and the comparisons made in two choice bioassays. 

 Table 3.1. Experiments carried out with sterile and non-sterile substrates in two 

choice cage bioassays  

Experiments Experimental cages Rounds 

(Replicates) 

Number of 

females that laid 

eggs (Total of 

mosquitoes 

exposed) 

Control cup Test cup 

Baseline/Reference tap water tap water 4 153 (225) 

Oviposition bioassays with soil from breeding site 

Soil sterilization by 

autoclaving in PE bags  

sterile soil fresh soil 5 102(150) 

sterile soil distilled water 5 101(150) 

Soil sterilization by 

autoclaving in glass  

sterile soil fresh soil 4 61(120) 

sterile soil distilled water 4 88(120) 

Habitat soil vs. distilled 

water 

distilled water fresh soil 6 136(180) 

Oviposition assays with water from breeding site 

Habitat water vs. micro- 

filtered habitat water 

and distilled water 

sterile water Fresh water 4 69(100) 

distilled water Fresh water 4 75(100) 

distilled water sterile water 4 70(100) 
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3.3.5 Analysis of volatile organic chemicals released from oviposition substrates 

Volatile organic chemicals released from the oviposition substrates were trapped by 

dynamic headspace collection also referred to as air-entrainment (Agelopoulos & Pickett 

1998) for aqueous and soil samples. In addition, solid phase micro extraction (SPME) 

was carried out for selected soil samples. All glassware used during volatile collections 

was first washed with an odourless detergent (Teepol, general purpose detergent, Teepol, 

United Kingdom rinsed in water and acetone and then placed in an oven kept at 200°C 

for at least two hours before use.  

3.3.5.1 Dynamic headspace collections 

Dynamic headspace collections were used to collect volatiles from 300 ml samples of 

habitat water, sterile-filtered habitat water and distilled water. Additionally, 45 g of 

sodium chloride (NaCl) were added to the samples to improve the release of volatiles 

chemicals (Mozuraitis, Buda & Borg-Karlson 2010). Each sample was entrained in 

duplicate. Test substrates were placed in 500 ml gas wash bottles (MF 29/3/500, 

Scilabware Ltd. UK) which were tightly closed with a quick fit head (MF 27/3/13, 

Scilabware Ltd. UK; Figure 4.2). Flexible polytetrafluoroethylene (PTFE) tubing (1/8” 

O.D.) was connected on each of the two glass tubes; one served as inlet for purified air 

and the other as outlet where the chemicals were trapped. Air was purified by passage 

through an activated charcoal filter pumped at a flow rate just above 0.1 L/min. Air was 

removed at 0.1 L/min through a Tenax trap. The Tenax traps were made out of 25 mg of 

Tenax® TA (mesh size 60-80, Supelco™, Bellefonte, PA, USA) packed with small 

amounts of glass wool (Supelco™, Bellefonte, PA, USA) to keep the Tenax in place in a 

GERSTEL-Twister desorption glass liners (GERSTEL, Muelheim an der Ruhr, 

Germany). 

Tenax traps were conditioned before use by washing with 3-5 ml methyl tert-butyl ether 

(MTBE) and placed in an oven at 50°C for >2 h for the solvent to evaporate. Volatiles 

were entrained for 20 hours from each sample. Once the entrainment was completed, the 

filters were sealed with PTFE tape, wrapped in aluminium foil, packed in a Teflon bag 

and stored at -70°C until they were sent to the Royal Institute of Technology (KTH), 

Sweden, for analysis by gas chromatography coupled to mass spectrometry (GC-MS). 
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Figure 3.2. Air-entrainment system used to collect volatile compounds from 

oviposition substrates. Gas-wash bottles were tilted to increase the surface area of the 

aqueous substrates. 

3.3.5.2 SPME-collections 

In addition to the dynamic headspace collection, SPME was used to collect volatiles 

from a single round of soil experiments. Duplicate collections were made from fresh 

habitat soil, soil autoclaved in PE bags, soil autoclaved in glass flasks and from distilled 

water. Soil samples were prepared by adding 100 g of fresh soil, or sterile soil to 200 ml 

of distilled water. These samples were then transported to the Chemical Ecology 

Laboratory at ICIPE, Nairobi, Kenya. Test substrates were added to 500 ml conical 

flasks (Quickfit, England) which were sealed with a double piece of aluminum foil. The 

aluminum foil cover was pierced with the needle of the SPME holder and the 65µm 

polydimethyl siloxane-divinyl benzene (PDMS-DVB) fibre (Supelco™, Bellefonte, PA, 

USA) exposed to the headspace above the sample. The SPME fibers were conditioned in 

the GC-injection port at 220°C for 5 min just before sampling. Volatiles were collected 

for 16 hours after which they were immediately analyzed by GC-MS.  

3.3.5.3 Gas chromatography coupled to mass spectrometry (GC-MS) analysis 

The GC-MS system used consisted of a 7890A GC (Agilent Technologies, Santa Clara, 

CA) fitted with a 30 m long HP-5MS column (Agilent Technologies) with an inner 

diameter of 0.25 mm and 0.25 µm film thickness. The GC was coupled to a 5975C MS 
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(Agilent Technologies) with electronic ionization at 70 eV and the ion source kept at 230 

°C and the quadropole at 150 °C. Masses were scanned from 30-400.  

Tenax traps were thermally desorbed in a thermal desorption unit (TDU, GERSTEL, 

Muelheim and der Ruhr, Germany) initially held at 20 °C and then increased at 120 °C 

/min to 250 °C, the end temperature was held for 5 minutes. The volatiles were then 

transferred in splitless mode to a cooled injection system (CIS) injector fitted with a 

Tenax trap (GERSTEL). The CIS injector was held at 10 °C during the TDU program 

and was then heated at a rate of 12 °C/sec to 260 °C during which the volatiles were 

transferred to the column. Helium was used as carrier gas with a flow of 1.2 ml/min at a 

pressure of 34 psi. The temperature of the GC oven was held at 40 °C for 1 min and then 

increased by 4°C/min to 260 °C and kept there for 3 minutes. Heptyl acetate (35 ng, 

SAFC, Sigma-Aldrich, Steinheim, Germany) was injected as external standard with each 

sample. 

For SPME analysis masses were scanned from 38-550. The GC injector was kept at 

250°C in a splitless mode, helium with a flow of 1.2 ml/min was used as carrier gas. The 

oven temperature was held at 40 °C for 3 minutes, then programmed to increase at 

5°C/min to 260°C and maintained at this temperature for 3 minutes for a total running 

time of 50 minutes.  

3.3.6 Data analysis 

Bioassay data were analysed in R statistical software version 3.0.2 (R Development Core 

Team 2011). Two choice egg-count bioassays were analysed using generalized linear 

models with a quasibinomial distribution fitted to account for overdispersion. The 

distribution of eggs in the baseline cages (equal substrates) representing the natural 

variability in the system was compared with the distribution of eggs in experimental 

cages (control-test substrates). Experiment (e g. baseline cages, habitat soil vs. distilled 

water cages) and the round of assay were included as fixed factors in the model to 

examine their impact on the outcome (proportion of eggs laid in the test cup). 

The mean proportion of females and eggs laid in test cups in different experiments and 

their 95% confidence intervals (CI) were calculated as the exponential of the parameter 

estimates for models with no intercept included. Multiple comparisons of experiments 

were calculated based on the model parameter estimates.  

Since non-parametric tests have been used for analysis of egg-laying preferences in 

previously published work (Sumba et al. 2004; Lindh et al. 2008) data were also 
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analyzed using Wilcoxon signed rank test for paired samples (i.e. control cup versus test 

cup from each experimental cage) for comparison and discussion of outputs. 

For the comparison of volatile chemical profiles from the headspaces of substrates, the 

retention parameters from the chromatograms were integrated using the Chem station 

integrator and auto-integration function in Chem Station software (MSD ChemStation 

E.02.01.1177). Mass spectra fragments were recorded manually for each compound 

integrated. Compounds were grouped according to retention time, MS fragments, and 

given a unique volatile identification number (ID). Initially, duplicate samples were 

compared with each other and a volatile profile created for each sample only if 

compounds were present in both duplicates. A database was created with information 

about the abundance of each volatile (area of the peak) in the samples and used for 

analyses. Two databases were created one for Tenax samples and one for SPME 

samples.   

Principal component analysis (PCA) was used to examine the relationships between 

volatile chemicals and liquid oviposition substrates. PCA was performed in CANOCO5 

for windows version 5 (Ter Braak & Šmilauer 2012). PCA was chosen as exploratory 

ordination method since data was compositional (i.e. same measurement units) and all 

volatile gradients were 1.9 standard deviation units long assuming a linear response 

model.  

3.4 Results 

3.4.1. Anopheles gambiae s.s. females do not show a preference for oviposition 

substrates containing microorganisms from habitat derived soil when compared 

with sterile substrates   

3.4.1.1 Proportion of females responding to the soil samples 

When females were presented with a choice between two identical substrates, an equal 

proportion of females laid in either cup. In comparison, eight fold more Anopheles 

gambiae s.s. females laid eggs in fresh soil infusion when the second choice was to lay 

in sterile soil infusion that was autoclaved in PE bags (p<0.001). Importantly however, 

this preference was not observed when fresh soil and soil sterilized in glass were offered 

in choice tests (p=0.496) suggesting that the autoclaving method altered the substrates 

differently in addition to sterilizing it.  
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Figure 3.3. Box-and-Whisker plot showing the median proportion of females laying 

eggs in the test substrates in two choice bioassays (control vs. test).  Baseline (Lake 

water as control and test), experiments including autoclaved soil in polystyrene bags and 

soil autoclaved in Erlenmeyer flasks. Substrates in test cup are indicated in bold. Colours 

(blue=lake water, brown=fresh soil, light blue=distilled water) also present the substrate 

in test cup. Red line indicates no preference for either solution.  

Preferred egg laying in fresh substrates could be for two reasons, the preferred substrate 

attracts or stimulates the egg-laying or the avoided substrate actually repels or deters the 

female. In order to investigate this, fresh soil was tested in comparison to distilled water 

and the two sterile soil media were also tested in comparison to distilled water. Tests 

offering a choice between fresh habitat soil and distilled water were done twice, first in 

parallel to bioassays with soil sterilized in PE bags and second in parallel to bioassays 

with soil sterilized in glass. The results from both were very similar, showing 

unexpectedly a preference of gravid females for the distilled water over the fresh habitat 
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soil (p= 0.0178, Figure 3.3). When a choice of two sterile substrates was presented 

(sterilized soil versus distilled water) females strongly preferred laying in distilled water 

over laying in soil sterilized in PE bags (p<0.001) whilst they showed only a weak 

preference for distilled water when presented with soil sterilized in glass (p=0.057, 

Figure 3.3).  

3.4.1.2 Proportion of eggs laid in soil substrates 

Most published work on mosquito oviposition does not analyse individual mosquitoes’ 

choices but rather count eggs of groups of mosquitoes as a proxy of oviposition 

preference. For comparison, egg counts were also analysed here. Similar results were 

found when analysing the proportion of eggs laid in test over control substrates. 

Mosquitoes offered a choice of equal substrates exhibited a balance distribution of eggs 

between cups. This distribution differed significantly from the distribution of eggs in 

tests where a choice was given between distilled water and fresh habitat soil with a 

higher proportion of eggs laid in distilled water (Figure 3.4). Significant differences in 

egg distribution to the reference were also found when the choice tests include soil that 

was autoclaved in PE bags. Females preferred to lay in the alternative substrate offered, 

either fresh habitat soil or distilled water, with more than three quarters of the eggs laid 

in those substrates (Figure 3.4). When however, the habitat soil was sterilized in glass, 

only a slight preference for distilled water was detected (p=0.027). The distribution of 

eggs in cages comparing autoclaved soil in glass against fresh soil did not differ from the 

distribution of eggs in the reference with equal treatments. Inferences were the same 

whether the data were analysed with a generalized linear model or with the non-

parametric Wilcoxon test for paired samples (Figure 3.4).  
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Figure 3.4. Mean proportion of eggs laid in control and test cups in choice tests 

with fresh habitat soil versus sterile soil or distilled water. Error bars present the 95% 

confidence intervals of the means. Multiple comparisons of treatments based on the 

generalized linear model parameter estimates: treatments with same letter are not 

significantly different at 0.05 level.  

3.4.2. Anopheles gambiae s.s. females do not show a preference for larval habitat 

water containg microorganisms as compared with sterile water 

3.4.2.1. Proportion of females responding to water samples 

Gravid An. gambiae s.s. did not show any preference for either of the water substrates 

tested in either of the tests, however, a slight preference for distilled water was observed 

when compared with sterile habitat water (Figure 3.5)  
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Figure 3.5. Box-and-Whisker plot showing the median proportion of females that 

laid eggs in test substrates in two choice bioassays (control vs. test): Internal control 

(equal substrates), treatments including habitat water and sterile water. Test substrates 

are indicated in bold. Red line indicates 0.5 distributions.  

3.4.2.2 Proportion of eggs laid in water substrates 

Equal proportions of eggs were laid in sterile habitat water and fresh habitat water. A 

slight preference for fresh habitat water was seen when offered in comparison with 

distilled water. This difference was significant using the non-parametric test for paired 

samples but not when the distribution was compared with the baseline with a generalized 

linear model (Figure. 3.6). 
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Figure 3.6. Mean proportion of eggs laid in control and test cups in choice tests 

with fresh habitat water versus sterile habitat water or distilled water. Error bars 

present the 95% confidence intervals of the means. Multiple comparisons of treatments 

based on the generalized linear model parameter estimates: treatments with same letter 

are not significantly different at 0.05 level. 

3.4.3. The absence of volatile chemicals in the headspace of soil samples autoclaved 

in PE bags is associated with the avoidance of this substrate for oviposition 

Results presented below for the chemical headspace of substrates tested in the soil 

bioassays are based on one round of bioassays only due to the loss of all Tenax samples 

that were injected through auto-injection in a faulty GC-MS. Figure 3.7 shows the 

chromatograms of the duplicate SPME collections taken from fresh habitat soil, soil 

autoclaved in PE bags, soil autoclaved in glass and distilled water. The most 

conspicuous result from this comparison is the absence of volatiles released from the soil 

autoclaved in PE bags, which is in stark contrast to all other samples.  
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Figure 3.7. Chromatograms of volatiles profiles collected with SPME from soil 

substrates: A. Habitat soil, B. Soil autoclaved in PE bags, C. Soil autoclaved in glass 

flasks, D. Distilled water. All substrates are presented with two separate samples.  

The headspace of fresh soil contained 32 compounds of which 18 were unique to the 

sample (i.e. there were not identified in any other sample), another six compounds were 

shared only with the soil sample autoclaved in glass and four with distilled water. Only 

four compounds were detected from soil autoclaved in PE bags and these compounds 

were present in all the other substrates. Their retention time and mass spectra suggest 

that they were probably contaminants from the GC column. It therefore appears that 

Fresh soil

PE bag sterilization

Glass flask sterilization

Distilled water
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autoclaving in PE bags removed all compound released from the fresh soil. In contrast 

autoclaving soil in glass flasks increased the number of detectable volatiles. Seventy-

three compounds were collected in the headspace above soil autoclaved in glass flask; 

58 of these were unique to the sample. Eighteen compounds were detected from the 

headspace of distilled water, eight of them were also detected from fresh and glass 

autoclaved soil, eight others were unique to the sample. These differences in headspace 

were not associated with any behavioural differences. Only the absence of volatiles from 

the headspace of soil autoclaved in PE bags corresponds to a strong shift in the 

oviposition behaviour of gravid females (Figure 3.3 and 3.4). 

4.3.4. Headspace analysis of water substrates 

Headspace analysis was implemented for three rounds of habitat water bioassays. In 

total, 286 compounds were integrated of which half (144) were only detected in a single 

round. For comparison of substrates only compounds that were present in at least two of 

the three rounds were included in the analysis. Comparisons of the retention parameters 

of the chromatograms (Figure 3.8) showed large similarities in the chemical profiles of 

fresh habitat water, sterile habitat water and distilled water. Seventy volatile chemicals 

were detected in the headspace of fresh habitat water and 49 (70%) were still present 

when the water was micro-filtered. Fresh habitat water also shared 48 (69%) volatiles 

with distilled water. All three substrates had 40 compounds (57%) in common. Micro-

filtration of habitat water increased the number of volatile chemicals released from the 

headspace; a total of 99 volatile chemicals were integrated of which 35 were unique for 

the micro-filtered habitat water.  

Removing microorganisms from the habitat water might or might not have been 

responsible for the 21 volatile chemicals that were removed from the headspace of fresh 

habitat water by micro-filtration, however their removal did not lead to a significantly 

reduced oviposition response.   



 

78 

 

 

Time (minutes) 

Figure 3.8. Chromatograms of volatiles collected by dynamic headspace collections 

on Tenax traps from aquous oviposition substrates: A. Habitat water, B. Sterile 

habitat water, C. Distilled water. Every chromatogram is an independent replicate.  
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PCA analysis reveals that volatiles released from the oviposition substrates can explain 

70% of the variability observed in the distribution of the samples. It also shows that 

volatiles can be used to differentiate between habitat water, sterile water and distilled 

water (Figure 3.9.1). In addition, the diversity plot shows that there is not a large 

variation between individual replicates and confirms that even though chemicals present 

in only one replicate were removed from the analysis consistently more chemicals were 

detected in sterile water samples. 

 

 

 

Figure 3.9.1. Principal Component Analysis (PCA) plot of volatile profiles of water 

oviposition substrates: Fresh habitat water (Habita1,2,3), Sterile water (Steril 1,2,3) 

and Distilled water (Distil 1,2,3). 
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Figure 3.9.2. Diversity diagram of volatile chemicals. Circle sizes and labels indicate 

the numbers of volatiles chemicals detected in each sample. Distance between the circles 

approximates the similarity between chemical compositions. 

3.5 Discussion 

The presence of living microorganisms in soil and water from an Anopheles larval 

habitat did not increase the oviposition response of gravid Anopheles gambiae s.s. when 

compared with the same but sterilized substrate. The sterilization process affected the 

chemical composition of substrates and those changes influenced the oviposition 

response of gravid mosquitoes.  

Sterile soil samples obtained by autoclaving in PE bags received significantly less eggs 

compared with any other substrate. In contrast, sterile samples produced by autoclaving 

in a glass flask received equal proportion of eggs as the fresh habitat soil. These 

differences in oviposition response illustrate the impact of the autoclaving process rather 

than the presence of microorganisms. Headspace analyses revealed that autoclaving in 

closed PE bags removed all detectable volatiles from the sample. On the other hand 

when autoclaving took place in open glass flasks the number of detectable volatiles 

increased possibly due to contamination from the autoclave or due to different 

breakdown products forming in the open flasks.  
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Given these results it is likely that in this study gravid mosquitoes orientate to substrates 

that display an array of chemicals, therefore preferences recorded towards fresh soil and 

distilled water when compared with PE bag soil may have been triggered by sole 

presence of chemical cues that indicate the existence of a habitat rather than its 

suitability. Since the bioassay utilised cannot distinguish between deterrent and repellent 

responses and knowing that only volatile chemicals could be detected with the methods 

used it cannot however be excluded that non-volatile chemicals functioning as deterrents 

were present in the soil samples autoclaved in PE bags.  

Notably, the glass sterilized soil sample and the fresh soil sample had only a small 

proportion of volatiles in common yet the oviposition response did not differ. 

Furthermore, sterile distilled water was preferred by gravid females for oviposition over 

fresh habitat water. Whilst volatile chemical cues might have been involved in the 

oviposition site selection, these findings corroborate the conclusion that these volatiles 

are not produced in situ by life microorganisms.   

In the case of water samples, mosquitoes did not exhibit any preferences for fresh or 

sterilised water. Analyses of the headspace of the substrates showed that they shared the 

majority of volatile chemicals identified from fresh habitat water. Sterilized habitat 

water however had consistently more compounds and it must be assumed that these were 

added in the process of micro-filtration. Nevertheless, these compounds did not affect 

the oviposition behaviour, nor did those that were removed from the sample through the 

process. This and the slight preference for distilled water shows that the presence of 

microorganisms was not used as oviposition cue by gravid An. gambiae s.s..  

The fact that distilled water had a similar volatile profile as the fresh habitat water may 

indicate that the volatile organic compounds released from distilled water are directly 

related with the source of the water used for distilling. Distilled water is used as a 

standard control in the majority of mosquito oviposition experiments and in similar 

experiments with other organisms (Huang et al. 2007; Otienoburu et al. 2007; Panigrahi 

et al. 2014) in the study of chemical ecology. Rarely is the source of distilled water 

reported in scientific papers and chemical profiles of headspaces from distilled water are 

usually not presented creating the impression that distilled water does not contain any 

more cues than water vapour and that distilled water is a comparable medium between 

studies. The quality of distilled water depends however, on the quality of the raw water 

and the distilling process (GFL 2014). Hence the volatile profile of distilled water may 
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be highly variable between research centres or laboratories and even show high day-to-

day variation.  

The discrepancy between our findings and similar experiments previously published 

(Sumba et al. 2004) could be attributed to several factors. There is an intrinsic challenge 

when testing soil and water from a natural breeding site. Larval habitats are exposed to 

changing climate conditions and human activity that may affect the quality of a habitat 

over time. As previously shown (Herrera-Varela et al. 2014), gravid An. gambiae s.l. can 

distinguish between oviposition substrates with different water quality preferring those 

resembling a flourishing ecosystem with low organic matter content, low ammonium 

and an aerobic water column over those that emulate a habitat in decay. However, An. 

gambiae s.s. is an opportunist (Fillinger et al. 2004; Minakawa et al. 2005; Impoinvil et 

al. 2008) and when choices are rare, colonizes water that might under experimental 

conditions be less preferred (Awolola et al. 2007; Castro et al. 2010). Therefore it 

cannot be excluded that the habitat we collected water from was not optimal, even 

though it had a thriving early instar Anopheles larval population during the sampling 

period.  

Differences in the abiotic and biotic characteristics of the habitats tested in the two 

studies might be responsible for the differences seen. Perhaps even more important 

might be the difficulty in replicating the sterilization process since the previous 

publication lacks a detailed protocol of the autoclaving method, which according to our 

results affects the volatile chemical headspace of the substrate and consequently the 

acceptability of the oviposition substrate by mosquitoes. Similarly, the source of distilled 

water was not reported and the headspace of samples not analyzed. In a scenario, where 

the autoclaving might have removed all the chemical volatiles and where distilled water 

was used with an equally limited chemical profile, it would have been shown that the 

fresh (volatile containing) soil would be preferred over the sterile (non-volatile 

containing) substrate, and when the two sterile (non-volatile containing) substrates 

would have been compared a 1:1 distribution of eggs would have been demonstrated as 

by Sumba et al (Sumba et al. 2004). Consequently, it is likely that in previous work 

volatile chemicals were responsible for the substrate selection but if they were produced 

in situ by live microorganism remains unproven. This might be supported by the fact 

that restoration of attractiveness of sterile substrates after inoculation with bacterial 

suspensions was not achieved (Sumba et al. 2004). Not only bacteria but all 

microorganisms are killed/removed by autoclaving and micro-filtration and one of the 
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reasons why restoration was not achieved could have been that the oviposition cues were 

generated by other microbes. Aquatic ecosystems are composed of highly diverse groups 

of microbes including bacteria, microalgae, actinomycetes, fungi, and protozoa (Sigee 

2005). Therefore it is not possibly to tell with this methodology if there is a particular 

group or the synergistic action of several organisms that are responsible for producing 

the oviposition cues if any (Huang et al. 2006a) . 

3.6 Conclusion 

Previous reports that substrates containing microbes from vibrant larval habitats are 

preferred over the same substrates when sterilized cannot be confirmed. Elimination of 

live microorganisms from soil and water collected from a natural larval habitat does not 

necessarily influence the oviposition choices of gravid An. gambiae s.s. mosquitoes. 

Furthermore, there is no evidence that volatiles produced in situ by these microbes are 

involved in the oviposition choice. It was shown however that volatile profiles of 

oviposition substrates can be modified by sterilization and the avoidance of substrates 

without any volatile headspace suggest that volatile chemicals play a role in habitat 

selection. Chemicals that were removed from fresh habitat soil and water by sterilizing 

that might have been metabolites from live microorganisms did not affect the oviposition 

choice. The remaining volatile chemicals might have been produced by microbes and 

remained in the water or might have been derived from plants and other organic matter 

in the habitat. Further research is required to investigate if microorganisms are involved 

in habitat selection of An. gambiae s.s..  
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4.1 Abstract 

Background: Gravid Anopheles gambiae s.l. make informed choices when looking for a 

place to lay eggs, however, the signals used by gravid females to discriminate between 

aquatic habitats remain unknown. Here we investigated physical, chemical and 

biological factors associated with oviposition of An. gambiae s.l. mosquitoes in Rusinga 

Island, Western Kenya. 

Methods: A cross-sectional survey of all aquatic habitats was done during the long rainy 

season March to July 2012 to compare the characteristics of habitats colonised (cases) 

and not colonized (controls) by early instar Anopheles larvae. Biotic factors evaluated 

included zooplankton, invertebrate fauna and bacteria communities; abiotic factors 

included, physical water parameters, nutrients and volatile chemicals released from the 

water. 

Results: The presence of early instar Anopheles larvae used as a proxy measure for 

oviposition was highly associated with high densities of late instar Anopheles larvae 

(p=0.002) and increasing turbidity (p=0.025). Aquatic habitats with turbidity > 200 NTU 

were over 80% likely to be colonized by An. gambiae s.l.. In habitats with turbidity < 

200 NTU the odds of being selected by gravid females increased significantly with a unit 

increase of cladocerans of the family Moinidae (RR=7, 95% CI (4-11)) and emergent 

vegetation (RR=1.55, 95% CI (1.02-2.37)). Conversely, the odds were reduced with a 

unit increase in Naucoridae RR=0.13, 95% CI (0.09-0.20)) and fish (RR=0.33, 95% CI 

(0.22-0.50)). Chemical cues from natural habitats were highly diverse however, 

preliminary analyses showed that a group of hydrocarbons were linked with habitats 

colonized by early instar larvae. No evidence was found that bacteria communities were 

involved in habitat selection.  

Conclusion: The relationship between environmental characteristics, biotic and abiotic 

factors that characterize natural oviposition sites of Anopheles gambiae s.l. in Rusinga 

Island, western Kenya are intricate. Further studies are required to investigate chemical 

cues released from vibrant larval habitats and their interaction with potential visual cues 

like turbidity investigated. Turbidity and volatile chemicals might be potentially 

exploited to attract and kill gravid females as a novel intervention for vector surveillance 

and control. 
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4.2 Background  

The spatial distribution of Anopheles larvae in the environment depends initially on the 

oviposition choices of the gravid mosquito and subsequently on the survival of the 

larvae in the breeding sites (Bates 1949; Muirhead Thomson 1951; McCrae 1984; 

Minakawa et al. 1999). Traditionally, breeding sites containing Anopheles larvae have 

been characterized in order to determine the factors that regulate larvae abundances and 

to determine factors that could be used to predict the most productive mosquito habitats 

in order to design cost-effective vector control strategies targeting immature stages 

(Minakawa et al. 1999; Gimnig et al. 2001; Shililu et al. 2003; Minakawa, Sonye & Yan 

2005; Mwangangi et al. 2007; Muturi et al. 2008). Consequently, these studies focus 

either on the late instar larvae as a proxy measure for adult productivity or do not 

distinguish between early and late instars. Frequently, it is cited that An. gambiae s.l. 

prefers to breed in temporary, shallow, sunlit, bare-edged pools and puddles (WHO 

1978; Mereta et al. 2013), however, there are usually only two references cited that base 

their summary on a very limited set of studies (Muirhead Thomson 1951; Gillies & De 

Meillon 1968). These attributes alone failed to predict the most productive habitats that 

maintain malaria transmission throughout the year in many routine vector control 

programs and research studies (Minakawa et al. 1999; Killeen et al. 2006; Majambere et 

al. 2008).  

Consequently, there has been a renewed interest in the larval ecology of afro-tropical 

malaria vectors over the past 15 years. Studies set out to identify and quantify additional 

physicochemical and biological factors that can regulate larvae abundance and 

distributions in natural settings (Fillinger et al. 2004; Majambere et al. 2008; Fillinger et 

al. 2009b; Mala & Irungu 2011; Ndenga et al. 2011; Gouagna et al. 2012; Gilbreath et 

al. 2013; Mereta et al. 2013). Although most of the studies claim the importance of 

environmental (i.e. pH, dissolved oxygen, water temperature, turbidity) and biological 

factors (i.e. emergent vegetation, algae, invertebrate fauna) in the survival of mosquito 

larvae, the strength and direction of these associations are often ambiguous (Mwangangi 

et al. 2007; Muturi et al. 2008; Fillinger et al. 2009b; Kenea, Balkew & Gebre-Michael 

2011; Mala & Irungu 2011; Ndenga et al. 2011; Mereta et al. 2013) . As an example, it 

has been implied that the presence of carnivorous aquatic insects is always to the 

detriment of Anopheles gambiae s.l. larvae populations and therefore high densities of 

larvae are associated with small and temporary habitats where the risk of predation is 

reduced (Muturi et al. 2008; Gouagna et al. 2012; Mereta et al. 2013; Munga, Vulule & 
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Kweka 2013). However, this is not always the case. For example, increasing invertebrate 

diversity has been significantly associated with the most productive breeding sites in The 

Gambia (Fillinger et al. 2009b) and coleopterans of the Haliplidae family with high 

abundances of Anopheles larvae in rice ecosystems in Kenya (Muturi et al. 2008).  

The impact of different environmental and biological factors on the oviposition site 

selection of gravid Anopheles gambiae s.l. has not been systematically explored under 

natural field conditions, which might in part be because of the difficulty to sample single 

eggs of Anopheles mosquitoes in the field and in part because although choices can be 

seen based on the presence or absence of larvae the mechanisms underlying those 

choices are often intelligible (Bates 1949). In the case of the members of the Anopheles 

gambiae species complex, very few field studies have been carried out to detect their 

oviposition preferences. Early in the 1950s Muirhead-Thompson established that gravid 

An. gambiae s.l. was not deterred from egg-laying in shaded habitats covered by a 

horizontal screen located above the surface of the habitat. Furthermore, he also observed 

that An. gambiae s.l. avoided laying eggs in brackish water collected from sub-littoral 

areas of Nigeria and Sierra Leone (Muirhead Thomson 1951). Apart from these studies 

all what we know about oviposition behaviour in An. gambiae s.l. has been drawn from 

laboratory experiments performed in small cage settings.  

 

It has been hypothesized that oviposition behaviour alike host seeking is governed by an 

ample sort of physical and chemical cues that guide gravid females in the process of 

searching, selecting and laying of their eggs in a suitable aquatic habitat (Bentley & Day 

1989; Clements 1999; Takken & Knols 1999). Caged Anopheles gambiae s.l. responds 

to physical cues like light contrast and brightness and have been shown under some 

circumstances to prefer laying eggs on dark backgrounds rather than in pale ones. 

Darkening the bottom of a dish could increase egg laying up to three fold (McCrae 1984; 

Huang et al. 2007). Furthermore, gravid females lay more eggs in muddy water and 

water from breeding sites than tap or distilled water in choice tests in small cages 

(McCrae 1984; Sumba et al. 2004; Huang et al. 2005). It has been suggested that 

preferences could be related to microorganisms present in the water or volatile organic 

compounds released from the water substrates (Sumba et al. 2004; Lindh et al. 2008). In 

the case of chemical cues it has been demonstrated that caged gravid females are 

receptive to water vapour (Okal et al. 2013), bacteria-derived odours (Sumba et al. 2004; 

Huang et al. 2006a; Lindh et al. 2008) and predator-released kairomones (Warburg et al. 

2011). Whilst over 20 putative oviposition semiochemicals have been suggested in the 
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literature (Blackwell & Johnson 2000; Lindh et al. 2008) there is only one report (Rinker 

et al. 2013) of two chemicals inducing a behavioural response in caged An. gambiae s.s. 

gravid females (one increasing and one decreasing the oviposition response). Although 

these controlled experiments have given important insights on An. gambiae s.l. 

oviposition preferences it remains to be proven if these responses can be extrapolated 

from the laboratory to the natural ecosystems where visual and chemical stimuli are 

likely to interact in a way that is unknown in the uncontrolled systems (Clements 1999). 

 

To date all studies involving substrates from breeding sites (i.e. bacteria, water, mud) 

have been performed solely on samples collected from aquatic habitats containing larvae 

but no attempt has been made to compare natural habitat characteristics of habitats that 

are colonized by early instar An. gambiae s.l. larvae (as a proxy measure for recent 

oviposition events) with those that do not contain early instar larvae.  More importantly, 

although bacteria and volatile chemicals have been implicated as being responsible for 

habitat choice under controlled conditions (Sumba et al 2004) bacteria and chemical 

profiles have never been analysed and compared for natural habitats to verify the 

hypothesis. 

 

Here I test the following hypotheses: 

(1) Natural aquatic habitats without Anopheles gambiae s.l. larvae (controls) differ 

significantly from habitats that are well colonized by early instar larvae (cases) in 

their bacteria communities and in their profile of volatile chemicals released from 

the water.  

(2) Specific physical, chemical and biological characteristics of these habitats 

colonised by Anopheles larvae can be associated with the bacteria and chemical 

profiles and can assist in predicting habitat selection by gravid females.  

To test these hypotheses I aimed to comprehensively characterize aquatic habitats with 

high abundance of early instar Anopheles larvae and aquatic habitats without early instar 

Anopheles. Specifically, I aimed to determine environmental attributes, water chemistry, 

vertebrate fauna, zooplankton, bacterial communities and chemical profiles.  
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4.3 Material and Methods  

4.3.1. Study area 

Larval habitat surveys were implemented on Rusinga Island, Lake Victoria, Western 

Kenya (0°35'–0°44' South; 34°11'–34°22' East; altitude 1,100 m) during the long rainy 

season from March to July 2012.  

Rusinga is the second largest island in Lake Victoria. Since 1983 it has been connected 

to the mainland through an approximately 200 m long and 40 m wide causeway (Figure 

4.1). It has an area of 42 km
2 

and approximately 24,000 inhabitants. Fishing and small 

scale farming of maize, millet and animal husbandry are the main economic activities 

(Weckenbrock & Oldesloe 2005; Kaneko, Mushinzimana & Karama 2007). 

Rusinga Island has a rocky and hilly terrain of volcanic origin with scarce vegetation 

cover. There are several seasonal rivers that contain water only during the rainy season 

so the lake is the main source of water for the human population and livestock. Two 

rainy seasons are typically described for the area, the main rainy season between March 

and June and the short rainy season between October and December (Opiyo et al. 2007).  

Malaria is endemic in the area but transmission intensity fluctuates seasonally having the 

main peak at the end of the long rainy season. Immature stages of mosquitoes have been 

found in a variety of natural and man-made breeding sites several of which occur near to 

human settlements (Fillinger et al. 2004; Mukabana et al. 2006). The three major 

African malaria vectors occur in the area; in the order of abundance these are Anopheles 

arabiensis, Anopheles gambiae s.s. and Anopheles funestus (Minakawa et al. 2012).  

 

Figure 4.1. Study area A) Lake Victoria Region, East Africa; Yellow dot = Location 

of Rusinga Island, Kenya B) Map of Rusinga Island showing the 8 administrative 

zones and the distribution of habitats not colonized (controls=blue dots) and 

colonized by Anopheles larvae (cases=red dots).  
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4.3.2. Larval habitat mapping 

In order to identify factors associated with the presence of early Anopheles larvae a case-

control approach was used to compare biological, physical and chemical characteristics 

of aquatic habitats highly colonized by early instar Anopheles larvae (cases) with 

habitats without early instars (controls). Larval surveys were done three days a week 

from March to July. Every sampling day another location on the island was surveyed. In 

a previous study (Mukabana et al. 2006; Opiyo et al. 2007) Rusinga Island was divided 

into eight administrative zones (Figure 4.1 B.). Each zone was further divided in six sub-

zones consisting of two villages and larval surveys were implemented regularly by local 

community members from each sub-zone (Malaria Surveillance Team (MST)). These 

community members were mobilized for this study to assist in mapping of all aquatic 

habitats per sub-zone per day. The sub-zones that were to be visited during one week 

were randomly selected from the list of all sub-zones a week prior to the surveys using a 

random-number generator. Each sub-zone was only visited once, all sub-zones had been 

surveyed at the end of the study. With help of the MST all aquatic habitats in a sub-zone 

were located in the morning and their position recorded using a Global Positioning 

System, GPS (GPS 12XL, Garmin, 15 meters accuracy, Schaffhausen - Switzerland). 

Every habitat received a unique identification number.  

4.3.3. Sweep-net method for habitat sampling 

Habitats were sampled using the sweep-net method (Silver 2008; Ndenga et al. 2011). 

This method was considered better than the more commonly used dipping method since 

it provides data on diversity and abundance (numbers per surface area) of the majority of 

aquatic invertebrates and is more effective in collecting early instars and pupae of 

mosquitoes since a larger surface area and volume of water is sampled in much shorter 

time (De Klerk & Wepener 2011). The sweep net was made of a cotton cloth, 30 cm 

wide, 15 cm high and 40 cm long fixed on a 150 cm long handle. In order to invest a 

similar collection effort in small and large habitats, the method was first calibrated by 

sampling twenty-nine habitats from three different subzones. Ten sweeps were taken 

from each habitat. The net was submerged at an angle of 45° at the margin of the habitat 

and the habitat swept 1 m in length. The content of every sweep was kept separately in a 

white tray and the number of early (1
st
 and 2

nd
 instar) and late (3

rd
 and 4

th
 instar) 

Anopheles larvae counted. The area of every habitat was measured and used to estimate 

the minimum sampling effort (number of sweeps) required per square meters until no 
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mosquito larva was caught in a sweep anymore. Two to three sweeps were sufficient to 

collect all larvae per square meter. Consequently, habitats ≤1m
2
 were swept three times. 

Two sweeps per square meter were done in habitats with an area between 1 and 20 m
2
. 

When a habitat was bigger, a 20m
2 

section was purposely selected (highest probability of 

finding larvae) and 40 sweeps taken.   

4.3.4. Selection of cases and controls 

Every aquatic habitat identified during the mapping was measured for its size and 

sampled using the sweep-net method described above. The content of each sweep was 

emptied in a white tray and the number of early and late instar Anopheles and culicines 

were counted. Other invertebrates present in the net content were also counted and 

determined in order, suborder or family level as follow: Odonata (Zygoptera and 

Anysoptera), Ephemeroptera, Coleoptera (adult and larvae stages counted separately). 

Heteroptera (Notonectidae, Naucoridae, Nepidae). Fish and tadpoles were also recorded. 

After completing the count, all 4
th

 instar Anopheles larvae where collected in ethanol for 

molecular identification of the members of the An. gambiae species complex using 

polymerase chain reactions PCR (Scott, Brogdon & Collins 1993). The remaining 

content of the trays was returned into the habitat.  

A habitat was eligible to be a case if ≥20 early instar Anopheles larvae were sampled 

from a habitat. A habitat was eligible to be a control if no Anopheles larvae were 

collected from the habitat. Habitats with more than 1 and less than 20 early Anopheles 

larvae were designated as intermediate and were not eligible for random selection and 

further characterisation.  

Once all the habitats of a subzone were surveyed, a maximum of two cases and two 

controls were randomly selected (lottery by drawing a slip of numbered paper) in order 

to carry out more intensive habitats surveys and to collect samples to analyze 

zooplankton, bacteria communities and volatile chemical profiles.  
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4.3.5. Characterization of cases and control habitats 

Each aquatic habitat was classified into one of six habitat types: Swamp, puddle, fish 

pond, cemented-lined pit, burrow pit or drainage (Figure 4.2). These categories represent 

the diversity of aquatic habitats within the study area (Fillinger et al. 2004; Minakawa et 

al. 2012).  

 

Figure 4.2. Common aquatic habitat types recorded on Rusinga Island. A) Swamp: 

Area along the lake shore where water is permanent to semi-permanent. Vegetation is 

often characterized by tall grasses (reeds) and/or floating plants. B) Puddle: Natural and 

shallow depression (less than 0.5 m deep) that collects rainwater. C) Fish pond: Large 

man-made pool (>1m deep, >5m long and wide) used for fish farming. D) Cement-lined 

pit: Pit serving as water reservoir in building sites. E) Borrow pits: Man-made holes in 

any ground (for taking soil, for getting stones, for building a pit latrine), that can collect 

rain water or be filled by ground water. F) Drainage: Long narrow excavation in the 

earth for carrying off excess water or sewage. 

Data on size (perimeter), soil type (sand, loam, clay, artificial), water origin (rain, lake, 

ground), land cover (floodplain of the lake, agricultural fields, compound/bush), 

presence of floating vegetation (e.g. Eichornia spp., Lemna spp.) and presence of algae 

film on the surface or any other debris were recorded for every habitat. The proportion 

of habitat covered with emergent vegetation on the surface and on the edge and the 

proportion of shade were visually estimated. Water depth was measured with a wooden 

meter at the centre of the habitat when possible and for larger habitats at several points 

and averaged. Distances to the nearest house and to the lake were measured using the 

GPS trekking function.  
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Conductivity, pH, dissolved oxygen and water temperature were recorded with a 

multimeter (Multi 340i, WTW Germany). Turbidity was measured with a turbidity meter 

(TURB 355IR, WTW Germany).  

Habitat water was tested for ammonium (NH4+), carbonate hardness, total hardness, 

nitrate (NO3−), nitrite (NO2−), and phosphate (PO4 3−) content using Aquamerck® test 

kits from the compact laboratory for water testing (Aquamerck®No.111151, Germany). 

Water samples for bacteria and chemical headspace analyses were collected as follows. 

First four sub-samples of water of approximately 350 ml were taken in different depths 

of the habitat using a standard dipper (350 ml dipper, Clarke Mosquito Control Products, 

USA), two on the ground and two on the surface ensuring that different sections of the 

habitat are represented (i.e. shade/no shade, vegetation/no vegetation). The sub-samples 

were sieved with a clean cotton cloth and mixed gently in a plastic basin that was 

washed several times before with habitat water. From the mixed sample, 100 ml of water 

were collected in two new sterile Falcon™ type tubes (50 ml) to carry out DNA bacteria 

analysis; 250 ml of water were collect in wide mouth polypropylene bottles (250 ml) for 

collection of the chemical headspace (Agelopoulos & Pickett 1998) and 50 ml of water 

was taken in an amber polyethylene terephthalate (PTE) tube (50 ml) with a Teflon lid to 

determine the biological oxygen consumption (BOC) for every habitat. All samples were 

placed in a cooler box and transferred to the laboratory facilities at ICIPE, Thomas 

Odhiambo Campus (ICIPE-TOC) located 2-9 km from the sampling sites. Water 

samples for bacteria analyses were stored at -70°C freezer (C340 New Brunswick 

Scientific, USA) until use. Water samples for chemical headspace analyses were 

prepared for volatile trapping by adding 37.5 g of NaCl to each sample (Mozuraitis, 

Buda & Borg-Karlson 2010). The bottles were completely full and did not contain any 

air. They were tightly closed and sent to the Chemical Ecology Laboratory at ICIPE-

Nairobi on the day of sampling and analyzed within 16 hours of sampling. BOC was 

estimated by subtracting the dissolved oxygen content measured in day 5 post sampling 

from dissolved oxygen content measured in day zero (sampling day). 

Water samples for identification of zooplankton were taken according to the size of the 

habitat: 2 L for water bodies >10 m
2
, 1 L for water bodies between 1-10 m

2 
and 0.5 L for 

water bodies <1 m
2 

.
 
Water was collected with a standard dipper (350 ml dipper, Clarke 

Mosquito Control Products, USA) from different spots of the habitat and passed through 

a sieve with a 50 µm mesh size. Organisms in the sieve were washed with 70% ethanol 

into a sampling glass (20 ml). Samples were protected against UV radiation in a cooler 
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box and transported to the laboratory for further identification. Samples were stored at 

room temperature until the organisms were counted and classified under the microscope 

(Zeiss, Germany) to family level for Cladocera, Suborder for Copepoda and Class for 

Ostracoda (Edmondson 1959; Witty 2004). 

4.3.6 Bacteria community analysis  

DNA extraction, amplification and purification: Water sample (50 ml) duplicates were 

thawed at room temperature and centrifuged at 4000 g for 30 min at 6°C. The resulting 

pellet was transferred into a 1.5 ml eppendorf tube and the total nucleic acid was 

extracted using the protocol supplied with the DNeasy® Blood & Tissue Kit (Qiagen, 

Hilden – Germany). Crude DNA was used as a template to amplify the 16S rDNA 

region with universal bacteria primers 968f gc: (5’ CGC CCG CCG CGC GCG GCG 

GGC GGG GCG GGG GCA CGG GGG GAA CGC GAA GAA CCT TAC 3’) and 

1401r: (5’ CGG TGT GTA CAA GAC CC 3’). DNA extracted from water samples was 

amplified using Ready-To-Go PCR beads (GE healthcare, Little Chalfont - United 

Kingdom) 1µl of each primer (10 pmol/µl), 1µl of DNA template and nuclease free 

water (Bioline, London, United Kingdom) were added to achieve a final reaction volume 

of 25μl. After an initial denaturation of double stranded DNA for 5 minutes at 94°C, the 

following protocol was used: denaturation at 94°C for 30 seconds, touchdown annealing 

58-48°C (decreasing in 1°C /cycle) for 30 seconds, extension 72°C for 30 seconds ; 20 

cycles consisting of denaturation 30 seconds at 94°C, annealing 30 seconds at 50°C, 

extension 30 seconds at 72°C; and final extension 72°C for 5 minutes. In order to 

concentrate the samples, two PCR reactions (each 25 µl) were carried out per sample, 

pooled and purified in a final volume of 10 μl using a MinElute® PCR Purification Kit 

(Qiagen, Hilden – Germany). PCR products were separated by electrophoresis in a 1.5% 

agarose gel stained by ethidium bromide. Amplicon sizes were determined by 

comparison to the molecular weight provided by Hyperladder™ V (Bioline, London-

United Kingdom). 

Denaturing Gradient Gel Electrophoresis (DGGE): PCR products and DNA ladders 

were analyzed using a Dcode™ Universal Mutation Detection System (Bio-Rad, 

Hercules, CA - USA). The DNA fragments were separated on a polyacrylamide gel with 

8% (wt/vol) acrylamide, containing a linear gradient of denaturant that ranges from 30% 

to 60% (with 100% denatured defined as 7M Urea plus 40% formamide). 

Approximately, 10 µl of PCR product from each sample were loaded in a separate well 

of a DGGE gel. The gel ran at 70V for 16.5 h and 60°C. After completion of 
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electrophoresis, gels were incubated for 90 minutes shaking at 60 rpm in a staining 

solution containing 3X GelRed™ in 0.1M NaCl. Digital photos were obtained 

immediately after staining in an InGenius LHR (Syngene, Cambridge, United 

Kingdom). 

PCR products of cases and controls were grouped according to the habitat type and were 

run simultaneously on the same gel. Hyperladder™ V (Bioline, London-United 

Kingdom) was run in parallel with the samples and was used as a reference lane to 

estimate molecular weights (MW) and to construct the intensity profile of each lane. 

Analysis of DGGE gel images: Gel images were analyzed using Image Lab™ software 

version 5.1(Bio-Rad Lab, Hercules, CA - USA) to calculate bacteria abundance and 

diversity of each aquatic habitat. Initially lanes and bands were detected automatically 

by the software, and then the sensitivity of each lane and additional bands were assessed 

and edited manually. Hyperladder V was selected as the reference lane and it was used 

by the software to calculate the molecular weights (positions) for each band. Band 

number two (300pb) in the hyperladder V was also selected as the reference band to 

calculate the relative quantity of each band. Data were exported to an Excel spreadsheet 

and sorted according to molecular weights. Bands with the same molecular weight were 

assigned a unique band number. Every analysis was done separately for every gel. 

Information regarding habitat type, habitat ID and habitat status (case/control) was also 

added in the database. 

Each band was considered an operational taxonomic unit (OTU). Banding patterns of 

each gel were analyzed to assess bacterial species diversity as described by Ponnusamy 

et al.(Ponnusamy et al. 2008b).  

Diversity of bacterial species: The relative quantity data were used to calculate Shannon-

Weaver diversity indices (H’):  

H’= -∑PiLogPi 

ni = OTU intensity (relative quantity) for ith band, N = Summed intensities of all OTUs 

in a lane, Pi = Propotion of total diversity represented by the ith species (OTUs) Pi = 

ni/N 

Evenness index (E) was estimated for the number of bacterial species in each lane as 

follow 
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E = H’/LogS 

S = Number of DGGE OTUs in each lane. 

4.3.7. Chemical headspace analysis 

Volatile organic compounds released from the habitat water were trapped by solid phase 

micro extraction (SPME). Trapping was done in parallel for cases and controls collected 

on the same date. In addition the chemical headspace was collected from a bottle 

containing distilled water, stored and transported the same way as the field samples and 

from an empty bottle that served as control for background volatiles.  

Water samples were added into 500 ml conical flasks (Quickfit, England) which were 

covered with a double piece of aluminum foil. The aluminum foil cover was pierced 

with the needle of the SPME holder and the 65µm polydimethylsiloxane / 

divinylbenzene (PDMS-DVB) fiber (Supelco™, Bellefonte, PA, USA) exposed to the 

headspace above the sample. The SPME fibers were conditioned in the GC-injection 

port at 220°C for 5 minutes just before sampling. Volatiles were collected for 16 hours 

after which they were immediately analyzed by gas chromatography coupled to mass 

spectrometry (GC-MS).  

Compounds trapped on SPME fibres were analysed on a GC-MS system comprising a 

7890A GC (Agilent Technologies, Santa Clara, CA) fitted with a 30 m HP-5MS column 

(Agilent Technologies) with an inner diameter of 0.25 mm and 0.25 µm film thickness. 

The GC was coupled to a 5975C MS (Agilent Technologies) with electronic ionization 

at 70 eV and the ion source kept at 230°C and the quadropole at 150°C. Masses were 

scanned from 38-550. The GC injector was kept at 250°C in a splitless mode, helium 

with a flow of 1.2 ml/min was used as carrier gas. The oven temperature was held at 

40°C for 3 minutes, then programmed to increase at 5°C/min to 260°C and maintained at 

this temperature for 3 minutes for a total running time of 50 minutes. 

 

For the comparison of volatile chemical profiles from the headspaces of aquatic habitats, 

the retention parameters from the chromatograms were integrated using the Chem 

station integrator and auto-integration function in Chem Station software (MSD 

ChemStation E.02.01.1177). Mass spectra fragments were recorded manually for each 

compound integrated. Compounds were grouped according to retention time, MS 

fragments, and given a unique volatile identification number (ID). A database was 
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created with information about the abundance of each volatile (area of the peak) in the 

samples and used for analyses.  

4.3.8 Data analyses 

Generalized linear models (GLM) with a negative binomial distribution were used to 

estimate means and 95% confidence intervals for each factor measured in the cases and 

control groups. Factor that differed significantly between cases and controls were further 

included in a predictive GLM to evaluate their impact on the presence of early instar 

Anopheles larvae. Analyses were performed in SPSS statistical software version 20.  

Principal component analyses (PCA) were used to explore possible associations of 

bacteria communities, chemical profiles and case and control habitats in reduced 

dimension plots. This analysis allows to visualize the data without constraint of an initial 

hypothesis concerning the relationships between bacteria, volatile chemicals and aquatic 

habitats either control or case.  

Bacteria and chemical profiles were only analysed for 60 habitats which presented the 

extreme ends of the cases and controls in terms of early instar larval abundance. The 30 

cases with the highest early instar larval abundance (>43 early instar larvae per m
2
) were 

selected for analyses. These were compared with 30 controls that were randomly 

selected (Random Sorter in Microsoft Excel) from the controls. Bacteria communities’ 

analyses were carried out separately for every habitat type. In each analysis relative 

densities of OTUs were centred and standardized. For volatile chemical analyses data 

were centred and standardized by relative amount of volatile chemical. PCA was chosen 

in all ordination analyses given that all data were compositional and gradient lengths 

were less than three standard deviation units long. PCA was performed in CANOCO 5 

for windows version 5 (Ter Braak & Šmilauer 2012).  

4.4 Results  

In total 219 habitats were sampled across the eight zones of Rusinga Island during the 

long rainy season of 2012. Of those 44 habitats were included in the analyses as controls 

and 72 as cases. One hundred and three intermediate habitats with more than 1 but less 

than 20 early Anopheles larvae were excluded from the analyses. All specimens that 

amplified during PCR mosquito identification (168/182) were An. arabiensis. 

Presence of aquatic habitats colonized and not colonized by Anopheles larvae was 

strongly influenced by rainfall. At the onset of the rainy season aquatic habitats were 
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scarce and only a small fraction was positive for Anopheles larvae. In addition, habitats 

were colonized in low density which is evidenced by the high proportion of intermediate 

habitats found. As soon as the rains progressed the number of larval habitats increased 

and also the density of early instar larvae per habitat leaving very few habitats free of 

mosquito larvae during between early June and early July. The number of aquatic 

habitats without Anopheles larvae increased again at the end of July following a month 

without rain (Figure 4.3). 

 

Figure 4.3. Frequency of occurrence of controls and cases during sampling dates 

and their relation with rainfall. 

4.4.1 Differences in environmental and biological factors between control and case 

habitats 

Initially, modelled means and 95% confidence intervals (CIs) were calculated for every 

factor measured during the habitat surveys and compared between control and case 

habitats. Ten characteristics differed significantly in their means between these two 

groups (Table 4.1) and were used to construct a predictive multivariate model that could 

explain the differences in mosquito colonization between the two groups. Out of ten 

factors included in the model only the abundance of late instar Anopheles larvae and 

turbidity remained significantly associated with the presence of early instar Anopheles 

larvae (Table 4.1). 
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Oviposition (as expressed by high numbers of early instar Anopheles in cases) was 

strongly and positively associated with the abundance of conspecific late instars. One 

unit increase in late instar larvae increased the odds of an aquatic habitat being a case 

four times (Table 4.1).   

 

Table 4.1 Differences of biological and environmental factors  

between control and case habitats 

Factor Means  

(95% CI) 

Odds ratio
a
 

(95% CI) 

GLM 

P-value 

 Controls Cases   

Anopheles late/ m
2
 0.24 (0.18-0.32) 7.17 (5.69-9.04) 4.078 (1.683-9.880) 0.002 

Naucoridae/m
2
 1.50 (1.12-2.02) 0.31 (0.25-0.39) 0.760 (0.300-1.926) 0.563 

Coleoptera adults/m
2
 1.14 (0.85-1.53) 2.32 (1.84-2.92) 1.227 (0.951-1.584) 0.116 

Fish/m
2
 1.19 (0.89-1.60) 0.31 (0.24-0.38) 0.882 (0.607-1.281) 0.509 

Cyclopoida/L 74.8 (55.7-100) 189 (150-238) 0.998 (0.994-1.002) 0.407 

Nauplius/L 280 (208-376) 620 (492-781) 1.000 (0.999-1001) 0.629 

Moinidae/L 2.48 (1.85-3.34) 149 (118-187) 1.011 (0.981-1.042) 0.479 

Turbidity (NTU) 56.2 (41.8-75.6) 205 (163-259) 1.005 (1.001-1.010) 0.025 

Ammonium (mg/L) 0.20 (0.15-0.27) 0.06 (0.05-0.08) 0.312 (0.029-3.399) 0.339 

Nitrite (mg/L)
b
 0.01 (0.01-0.02) 0.04 (0.03-0.04) - - 

a
output of the multivariate GLM modeling the probability of a habitat being a case based 

on the listed explanatory variables  
b
Nitrite is a redundant parameter excluded from the model. Only 16% of the habitats had 

a value different from zero for nitrites. 
 

Turbidity was the only environmental factor associated with the presence of Anopheles 

mosquitoes, every unit (NTU) increase in turbidity augmented the probability of a 

habitat to be colonized by Anopheles gambiae s.l. by 0.4 % (Table 4.1). Exploratory data 

analysis (Figure 4.4) showed that if turbidity of a habitat was > 200 NTU the habitat was 

most likely a case (22 cases/26 habitats >200 NTU). Only four habitats measured >200 

NTU were not colonised by mosquitoes; these water bodies had exceptionally high 

coverage of vegetation, one of them had a complete surface layer of floating duck weed  

(Lemna sp.). Consequently, the turbid surface of the water may have not been visible (or 

otherwise detectable) for the gravid females or the unfavourable environmental 

conditions might have overwritten the preference for high turbidity.  
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Ninety habitats exhibited turbidity < 200 NTU and of those 55% (50/90) were colonised 

by Anopheles.    

 

Figure 4.4. Box-and-Whisker plots showing the median tubidity and interquartile 

range for control and case habitats. Red line at 200 NTU.  

Based on this results two major questions arose: 

(1) What differences other than turbidity exist between habitats with < 200 NTU 

turbidity (henceforth called clear habitats) and habitats with >200 NTU turbidity 

(henceforth called turbid habitats) that are colonized by Anopheles mosquitoes (cases)?  

(2) Are there any differences between clear habitat controls and clear habitat cases that 

might explain why these habitats have been chosen or not chosen for oviposition by An. 

gambiae s.l.?   

To explore these questions the habitat data were divided in three groups according to 

turbidity levels: clear controls (n=40), clear cases (n=50) and turbid cases (n=22). The 

four control habitats with >200 NTU were excluded from the analysis.  
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4.4.2 Differences between clear and turbid case habitats 

Clear and turbid case habitats were equally chosen for oviposition as expressed by the 

nearly identical abundance of early instar Anopheles larvae (22-23 early Anopheles/m
2
) 

in the two groups (Table 4.2).  When comparing the explanatory variables for clear and 

turbid case habitats significant differences were found regarding invertebrate fauna 

composition, zooplankton composition and environmental factors. Turbid cases had 

twice as many late instar Anopheles larvae than clear cases. In addition, turbid cases 

were strongly associated with high densities of Cladocerans of the family Moinidae, 

copepods of the order Cyclopoida and Rotifera, which were rare in the clear cases. On 

the contrary, clear cases exhibited higher abundances of Odonata, Heteropterans of the 

family Notonectidae, and of cladocerans from the families Daphnidae, Chyoboridae and 

Macrothricidae, than turbid cases. These results may indicate that although both clear 

and turbid habitats were chosen by gravid Anopheles females to oviposit turbid habitats 

provided an additional advantage to the larvae increasing their survival perhaps due to 

lower density of predators or due to a mutualism with the organisms in the same trophic 

level i.e. cladocerans of the Moinidae family. Turbid cases were on average four times 

bigger in area than clear cases or controls.  (Table 4.2). Turbid cases were also 

characterized by four times higher phosphate content than clear cases. Phosphate 

concentrations were highly correlated with turbidity (Spearman’s rho 0.57, p<0.001). 

All aquatic habitats on Rusinga Island irrespective of case or control were found within 

100 to 300 meters from the next house and therefore blood hosts. However, clear cases 

were strongly associated with the lake, being never further away from the shore more 

than 200 meters, whilst turbid cases and controls could be found much further away 

from the lake (Table 4.2). 

Turbid cases were found in all habitat types but being most common in the category of 

puddle/fish ponds. These habitats are constituted for abandoned fish ponds that keep rain 

water forming a puddle. Most of the turbid cases were located close to agricultural 

fields, filled with rain water and composed by loamy soil substrate. In contrast, the 

majority of clear cases were situated in the floodplains of the lake with equally 

distribution of habitats filled with rain or lake water and sand as primary substrate 

(Figure 4.5). 
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Table 4.2 Comparison of biological and environmental factors between clear (<200 

NTU) control habitats, clear (<200 NTU) case habitats and turbid (>200 NTU) case 

habitats. Red indicates significant differences between clear habitats (controls versus 

cases) and blue indicates significant differences between clear and turbid cases. 

 

RR are based on univariate modelling of the single explanatory factor where means are compared. 

 

 

control <200NTU case <200NTU case >200NTU case <200NTU case >200NTU

N=40 N=50 N=22

Anopheles  early instars 0 22.2 (16.8-29.3) 23.1 (15.2-35.1) p<0.001 p<0.001

Anopheles  late instars 0.26 (0.19-0.35) 5.11 (3.87-6.74) 11.87 (7.82-18.02) 20.0 (13.1-30.2), p<0.001 46.3 (27.5-78.0), p<0.001

Ephemeroptera 2.65 (1.94-3.61) 3.93 (2.92-5.28) 0.46 (0.28-0.75) 1.48 (0.97-2.27), p=0.070 0.17 (0.10=0.31), p<0.001

Odonata 0.27 (0.20-0.37) 0.35 (0.27-0.47) 0.02 (0.01-0.03) 1.30 (0.85-1.96), p=0.220 0.08 (0.05-0.14), p<0.001

Notonectidae 7.24 (5.31-9.87) 7.64 (5.79-10.08) 0.74 (0.49-1.12) 1.06 (0.70-1.60), p=0.798 0.10 (0.06-0.17), p<0.001

Naucoridae 1.64 (1.21-2.24) 0.22 (0.17-0.29) 0.51 (0.34-0.78) 0.13 (0.09-0.20), p<0.001 0.31 (0.19-0.53), p<0.001

Corixidae & Nepidae 2.24 (1.65-3.03) 2.37 (1.79-3.12) 2.26 (1.55-3.58) 1.05 (0.70-1.60), p=0.803 1.05 (0.62-1.77), p=0.854

Coleoptera larvae 0.75 (0.55-1.02) 0.95 (0.72-1.25) 0.59 (0.39-0.89) 1.27 (0.84-1.93), p=0.255 0.78 (0.47-1.32), p=0.361

Coleoptera adults 1.23 (0.90-1.67) 2.52 (1.91-3.32) 1.86 (1.22-2.83) 2.05 (1.35-3.11), p=0.001 1.52 (0.90-2.55), p=0.117

Daphniidae 6.15 (4.40-8.59) 6.96 (5.17-9.36) 0 1.13 (0.72-1.77), p=0.590 p<0.001

Chydoridae 1.13 (0.73-1.72) 7.62 (5.67-10.23) 0 6.77 (4.03-11.37), p<0.001 p<0.001

Bosminidae 0.18 (0.08-0.39) 0 0 p<0.001 p<0.001

Sidiidae 9.60 (6.90-13.30) 0.06 (0.02-0.19) 0.22 (0.08-0.6) 0.01 (0.002-0.021), p<0.001 0.02 (0.01-0.07), p<0.001

Macrothricide 12.50 (9.06-17.25) 37.66 (28.44-49.87) 0.77 (0.41-1.46) 3.01 (1.97-4.62), p<0.001 0.06 (0.03-0.13), p<0.001

Haparcticoida 0.65 (0.40-1.07) 0.60 (0.38-0.94) 0.00 0.92 (0.47-1.80), p=0.815 p<0.001

Moinidae 2.45 (1.68-3.51) 17.28 (12.99-22.98) 448 (295-681) 7.13 (4.47-11.35), p<0.001 184 (105-322), p<0.001

Ostracoda 59.97 (43.70-82.30) 64.90 (49.08-85.81) 10.46 (6.75-16.19) 1.08 (0.71-1.65), p=714 0.17 (0.10-0.30), p<0.001

Cyclopoida 70.70 (51.74-96.60) 58.68 (44.37-77.61) 487 (320-7400 0.83 (0.54-1.26), p=0.3836.88 (4.09-11.61), p<0.001

Naupilus 243 (178-332) 258 (195-340) 1444(951-2194) 1.06 (0.70-1.61), p=0.788 5.93 (3.52-9.99), p<0.001

Rotifera 2217 (1626-3023) 953 (722-1258) 1390 (915-2112) 0.43 (0.28-0.65), p<0.001 0.63 (0.37-1.06), p=0.079

Fishes 1.31 (0.96-1.79) 0.43 (0.33-0.57) 0.02 (0.01-0.03) 0.33 (0.22-0.50), p<0.001 0.01 (0.01-0.02), p<0.001

Turbidity (NTU) 32 (23-44) 35.14 (27-47) 593 (390-901) 1.11 (0.73-1.69), p=0.64318.65 (11.05-31.48), p<0.001

Phosphates (mg/L) 0.63 (0.35-0.90) 0.60 (0.35-0.84) 2.25 (1.88-2.62) 0.97 (0.67-1.40), p=876 5.08 (3.21-8.04), p<0.001

conductivity (mS/sec) 366 (268-499) 466 (353-615) 620 (408-942) 1.28 (0.84-1.93), p=0.252 1.70 (1.01-2.85), p=0.047

pH 8.08 (7.86-8.30) 8.12 (7.93-8.32) 8.54 (8.25-8.84) 1.04 (0.78-1.41), p=753 1.59 (1.10-2.30), p=0.013

Nitrates mg/L) 14.37 (10.43-19.81) 15.60 (11.72-20.76) 14.32 (9.29-22.06) 1.09 (0.71-0.67), p=0.709 0.99 (0.58-1.70), p=0.988

Dissolved oxigen (ppm) 5.90 (1.01-4.22) 7.38 (1.11-5.49) 6.91 (1.58-4.42) 1.25 (0.80-1.96), p=0.326 1.17 (0.66-1.05), p=0.580

Total hardness (mmol/L) 1.50 (1.15-1.84) 1.67 (1.35-1.98) 1.47 (1.01-1.94) 1.19 (0.76-1.90), p=0.463 0.98 (0.55-1.76), p=0.953

Carbonate hardness (mmol/L) 5.55 (3.96-7.77) 5.86 (4.34-7.91) 7.00 (4.48-10.94) 1.06 (0.67-1.66), p=0.813 1.26 (0.72-2.21), p=0.416

Habitat size (m
2
) 6.60 (4.70-9.20) 6.50 (1.00-9.00) 25.60 (16.70-40.00) 0.99 (0.64-1.55), p=0.981 3.89 (2.26-6.67), p<0.001

Habitat shaded (%) 26 (19-35) 17 (12-22) 13 (8-19) 0.64 (0.42-0.99), p=0.043 0.49 (0.29-0.83), p=0.009

Edge grass cover (%) 47 (34-64) 66 (50-88) 52 (34-80) 1.42 (0.93-2.16), p=0.103 1.12 (0.66-1.89), p=0.677

Surface grass cover (%) 24 (18-33) 37 (28-50) 18 (12-28) 1.55 (1.02-2.37), p=0.042 0.76 (0.44-1.30), p=0.320

Distance to next house (m) 127 (93-173) 158 (120-209) 211 (139-322) 1.25 (0.82-1.89), p=0.300 1.67 (0.99-2.81), p=0.054

Distance to the lake (m) 318 (233-434) 148 (112-195) 378 (249-574) 0.46 (0.31-0.70), p<0.001 1.18 (0.71-2.00), p=0.517

water depth (cm) 32 (24-45) 23 (17-31) 20 (13-30) 0.71 (0.46-1.08), p=0.114 0.61 (0.36-1.04), p=0.069

* means for insects and fishes are per square metre, means for zooplankton are per litre

Aquatic organisms*

Mean (95% CI) RR (95% CI), p (in refernce to control <200NTU)

WATER CHEMISTRY & ENVIRONMENTAL FACTORS
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Figure 4.5. Distribution of environmental factors evaluated visually in clear control 

habitats (< 200 NTU), clear cases (< 200 NTU) and turbid cases (> 200 NTU).  A) 

Habitat types, B) Grass presence in habitat including surface and edge, C) Dominant 

land cover type, D) Habitat water origin, E) Habitat soil type. 
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4.4.3 Differences between clear control and clear case habitats  

Comparing the explanatory variables for clear control and clear case habitats a number 

of significant differences were found regarding invertebrate fauna composition, 

zooplankton composition and environmental factors (Table 4.2, Figure 4.5). The 

probability of a clear habitat becoming a case increased significantly with a unit increase 

of a late instar Anopheles larva (RR=20, 95% CI (13-30)), of cladocerans of the family 

Moinidae (RR=7, 95% CI (4-11)), of Chydoridae (RR=6, 95% CI (4-11)) and of 

Macrothricidae (RR=3, 95% CI (2-15)). Conversely, the probability of being colonized 

was drastically reduced with every unit increase of rotifers (RR=0.43, 95% CI (0.28-

0.65)), of members of the Naucoridae family (RR=0.13, 95% CI (0.09-0.20)) and of fish 

(RR=0.33, 95% CI (0.22-0.50)). There were no differences between clear controls and 

clear cases in the density of other invertebrate predators like Odonata, Notonectidae, 

Corixidae, Nepidae and Coleoptera larvae; Coleoptera adults were even positively 

associated with cases (Table 4.2).  

Grass covering some part of the water surface was significantly associated with 

oviposition in clear habitats. Clear cases had on average a higher percentage of the 

habitat covered by tufts of grass than clear controls (RR=1.55, 95% CI (1.02-2.37)). 

Notably, turbid case habitats did not differ in their grass coverage from controls. Grass 

cover in an otherwise translucent habitat might signal better protection for the offspring 

to the gravid female. Furthermore, for a clear habitat to be a case it had to be less than 

200 meters away from the lake shore (Table 4.2) possibly indicating that the habitat is 

less likely to dry up than relatively small habitats further away from the lake or 

signalling a better water quality based on the fact that lake and ground water constantly 

replenishes these habitats.   

4.4.4 Bacteria community analyses 

DGGE analyses of 16S RNA gene PCR products were obtained for 60 water samples 

distributed in four habitat types: swamps, puddles, cemented lined pits and burrow pits. 

In each profile each band equalling an operational taxonomic unit (OTU) was assumed 

to represent a unique phylotype, therefore the richness of bacteria groups was reflected 

in the number of DGGE-DNA bands. Likewise, the intensity of a band was intended to 

reflect the relative abundance of that bacteria group in the sample.  
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Diverse DNA banding patterns were found in water samples collected from swamps (9-

22 bacterial species, n=15), puddles (10-28 bacterial species, n=14), cemented lined pits 

(4-22 bacterial species, n=16), and burrow pits (13-22 bacterial species, n=15) (Figure 

4.6.; Table 4.3) 

4.4.5 Chemical headspace analyses  

GC-MS analyses of headspace samples from 60 habitats lead to the detection of 556 

compounds. There was a very high variability between habitats in terms of the numbers 

of compounds detected and amount released. The number of compounds ranged between 

3-71 for a single habitat. The majority of compounds were rare with 338 out of the 556 

compounds detected only once.  For analysing the chemical profiles of control and case 

habitats, a new database was generated to include only those compounds that were 

detected in > 5 habitats. Consequently, the list of compounds reduced to 46.  

The total relative amount of volatiles released from the headspaces of clear controls and 

clear cases was similar (p=0.131) whilst the total amount of volatiles released by turbid 

cases was significantly lower (p=0.033) compared with the amount released by clear 

habitats (Figure 4.7).   
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Figure 4.6. Analysis of bacteria communities from control and case habitats 

grouped in four different habitat types. A)  16S rDNA–DGGE profiles, every column 

represent an aquatic habitat and every band an operational taxonomic unit. Case 

and control habitats are separated by the reference (Hyperladder™ V (Bioline, 

London-UK)). B) Principal Component analyses plots; arrows illustrate every 

operational taxonomic unit detected, and the length of the arrow is associated with 

the amount of variation explained for that operational taxonomic unit in the 
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sample. C) Diversity diagrams; circle sizes and labels indicate the numbers of 

operational taxonomic units.  

 

Table. 4.3. Detailed analysis of banding patterns in 16S rDNA-DGGE profiles, 

Diversity and Evenness indexes 

 

Gel Lane 

No. 

OTUS 

(S) 

Diversity 

index (H')  

Evenness 

(H'/LogS) 
Gel Lane 

No. 

OTUS 

(S) 

Diversity 

index (H')  

Evenness 

(H'/LogS

) 

Gel A 1 14 0.63 0.55 Gel C 1 18 0.80 0.64 

Gel A 2 9 0.86 0.90 Gel C 2 5 0.28 0.41 

Gel A 3 21 1.06 0.80 Gel C 3 13 0.69 0.62 

Gel A 4 14 0.99 0.87 Gel C 4 15 0.83 0.71 

Gel A 5 12 0.91 0.84 Gel C 5 8 0.80 0.88 

Gel A 6 9 0.73 0.77 Gel C 6 15 0.84 0.72 

Gel A 7 14 1.00 0.87 Gel C 7 19 1.07 0.84 

Gel A 8 9 0.70 0.74 Gel C 8 22 1.04 0.77 

Gel A 9 15 0.98 0.84 Gel C 9 20 1.00 0.77 

Gel A 10 18 1.01 0.80 Gel C 10 18 0.99 0.79 

Gel A 11 22 1.12 0.83 Gel C 11 4 0.50 0.83 

Gel A 12 19 0.96 0.75 Gel C 12 13 0.93 0.84 

Gel A 13 16 0.91 0.76 Gel C 13 10 0.67 0.67 

Gel A 14 14 0.86 0.75 Gel C 14 14 0.65 0.56 

Gel A 15 18 0.99 0.79 Gel C 15 12 0.76 0.70 

Gel B 1 25 1.08 0.77 Gel C 16 9 0.81 0.85 

Gel B 2 26 1.18 0.83 Gel D 1 16 0.08 0.07 

Gel B 3 23 0.82 0.60 Gel D 2 14 0.90 0.78 

Gel B 4 28 1.25 0.86 Gel D 3 13 0.92 0.83 

Gel B 5 21 1.13 0.85 Gel D 4 19 1.06 0.83 

Gel B 6 21 1.05 0.80 Gel D 5 18 1.02 0.82 

Gel B 7 19 1.16 0.90 Gel D 6 22 1.05 0.78 

Gel B 8 24 1.05 0.76 Gel D 7 17 0.97 0.79 

Gel B 9 19 1.08 0.85 Gel D 8 20 1.01 0.78 

Gel B 10 22 1.12 0.83 Gel D 9 13 0.92 0.83 

Gel B 11 10 0.78 0.78 Gel D 10 18 1.07 0.86 

Gel B 12 23 1.03 0.75 Gel D 11 19 0.93 0.73 

Gel B 13 21 1.10 0.83 Gel D 12 20 1.16 0.89 

Gel B 14 19 0.79 0.61 Gel D 13 19 0.91 0.71 

     Gel D 14 19 1.09 0.85 

     Gel D 15 14 0.93 0.81 

Gel A = Swamps, Gel B= Puddles, Gel C= Cemented pits, Gel D = Burrow pits. Shaded 

cells correspond to habitats colonized by An. gambiae s.l. larvae (cases) 
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Figure 4.7. Box-and-Whisker plot showing median amount and interquartile range 

of the volatiles released (sum of relative amount) by clear controls (<200 NTU), 

clear cases  (<200 NTU) and turbid cases (>200 NTU).  

Principal component analysis of volatile chemicals detected in the three turbidity 

treatments (pooled data from all habitats in a group) revealed that most of the variation 

in the data (82%) was explained by the first two components which were related to the 

turbidity. This analysis suggests a small number of compounds as tentative markers for 

turbid cases (Figure 4.8).  In addition, a number of compounds were common to both 

clear and turbid cases and few that were associated with clear cases. A tentative 

identification of these compounds based on the NIST library is presented in Table 4.4.  
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Figure 4.8. Principal Component Analysis (PCA) biplot describing the chemical 

profile of the three treatment groups. Blue circles highlight chemicals more 

strongly associated with cases whilst red circle highlights chemicals characteristic 

for controls. 

A large number of compounds describe the control habitats in the biplot. Interestingly, 

when comparing the number of control habitats with the number of case habitats that 

released these compounds, only four were found twice as frequently in controls than in 

cases. All other compounds were either equally frequently detected in controls or cases 

or even more frequently in cases. The amount of these chemicals released from control 

habitats was however, on average nine times higher per habitat (1,719,890; 95% CI 

1,177,211-2,262,569) than the amount released from case habitats (196,689; 95% CI 

184,869-208,510).  
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Table 4.4 Tentative compound identifications based on NIST library hits 

Habitat Chemical 

ID 

NIST hit name % 

Quality 

Functional group 

Cases < 200 

NTU 

 

c110 1-Phenyl-1-butene; Benzene, 2-

ethenyl-1,4-dimethyl-; Azulene, 

1,2,3,3a-tetrahydro- 

90 Aromatic/ 

Hydrocarbon 

c118 Benzene, (1-methyl-1-propenyl)-, 

(E)-; 1H-Indene, 2,3-dihydro-4-

methyl-; Benzene, 1-ethenyl-3-

ethyl- 

90 Monoterpenoid, 

cyclic /Aldehyde 

c172 1-Cyclohexene-1-carboxaldehyde, 

2,6,6-trimethyl- 

95 Aromatic 

c457 Pyrene, hexadecahydro-; 5(1H)-

Azulenone, 2,4,6,7,8,8a-hexahydro-

3,8-dimethyl-4-(1-

methylethylidene)-, (8S-cis)- 

70 Aliphatic 

Cases > 200 

NTU 

 

c60 Cyclohexanone, 2,2,6-trimethyl- 

 

92 Ketone, cyclic 

c108 4-Decanone; 

 

27 Aliphatic/ 

Ketone 

c20 Hexanal, 2-ethyl-; 2-Heptanone, 6-

methyl- 

 

68 Aliphatic 

Cases (both 

clear and 

turbid) 

 

c157 2-Decanone 

 

95 Ketone 

c207 Tridecane 

 

95 Aliphatic/ 

Hydrocarbon 

c1 Triethylamine 

 

76 Unidentified 

c36 2,3-Octanedione 

 

25 

 

Unidentified 

4.5 Discussion  

Our study emphasizes the complex interaction between biological, environmental and 

chemical factors in natural aquatic habitats along the shores of Lake Victoria, western 

Kenya, colonized and not colonized by early instar Anopheles larvae. Whilst differences 

between control and case habitats existed, we did not find a defined set of predictors that 

could explain all or at least the majority of cases. High turbidity >200 NTU was the only 

environmental factor that was strongly associated with cases. If a habitat was highly 

turbid, it was a case. Only one third of all case habitats were highly turbid. Clear cases 

were not as easily explained by the variables measured. Nevertheless, some risk factors 

were identified; clear cases were positively associated with higher grass coverage than 

clear controls, and were negatively associated with the abundance of creeping water 

bugs of the family Naucoridae and fish. These predictors though were not as strong as 

high turbidity. Some habitats without grass, containing Naucoridae and fish were still 
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colonized by early instar larvae. There was a marked difference in the zooplankton 

communities between clear controls, clear cases and turbid cases were always associated 

with a higher late instar Anopheles abundance.   

Based on our results we have to reject the hypothesis that natural aquatic habitats 

without Anopheles gambiae s.l. larvae (controls) differ significantly from habitats that 

are well colonized by early instar larvae (cases) in their bacteria communities. We did 

not find any consistent differences between control and case habitats or between clear 

controls, clear cases and turbid cases. Bacteria profiles could not be associated with any 

environmental or biological factors. We have however, some indication that cases and 

control habitats differ in their chemical profile of the water headspace. We identified a 

small set of compounds that were strongly associated with cases, whilst a larger number 

was associated with controls. Compounds characteristic for controls were not more 

frequent in controls but the amount released was nearly an order of magnitude higher in 

controls as in cases.  It was not possible to relate the chemical profiles of habitats to the 

environmental and biological parameters.  

An. arabiensis was the predominant species of An. gambiae complex recorded in the 

main rainy season during this study. Although An. gambiae s.s. and An. arabiensis have 

been historically reported as sympatric species in Rusinga Island (Minakawa et al. 1999) 

An. gambiae s.s. was not detected in the present work. It is likely that similar to other 

places in western Kenya, decline of populations of An. gambiae s.s. is a consequence of 

intense indoor control interventions like ITNs (Bayoh et al. 2010). Furthermore, An. 

arabiensis and An. gambiae s.s. have been shown to share similar breeding habitats in 

the region (Minakawa et al. 1999; Gimnig et al. 2001; Minakawa et al. 2012) thus it is 

expected that both species would use similar oviposition cues to select an aquatic habitat 

to oviposit.  

The potential role of habitat turbidity for oviposition site selection  

Water turbidity results from suspended organic and inorganic particles in the water 

column and, it is defined “as an expression of the optical properties of a sample that 

causes light rays to be scattered and absorbed rather than transmitted in straight lines 

through the samples” (ASTM 2000). Particles such as clay and silt, finely divided 

organic matter, plankton and microorganisms contribute to turbidity (Paaijmans et al. 

2008). Turbidity may affect the diversity and abundance of organisms living in aquatic 

ecosystems in various ways and it is not surprising that it has been positively correlated 
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with presence of Anopheles larvae in the past (Gimnig et al. 2001; Ye-Ebiyo et al. 2003; 

Mala & Irungu 2011). 

It has been proposed that turbidity could influence immature stages of mosquitoes in 

three ways; First, altering their distribution given that turbidity might be used as a visual 

cue for gravid females to located breeding habitats, although this assumption is based in 

the information available about preference of An. gambiae s.s. for highly contrasted 

substrates between clear and dark backgrounds (McCrae 1984; Huang et al. 2007) there 

is not up to date information about how An. gambiae s.l. detect turbidity in the natural 

ecosystems. It can be speculated that turbid habitats can be detected via horizontal 

polarized light emitted from the water source which could reaches its highest point near 

sundown when mosquitoes might initiate flight in search for a breeding habitat (Kriska 

et al. 2009). So far the use of polarotaxis in larval habitat search in the Culicidae family 

has only been reported for the container-breeder mosquito Aedes aegypti. In its case 

however, polarized light was used as an attractive oviposition cue only in the absence of 

semiochemicals. (Bernath, Horvath & Meyer-Rochow 2012).  

Second, a preference for turbid water can be explained as being advantageous for the 

offspring as a higher turbidity may decrease the probability of the larvae to be seen by its 

predators. Evidence for this approach is presented in this study, where turbid and clear 

habitats presented equal density of predators and yet turbid habitat presented double 

density of Anopheles larvae in comparison with clear habitats. In particular, it is argued 

that this mechanism could be important for visual predators like fish for which turbid 

water decreases its predation efficacy (Johannesen, Dunn & Morrell 2014).  

Third, particles that contribute to turbidity may also interfere with larval feeding. In 

principle, high turbidity could prevent light from entering the water column and interfere 

with the growth of photosynthetic organisms i.e. algae and bacteria, affecting the 

availability of food for mosquito larvae; which in turn can slow down the rate of 

development affecting mosquito nutrient acquisition. On the other hand, proliferation of 

algae and bacteria can increase food availability raising the population density of 

mosquitoes (Ye-Ebiyo et al. 2003).  

Strong correlation between oviposition and conspecific late instar abundance 

Presence of late instar Anopheles larvae did not deter gravid females from laying eggs in 

habitats previously colonized by conspecifics as it has been suggested in other studies 

(Koenraadt et al. 2003; Sharma 2012). This observation brings out the question about 
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how larvae can be detected by gravid females and what are the larvae representing for 

gravid mosquitoes. It has been suggested that An. gambiae s.l. larvae could produce 

semiochemicals that are density-dependent. In low densities (< 5 larvae/100 ml) females 

could be attract to oviposit in the same larval habitat but in high densities (>50 

larvae/100 ml) gravid females are repelled (Munga et al. 2006; Sumba et al. 2008). 

Presence of conspecifics could also give indications about the suitability of the habitats 

like the presence of nutrients content, water quality and could be the reason why 

mosquitoes have been reported ovipositing in water from breeding sites previously 

colonized by Anopheles larvae (McCrae 1984; Sumba et al. 2004; Otienoburu et al. 

2007).  

The role of predators in habitat selection – oviposition versus survival and its 

relation to turbidity. Densities of micro invertebrates often reported as predators of 

mosquito larvae (Odonata, Coleoptera larvae and adults, Notonectidae) did not differ 

between habitats colonized and not colonized by An. gambiae s.l. with the exception of 

members of the Naucoridae family that were more abundant in control habitats. This 

could be an indication that gravid An. gambiae did not detect predators when selecting 

an oviposition site. Contrary previous studies have suggested that An. gambiae select 

aquatic habitats with low predation pressure (Munga et al. 2006; Sumba et al. 2008). 

According with our data turbid cases had lower density of predators and higher density 

of late instar larvae in comparison with clear cases with higher density of predators and 

less late instar larvae whilst their average early instar density was exactly the same. 

Thus, we hypothesize that predators play a role in larval survival of An. gambiae s.l. 

rather than in oviposition.  

Creeping water bugs of Naucoridae family were the only micro invertebrate associated 

with the absence of early instar An. gambiae s.l. larvae. Naucoridae are recognized as 

voracious predators in stream tropical ecosystems, and even though mosquito larvae are 

counted between their preys; they can hunt almost any other organisms of minor size. In 

Europe the most common specie IIyocoris cimicoides has a feeding rate of > 20 

mosquito larvae/day while their nymphs can consume as many as 35 larvae of Aedes 

vexans/day (Najera, Gonzalez-Silva & Alonso 2011). Although this insect group seems 

of the major importance in the regulation of other insect population in natural aquatic 

ecosystems little is known about how they might interact with malaria vectors larvae 

(Mbogho 2012). It is possible that An. gambiae s.l. like other species of mosquito had 

developed avoidance for a specific predators (Blaustein, Blaustein & Chase 2005; 
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Silberbush & Blaustein 2008) however, this need to be further explored in more 

controlled environments like microcosm or open field settings. It is clearly important to 

protect predators when controlling immature vector stages in the aquatic habitats since 

predators contribute to the control. However, the exclusive use of predators for 

controlling mosquito larvae is likely not successful as supported by the here presented 

data; even in the presence of a diverse predator community late instar anopheles larvae 

were abundant. 

Bare habitats versus habitats with emergent vegetation/grass – the role of grass in 

clear habitats. Our results shown that there is a positive association between emergent 

vegetation and clear habitats that contained An. gambiae s.l. larvae, however, this 

association disappeared in turbid habitats that also contained early instar larvae. This 

evidence might be an indication that in turbid habitats the vegetation cover is an 

irrelevant cue for oviposition and the other way around. Likely grass and turbidity are 

detected by the gravid females as safety signals. Grass can confer refuge to otherwise 

exposed offspring in clear habitats and turbidity can reduce the probability of the larvae 

to be detected by visual predators like fish. This observation might explain some of the 

contradictory reports about An gambiae s.l. preferring habitats free of vegetation 

(Gimnig et al. 2001; Kenea, Balkew & Gebre-Michael 2011) (many of the turbid 

habitats, highly colonised are free of vegetation) and reports of positive association of 

tufts of grass and Anopheles larvae (Mwangangi et al. 2007; Fillinger et al. 2009b) 

which might always been observed when the habitats sampled contained a large 

proportion of habitats with low turbidity. 

Distinct zooplankton communities in control and case habitats – the role of 

competitors. Controphic species of mosquitoe larvae particularly zooplankton was 

abundant in cases and control habitats and seems not to prevent An. gambiae s.l. 

colonization. Contrary, in the present study gravid females of An. gambiae s.s. preferred 

to lay eggs in aquatic habitats where high densities of members of Moinidae family were 

present. This is a positive association rarely reported for organisms in the same trophic 

level of mosquito larvae. Although there is limited information about this particular 

cladoceran groups in the tropics (WHO 1999) it has been suggested that zooplankton can 

be positively associated with mosquito larvae by consuming bacteria that are pathogenic 

to mosquitoes larvae or reducing predation on mosquito larvae serving as alternative 

prey (Blaustein & Chase 2007). In this study, competitors were not associated with 

negative effects in the population dynamic of early instar larvae. However, it should be 
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noted that the role of competition in transient aquatic habitats could be determined by 

other factors not studied here. It has been hypothesized that in ephemeral aquatic bodies’ 

competition is a function of hydroperiod length suggesting that competition is less likely 

to be important in habitats of short hydroperiod because densities of competitors are 

unlikely to be high and resources are unlikely to be reduced. Whether mosquito larvae 

are benefited or harmed by the presence of the controphic species depends on which 

species is a better competitor for resources and which is more susceptible to predators 

(Blaustein and chase 2007).  

Chemical profile analyses suggest that chemicals might be involved in habitat 

selection but no evidence was found to confirm or reject that these might be 

produced by bacteria. Diverse bacteria communities were identified in all aquatic 

habitat types investigated. No differences between habitats with and without early instar 

Anopheles were however detected. These findings are in agreement with a recent report 

of bacteria communities from domestic water storage containers with and without Ae. 

aegypti in Thailand; where  diversity of bacterial communities did not differ between 

containers and therefore no bacteria group was associated with larvae presence (Tanner 

& de Savigny 2008). These results confirm our previous work suggesting that microbial 

communities from larval habitats are not associated directly with oviposition behaviour 

in An. gambiae s.l. In spite of the highly complex chemical profiles of natural water 

bodies data exploration suggests that some organic chemicals are associated with prolific 

oviposition sites whether turbid or not. Importantly, habitats without larvae were 

characterized by relatively more compounds and maybe more importantly of a higher 

amount of specific volatiles released from controls as compared to the amount of the 

same volatile released from cases. The standardized experiments and field observations 

confirmed that An. gambiae s.l selected oviposition sites through a complex interaction 

of volatiles organic compounds and visual cues. 

4.6 Conclusion  

The relationship between environmental characteristics, biotic and abiotic factors that 

characterize natural oviposition sites of Anopheles gambiae s.l. in Rusinga Island, 

western Kenya are complex. Further studies are required to investigate chemical cues 

released from vibrant larval habitats and their interaction with potential visual cues like 

turbidity investigated. Turbidity and volatile chemicals might be potentially exploited to 

attract and kill gravid females as a novel intervention for vector surveillance and control. 
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Chapter 5 Synthesis 
Understanding the ecology of gravid An. gambiae s.l. is a prerequisite for the 

development of interventions against malaria vectors. Factors that guide gravid females 

foraging for oviposition sites might be manipulated to attract and kill adult mosquitoes 

or used as markers to target prolific larval habitats with larvicides. This study 

investigated whether An. gambiae s.l make informed choices when selecting oviposition 

sites and explored physical, chemical and biological parameters associated with these 

choices. Using dual-choice egg-count bioassays it was demonstrated that gravid An. 

gambiae s.l. discriminate between potential oviposition substrates using volatile 

chemical cues. Field studies revealed intricate mosquito colonization patterns that could 

be partially explained by the turbidity of water bodies. This study could not confirm that 

microbes in general or specific bacteria communities are associated with the selection of 

aquatic habitats by gravid females.  

5.1 Key findings 

5.1.1. Gravid An. gambiae s.l. females select sites to oviposit using volatile organic 

compounds and turbidity 

This study found evidence that gravid An. gambiae s.l. make informed choices when 

selecting an egg-laying site. Firstly, the mosquitoes consistently discriminated between 

contrasting infusions in standardized experiments in the field and laboratory. When 

provided with a choice of rabbit food pellet infusions and lake water the mosquitoes 

avoided the infusion and laid eggs in the lake water. As the pellet infusion aged it 

became increasingly less likely that mosquitoes would lay eggs in it. In contrast to this, 

gravid mosquitoes preferred laying eggs in aging soil infusion instead of lake water. This 

preference for soil infusion did not depend on the visual appearance of the infusions 

demonstrating that volatile organic compounds dominated visual cues within that range. 

The volatile organic compounds that were responsible for the preference and avoidance 

of the organic infusions were not investigated in detail within the scope of this thesis. 

However, this work was continued in collaboration with colleagues in parallel ( (Okal et 

al. 2013) (Appendix B), Okal et al. 2015 under review (Appendix C), Lindh et al 2015 

under review (Appendix D),) and suggests that the avoided chemical cues released from 

the highly organic and decomposing pellet infusion were bacteria metabolites (p-cresol, 

skatol, indol), whilst the only attractive cue to date identified for the soil infusion in 

addition to water vapour (cedrol) is likely plant derived (Okal et al 2014, Okal et al 
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2015, Lindh et al 2015; Appendices C-D). Secondly, the distribution of first instar An. 

gambiae s.l. larvae in the field was non-random. Aquatic water bodies with turbidity 

measures greater than 200 NTU were with over 80% certainty colonized highly by early 

and late instar An. gambiae s.l. larvae. Turbid habitats interestingly released less volatile 

organic compounds than non-turbid habitats although a small set of chemicals associated 

specifically with these habitats were identified and justify further investigation. 

Turbidity is likely a strong visual cue at a longer range than chemical cues that increases 

the probability of a gravid female finding the habitat in the early evening. Visual cues 

aiding the orientation towards a potential habitat have been shown before in cage and 

semi-field settings (Huang et al. 2007; Dugassa et al. 2014). In spite of the highly 

complex chemical profiles of natural water bodies data exploration suggests that some 

organic chemicals are associated with prolific oviposition sites whether turbid or not. 

Importantly, habitats without larvae were characterized by relatively more compounds 

and and maybe more importantly of a higher amount of specific volatiles released from 

controls as compared to the amount of the same volatile released from cases. The 

standardized experiments and field observations confirmed that An. gambiae s.l selected 

oviposition sites through a complex interaction of volatiles organic compounds and 

visual cues. 

5.1.2. The oviposition choices of gravid An. gambiae s.l. are not associated with the 

microbial community of oviposition substrates from vibrant breeding sites  

In contrast to some earlier reports, it could not be confirmed that gravid malaria vectors 

show preferences for soil or water collected from well colonized natural larval habitats 

over distilled water in standardized cage tests. Removing microbes from the natural 

substrates did not alter this response to the two substrates. Thus this work did not add 

evidence to the assumption that oviposition cues used by gravid An. gambiae s.l. to 

select (prefer) a habitat over the other are majorly produced in situ by microbes in the 

habitat. Whilst it cannot be excluded that volatile chemicals were involved in the 

selection of sites and that they might have been produced originally by microbes, the 

removal of microbes did not alter the chemical profile of the substrates to affect 

oviposition.  Natural oviposition sites exhibited a large variability in bacteria 

communities without discernible differences in groups of bacteria between sites with and 

without An. gambiae s.l. larvae. Likewise, there were no differences in bacteria diversity 

between habitat types. There was neither an association between 

biological/environmental factors and bacteria communities nor between the three 

turbidity groups (clear controls, clear cases, turbid cases) and bacteria communities. 
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Therefore while there is sufficient evidence that volatile organic compounds could 

contribute to oviposition site selection in An. gambiae s.l. there is no evidence that these 

are produced by bacteria. Other microbes like algae and fungi were not investigated 

during this field study and their role in natural habitat selection remains unclear, 

however, the sterilizing techniques used in the laboratory experiment removed all 

microbes from the sample and no evidence was found that could justify investigating 

these groups.   

5.1.3. Conspecific late instar larvae, competitors and predators in natural aquatic 

habitats do not prevent gravid An. gambiae s.l. from laying eggs in these habitats 

In the present study clear and turbid habitats colonized by early instar An. gambiae s.l. 

were significantly associated with high abundance of late instar An. gambiae s.l. High 

late instars in habitats selected for oviposition seems to be an indication of increased 

survival in these habitats probably related with other habitat characteristics like quality 

of the water and nutrient content that gravid females may perceive when looking for a 

site to lay eggs. The association between conspecific larvae and oviposition has been 

controversially discussed in published work. On the one hand some hypothesize that 

gravid females avoid oviposition in habitats with abundant late instars due to the risk of 

competition and the early instars being eaten by late instars (Koenraadt et al. 2003; 

Munga et al. 2006; Sharma 2012). On the other hand, it has been speculated that 

conspecific larvae produce semiochemicals (Sumba et al. 2008) to guide gravid females 

to the oviposition sites. This study clearly demonstrates that early and late instar are 

strongly associated in natural habitats providing evidence that gravid Anopheles gambiae 

s.l. do not avoid laying eggs when large numbers of conspecifics are present. This might 

warrant further investigations if late instar larvae produce semiochemicals or if the 

observation is associated with better survival in these habitats. Zooplankton 

communities regarded as competitors of mosquito larvae (Blaustein & Chase 2007) are 

plentiful in habitats with and without early instar An. gambiae s.l. larvae and there is a 

strong indication that certain taxonomic groups are associated with habitats where 

mosquito larvae are present. Gravid An. gambiae s.l. preferred to lay eggs in aquatic 

habitats with high densities of members of the Moinidae family. This is a positive 

association rarely reported for organisms in the same trophic level of mosquito larvae. 

Although there is limited information about this particular cladoceran group in the 

tropics it has been suggested that zooplankton can be positively associated with larvae 

by consuming bacteria that are pathogenic to mosquito larvae or reducing predation 

pressure when serving as alternative prey (Blaustein & Chase 2007). Nevertheless, none 
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of these hypotheses have been tested in An. gambiae s.l.. To my knowledge this is the 

first study where zooplankton from transient fresh water ecosystems was identified and 

related to the abundance of mosquito larvae in Kenya. The data does not suggest that 

zooplankton organisms compete with Anopheles larvae and therefore reduce larval 

abundance or oviposition and therefore does not present a viable option for malaria 

vector control as suggested by some; at least not in the naturally occurring densities.  

Densities of micro-invertebrates often reported as predators of mosquitoes larvae 

(Odonata, Coleoptera larvae and adults, Notonectidae) did not differ between habitats 

colonized and not colonized by early instar An. gambiae s.l. indicating that gravid 

females did not detect and respond to predation risk when selecting a natural oviposition 

site. The only family of predators that might warrant further investigation are the 

Naucoridae. Members of this family were significantly more abundant in habitats 

without larvae. If this has to do with the detection and avoidance of these voracious 

predators by gravid females or whether the absence of Naucoridae from the cases has to 

do with other underlying habitat characteristics needs still to be proven - Based on the 

data, it is much more likely that predators played a role in larval survival than in 

oviposition site selection; this is supported by the relation between densities of late instar 

larvae and predators. Turbid cases with few predators had two fold more late instar An. 

gambiae s.l. than clear cases with a higher density of predators whilst their average early 

instar density was exactly the same. Predation is a vital interaction in the regulation of 

population dynamics and community structure in any ecosystem and mosquito larval 

habitats are no exception (Blaustein 1999).  

5.2 Limitation of the study 

This study demonstrates that volatile organic chemicals and turbidity are involved in the 

regulation of the oviposition site choices of An. gambiae s.l., however, by no means 

should it be concluded that these are the only cues involved in oviposition site selection. 

The presented work has generated the first extensive insight into the oviposition site 

selection of Anopheles gambiae s.l. and highlighted a large number of open questions 

still to be investigated and also the limitations of the work that was carried out. 

The findings for this study are valid for the geographical area where this research was 

implemented. The extent to which such findings can be generalized needs to be further 

explored. There is indication from a recent study that cues for oviposition in An. 

gambiae s.l. could vary between geographical locations (Ogbunugafor & Sumba 2008). 
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For this reason, it is important to implement oviposition studies in different 

environments with dissimilar topography and climate. The evidence of this study, 

though rigorously gathered, must be interpreted with caution when describing 

oviposition in geographically separated populations of An. gambiae s.l.. 

For lack of a direct way of estimating the oviposition rate of An. gambiae s.l. in the field, 

early instar larvae in natural habitats were used as a proxy for oviposition preferences 

and therefore aquatic water bodies were classified as case or control depending on 

presence or absence of these immature stages. Larvae first appear in breeding sites when 

eggs eclose two to three days after oviposition. Natural water bodies in the tropics are 

complex and dynamic environments changing quickly over time. Therefore, it cannot be 

excluded that the bacteria communities and chemical profiles experienced by the gravid 

female whilst laying eggs were not exactly the same as those collected and analysed at 

the day of early instar sampling.  

Furthermore, the presence of larvae is also a function of other factors including the hatch 

rate of eggs or the relative survival of larvae. Nonetheless, until a direct method of 

detecting actual oviposition in natural ecosystems is found, first-instar larvae remains the 

most direct indicator for this behaviour. In order to analyse the chemical headspace and 

bacteria communities exactly on the day when oviposition occurs it would be necessary 

to revisit the aquatic habitat on a daily basis and collect samples and information on 

colonisation. This would be extremely difficult, time consuming and costly for 

investigating oviposition behaviour under field conditions however might be explored 

under more standardized conditions with artificial ponds to generate more insight on the 

speed and extend of change over time.  

The approach taken to contrast and identify bacteria communities and volatile chemicals 

in natural An. gambiae s.l. larval habitats was very challenging with currently available 

tools. The complexity of the chemical profiles of natural water bodies necessitates the 

collection of a large numbers of samples in order to detect general patterns. 

Unfortunately, comparing mass spectral results from these samples can only be done 

manually and resulted in an extremely difficult and time consuming task; one that could 

be conceivably permeated with human error. However, given that this is a pioneer study 

in the identification of chemical headspace from natural aquatic habitats the results 

obtained here are valuable and can serve as a starting point for future work. The bacteria 

communities were analysed using DGGE, a method that could be implemented without 

highly specialized equipment and could therefore be done in a research field station. 
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Furthermore, this method allows for bands of OTUs in the gel to be cut and to be 

identified if any of the OTUs would have been of specific interest. However, this 

technique is especially sensitive to human expertise in the process of gel making and 

consequently the reproducibility of results is a difficult endeavour (Nocker, Burr & 

Camper 2007). Most importantly, comparisons of bacteria communities could only be 

made for habitats loaded on the same gel but not inbetween gels. It was therefore not 

possible to implement an analyses with all data included. However, the sub-set analyses 

did not provide any evidence that would suggest that an analysis of the entire data set 

would have resulted in any significant associations.  

5.3. Future work  

A large number of new research questions resulted from the here presented findings that 

might be worth perusing for the development of new vector control strategies targeting 

the gravid malaria vectors and the most preferred larval habitats.  

The soil infusion tested in chapter 2 was found to be preferred by gravid females for 

oviposition, however, it is important to screen other soil samples to see if the observed 

response is a response common for all soil infusions prepared under standard conditions 

or, which is more likely, if there are significant differences depending on the source and 

characteristics of the soil.  

No evidence was found that bacteria communities were associated with habitat selection 

in the field. When investigating the oviposition response to highly decomposed organic 

matter presented by rabbit food pellets it is highly likely that the chemical cues that led 

to the avoidance of this substrate were indeed produced by bacteria. The question arises 

if bacteria produced volatiles might only be involved in avoidance of habitats (which 

might also be supported by the field observation, that controls released the same volatile 

compounds as cases but frequently in a much larger amount) but not in preferential 

selection of habitats. Furthermore, it would be necessary to explore other microbial 

groups like algae and fungi, in addition to vegetation present in the aquatic habitats in 

order to detect the potential source of attractive semiochemicals for egg-laying.  

The high probability of wild An. gambiae s.l. mosquitoes laying eggs in turbid habitats 

suggests that mosquitoes use turbidity as a visual cue. Thus there would be value in 

studying this in a standardize way evaluating how mosquitoes detect turbidity. There is 

strong evidence that water insects orientate to a given polarized light field and that one 
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of the highest points where polarized light can be detected is at dusk precisely the time 

of the day were mosquitoes are foraging for an oviposition site (Bernath, Gal & Horvath 

2004; Bernath, Horvath & Meyer-Rochow 2012). Studies evaluating the responses of 

An. gambiae s.l. to polarized light emitted from turbid substrates and its relation with 

oviposition would aid a better understanding of the cues used by gravid females and 

therefore pave the way for the development of novel sampling techniques. Most 

importantly, it is important to study how visual and chemical cues interact under natural 

conditions in order to design effective attract and kill strategies. 

 

The relationship between the absence of Anopheles gambiae s.l. larvae and the presence 

of Naucoridae in natural aquatic habitats noticed in this study requires further 

examination to investigate if the predators can be detected by the gravid female and 

deter her from egg-laying. Furthermore, the role of turbidity in predation success needs 

further investigation. Do predatory micro-invertebrates avoid colonizing highly turbid 

habitats due to reduced visibility in the water column and does this protect the vector’s 

offspring?   

 

Biological and environmental factors in a given habitat change over time and likely 

affect the oviposition behaviour in time. A longitudinal study following a small group of 

aquatic habitats across the rainy season on Rusinga Island could be used to confirm the 

observations from the case control study and further elucidate if habitat preferences 

change over time or are strongly associated with specific habitats throughout. 
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5.4 General conclusions 

It has been widely acknowledged that current vector control interventions in sub-

Saharan Africa are insufficient to achieve malaria elimination since residual 

transmission will be maintained by exophilic and insecticide resistant vectors. In order to 

target malaria vectors outdoors a better understanding of their outdoor behaviour is 

needed. This thesis presents pioneering work investigating the oviposition site selection 

in Anopheles gambiae sensu lato, the major malaria vector in sub-Saharan Africa under 

controlled conditions and in field settings in Western Kenya to identify if this vector 

species selects habitats based on specific cues and to explore if such cues can be 

identified and used to improve larval source management practices and to develop novel 

strategies for monitoring and control of gravid females.  

 

Results from experimental laboratory and semi-field studies and from observational field 

studies provided evidence that a gravid An. gambiae s.l. female selects a suitable habitat 

for oviposition using chemical cues from water bodies. It was shown that natural 

infusions can be used to manipulate the oviposition behaviour of An. gambiae s.l.. Soil 

infusions have the potential to be used to bait gravid traps for the collection of An. 

gambiae s.l. ((Herrera-Varela et al. 2014)/ Appendix A), although further work must be 

implemented to elucidate whether the observed preference was based on the specific soil 

type tested or whether similar responses can be achieved with any soil. In contrast, 

infusions routinely used in gravid traps for the monitoring of Culex and Aedes disease 

vectors, i.e., fermented hay infusions, rabbit food pellet (Lewis 1974; Lampman & 

Novak 1996; Jackson et al. 2005b), were strongly avoided by An. gambiae s.l.  

 

Wild and caged An. gambiae s.l. females discriminate between potential aquatic habitats 

for oviposition based on habitat characteristics and experimental laboratory tests as well 

as the observational case-control study in the field confirmed that these choices benefit 

the survival of the offspring. Experience during the larval stage (rearing water 

characteristics) did not influence the adult’s choice of oviposition substrate. 

 

It was demonstrated that the choice of habitat is mediated by chemical cues based on 

both preference and avoidance. Based on this ground-breaking work, some chemical 

cues have been consequently been identified (Appendix C) as semiochemicals of 

oviposition. It was shown that the soil infusion contained at least one attractant that 

mediated the oviposition response of gravid females over several metres (Appendix D). 
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Whilst further work is required, this work lays the foundation for the developed of 

‘push-pull’ or ‘attract and kill’ strategies to improve malaria vector monitoring and 

control. 

 

Previous reports that substrates containing microbes from vibrant larval habitats are 

preferred over the same substrates when sterilized were not confirmed. Elimination of 

live microorganisms from soil and water collected from a natural larval habitat does not 

necessarily influence the oviposition choices of gravid vectors. No evidence was found 

that volatiles produced in situ by these microbes are involved in the oviposition choice. 

Nevertheless, volatile profiles of oviposition substrates can be modified by sterilization 

and it was shown that substrates without any volatile headspace were avoided supporting 

the conclusion from the soil infusion experiments that volatile chemicals play a role in 

habitat selection. These findings were confirmed by the field study and based on these 

results it cannot be recommended to continue to invest in investigations of bacteria 

communities associated with preferred malaria vector habitats (but possibly with those 

that are avoided). Fungi and algae might be a potential source of attractive chemical 

cues, although the experimental work sterilizing substrates did not provide any evidence 

for that. Based on the results it is concluded, that rather than studying the microbial 

community, more time and effort should be invested in the chemical analyses of the 

headspaces of preferred habitats and infusions to identify individual chemical 

compounds and blends that could be used in traps. 

 

The relationship between environmental characteristics, biotic and abiotic factors that 

characterize natural oviposition sites of Anopheles gambiae on the shores of Lake 

Victoria in western Kenya are intricate. The only factor that allowed prediction of a case 

with high probability was turbidity of the habitat >200 NTU. Whilst risk factors 

associated with selection and avoidance of habitats in the field were found, these were 

insufficient to guide larval source management operations targeting only habitats 

selected by gravid females. There might however be value in exploring experimentally 

or with a mathematical modelling approach what impact on malaria transmission might 

be achieved if only turbid habitats would be targeted for larval control since these 

habitats supported the highest survival of the immature stages and might therefore be the 

most productive sources of malaria vectors. The role of turbidity is likely visual and if 

further explored might provide an additional cue to be integrated in novel trapping 
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strategies combining chemical and visual cues to attract and kill malaria vectors in an 

integrated vector management approach.  
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 19 

Abstract 20 

 21 
Background: Insight into the oviposition behaviour of malaria vectors in Africa could lead to 22 
strategies that target gravid mosquitoes for monitoring and control. However, cues that guide 23 

gravid females to these sites are not well understood. This study aimed to develop a bioassay 24 
system that can be used to analyse chemical attraction of gravid Anopheles gambiae sensu 25 

stricto. 26 

Methods: BG-Sentinel™ mosquito traps that utilize convection currents to release odorants were 27 
modified to contain aqueous substrates. Two-choice tests were implemented within an 80 m2 28 
screened semi-field system where 200 gravid females were released per experimental night. 29 

Choices tested were (1) distilled versus distilled water (baseline) and (2) distilled water versus 30 
soil infusion. To study the effect of salting-out of volatile chemicals from the aqueous solutions, 31 

we also implemented tests with 150g/l NaCl added.  32 

Results: When both traps contained distilled water, 45% (95% confidence interval (CI) 33 – 33 
57%) of all released mosquitoes were trapped. The proportion increased to 84% (95% CI 73 – 34 

91%) when traps contained soil infusions. In choice tests, a gravid female was twice as likely to 35 
be trapped in the test trap with soil infusion as in the trap with distilled water (odds ratio (OR) 36 
1.8, 95% CI 1.3 – 2.6). Furthermore, the attraction of gravid females towards the test trap with 37 

infusion more than tripled (OR 3.4, 95% CI 2.4 – 4.8) when salt was added to the substrates.  38 
 

Conclusion: Minor modifications of the BG-Sentinel™ mosquito traps turned it into a powerful bioassay 

tool for evaluating the orientation of gravid mosquitoes to putative oviposition substrates using olfaction. 

We provide evidence that gravid An. gambiae s.s. are attracted to and can be baited with odorants and water 

vapour over several meters.  
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Introduction 

Malaria still causes considerable human morbidity and mortality in spite of concerted control efforts that 
have resulted in its steady decline in the last decade [1]. Effective interventions need to be scaled up [2] and 
new approaches added to the armamentarium for controlling the disease and its vectors [3,4]. The two front-

line interventions for controlling malaria vectors in Africa, long-lasting insecticidal nets (LLINs) and indoor 
residual spraying (IRS), have exploited the indoor resting and host-seeking behaviour and the susceptibility 

of vectors to insecticides. These led to a major reduction of 29% in malaria cases worldwide [2] justifying 
efforts to scale up LLINs and IRS. However, because of the growing problem of insecticide resistance 
[5,6,7], changing vector behaviour [4,8,9,10] and increasing importance of outdoor-biting vector populations 

[4] the effectiveness of these may be compromised and additional strategies required.  
 

Mass trapping of gravid mosquitoes using synthetic attractant baits offers an exciting possibility for an eco-
friendly, sustainable complementary strategy for monitoring and controlling disease vectors. Such strategies 
target mosquitoes that rest and bite both indoors and outdoors irrespective of their state of insecticide 

resistance. Extensive behavioural and chemical ecology studies on host-seeking members of the Anopheles 
gambiae species complex (including Anopheles gambiae sensu stricto (s.s.) and Anopheles arabiensis) 

which are the primary vectors of malaria in sub-Saharan Africa, have led to considerable progress towards 
identification of odorants from skin emanations of humans and other primary blood meal hosts [11,12] and 
host plants [13]. These volatiles have been incorporated into baits and tested in traps [13,14]. In contrast, 

very little is known about the cues that gravid females of these species use to find and orientate towards an 
aquatic habitat to lay their eggs. Whilst a range of physical and chemical cues associated with the aquatic 

habitat have been suggested [15,16,17,18,19] empirical evidence is scarce and restricted to cage and 
electrophysiological studies not least due to the lack of appropriate bioassay tools.  
Malaria vectors bite human hosts for vertebrate blood that they require for ovarian development. The 

malaria parasite (Plasmodium sp.) inadvertently imbibed with a blood meal will require at least eight days to 

complete the sexual stage within the mosquito [20,21]. In theory, this period is punctuated by two or more 

oviposition cycles; a period when gravid mosquitoes look for suitable breeding sites, lay eggs and 

recommence the search for new hosts to bite for blood [22]. Targeting gravid vectors while they forage for 

aquatic habitats for their offspring would thus conceivably provide an effective approach to prevent the 

ultimate infective bites of parous mosquitoes and reduce overall vector population densities. Relevant 

oviposition cues that malaria vectors use to detect, find and evaluate potential breeding sites could be 

identified and 
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exploited in various attract and kill strategies by luring them either into traps or to insecticides 1 
[23].  2 

Laboratory evidence shows that gravid females of the An. gambiae complex discriminate 3 
between different oviposition substrates. They are able to detect substrates with different levels 4 

of moisture and relative humidity [24,25] and the presence or absence of bacteria [15,26,27]. A 5 
recent study demonstrated that at short-range gravid An. gambiae s.s. can avoid or select 6 
substrates using olfactory cues [28]. In another comparable laboratory study one synthetic 7 

odorant, 2-propylphenol was shown to increase the egg- laying rate of An. gambiae s.s. in cage 8 
tests [29]. However, to the best of our knowledge there is no published evidence to date that 9 

gravid females of the An. gambiae  complex orient towards a suitable aquatic habitat over a 10 
distance of several metres using attractant chemical cues.    11 
 12 

The aim of the present study was to developed a simple bioassay for measuring olfactory 13 
orientation of gravid  An. gambiae s.s. in the semi-field and evaluated the response of gravid 14 

mosquitoes to soil infusions previously described [28] to increase the egg- laying rate of these 15 
species in small experimental cages.  16 
 17 

Materials and methods 18 

 19 

Study site 20 

The study was done between March 2013 and February 2014 (time of sunset between 18.30 h 21 
and 19.00 h) at the International Centre of Insect Physiology and Ecology, Thomas Odhiambo 22 

Campus (icipe – TOC) at Mbita on the shores of Lake Victoria in western Kenya (0° 26’ 06.19” 23 
S, 34° 12’ 5313” E; altitude 1,137 m above sea label). This area is characterised by a tropical 24 
climate with temperatures ranging between a mean minimum of 16°C and a mean maximum of 25 

28°C and two rainy seasons each year between March and June and October and December.  26 
 27 

Mosquito preparation 28 

The Mbita strain of An. gambiae s.s. reared at the icipe -TOC mosquito insectaries was used for 29 
all experiments. Temperature and relative humidity in the insectary varied between 25–28°C and 30 

68–75%. About 300 female mosquitoes held in a 30×30×30 cm netting cage with an equal 31 
number of males of a similar age were provided with two blood-meals on two consecutive nights 32 
from a human arm. Mosquitoes were starved for six hours before the blood-meal, which was 33 

offered for 15 min at 19:00 h. Mosquitoes that remained unfed after the first blood meal were 34 
removed from the cage. A piece of cotton (50×25 cm) saturated with distilled water and 35 

positioned on top of the cage ensured that mosquitoes remained hydrated throughout oogenesis. 36 
Mosquitoes were left unattended for two days after the second blood meal except for changing 37 
the 6% glucose solution provided as energy source and saturating the cotton on the cage with 38 

water twice a day. Gravid mosquitoes were selected through visual inspection on the third day. 39 
Females were presumed gravid when they had an opaque and pale distended abdomen.  40 

 41 
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Two-choice experiments  1 

Two-choice experiments were implemented under semi-field conditions (i.e. ambient 2 

temperature, humidity, light conditions) in a large netting-screened (black fibreglass gauze 3 
1.7x1.5 mm) structure; 6.8 m wide and 10.8 m long (semi-field system; Figure 1). A netting 4 
ceiling was stretched across the cage 2.4 m above the ground (176.3 m3). The floor was covered 5 

with sand to a depth of 50 cm. The rectangular floor plan of the semi-field system provided for 6 
four possible trap positions. Each position was arbitrarily set in each corner 1.4 m from the 7 

nearest adjoining walls (Figure 1). Sites along the shorter walls that received approximately the 8 
same proportion of mosquitoes in preliminary tests (data not shown) were paired up (site 2 + 3 9 
and site 1 + 4; Figure 1). The pair and the position of the control (trap A) and test treatment (trap 10 

B) were randomly assigned for every night of an experiment. Two hundred gravid An. gambiae 11 
s.s. mosquitoes were released into the semi-field system at 17:30 h near the opposite shorter wall 12 

of the greenhouse, 9 m away from the two traps. Previous cage experiments [25] showed that the 13 
local mosquito strain has its peak oviposition time early in the evening before 21:30 h. To assess 14 
the proportion of gravid females that respond within this period the trapping chambers of the 15 

traps were changed at 21:30 h and the second pair retrieved at 08:00 h. This allowed tallying of 16 
the number of mosquitoes that were trapped with each treatment before 21:30 h and between 17 

21:30 – 08:00 h. Each experiment was carried out on 12 nights based on previous sample size 18 
considerations [30] so that trap A and B were in each possible location three times. With this 19 
sample size an increment of 20% in the trap rate could be detected with 80% power at the 5% 20 

significance level. 21 
 22 

Modification of the Biogents (BG)-Sentinel™ mosquito trap into a 23 

gravid mosquito trap  24 

We chose to modify and test the commercially available BG-Sentinel™ mosquito trap (Biogents, 25 

Regensburg, Germany). This is an odour-baited trap that was originally designed for mass 26 
trapping of host-seeking virus vectors like Aedes aegypti and Aedes albopictus using a chemical 27 
lure based on human body emanations [31,32]. One of the advantages of the trap is its size 28 

‘which is large enough to incorporate additional attractants such as fragrant substances, small 29 
living animals, worn clothing, animal hairs, light and heat sources ’ [33]. The trap consists of a 30 

collapsible, white fabric container with white gauze covering its opening. The trap is 36 cm in 31 
diameter and 40 cm high. In the middle of the gauze cover air is sucked into the trap through a 32 
black catch pipe by an electrical fan placed at its end. This draws approaching mosquitoes into a 33 

catch bag. Consequently, the air exits the trap through the gauze, generating ascending currents. 34 
The aim here was to include attractive oviposition media in the trap and to evaluate its catching 35 

efficiency under semi-field conditions. All oviposition sites of Anopheles mosquitoes are aquatic 36 
(or at least water saturated) and recent wind tunnel experiments suggested that water vapour is an 37 
important oviposition attractant for gravid An. gambiae s.s. [25]. Consequently, the BG-Sentinel 38 

was modified to hold 4 L of aqueous test substrates by inserting a tightly-fitting black plastic 39 
bucket (Pride, Mombasa, Kenya) 34 cm high and 30 cm inner diameter into the white fabric 40 

container. Since An. gambiae s.s. mosquitoes rarely oviposit in container-type habitats, the entire 41 
trap was dug into the ground leaving only 1 cm of it above ground (Figure 2).  42 
 43 
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Assessing the catching efficacy of the modified BG-Sentinel gravid 1 

mosquito trap 2 

To evaluate if and how effectively gravid An. gambiae s.s. are attracted to oviposition substrates 3 
contained in the traps and to generate a baseline for comparison, an experiment was carried out 4 

where mosquitoes were presented with two traps with identical substrates. Both traps (trap A and 5 
B) were filled with 4 L of distilled water (Buyimpex Agencies LTD, Kenya), with the position of 6 
the traps allocated randomly. 7 

 8 

Analysing the response of gravid Anopheles gambiae s.s. to 6-day old 9 

soil infusions 10 

Recently, a positive oviposition response of gravid An. gambiae s.s. to a six-day old soil infusion 11 
made from water mixed with soil taken from a natural breeding site located at icipe-TOC was 12 

demonstrated in cage egg-count experiments and chemical cues suggested as the reason for this 13 
response [28]. However, egg-count experiments do not provide information on the nature of 14 
these chemical cues, which could either be volatile and attract mosquitoes from a distance or 15 

could be less volatile and act as contact stimulants [26,34]. Here, the same soil was used to 16 
prepare infusions in the same way as before [28] and tested with the BG-Sentinel gravid 17 

mosquito trap. The silty clay loam top soil was dug from the same location as described by 18 
Herrera-Varela et al. [28] within the icipe-TOC compound and sun-dried for 24 hours. Three 19 
litres of dry soil were thoroughly mixed with 15 L of distilled water in a 20 L plastic tub and left 20 

undisturbed at ambient conditions, but protected from rain for six days except for daily water 21 
top-up to compensate for loss through evaporation. Throughout the six days the tub was covered 22 

with mosquito netting. Just before the experiments the infusion was filtered through a cotton 23 
cloth to remove large soil particles and small debris. Exactly four litres of the soil infusion were 24 
compared to an equal volume of distilled water in choice experiments in the semi-field system. 25 

Fresh batches of infusions and distilled water were used for every experimental night.  26 
 27 

Testing of the impact of salting-out of volatile chemicals from 28 

infusions on gravid female attraction to traps  29 

Laboratory studies have shown that the addition of inorganic salts to aquaous solutions can lead 30 

to a higher release of volatile organic compounds into the headspace of the solution, an effect 31 

that is known as salting-out [35,36,37,38,39,40,41]. For instance, Mozuraitis et al. [42] showed 32 

that the amount of volatiles detected in the headspace from oestrous urine of mares increased 33 

eight times when the urine sample was saturated with salt compared to samples without salt.  34 

Here we aimed at testing whether we could increase the attractiveness of the soil infusion by 35 

adding sodium chloride (NaCl).  Following published data on salt concentrations [42], we 36 

implemented a preliminary experiment were we slowly added 45g of NaCl to 300 ml of soil 37 

infusion (150g/L) in a glass beaker and stirred to dissolve at room temperature. At this 38 

concentration small amounts of undissolved salt were observed to settle at the bottom o f the 39 

beaker. Hence, for choice experiments, we added 150 g NaCl per litre of the test substrates (600 40 
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g/4 L) and stirred to dissolve 10 - 20 min before the onset of experiments at 17:30 h. Two 1 
experiments were implemented. First, choice tests were done with distilled water versus soil 2 

infusion, both with NaCl. Second, the attractiveness of soil infusion without NaCl was tested 3 
against soil infusion with NaCl.  4 

 5 

Data analysis 6 

Data were analysed with generalised linear models with a binomial distribution and logit link 7 

function fitted to compare the probability of gravid An. gambiae s.s. being (1) collected in the 8 
test trap (trap B) compared with the total caught in both traps (trap A + trap B) to show substrate 9 
preference; (2) collected in both traps out of the mosquitoes released (response rate); and (3) 10 

collected in both traps before 21.30 h out of the mosquitoes collected during the night (early 11 
responders). The underlying hypothesis of a choice bioassay is that when two equal choices are 12 

presented the response towards these choices is similar with odds of success of 1:1 (baseline or 13 
control). We expect that if an oviposition cue is presented that is either preferred or avoided by 14 
gravid females we will see a statistically significant diversion from the baseline. Consequently, 15 

the assay with two equal treatments served as reference. Initially, the trap location and the pair 16 
(wall) were included as fixed factors in the model to test for main effects and interactions. Since 17 

there were no significant associations with the outcome, these variables were excluded from the 18 
final models. The mean proportions of mosquitoes trapped in each treatment and their 19 
corresponding 95% confidence intervals (CI) were calculated as the exponential of the parameter 20 

estimates for models with no intercept included. Data analyses were done with R statistical 21 
software version 3.00 with various functions contributed from the packages MASS, effects, 22 

epicalc, multcomp, lme4, gee, aod [43]. 23 

 24 

Ethics statement 25 

Ethical approval for this study was obtained from the Kenya Medical Research Institute’s Ethical 26 
Review Committee (Protocol no. 422).  27 
 28 

Results 29 

 30 

The modified BG-Sentinel gravid mosquito trap is an effective tool 31 

for analysing oviposition attraction of malaria vectors under semi-32 

field conditions 33 

When two traps baited with distilled water were provided in choice tests, 45% of the released 34 
mosquitoes were recovered. Importantly, trap A and B caught equal proportions of the 35 

mosquitoes, which validates the experimental design. Only about one third of all mosquitoes 36 
were trapped before 21:30 h (Figure 3, Table 1). 37 
 38 
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Soil infusions contain odorants that attract gravid Anopheles 1 

gambiae s.s. 2 

Gravid mosquitoes were twice as likely to be trapped in BG-sentinel gravid mosquito traps when 3 
the test trap (trap B) contained soil infusion as when the test trap contained distilled water in the 4 

bioassays with two equal choices. Moreover, adding NaCl increased the attractiveness of the 5 
infusion; females were 3.5 times more likely to choose the infusion than distilled water. In direct 6 
comparisons of soil infusion with NaCl to soil infusions without NaCl, gravid females were 7 

nearly two times more likely to be collected in the trap containing the infusion with salt (Figure 8 
3, Table 1). 9 

 10 

The presence of attractive odorants in the semi-field system 11 

increases the response rate of gravid Anopheles gambiae s.s. 12 

When salt-saturated infusions were present in one of the traps it was 3.7-6.8 times more likely 13 
for a mosquito to respond and be collected in either trap than when only distilled water was 14 
presented in both traps (Figure 3, Table 1).   15 

 16 

Odorant cues from soil infusions prompt early oviposition site 17 

seeking in Anopheles gambiae s.s.  18 

The presence of soil- infusion odorants doubled the proportion of mosquitoes that responded 19 
before 21.30 h (Figure 3, Table 1). 20 

 21 

Discussion 22 

 23 
Minor modifications of the commercially available BG-Sentinel mosquito trap turned this trap 24 

into a powerful bioassay tool for evaluating the orientation of gravid mosquitoes to putative 25 
oviposition substrates using olfaction. The modified traps excluded any possible contact stimuli 26 
or visual cues (e.g. light reflections from water) from the test substrates and showed a strong 27 

discrimination effect enabling the detection of small differences (≥20%) in the proportion of 28 
gravid mosquitoes attracted to one of two competing substrates (odorant blends). The BG-29 

Sentinel mosquito trap is simple to set up and allows for rapid replacement of collection bags 30 
making it possible to evaluate the response of gravid mosquitoes at different periods during the 31 
night. 32 

With this system we provide the first evidence that gravid females of the major malaria vector 33 

An. gambiae s.s. can use attractive odorant cues over at least nine metres to locate and choose 34 

between potential oviposition sites. Many studies have suggested the involvement of chemical 35 

cues in the selection of breeding sites [15,16,26,28]. However, all of these studies were egg-36 

count bioassays done in small cages (30×30×30 cm) with gravid mosquitoes released directly 37 

over test substrates. Consequently, none of the studies were able to prove attraction or describe 38 

an attractant defined as cues that draws insects towards substrates [44,45], or discount  39 
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stimulation. We show that odorants from the soil infusions reported by Herrera-Varela et al. [28] 1 
attract gravid An. gambiae s.s.. Furthermore, our results show that oviposition attraction to 2 

odorant chemicals is affected by the strengths of the cue, as shown from the salting-out 3 
experiments. This observation is important if one wanted to use odour-baited traps for the 4 

surveillance or control of gravid mosquitoes since  this suggests that olfactory cues can be 5 
manipulated to attract and mass trap gravid malaria vectors.  6 
 7 

This study confirms earlier laboratory findings that gravid An. gambiae s.s.  use water vapour to 8 
locate breeding sites [25]. Previous studies were done in small, closed laboratory systems, free of 9 

external odorants with standardized water vapour and artificial moisture gradients [24,25]. With 10 
the bioassay, where both traps contained distilled water only, we provide evidence that malaria 11 
vectors use water vapour to orientate to substrates in more natural and fairly complex chemical 12 

spaces over larger distances. It is likely that water vapour is a general selective cue, but provides 13 
no information about the quality of the habitat which might be the reason for the observed slow 14 

and low response of gravid females. In the complex chemical space of natural ecosystems it is 15 
unlikely that a species with such a highly developed olfactory apparatus should evolve to employ 16 
water vapour as the major cue for selecting favourable water bodies. Water vapour and moisture 17 

most likely indicate the presence of water bodies while chemical odorants enable mosquitoes to 18 
assess the suitability of this potential niche.  19 

 20 
Based on our findings we hypothesise that the soil infusions we tested contained at least one 21 
odorant that prompted habitat searching in gravid An. gambiae s.s.. The odorant bouquet of soil 22 

infusions evidently compelled passive gravid An. gambiae s.s. mosquitoes to fly towards the 23 
potential oviposition sites, especially when the infusions were saturated with salt. This was in 24 

contrast to the response when only distilled water was provided. A similar response has been 25 
shown for host-seeking mosquitoes when exposed to carbon dioxide which triggers long-range 26 
directed host seeking flight in otherwise inactive females of the An. gambiae complex [46]. In 27 

nature such an odorant or collection of odorants would shorten the period for foraging for 28 
suitable aquatic sites by gravid mosquitoes. Gravid mosquitoes would use less energy and reduce 29 

the risk for mortality that is likely associated with prolonged habitat search and altogether 30 
improve the odds for successful breeding. 31 
 32 

This is the first study to exploit the principle of salting-out volatile chemicals to demonstrate the 33 

potential use of NaCl in behavioural bioassays to manipulate the odour profile of organic 34 

infusions. We show that adding NaCl to soil infusions increased the attraction of gravid An. 35 

gambiae s.s. to soil infusions two-fold and the response rate three-fold. This adds proof that An. 36 

gambiae s.s. respond to chemical cues in soil infusion. Whilst it can not be excluded that the 37 

addition of salt affected the microbial organisms in the soil infusion and therefore changed the 38 

chemical composition of the volatile headspace, the increase in attractiveness of the already 39 

highly attractive soil infusion suggests that it is more likely that the addition of salt led to an 40 

increased release of already present attractive odours. Numerous studies using a wide range of 41 

inorganic salts have shown that these increase the concentration of volatile organic compounds 42 

(VOC) in the headspace above the salt containing solution [35,36,37,38,39,40,41,42]. The 43 

presence of salt decreases the solubility of the VOCs which are pushed into the headspace. This 44  
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effect is commonly known as the salting-out effect and can be quantified by the Setschenow 1 
constant [39,47] which most frequently is positive (salting-out) but can also be negative (salting-2 

in) [48,49]. In preliminary studies (Lindh JM, personal communication) aimed at optimizing the 3 
collection of volatiles in the headspace above water from mosquito breeding sites, which should 4 

be similar in chemical composition to the soil infusion studied here, addition of NaCl increased 5 
the amount detected of the majority of the compounds and pushed many previously undetected 6 
organic compounds above the detection limit. This theoretically represents an inexpensive 7 

advancement of harnessing NaCl saturated natural infusions to produce relatively inexpensive 8 
baits for gravid malaria mosquitoes for use in gravid traps. However, at very high concentrations, 9 

NaCl will corrode and quickly destroy metallic parts in the traps. More work might be useful to 10 
evaluate if smaller amounts of NaCl can still improve the odour plume and reduce the damage on 11 
the traps. 12 

 13 
The high efficiency of BG-Sentinel gravid mosquito traps baited with NaCl saturated soil 14 

infusions in collecting gravid An. gambiae s.s. suggests their potential use in the field as an 15 
odour-baited gravid trap. The trap does not damage specimens, making it ideal for sampling wild 16 
mosquito populations in studies that require intact specimens or requires mosquitoes to be 17 

captured alive. The trap has been the subject of many explorative evaluations with host-seeking 18 
mosquitoes [50,51] proving its versatility and effectiveness. This study now shows that with only 19 

small modifications it has potential for collecting gravid mosquitoes too. If it can be exploited in 20 
ecological studies or in vector control programmes needs to be evaluated in the field.  21 
 22 

Conclusion 23 

In summary we  (1) describe an efficient bioassay tool and potential new odour-baited trap for 24 

gravid females of the An. gambiae species complex; (2)  provide evidence for the strong 25 
involvement of olfaction in the location and selection of potential breeding sites by An. gambiae 26 

s.s.; and  (3) describe the compulsive response of gravid females to attractive chemical cues. 27 
Research needs now to be invested in analysing the volatile chemical headspace of the attractive 28 
soil infusion to identify attractant semiochemicals for oviposition in An. gambiae s.s..  29 
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Figure legends 1 
 2 

Figure 1: Semi-field system (A) and schematic diagram of trap and release sites (B). Trap 3 
positions are shown in circles and mosquito release points in triangles. Colour codes show 4 

corresponding trap positions and mosquito release points.  5 
 6 
Figure 2: Modification and set-up of BG-Sentinel trap. (A) Interior showing bucket for 7 

holding aqueous solutions, (B) Complete trap (C) Cross-section of modified Biogents (BG)-8 
Sentinel gravid mosquito trap.  9 

 10 
Figure 3: Explanatory data analyses of oviposition response of Anopheles gambiae sensu 11 
stricto to test substrates. Box-and-whisker plots indicating the median value by the central 12 

horizontal line and the lower and upper quartiles by corresponding ends of the box. The whiskers 13 
show the range of the data. Dots show outlying values. (A) Proportion of females responding to 14 

the test substrate (INF =soil infusion, INFsalt=soil infusion with NaCl) compared to distilled 15 
water controls (DW=distilled water, DWsalt=distilled water with NaCl) in choice tests; (B) 16 
Response rate of the females released (N=200); (C) Response of mosquitoes before 21:30h out of 17 

the females trapped per night. 18 
 19 

Table1: Oviposition response of gravid Anopheles gambiae sensu stricto to substrates in 20 
two-choice tests. Generalized linear model outputs.  21 
 22 

Oviposition substrates 

Control (trap A) 

 

Test (trap B) 

Mean proportion 

(95% CI)  
Odds ratio  

(95% CI) 
p-value 

Proportion of gravid females trapped in test (trap B) in two choice experiments of the females trapped 

Distilled water Distilled water 0.50 (0.43 – 0.57) 1  
Distilled water  Infusion 0.64 (0.58 – 0.70) 1.8 (1.3 – 2.6)   0.004 
Distilled water + NaCl  Infusion + NaCl  0.77 (0.72 – 0.81) 3.4 (2.4 – 4.8) <0.001 
Infusion  Infusion+ NaCl  0.67 (0.60 – 0.69) 1.8 (1.3 – 2.5)   0.001 

Response rate of released gravid females during experiments with different substrate combinations 

Distilled-Distilled 0.45 (0.33 – 0.57) 1  
Distilled-Infusion 0.51 (0.39 – 0.63) 1.3 (0.6 – 2.5) 0.438 
Distilled+NaCl – Infusion+NaCl 0.74 (0.63 – 0.84) 3.7 (1.8 – 7.5) <0.001 
Infusion - Infusion+NaCl 0.84 (0.73 – 0.91) 6.8 (3.1 – 15.0) <0.001 

Response of gravid females before 21:30 h of the females trapped during the night (early responders) 

Distilled-Distilled 0.36 (0.28 – 0.45) 1  
Distilled-Infusion 0.56 (0.46 – 0.67) 1.59 (1.11 – 2.29) 0.003 
Distilled+NaCl – Infusion+NaCl 0.66 (0.58 – 0.74) 1.92 (1.38 – 2.68) <0.001 
Infusion - Infusion+NaCl 0.64 (0.54 – 0.73) 1.76 (1.29 – 2.44) 0.001 

 23 

 24 
 25 
 26 
 27 
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Figure 1. 2 
 3 

 4 
Figure 2. 5 
 6 



 

174 

 

 1 
 2 
Figure 3. 3  
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Appendix D.  

Lindh et al. 2015 Article submitted to PNAS 
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