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Vector-borne diseases (VBDs) such as malaria, dengue,
and leishmaniasis cause a high level of morbidity and
mortality. Although vector control tools can play a major
role in controlling and eliminating these diseases, in
many cases the evidence base for assessing the efficacy
of vector control interventions is limited or not available.
Studies assessing the efficacy of vector control interven-
tions are often poorly conducted, which limits the return
on investment of research funding. Here we outline the
principal design features of Phase III vector control field
studies, highlight major failings and strengths of pub-
lished studies, and provide guidance on improving the
design and conduct of vector control studies. We hope
that this critical assessment will increase the impetus for
more carefully considered and rigorous design of vector
control studies.

Evidence-based policy making on vector control
VBDs such as malaria, dengue, and leishmaniasis are
responsible for considerable morbidity and mortality and
fall disproportionately on the poorest communities in the
developing world [1–4]. One of the key methods by which
VBDs can be controlled and eliminated is through vector
control [5–10]; for example, long-lasting insecticidal nets
(LLINs) for malaria or indoor residual spraying (IRS) for
Chagas disease.

Development of vector control interventions follows a
multistage process [11] (Figure 1). First, a draft target
product profile should be generated. This document guides
the development process by outlining the features and
performance targets of the intended vector control tool.
The next step is demonstrating the proof of concept by

conducting Phase I studies (laboratory assays to determine
the mode of action) and Phase II (semi-field and small-scale
field) studies, which generally have entomological end
points. Large-scale Phase III field studies (efficacy studies)
(see Glossary) are then conducted, which measure the
efficacy of the vector control tool against epidemiological
outcomes when implemented under optimal conditions.

Based on the results of Phase III trials, the World
Health Organization (WHO) will make recommendations
for pilot implementation. These Phase IV studies will
assess the effectiveness of the vector control tool when it
is delivered and used operationally (i.e., under ‘real-world’
conditions), as well as collecting information on feasibility,
distribution mechanisms, acceptability, economics, and
safety. Information gathered from the Phase III and IV
studies will enable the WHO to draw up policy recommen-
dations and, in parallel, member states will develop coun-
try-level policy.

Evidence-based policy making on vector control tools is
now regarded as essential and is adopted by the WHO
[12,13] (Box 1). The quality of evidence on vector control
interventions from epidemiological trials or systematic
reviews needs to be rated before recommendations and
policy can be formulated. Since 2008, the WHO has
adopted the Grading of Recommendations Assessment,
Development, and Evaluation (GRADE) methodology for
evaluating evidence for policy and guideline recommenda-
tions [14,15]. According to the GRADE methodology, an
initial rating is given based on the study design. Random-
ised controlled trials (RCTs) are rated as high-quality
evidence and non-RCTs as low quality. Studies are then
up- or downgraded based on several factors. RCTs can be
downgraded depending on risk of bias, inconsistency, indi-
rectness, imprecision, or publication bias. Non-RCTs can
be upgraded based on the effect size observed, dose re-
sponse, or plausible residual confounding. The final score
generated can range from high (i.e., further research is
very unlikely to change our confidence in the estimate of
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effect) to very low (i.e., very uncertain about the estimate of
effect).

While vector control interventions are the backbone of
many disease control programmes, the evidence support-
ing their use remains weak. Based on our experience
systematically reviewing the literature [16–20], we have
identified repeated problems with vector control studies.
To advance evidence-based policy making, the quality of
evidence on vector control interventions – specifically the

Glossary (adapted from [24,88–90], http://www.
cochrane-handbook.org)

Allocation concealment: refers to keeping the investigator unaware of to which

group (i.e., treatment or control) an individual or cluster is assigned. Selection

bias can be introduced if the investigator or participant can foresee the

assignment (e.g., use of alternation or rotation, assignment envelopes not

sealed, not opaque, or not sequentially numbered).

Attrition bias: refers to systematic differences between those individuals or

communities that withdraw from the study or those that are lost to follow up

versus those that continue in the study.

Blinding: a procedure used in trials in which participants/investigators/outcome

assessors do not know to which group the individual or cluster has been

assigned. Single blind refers to either the participant or investigator/outcome

assessor being blinded, while double blind refers to both the participant and the

investigator/outcome assessor being blinded.

Case-control study: a study in which a group of people with the disease of

interest (cases) and a group of people without the disease (controls), but

representing the population from which the cases originated, are identified.

The prevalence of the exposure of interest (e.g., use of protective intervention) is

compared between these two groups.

Cluster randomisation: a study in which clusters are randomly assigned to

either control or intervention groups. Clusters can be geographical areas (e.g.,

sectors of a large city), communities (e.g., villages), administrative units (e.g.,

district, region), institutions (e.g., schools), health facilities, or households.

Cohort study: a study in which two groups of disease-free people are identified –

exposed (using a protective intervention) and unexposed (not using a protective

intervention). The groups are then followed over a period of time for the

outcome of interest (usually disease or infection). In this study type, the people

are not allocated to the intervention of interest.

Confounding bias: according to Porta, ‘confounding occurs when all or part of

the apparent association between the exposure and the outcome is in fact

accounted for by other variables that affect the outcome and are not themselves

affected by exposure’ [90]. A variable that is on the causal pathway between the

exposure and the outcome is not a confounder. Confounding bias refers to ‘bias

of the estimated effect of an exposure on an outcome due to the presence of

common causes of the exposure and the outcome’ according to Porta [90]. This

is a common type of bias in observational studies and nonrandomised trials. For

example, in an observational study of the association between house screening

and malaria incidence, the relationship is likely to be confounded by socioeco-

nomic status since people in superior houses that use screening are likely to be

of higher socioeconomic status, who may, for example, have greater access to

other protective measures against malaria such as LLINs.

Malaria  incidenceHouse  screening

Socio-economic status
(conf ounder)

Control group: a group of study participants that receive no intervention, a

placebo, or the standard of care depending on the study design and thereby

serve as a comparison group when the intervention results are evaluated.

Controlled before-and-after study (CBA): also known as a pre–post study. A

study in which observations are made before and after implementation of an

intervention in both the intervention group and a control group that does not

receive the intervention.

Courtesy bias: a tendency for study participants to give favourable answers out

of courtesy to the investigator (e.g., incorrect reporting of high compliance with

an intervention).

Crossover study: a study in which individuals/clusters receive the intervention

or control for a period of time before switching to receive control or intervention.

There is usually a washout period in-between to avoid carry-over effects.

Cross-sectional study: in an analytical cross-sectional study, information is

collected at one point in time on the prevalence of the outcome of interest

(e.g., disease, infection) and the exposure (e.g., use of a protective intervention).

Detection bias: refers to systematic differences between groups in how out-

comes are determined. For example, clinicians assessing patients may be more

or less likely to diagnose a particular disease if they know that a person received

a protective intervention in the study. Detection bias can be reduced by ensuring

that investigators and outcome assessors are not aware of which intervention

participants have received.

Effectiveness study: these studies estimate the effect of an intervention under

pragmatic or ‘real-life’ conditions (e.g., intervention delivery under routine

conditions so that the relevance of the findings for policy and practice is

maximised).

Effect size: the magnitude of difference between treatment and control groups

(e.g., risk or rate ratio, percentage reduction in prevalence).

Efficacy trial: these studies estimate the effect of an intervention under highly

controlled conditions (e.g., maximal coverage of the target population and

adherence to the intervention).

Experimental study: a study design in which we allocate exposure to study

subjects and observe the outcome.

Interrupted time series (ITS): a study in which the outcome is measured on

several occasions both before and following introduction of an intervention (the

‘interruption’). This allows us to see whether an intervention has had an impact

greater than any underlying trend in the data. This study design may or may not

include a parallel control group.

Observational study: a study design in which we observe the effect of the

exposure on the study subjects but no role is played in assigning the exposure to

the participants.

Performance bias: according to Porta, refers to ‘systematic differences in the

care provided to members of the different study groups other than the inter-

vention under investigation’ [90]. For example, if participants know they are in

the control group of a trial of repellents, they may be more likely to use other

forms of vector control, such as protective clothing. Alternatively, health-care

providers may care for patients differently if they are aware of which study

group they are in. Performance bias can be reduced by blinding to ensure that

participants, health-care providers, and researchers are unaware of which

intervention participants have received, although this is not always possible.

Randomisation: individuals or clusters are allocated to intervention and control

using a random method. Randomisation comprises two interrelated steps,

sequence generation and allocation concealment (not to be confused with

blinding).

Randomised controlled trial (RCT): individuals or clusters (cluster-randomised

controlled trial) are randomly allocated to receive either intervention or control.

Intervention and control groups are then followed up for the outcome of

interest.

Recall bias: refers to systematic differences between groups in the recall of

information regarding exposures. It is a particular problem in case-control

studies where surveys are used to gather information on past exposures.

Selection bias: refers to ‘bias in the estimated association or effect of an

exposure on an outcome that arises from the procedures used to select

individuals into the study or the analysis’, according to Porta [90]. Often,

selection bias refers to systematic differences between the characteristics of

the study population and those of other populations and thus there is a lack of

generalisability. Nonrandomised studies are particularly susceptible to selec-

tion bias, although randomised studies can suffer from selection bias if rando-

misation procedures are not followed correctly. Selection bias can also be

introduced into observational studies. For example, in case-control studies

selection bias is introduced if cases are selected that are not representative

of all cases within the population or controls are selected that are not represen-

tative of the population that produced the cases.

Sequence generation: a method of generating an allocation sequence. The

method can be nonrandom (e.g., odd or even date of birth, investigator

preference) or random (e.g., random number generator, drawing lots, coin

tossing).

Step–wedge design: studies in which the intervention is rolled out to clusters in

a staged fashion. At the end of the study, all clusters will have received the

intervention. The order in which clusters receive the intervention is usually

determined at random.

Stratification/stratified randomisation: a technique used to ensure that equal

numbers of individuals or clusters with a characteristic thought to affect

response to the vector control intervention (e.g., baseline incidence) will be

allocated to each study arm. Multiple clusters are grouped to form strata based

on a characteristic (e.g., low versus high incidence of disease) and clusters are

randomly allocated within the strata such that equal numbers are assigned to

intervention and control. Within each strata more than one cluster is assigned to

an arm.

Systematic review: according to Porta, a systematic review is ‘a review of the

scientific evidence which applies strategies that limit bias in the assembly,

critical appraisal, and synthesis of all relevant studies on the specific topic’

[90]. The Cochrane Collaboration produces ‘gold-standard’ systematic reviews

that are conducted in a highly rigorous fashion.

Time series: a study in which the outcome is measured on several occasions

following the introduction of an intervention. This study design generally has a

parallel control group, but may not be randomised.
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design, conduct, analysis, and reporting of vector control
studies – needs to be improved. The problem of waste in
research has recently been highlighted in a series in The
Lancet that calls for better design, conduct, analysis, and
reporting of studies [21,22]. Here we respond to The Lan-
cet’s demand to reduce waste in research by highlighting

the essence of good study design for evaluating the efficacy
of vector control interventions. Given the importance of
study design and risk of bias to the GRADE assessment of
quality of evidence, we first provide a primer on study
designs and bias to illustrate the hierarchy of experimental
designs for estimating intervention efficacy. Second, we
review common failings of vector control efficacy studies in
terms of their design and conduct and suggest how these
studies can be improved.

General considerations on study designs for vector
control studies
The methodological quality of study designs varies such
that some are better than others in being able to answer
the question ‘Does the intervention work?’ or ‘Does this
intervention work better than that intervention?’ [23]. In
Figure 2 we provide a hierarchy of study designs for
evaluating the efficacy of vector control interventions –
ranking studies as level 1, 2a, or 2b according to their
methodological quality – and list nonrecommended stud-
ies. We accept that different study types may be better for
answering other questions, such as the acceptability of the
intervention [23].

RCTs are generally considered the ‘gold-standard’ study
design for evaluating the efficacy of a protective interven-
tion since they have a low risk of selection bias [24] (http://
www.cochrane-handbook.org), which is arguably the most
important type of bias in experimental studies. Such is the
importance of randomisation that we consider RCTs as
level 1 evidence. If the number of randomisation units is
sufficiently large, randomisation will ensure that, in a two-
armed study, any factors that may affect an outcome are
similar in the two arms [24]. Even if one randomises, it is
good practice to check that the baseline characteristics of
the groups are similar to verify whether the randomisation
was successful [25]. If there is no random allocation of
intervention and control communities, potential bias can
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Figure 1. Stages in development of a new vector control product. The first step in the development of a new vector control product is to define the target product profile

(TPP), including target efficacy characteristics, safety, and cost. Laboratory assays are then conducted to establish the mode of action (MoA) of the product followed by

Phase II studies (semi-field and small-scale field trials) to determine the efficacy of the product against entomological outcomes. Phase III field trials to assess the efficacy of

the intervention against epidemiological outcomes are then conducted and, based on the results of these trials, the World Health Organization (WHO; http://www.who.int/

neglected_diseases/vector_ecology/VCAG_resources/en/) will make recommendations for pilot implementation. Phase IV pilot implementation studies assess the

effectiveness of the vector control tool when it is used under ‘real-world’ conditions and collect information on feasibility, distribution mechanisms, acceptability, cost, cost-

effectiveness, and safety. On the basis of Phase III and Phase IV studies, the WHO develops broad WHO public health policy on which many member states base country-

level policy. Adapted from [11].

Box 1. Current policy-making process at the WHO [13]

[Vector Control Advisory Group (VCAG) Operational

Procedures (http://www.who.int/neglected_diseases/

vector_ecology/VCAG_resources/en/)]

The WHO has in its mandate to set, communicate, and promote the

adoption of evidence-based norms, standards, policies, and guide-

lines. It is important that this process is streamlined because many

countries rely on WHO recommendations to develop their own

policy. Two WHO departments are responsible for the main vector-

borne diseases: the Global Malaria Programme (GMP) and the

Department of Control of Neglected Tropical Diseases (NTDs),

which covers other VBDs including dengue, Chagas disease,

leishmaniasis, human African trypanosomiasis, onchocerciasis,

and lymphatic filariasis. Both departments have advisory commit-

tees that provide independent strategic advice and technical input

for the development of WHO policy recommendations [i.e., the

Malaria Policy Advisory Committee (MPAC) and the Strategic and

Technical Advisory Group (STAG) of the Department of Control of

NTDs]. These advisory committees are guided by standing technical

expert groups and/or ad hoc evidence review groups that are

responsible for reviewing studies on specific issues and making

evidence-based recommendations. New or innovative vector con-

trol paradigms are assessed by the WHO VCAG. This group was

established in 2013 to guide the development of new vector control

paradigms that have the potential for use as public health

interventions. The VCAG can be consulted by innovators for advice

on developing early-stage vector control paradigms and assesses

proof of concept of new vector control technologies. Once satisfied

that proof of principle has been established and field trials have

satisfactorily demonstrated the efficacy of new forms of vector

control, the VCAG makes recommendations to the MPAC and STAG

on whether WHO guidelines should be formulated regarding the

deployment of the new paradigm for public health use.
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be reduced by adjusting for pre-intervention differences in
the two groups using multivariate analysis (e.g., [26]).
There is, however, no guarantee that this will fully control
for confounders that may be unknown or unmeasured.

In vector control studies, the intervention is often allo-
cated to a group of individuals known as a cluster (e.g.,
district, village, household) rather than at the individual
level. There are several reasons why cluster allocation is
common [24]. First, many vector control tools are, by their
nature, applied to groups of people or communities. For
example, spatial repellent may be allocated to a household
or an environmental sanitation intervention against den-
gue may be allocated at the community level. Second,
cluster allocation can help reduce contamination between
study arms that might occur if individuals within the same
community received different interventions; for example,
sharing of insect repellent with family members within the
same household or village. Last, cluster allocation means
that we are able to assess the community-level effect of the
intervention. For example, mass killing of mosquitoes
coming into contact with LLINs can reduce transmission
so that indirect protection is provided to individuals not
using LLINs.

There are numerous other study design types, including
controlled before-and-after (CBA) studies, controlled time
series, controlled interrupted time series (ITS), crossover
studies, and step–wedge designs (Figure 3), that may be
more suitable for evaluating the efficacy of some vector

control tools. For example, time series or ITS are probably
more appropriate for studies of human African trypanoso-
miasis in which vectors are highly mobile and control
efforts need to be implemented over large areas
[27]. Step–wedge studies involve rolling out the interven-
tion to clusters in a staged fashion. This design is often
used where logistical, practical, or financial constraints
make the staged roll out of the intervention desirable. We
classify randomised CBA, randomised time series, ran-
domised ITS, and randomised step–wedge studies as level
1 and nonrandomised CBA, nonrandomised ITS, and non-
randomised step–wedge studies as level 2a. We do not
recommend the use of nonrandomised controlled trials
or nonrandomised time series designs since selection bias
is likely to be high and there are no pre-intervention data to
assess the comparability of groups.

Observational studies such as case-control, cohort, or
cross-sectional studies (Figure 4) have been used to gener-
ate evidence of the efficacy of vector control interventions.
However, these designs provide weaker evidence than
experimental (randomised) designs since they can be sub-
ject to bias (e.g., recall bias, detection bias, confounding).
For this reason we have ranked these studies as level 2b.

We also do not recommend the use of studies without a
control group or those using a noncontemporaneous control
group. This is because longitudinal changes, such as rain-
fall, may impact epidemiological outcomes and can exag-
gerate or mask an intervention effect.
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Figure 2. Hierarchy of study designs for assessing the efficacy of vector control interventions. Study designs for assessing the efficacy of vector control interventions can be

ranked according to their methodological quality. Randomised controlled trials (RCTs) (level 1) are the ‘gold-standard’ study design for evaluating the efficacy of vector

control interventions. Randomisation reduces the risk of selection bias by ensuring that control and intervention groups are similar to each other. Level 1 studies include

cluster or individually randomised controlled trials as well as randomised crossover, randomised step–wedge, randomised controlled before-and-after, randomised

controlled time series, and randomised controlled interrupted time series studies. Nonrandomised trials (including nonrandomised crossover, nonrandomised step–wedge,

nonrandomised controlled before-and-after, and nonrandomised controlled interrupted time series studies) are at a higher risk of bias and so are ranked lower (level 2a).

Observational studies, such as case-control, cohort, and cross-sectional studies (level 2b), provide weaker evidence on the efficacy of protective interventions than

experimental designs since they can be subject to bias due to confounding factors and flaws in measuring exposures and outcomes. Nonrandomised controlled trials,

nonrandomised controlled time series designs, and studies without a control group or using a noncontemporaneous control group are not recommended. Adapted from an

Australian Government National Health and Medical Research Council 2009 document on additional levels of evidence and grades for recommendations for developers of

guidelines (http://www.nhmrc.gov.au/guidelines-publications/information-guideline-developers/resources-guideline-developers) and the Oxford Centre for Evidence-Based

Medicine 2011 Levels of Evidence (http://www.cebm.net/index.aspx?o=5653). GRADE (Grading of Recommendations Assessment, Development, and Evaluation) levels

defined as in [14].
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Common failings of vector control studies and
recommendations
Here we describe common problems with the design of
vector control studies illustrated with examples and make
recommendations for improvements.

Implementation and adherence to the intervention

In efficacy trials, vector control interventions should ide-
ally be implemented in an optimal manner with attention
to quality control, high coverage, and user compliance.

Unless these parameters are measured, it is impossible
to know whether an observed lack of effect is due to low
quality, coverage, and/or compliance or lack of efficacy of
the vector control method.

Quality control checks should be put in place to ensure
that vector control interventions such as IRS are imple-
mented optimally (e.g., correct application of insecticides,
coverage of all assigned structures). This can be achieved
through accurate record keeping, random spot checks, and
supervision [28,29].
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Figure 3. Schematic illustrating design of controlled before-and-after, controlled time series, controlled interrupted time series, crossover, and step–wedge studies.

Controlled before-and-after studies involve collecting data on outcome measures before and after implementation of the intervention in the intervention group and at the

same time points in the control group. In controlled time series studies, data on outcome measures are collected at several time points once the intervention has been

implemented in the intervention group and at the same time points in the control group. Controlled interrupted time series studies involve collecting data on outcome

measures at several time points before and after implementation of the intervention in the intervention group and at the same time points in the control group. In crossover

studies, two groups are allocated (usually randomly) to control or intervention and outcome measures are assessed once the intervention has been implemented. Following

a suitable washout period, the intervention and control are switched around and outcome measures are assessed again. In a step–wedge study, the intervention is rolled

out randomly to clusters in a staged fashion so that by the end of the study all clusters will have received the intervention. Adapted from [32].
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Adherence to the intervention being tested is very
important. Efficacy studies usually employ specific tech-
niques (e.g., behaviour change communication) to encour-
age optimal uptake and use of the intervention where user
compliance is required (e.g., [30]). Adherence to the inter-
vention should be measured while taking into account that
there is also the potential for introduction of bias here (e.g.,
courtesy bias). In some cases, innovative methods need to
be identified to assess compliance. For example, a RCT of
topical repellents against malaria measured compliance
through self-reporting of use, the proportion of lotion used
estimated from returned bottles, and ‘sniff checks’ where-
by trial staff visited villages at dusk and smelled the arms
of participants to check whether lotion had been applied
[31].

Choice and measurement of outcome measures

Epidemiological outcomes are necessary to demonstrate
the efficacy of the intervention in protecting human popu-
lations and to ensure the relevance of these studies to
public health. To date, however, many Phase III studies
often focus exclusively on entomological outcomes, which
are generally useful only for demonstrating proof of con-
cept or as a secondary outcome in support of an epidemio-
logical primary outcome. For example, a Cochrane
systematic review on larvivorous fish for malaria control
did not identify any studies with epidemiological outcomes
[32]. The best epidemiological measure is the incidence of
clinical disease or disease-specific mortality, but for some
diseases, such as dengue, seroincidence (seroconversion in
sequential blood draws) and the prevalence of infection in
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Figure 4. Schematic illustrating design of observational studies for vector control interventions. In an analytical cross-sectional study, a cross-sectional survey is taken from

a representative sample of a population. The survey gathers information on outcomes (e.g., disease/infection) and exposure to the intervention from individuals at the same

time so the sample can be split into four groups: those with the disease who were exposed to the intervention; those without the disease who were exposed to the

intervention; those with the disease who were not exposed to the intervention; and those without the disease who were not exposed to the intervention. In a cohort study, a

sample of the population is chosen that is free of disease. Individuals without the disease are split into two groups (those exposed to the intervention and those not exposed

to the intervention) and are followed up over time to determine how many develop the disease or infection. In a case-control study, individuals are selected on the basis of

their disease or infection status. A group of individuals with the disease or infection (cases) and a group without the disease/infection (controls) are selected. The prevalence

of exposure to the intervention is then compared between the cases and controls.
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single blood draws, including age-specific antibody preva-
lence, can be good substitutes [30,33]. Studies should use
WHO-recommended case definitions with parasitological
diagnosis, or serological or molecular verification [34–38]
to allow comparison of data between studies. Outcome
measures such as self-reported malaria as used by Kroeger
et al. in a study of repellent soap [39] are unreliable.

Detection bias can be reduced by blinding outcome
assessors to the identity of study arms and by the use of
objective and well-standardised epidemiological and ento-
mological outcomes. The latter should particularly be used
in nonblinded studies.

Entomological data should be collected in a standar-
dised fashion across study arms and sites and over time.
Ideally these sampling tools should be automated (e.g.,
CDC light trap, sticky trap, other trap or target) and not
depend on the ability of the fieldworker to collect speci-
mens (e.g., human landing catches, aspiration of resting
adults, larval surveys). Several other techniques can help
avoid introduction of bias in the measurement of entomo-
logical outcomes, including separating the field teams that
are implementing and monitoring the intervention (e.g.,
[40]).

Entomological end points are not always good predictors
of epidemiological outcomes. For example, a RCT of LLINs
for visceral leishmaniasis reported a reduction in sandfly
density in homes but did not show any effect on infection in
study participants [41,42]. The authors postulated that
transmission was also occurring outside the home and
so, although there was a reduction in indoor sandfly den-
sity, this did not reduce disease burden. Where possible, it
is preferable to use entomological outcomes that relate to
disease transmission, such as entomological inoculation
rate, rather than measures that do not, such as vector
density.

Traditional indicators of immature Aedes abundance,
such as house index (percentage of houses with larvae and/
or pupae), are a poor indication of adult production [43]
(http://apps.who.int/iris/handle/10665/68575). Pupal de-
mographic surveys (pupae per person/area index) or mea-
surement of adult vector density are likely to be more
appropriate for assessing transmission risk and directing
control operations [44,45] (https://extranet.who.int/iris/
restricted/handle/10665/69354, http://apps.who.int/iris/
handle/10665/68575). However, both measures are far
more labour intensive than larval surveys and so may
not be feasible for routine monitoring of vector populations
[35]. Because, unlike infections caused by protozoa and
nematodes, dengue virus infection results in sterilising
immunity, pupal and adult surveys are not consistently
informative about dengue risk without an understanding
of the underlying susceptibility of the human population to
dengue virus [46–48].

Avoiding performance bias

Blinding of trial participants, health-care providers, and
researchers to the intervention received by participants
can reduce performance bias. However, blinding of vector
control studies is often impossible. For example, it was not
possible to blind study participants in a RCT assessing the
efficacy of house screening versus no house screening

against malaria [49]. The study found that children living
in screened homes were less likely to use bed nets than
children residing in homes that were unscreened, which
may reflect a belief among householders that screening
was a substitute for bed nets. However, the effect of
performance bias in this study was minimised because
bed net use was carefully recorded and its effect could
be adjusted for in the statistical analysis. Alternatively, an
originally blinded study may become unblinded during the
study. For example, some participants in a RCT of topical
repellents became aware that the placebo lotion they were
allocated was not providing protection against mosquito
bites, which led to the withdrawal of all households in one
village [31]. This kind of participant response can lead to
introduction of attrition bias.

Selection of sites for entomological monitoring

Sampling sites for entomological surveys are often chosen
purposely based on where high vector densities are likely;
for example, sites close to suspected larval habitats or
houses with unplastered walls or wood construction for
Triatoma surveys [50–52]. However, this does not measure
average community exposure to infection and there is
potential for the introduction of sampling bias if sites
are not selected in a consistent way across intervention
and control arms. We therefore recommend that sampling
sites for entomological surveys be selected randomly. It is
also possible to separate the sampling frame into strata
and sample from each stratum independently, if there is
likely to be substantial variation within subpopulations.
For example, Joshi et al. stratified dwellings into two
groups (houses occupied by humans alone and houses
occupied by humans and animals) before using simple
random sampling to select dwellings in which to measure
sandfly density [53].

Contamination or spillover effects

Contamination or spillover effects between different study
arms due to the movement of vectors [54,55] or humans
between clusters can make interpretation of study findings
difficult. Spillover that has a conservative effect (i.e., it
biases results towards the null) can occur through one of
two routes. First, community-level effects of the interven-
tion can reduce the transmission intensity in neighbouring
control clusters, as occurred in a study of insecticide-trea-
ted water-jar covers and window curtains against dengue
in Mexico and Venezuela [56]. Second, movement of people
between intervention and control clusters (and vice versa)
is also able to dilute the intervention effect because a
person’s risk of infection is proportional to the amount of
time he or she spends in versus out of the treatment area. If
the protective effect of an intervention or the sample size of
the study is sufficiently large, a positive result can still be
demonstrated in a superiority trial, albeit with reduced
intervention effect. However, a negative finding of ‘no
difference’ in such a trial is harder to interpret and a
critical question arises. Is the lack of effect due to spillover
or due to the absence of efficacy of the new intervention?

A more serious problem arises if the spillover effect is
anticonservative, because it exaggerates the difference in
outcomes between the intervention and control arms of the
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study. For example, topical repellents or house structural
changes that have no killing effect on mosquitoes may
divert vectors to nonusers in the control arm of the study,
putting them at higher risk of infection than they would
otherwise have been [57,58].

Hayes and Moulton [24] outline several methods for
reducing contamination, including ensuring clusters are
well separated, using a buffer zone so there is no common
boundary between intervention and control clusters, as
shown in a larval source management study conducted
in Tanzania [59], or a ‘fried-egg’ design where the inter-
vention and control are administered throughout the clus-
ter but only the central portion is used for outcome
measurement [60]. When designing these types of studies
it is, therefore, important to have an estimate of how far
the vector is likely to fly in seeking a blood meal or a
breeding site. Georeferences of cases that constitute the
outcome measure should be recorded to show whether
there were edge effects due to contamination. This tech-
nique has been used to estimate the size of area-wide
effects in studies of LLINs for malaria control [61]. Unin-
tended consequences of topical repellents can be avoided by
randomising only a relatively low proportion of individuals
or households in a village to receive the intervention
[31,62,63]. Tackling the problem of human movement in
dengue studies is more difficult because Aedes aegypti
feeds during the day when people are engaged in their
daily activities. Potential strategies to avoid this would be
to use larger cluster areas or monitor epidemiological
outcomes in a sentinel cohort that is less mobile (e.g.,
young children) [64]. Even if these steps are taken it is a
good idea to collect travel histories from study participants,
particularly if the intervention is located in a household. In
this way, participants can be excluded from the per-proto-
col study analysis if they have travelled for significant
periods of time and, therefore, spent a relatively brief time
being exposed to the intervention (e.g., [65]).

Contamination can also be a problem in crossover trials
if the washout period is insufficient. While crossover trials
may be suitable where the washout period is short (e.g.,
larvicide with a short half-life [66]), they should be used
with caution where interventions are persistent (e.g., DDT,
habitat manipulation).

Need for sample size calculations

Sample size calculations are performed before conducting a
study to quantify the power that the study has to show an
effect of the intervention and thereby answer the study
question (Box 2). The effect of a small sample size is on the
standard error of the outcome measure; that is, it will lead
to large confidence intervals around the estimated effect
and hence poor precision. The sample size needs to be large
enough to ensure that the probability of a type II error
is reasonably small, generally 10% (= 90% power) or 20%
(= 80% power). Sample size calculations should be per-
formed for all study outcomes, whether epidemiological or
entomological. We identified several studies that did not
report conducting sample size calculations for epidemio-
logical and/or entomological (e.g., [67–71]) outcomes, in-
cluding several studies that failed to show an effect of the
intervention [72,73], indicating that the lack of an effect

may simply be due to the study being underpowered.
Parameters required for sample size calculations such
as the prevalence or incidence of the outcome in the control
group or the coefficient of variation may not be readily
available [30], although the former can be estimated from
a survey conducted before the study’s start if it is not
known.

Vector control trials generally use a cluster design.
Since outcomes measured in individuals or sampling sites
within the same cluster are likely to be more similar than
those between clusters, the sample size calculation needs
to take this into account and a larger sample size is
required than when a nonclustered design is used (Box
2). Hayes and Moulton recommend the use of six clusters
per arm as an absolute minimum and it is generally better
for cluster-randomised trials to have a higher number of
smaller clusters than fewer large clusters [24]. We identi-
fied a large number of published vector control trials that
used two villages [74,75] or two areas [76,77], one in which
the intervention was introduced and the other acting as a
control. This is a poor design because the use of only two
clusters means that the intervention effect is completely
confounded by study site and effectively constitutes a
sample size of one [78,79].

Box 2. Power and sample size calculations [91–93]

When conducting a study there are two hypotheses that need to be

considered: the null hypothesis (there is no difference between the

two interventions) and the alternative hypothesis (there is a

difference between the two interventions or, more commonly for

superiority trials, the novel intervention is more protective than

standard practice). When testing a hypothesis there are two types of

error possible:

� Type I error, or a. We reject the null hypothesis incorrectly (i.e.,

there is no effect but we report that there is).

� Type II error, or b. We incorrectly do not reject the null hypothesis

(i.e., there is an effect but we fail to detect it).

Several factors need to be considered when calculating sample

sizes.

� The prevalence or incidence of the outcome in the control group.

� The expected effect size of the new intervention. It is important to

be clear about what is the smallest size of effect we deem to be

relevant from a public health or clinical perspective; for example,

a study assessing the effect of house screening against exposure

to malaria vectors established at the beginning of the trial that full

screening or screened ceilings would be recommended if they

reduced house entry by malaria mosquitoes by at least 50% [49].

� Significance level (P value). This represents the probability of a

type I error; generally 0.05 is used, which means that we have a

5% probability of a type I error.

� Power. The power of a study is the probability of not committing a

type II error, or 1 � b (e.g., if we have a 20% probability of a type II

error, the power is 80%).

Many vector control trials use a clustered design. For cluster-

randomised trials, two additional factors need to be taken into

account:

� Average cluster size.

� The coefficient of variation, k, which measures the level of

between-cluster variation of the outcome.

This is important because outcomes measured in individuals or

sampling sites within the same cluster are likely to be correlated. A

large value of k implies substantial between-cluster variation in the

outcome, which makes it harder to show an intervention effect

unless the sample size is increased.

It is recommended to consult an experienced statistician to assist

with sample size calculations, particularly for cluster-randomised

trials.
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Deciding on the duration of the follow-up period

Insufficient periods of follow up plague many vector control
trials. For example, a RCT of topical repellents against
malaria in Ethiopia conducted two malaria prevalence
follow-up surveys 1 month and 2 months after the baseline
survey [80]. This study is unlikely to give a true picture of
the efficacy of the repellent since compliance with the
repellent would probably remain high during this short
time period but decline over a longer time period. It is also
worth noting that Plasmodium falciparum infections last
on average 1 year [81,82], although they can persist for up
to a decade or longer [83], and it takes several years for this
indicator to re-equilibrate fully following a reduction of
transmission [84,85].

For entomological outcomes, follow-up periods need to
be sufficiently long and repeat measurements need to be
taken to gain a picture of transmission in the area (e.g.,
[86,87]). This is because there is likely to be large variation
in vector density between sampling sites and across differ-
ent sampling periods (night to night, week to week, or over
a transmission season) due to environmental factors such
as rainfall. Designs in which entomological sampling is
conducted once during the follow-up period are less likely
to give reliable results due to inherent variability in vector
populations even if the number of sampling units is high.
Longer periods of follow up with repeat measurements can
be used to assess whether the effect of an intervention is
waning (e.g., IRS with a short-lasting insecticide) and to
determine how often the intervention needs to be replaced
or reapplied.

We recommend that minimum pre- and postinterven-
tion follow-up periods be used for epidemiological and
entomological data collection, the duration of which differs
depending on the study design chosen and the context of
pathogen transmission (Table 1).

Concluding remarks
We have identified common problems with vector control
studies and provide suggestions on how these can be
improved. We also illustrate that some study designs
are methodologically stronger than others. While hierar-
chies based on study design are somewhat controversial
(http://www.alliance4usefulevidence.org/publication/
what-counts-as-good-evidence-february-2013/), we believe
they remain useful in addressing the evidence for what

interventions work, particularly when combined with a
broader evaluation of the quality of the evidence as offered
by GRADE [14,15]. More specifically, the GRADE rating of
evidence takes into account numerous factors in addition to
study design [14,15]. This means, for example, that a
poorly conducted RCT with a high risk of bias does not
necessarily constitute better evidence than a sound obser-
vational study with a large effect size.

We suggest that there are several reasons why many
vector control studies have historically been designed and
conducted in a less-than-optimal fashion. First, a lack of
resources may have limited the extent to which entomol-
ogists could conduct large-scale, well-designed studies.
This may help explain the large number of two-village
comparison studies and studies without epidemiological
outcomes. The impact of shortfalls in resources is exacer-
bated by issues associated with implementing environ-
mental interventions on a large scale and the urgent
need for VBD control. Second, medical entomologists have
traditionally not been taught epidemiology or have not
worked in an integrated fashion with epidemiologists. It
is necessary to upgrade this aspect of the skill set of
medical entomologists, to include epidemiology in medical
entomology course curricula, and for epidemiologists to
partner with entomologists in conducting intervention
assessments.

New vector control tools are urgently needed to reduce
the burden of VBDs. In highlighting key problems with the
design and conduct of vector control tools and suggesting
remedies we hope that this manuscript will provide an
impetus for upgrading the evidence base on vector control
interventions. The present lack of rigorous, evidence-based
vector-borne intervention assessments is an obstacle to
innovation in disease reduction. It also wastes a consider-
able amount of money, time, and energy. Improving the
quality of future vector control trials will not only save
valuable resources but will also expedite the process of
achieving recommendation from the WHO for the roll out
of effective new interventions.
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Table 1. Minimum recommended follow-up periods by study typea

Study design Preintervention Postintervention

Randomised

controlled trial

Desirable to check baseline characteristics of study population

At least one transmission season for entomological data if

sampling sites are nonrandomly selected

At least one transmission season

(two seasons is desirable)

Controlled before-

and-after study

At least one transmission season, especially if entomological

sampling sites are nonrandomly selected

At least one transmission season

Randomised controlled

time series

Not applicable Two or more transmission seasons

Interrupted

time series

Two or more transmission seasons Two or more transmission seasons

Crossover study At least one transmission season before crossover (and washout)

and one transmission season after

aTransmission season may be shorter than a 1-year period or a whole year if transmission is perennial.
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