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Abstract
The transmission potential of a novel infection depends on both the inherent transmissibility

of a pathogen, and the level of susceptibility in the host population. However, distinguishing

between these pathogen- and population-specific properties typically requires detailed se-

rological studies, which are rarely available in the early stages of an outbreak. Using a sim-

ple transmission model that incorporates age-stratified social mixing patterns, we present a

novel method for characterizing the transmission potential of subcritical infections, which

have effective reproduction number R<1, from readily available data on the size of out-

breaks. We show that the model can identify the extent to which outbreaks are driven by in-

herent pathogen transmissibility and pre-existing population immunity, and can generate

unbiased estimates of the effective reproduction number. Applying the method to real-life in-

fections, we obtained accurate estimates for the degree of age-specific immunity against

monkeypox, influenza A(H5N1) and A(H7N9), and refined existing estimates of the repro-

duction number. Our results also suggest minimal pre-existing immunity to MERS-CoV in

humans. The approach we describe can therefore provide crucial information about novel

infections before serological surveys and other detailed analyses are available. The meth-

ods would also be applicable to data stratified by factors such as profession or location,

which would make it possible to measure the transmission potential of emerging infections

in a wide range of settings.

Author Summary

The transmission potential of a new infection depends on both the transmissibility of the
pathogen and the level of immunity in the host population. However, it can be difficult to
measure these properties if there are limited experimental studies of population immunity.
By incorporating social contact patterns into a mathematical model of disease transmis-
sion, we show that it is possible to estimate both pathogen transmissibility and pre-existing
immunity from available data on the size of outbreaks. When an infection does not trans-
mit efficiently between humans, estimates often have to be made using case data from a
limited number of small outbreaks. We find that, even with limited data, our technique
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can accurately evaluate the transmission potential of ‘stuttering’ chains of infection. We
use the method to characterise transmission of four real infections: monkeypox, influenza
A(H5N1) and A(H7N9) and MERS-CoV.

Introduction
Infections that spill over into humans from an external reservoir have the potential to cause ep-
idemics with substantial morbidity and mortality, particularly if there is limited pre-existing
immunity in the host population [1, 2]. However, novel pathogens do not always transmit effi-
ciently when first introduced into human populations. Outbreaks of infections such as Middle
East respiratory syndrome coronavirus (MERS-CoV) [3, 4] and monkeypox [5] have generally
occurred as ‘stuttering chains’ of transmission [6], generating a relatively small number of
linked clusters of cases without evidence of sustained transmission. Infections such as influenza
A(H5N1) [7] and A(H7N9) [8] also appear to be subcritical at present, having so far failed to
transmit efficiently between humans.

To assess the risk posed by novel infections, it is important to quantify their transmission
potential. Transmissibility can be summarised using the effective reproduction number, R, de-
fined as the average number of secondary cases produced by a typical infectious host [9]. The
reproduction number can be separated into two components: the inherent transmissibility of a
pathogen, and the level of susceptibility in the host population. In some circumstances, suscep-
tibility might be reduced as a result of pre-existing immunity from previous vaccination cam-
paigns, as is the case with monkeypox [5, 10], or prior exposure to a similar pathogen, as has
been suggested for influenza A/H1N1p [11]. Such immunity will not necessary be distributed
evenly across the population: if pathogens circulate over an extended period of time, or vacci-
nation campaigns have been discontinued, pre-existing immunity is more likely to be found in
older age groups [12].

It has been shown that the size distribution of minor outbreaks can provide information
about the value of the effective reproduction number [13, 14]. However, existing techniques for
estimating transmission potential from outbreak size data generally represent transmission in
the host population using single-type branching process [15, 16, 17, 18]. As a result, it is not
possible to distinguish between inherent pathogen transmissibility and population susceptibili-
ty. For instance, a highly transmissible pathogen in a mostly immune population might have
the same effective reproduction number as an infection with lower inherent transmissibility
spreading between fully susceptible hosts.

To characterize both the inherent properties of the pathogen and the level of population im-
munity, we analysed both the size and age distribution of minor outbreaks. Individuals of dif-
ferent ages have heterogeneous social contact patterns and hence different risks of infection
during an outbreak [19, 20, 21]. Pre-existing immunity in older age groups can alter this pat-
tern [22], making it possible to separate the reproduction number into its pathogen- and popu-
lation-specific components. We made use of this observation by developing a novel age-
structured model of stuttering transmission chains, which combined reported social contact
data with a multi-type branching process [23, 24].

First we derived an expression for the outbreak size distribution in an age-stratified popula-
tion, in which transmission between different age groups depended on the number of physical
contacts reported in the POLYMOD survey in Great Britain. Next, we used simulated out-
breaks to examine whether the model could distinguish between different types of infection
using only age-stratified final outbreak size data. Finally, we analysed observed outbreak data
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for monkeypox, influenza A(H5N1), A(H7N9) and MERS-CoV, and found that it was possible
to accurately characterize pathogen transmissibility and pre-existing host immunity.

Results

Outbreak size distributions for age-structured populations
We explored the age pattern of infection by calculating the joint outbreak size distribution
across different age groups. It has been suggested that the post-childhood drop in risky contacts
that occurs around age 20 is a dominant factor shaping influenza dynamics [25], and the in-
tense contacts between children make them an important epidemiological group for respirato-
ry infections [26, 12]. We therefore divided the population into two groups: under 20 and over
20 year olds.

In a homogeneously mixing population, all individuals generated the same mean number
secondary cases in the model (Fig. 1A). When the infection was introduced into the under 20
age group, the outbreak size distribution was therefore relatively symmetric between the two
groups (Fig. 1B). When the offspring distribution of secondary cases depended on reported
physical contacts between different groups in the UK (S1A Fig.), this pattern changed. Each in-
fected host could generate secondary cases in either group, and the mean number of cases gen-
erated depended on which group the infected host was in (Fig. 1C). We assumed a fully
susceptible population, which meant that the average number of secondary cases generated by
a typical infectious individual was equal to the basic reproduction number, R0 [9]. If infection
started in the under 20 age group, there was a noticeable bias in the outbreak size distribution,
with large outbreaks in under 20 year-olds more likely than large outbreaks in the over 20s

Fig 1. Transmission chains and joint outbreak distributions. (A) Example transmission chain when the population mixes homogeneously. (B) Joint
probability an introduction will produce a transmission chain of a given size in each of the two age groups (on log10 scale) when the outbreak starts in the
under 20 age group. (C) Transmission chain when mixing is age-dependent and infection starts in the under 20 age group. (D) Joint outbreak size distribution
when model incorporates social contact data from Great Britain and infection introduced into the under 20 age group.(E) Transmission chain when infection
starts in oldest age group. (F) Joint size distribution when infection starts in the over 20 age group. We assume R0 = 0.6.

doi:10.1371/journal.pcbi.1004154.g001
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(Fig. 1D). When the infection started in the over 20 age group (Fig. 1E), the offspring distribu-
tion shifted, and the probability of large outbreaks in the under 20 age group decreased
(Fig. 1F).

Identifying anomalously large outbreaks
We used the outbreak size distribution to identify what constitutes an anomalously large out-
break for a particular R0. We defined this as an outbreak size that has a less than 10−3 probabili-
ty of occurring in our model. When the infection was introduced into the under 20 age group,
there was an asymmetry in the threshold for an unusually large outbreak in the UK (Fig. 2A). If
R0 = 0.7, a chain of at least 8 cases was not unusual if some of the secondary cases are children,
yet it is if the secondary cases are all adults. The conditions for an anomalously large outbreak
shifted when infection started in the eldest group (Fig. 2B). In some cases the thresholds curved
inwards. In Fig. 2A, when R0 = 0.7 an outbreak of size 7 was anomalously large if all secondary
cases were in the youngest group, but an outbreak of size 10 was not unusual if between 2–8
secondary cases were in the eldest group. As the infection was introduced in the youngest
group, this suggested that chains of transmission were more likely to persist if they crossed into
the eldest age group. The threshold also curved inwards when the infection started in the eldest
group (Fig. 2B). An outbreak of size 5 was unusual if all the secondary cases were in the youn-
gest group, but an outbreak of size 8 was not anomalous if there were 3 cases in the eldest
group. This implies that having a single case in the introductory age group and several in the
other group was unlikely when R0 = 0.7. As suggested by the next generation matrix (S1A Fig.),
the primary case would generally create additional cases within the same group rather than in-
fect only individuals in the other group.

Estimating transmissibility and pre-existing immunity
Using age stratified-data, we found that is was possible to distinguish between inherent patho-
gen transmissibility and pre-existing host immunity. We simulated outbreaks using a multi-
type branching process with two groups, then used the outbreak size distribution to infer R0

and relative immunity in older individuals. We assumed that the under 20 age group was fully

Fig 2. Threshold for anomalously large outbreak sizes. (A) Primary case is in the under 20 age group. Points show joint outbreak sizes that have less
than 10−3 probability of occurring. Green points, R0 = 0.3; orange, R0 = 0.7. (B) Primary case is in the over 20 age group.

doi:10.1371/journal.pcbi.1004154.g002
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susceptible to infection, and the relative susceptibility of the over 20 age group, denoted S,
could vary. Each outbreak was seeded randomly in the susceptible population. In the UK the
under 20 age group make up 24% of the total population, so in the absence of immunity, the
probability of the outbreak starting in this group was 0.24.

To test our inference framework, we simulated four different scenarios. First, we examined
two infections with the same R0 = 0.2, but different levels of immunity in the over 20 age
group. In one scenario, only 20% of hosts over age 20 were susceptible to infection (i.e. S = 0.2);
in the other, the population was fully susceptible (S = 1). We simulated 50 spillover events, and
found the maximum likelihood estimate of R0 and S. We repeated this process for 1000 sets of
outbreaks, obtaining reliable estimates of both R0 and S (Figs. 3A-B). Next, we considered the
same two susceptibility values, but for an infection with R0 = 0.7. The model was again able to
distinguish between the different scenarios (Figs. 3C-D). The structure of the reproduction ma-
trix (Equation 2) means that R0 and S should always be identifiable in the model, given enough

Fig 3. Estimates ofR0 and relative susceptibility of over 20 age group, S, from simulated data.We simulated 1000 sets of 50 outbreaks, and found the
maximum likelihood estimates (MLEs) for parameters for each set. White dots show true parameter values; heat map shows distribution of the 1000 MLEs.

doi:10.1371/journal.pcbi.1004154.g003
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data, because R0 scales the entire matrix, whereas S only scales the transmission rate to the
older age group.

We used our estimates of R0 and relative immunity in the over 20 age group to calculate the
effective reproduction number. We compared these values with estimates from an inference
framework based on a single-type branching process [15, 16, 17, 18]. In all four scenarios, our
estimates for R are less biased in the age-structured model (Table 1). However, the relative
sum-squared error is smaller in the single-type model when R0 is small. This is because accu-
rate inference across the two age groups requires sampling from the tail of the joint outbreak
size distribution, which is achieved either when R0 is larger (Table 1), or when more outbreak
data are available. When inference is performed using data from a larger number of outbreaks,
the relative error for the age-structured model is smaller than for the non-stratified framework
(S2 Fig.).

Regardless of the degree of transmissibility or immunity, we systemically underestimate R
in the single-type model (Table 1). This bias is the result of our assumption that introductions
occur randomly across the susceptible population, and illustrates an important caveat to infer-
ence of R from the mean outbreak size in a single-type branching process model. If the propor-
tion of cases that are introduced to each age group is equal to the dominant eigenvector of the
reproduction matrix, it is possible to obtain unbiased estimates for R using only the mean out-
break size (see Text S1). However, if the true proportion of introductions in the under 20 group
is less than number of introductions implied by dominant eigenvector, we will underestimate R
in a single-type model (S3 Fig.). Conversely, if the true proportion of introductions is larger, we
overestimate R. In our model of transmission chains in Great Britain, we assumed a child-dom-
inated social contact matrix but relatively flat population structure. In the absence of immunity,
the probability the infection starts in the under 20 age group was therefore 0.24. However, the
relevant component of the dominant eigenvector of the reproduction matrix is 0.68. If the
probability of introduction is less than this—as it is in our model—the homogeneous mixing
assumption will lead to an underestimate of R (S3 Fig.). The age structured model avoids de-
pendency on age-specific exposure risk by accounting for which age group the infection started
in when performing inference (Equation 13). If there were a disproportionate number of intro-
ductions in a particular age group, the structure of the likelihood function means that it would
not bias our estimate for R.

We also tested whether our inference approach, which assumed social contact data reflects
age-specific transmission, was sensitive to misspecification of the ‘true’ transmission process.
We simulated data using different assumptions about age-specific infection rates but left the

Table 1. Accuracy of estimation of effective reproduction number,R.

R0 S R Model R bias Relative R error

0.2 0.2 0.16 Single-type -0.026 0.36

Age-structured -0.002 0.38

0.2 1 0.2 Single-type -0.030 0.32

Age-structured 0.008 0.34

0.7 0.2 0.56 Single-type -0.066 0.21

Age-structured -0.021 0.17

0.7 1 0.7 Single-type -0.070 0.17

Age-structured -0.014 0.12

We simulated 1000 sets of 50 spillover events, and found the maximum likelihood estimates of the reproduction number, R̂^, for each set.

doi:10.1371/journal.pcbi.1004154.t001
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inference model unchanged. First, we simulated outbreak data using a multi-type branching
process with 15 age groups. As in the inference model, transmission between different groups
depended on reported physical contacts from the POLYMOD survey in Great Britain. Al-
though the inference model only used two age groups, it correctly identified the four different
combinations of transmissibility and susceptibility (S4 Fig.). Next, we simulated data using two
ages groups, but with transmission based on the average number of reported physical contacts
across 8 European countries in the POLYMOD study (S1B Fig.). The relative error in R was
generally slightly larger (S1 Table), but we were still able to obtain accurate scenario estimates
(S5 Fig.). When we considered a generic child-dominated next generation matrix (S1C Fig.),
our estimates for S were more variable, but we were still able to distinguish between pathogen
transmissibility and pre-existing immunity (S6 Fig.). Finally, we considered a transmission ma-
trix in which adults were dominant (S1D Fig.). As expected in such a heavily mis-specified
model, we were not able to accuracy estimate S and R0 (S7 Fig.).

Application to real outbreaks
Using our age-stratified framework, we characterized the transmission potential of four infec-
tions (Table 2): influenza A(H5N1); influenza A(H7N9); Monkeypox; and MERS-CoV. As we
could not be certain that the under 20 age group was fully susceptible, we did not infer the
basic reproduction number, R0. Instead, we defined ρ to be the effective reproduction number
when both groups were equally susceptible (i.e. S = 1). If in reality the under 20 age group had
no immunity to the infection then ρ = R0. For our analysis of MERS and monkeypox outbreak
data, we used the average reported physical contacts from POLYMOD across 8 European
countries (S1B Fig.). For H5N1 and H7N9, we used physical contact data from Southern China
(S1E Fig.).

We measured transmission potential by jointly inferring ρ and S for each of the four infec-
tions. Our maximum likelihood estimates suggest that the over 20 age group had substantial
pre-existing immunity against monkeypox and H5N1, and no immunity against H7N9 or
MERS-CoV (Fig. 4). These estimates agree with values derived from detailed studies of vaccina-
tion and infection history (Table 3). We could not perform such a comparison for MERS-CoV,
however, as we could find no studies reporting measurements of population-level immunity
for humans.

Our estimate of S for monkeypox exhibited considerable uncertainty: the 95% confidence
interval spanned 0.02–1. This was likely the result of the small number of clusters we analysed.
To examine whether a larger number of clusters might improve our model estimates, we per-
formed a simulation study using an infection with limited transmissibility in a population with
pre-existing immunity (i.e. a similar scenario to monkeypox transmission). We simulated 50
spillover events, with R0 = 0.25 and S = 0.5, then attempted to infer the parameters from the
age-stratified outbreak size data. We found that the 95% confidence interval of the joint

Table 2. Details of outbreaks analysed.

Infection Location Period Cases Clusters Source

Monkeypox Central Africa 24/08/70–30/10/79 47 41 [5]

Influenza A(H5N1) Indonesia 21/07/05–22/11/13 192 176 WHO, [43]

Influenza A(H7N9) Shanghai & Jiangsu 19/02/13–30/04/13 59 55 [44]

MERS Globally 20/09/12–01/08/13 110 42 [4]

Clusters denote sets of human cases that have a known epidemiological link; single cases are defined as clusters of size one.

doi:10.1371/journal.pcbi.1004154.t002
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Fig 4. Characterization of transmission potential from observed outbreak size distributions. Each
point shows joint maximum likelihood estimate of the effective reproduction number if both age groups were
equally susceptible, ρ, and the relative susceptibility of over 20s, S. Dark line indicates 80% confidence
interval (CI); light line is 95% CI. Blue, influenza A(H7N9); green, influenza A(H5N1); pink, monkeypox;
orange, MERS.

doi:10.1371/journal.pcbi.1004154.g004

Table 3. Comparison of our parameter estimates and previously published estimates of R, from studies using single-type models, and S, from
studies of vaccination history [5] and seroprevalence [28, 29] andmodels of immune acquisition [27].

Infection R estimate (95% CI) R in literature S estimate S in literature

Monkeypox 0.08 (0.02–0.22) 0.09 [5] 0.42 (0.02–1) 0.4–0.7* [5]

H5N1 0.10 (0.05–0.17) 0.14 (0.004–0.39) [7] 0.48 (0.15–1) 0.36 (0.30–0.44)* [27]

H7N9 0.12 (0.04–0.42) 0.10 (0.01–0.49) [45] 0.99 (0.22–1) �1 [28, 29]

MERS 0.73 (0.54–0.96) 0.63 (0.49–0.85) [3, 4] 0.99 (0.82–1) –

*See Text S1 for details of calculation.

doi:10.1371/journal.pcbi.1004154.t003
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distribution of R0 and S was very broad (S8 Fig.). However, when we simulated 150 or 250 spill-
over events instead, the uncertainty in our estimates shrank, and we were able to obtain more
precise parameter estimates (S8 Fig.).

Using our model, we also estimated R for each set of real outbreaks. Our estimates were sim-
ilar to previously published estimates that assumed a single-type population. However, the con-
fidence intervals for our estimates were generally smaller (Table 3). Influenza A(H7N9) had an
effective reproduction number of 0.08 (95% CI 0.02–0.23), influenza A(H5N1) had R = 0.10
(0.05–0.18) and monkeypox R = 0.08 (0.02–0.22). Our estimate of R for MERS-CoV was 0.73
(0.54–0.96), whereas in a single-type branching process model R = 0.63 (0.49–0.85). The dis-
crepancy was caused by the age distribution of the largest outbreak clusters. One cluster of 26
infections consisted entirely of over 20s: if transmission was indeed driven by social mixing
patterns, such an outbreak would require a large R to persist in only one group.

During real-time analysis of an outbreak, there may be additional infections yet to be re-
ported. It is particularly important to account for such censoring when infections are near the
R = 1 boundary [17]. To test the robustness of our estimates for MERS-CoV when outbreak
size data were censored, we extended our inference framework to account for incomplete out-
breaks (methods in Text S1). When censoring was included, our estimate for R increased
slightly to 0.77 (0.57–1.03), but our maximum likelihood estimate for S remained the same.

Discussion
Obtaining accurate estimates of transmission potential is crucial for effective surveillance and
control of infectious diseases. However, for emerging infections estimates often have to be
made using case data from a limited number of small outbreaks. Using a multi-type branching
process, we developed an inference framework to make better use of age-structured outbreak
size data.

Our results show that when disease transmission is driven by social contacts between differ-
ent age groups, knowledge of the age distribution of cases makes it possible to separate the ef-
fective reproduction number into two components: inherent pathogen transmissibility, and
pre-existing immunity in older age groups. Based on observed outbreak size distributions, we
estimated that individuals over age 20 had susceptibility to monkeypox reduced by a factor 0.4
compared with younger hosts. This value agrees well with published estimates of population
susceptibility (Table 3), with cross-immunity coming from the smallpox vaccination cam-
paigns that ended in the two decades preceding the outbreaks [5]. We also found evidence of
pre-existing immunity to influenza A(H5N1) in older individuals; it has previously been sug-
gested that such immunity could result either from prior exposure to H5N1, or from cross-im-
munity from previous infection with influenza A(H1N1) [27]. In contrast, we estimated that
both age groups had similar levels of susceptibility to MERS and influenza A(H7N9). Given
that immunity from vaccination and natural infection tends to increase with age, this suggests
that there was little pre-existing immunity to these pathogens. While serological studies have
found no evidence of pre-existing immunity to H7N9 virus in these locations [28, 29], serologi-
cal analysis remains challenging for novel coronaviruses such as MERS-CoV [30]. The ap-
proach we describe can therefore provide crucial information about the degree of population
susceptibility before serological surveys are available.

We also used our model to identify thresholds for anomalously large outbreaks. In a single-
type branching process framework, the threshold is a single number: the total size of the out-
break [31, 16]. In an age-structured model, however, the threshold depends on outbreak size in
each age group. The age breakdown of cases can therefore provide additional information
about what constitutes an unusual outbreak which would not be available with only overall
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outbreak sizes. Moreover, the shape of the thresholds in Fig. 2 suggest that the infection must
pass between age groups to persist. Such dynamics could be important in understanding how
pathogens adapt to a new host or invade a new population, and could be explored further in fu-
ture using the models we have described here.

We made several assumptions in our model. First, we assumed that secondary cases are
drawn from a geometric distribution with mean R (or Rij in the two group model). This is akin
to assuming that recovery times are exponentially distributed in the standard SIR model. Other
studies have assumed that the offspring distribution for secondary cases follows a negative bi-
nomial distribution, and have suggested that an increased level of over-dispersion is often ap-
propriate when modelling disease emergence [16, 14]. However, some of this over-dispersion
is captured implicitly our model as a result of the variation that comes from including social
contact structure. Given appropriate data, it would be interesting to see whether individual var-
iation in transmission can be explained by social behaviour rather than processes such as virus
shedding. This would have implications for how the over-dispersion parameter should be in-
terpreted in an age-structured framework.

We also assumed that transmission events are independent, and did not consider depletion
of susceptible hosts during an outbreak. This simplification is reasonable for infections with a
small effective reproduction number, but depletion of susceptibles would need to be accounted
for if R were close to 1 [16]. In addition, we assumed that transmission potential between age
groups was captured entirely by social contacts. Because we used simulated data to infer pa-
rameters, and hence had knowledge of the true model, we were also assuming that these con-
tacts were reported accurately. We tested the accuracy of parameter estimation when the
transmission process was mis-specified, and found that it was still possible to distinguish be-
tween different scenarios as long as transmission matrices in both the simulation and inference
models were dominated by intense mixing between children. This is a reasonable assumption,
as it has been suggested that such mixing patterns drive observed outbreaks of respiratory in-
fections [21, 25, 32].

Although published contact matrix data were not available for Central Africa, where mon-
keypox cases were reported, preliminary results from social contact survey in Uganda suggest
that age mixing patterns are qualitatively similar to those found in the POLYMOD study, with
a clear pattern of assortative mixing between different age groups, and children reporting a
larger number of contacts relative to adults (Olivier Le Polain de Waroux, personal
communication).

Our work extends existing techniques for inferring epidemiological parameters from the
distribution outbreak sizes. By accounting for the age structure of a population, we show that it
is possible to obtain unbiased estimates of the reproduction number, and distinguish between
pathogen transmissibility and immunity from outbreak size data. During an outbreak, cluster
data may be difficult to obtain; cases are typically reported as aggregated totals by health minis-
tries and WHO [33]. Our results illustrate the value of making higher resolution outbreak data
available, with cluster information and covariates such as age reported along overall
case numbers.

There are situations in which it could be necessary to distinguish inherent pathogen trans-
mission potential from immunity. For example, if a vaccination campaign that protects against
an infection is to change, or be discontinued, it would be important to understand how the
pathogen could transmit in a fully susceptible population. This question motivated early stud-
ies of monkeypox transmission [34]. However, in studies of monkeypox outbreaks it was rela-
tively straightforward to identify a case’s smallpox vaccination history, because the smallpox
vaccine—which provided cross-immunity to monkeypox—left a distinctive scar. The same
might not to be true for other vaccines.
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Our methods are not limited to age structure, and could be used to examine a variety of pop-
ulation stratifications. Depending on the pathogen, transmission rates may also depend on fac-
tors such as profession or setting (for example, hospital versus community transmission). With
appropriately stratified outbreak data, it would be possible to infer relative immunity and
transmissibility in range of different groups. While spillover infections such as avian influenza
and MERS-CoV are a natural application for our approach, population structure could also in-
fluence the dynamics of transmission chains following introduction via other routes. For exam-
ple, novel pathogen strains could emerge via resistance-conferring mutations [35] or
adaptation to a human host [36], or be introduced to a population through air travel [37]. By
collecting secondary information such as the age distribution of cases, and combining these
data with models such as the one outlined here, it should be possible to develop a better under-
standing of stuttering chains of infection and their transmission potential. During an outbreak,
our framework would also be able to generate estimates of epidemiological parameters from a
commonly available data source, and hence characterize transmission risk before serological
surveys and other detailed analyses are available.

Methods

Data
Contact data came from the POLYMOD study, a diary-based survey conducted in Europe
[20], and a study of social mixing patterns in Southern China [38]. In both studies, participants
reported the age of their contacts on a specified day, defined as either a face-to-face conversa-
tion in the physical presence of another person, or physical skin-to-skin contact. In our simula-
tion study, we used data on reported physical contacts from the POLYMOD survey in Great
Britain (S1A Fig.) to define the level of transmission between different age groups, as there is
evidence that this type of contact is better proxy for respiratory pathogen transmission than
total contacts [25, 32]. Similar qualitative mixing patterns can be found in other European
countries (S1B Fig.) and Southern China (S1E Fig.), as well as Southeast Asian countries such
as Vietnam [39] and Hong Kong [25]. Outbreak size distributions for different infections were
calculated from reported cases (Table 2). In the influenza A(H5N1) data, it was not always
clear whether an outbreak cluster was seeded by a single primary case—with all other infections
secondary—or multiple co-primary cases. We made the conservative assumption that each
cluster had only one primary case: our estimate for R can therefore be considered to be an
upper bound on potential transmissibility given available outbreak size data.

Next generation matrix
We used the next generation matrix to describe the average number of secondary cases in a
population with two age groups. To model age-dependent infection, we definedmij to be the
mean number of contacts with individuals in age group i reported by participants in age group
j, and λ to be the maximal eigenvalue of the matrixM with entriesmij. Defining S to be the rela-
tive susceptibly of group 2 compared to group 1, the average number of infections to group i
from group j was therefore given by [40]:

Rij ¼
qmij=l if i ¼ 1

qSmij=l if i ¼ 2
ð1Þ

8<
:
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where q is a scaling factor depending on inherent pathogen transmissibility (i.e. R0). We de-
fined the next generation matrix, R, to be the matrix with entries Rij,

R ¼
R11 R21

R12 R22

 !
: ð2Þ

The effective reproduction number of the infection, R, was equal to the dominant eigenvalue of
this matrix. If the population was fully susceptible, then R was equal to the basic reproduction
number, R0. If S = 1, but we did not know whether the population as a whole was fully suscepti-
ble, then we defined the dominant eigenvalue to be ρ.

Offspring distribution
We used a multi-type branching process to model secondary infections (see Text S1 for details).
Given two different types of individuals, the generating function for the offspring distribution
of individual i was

hiðs1; s2Þ ¼
X1
j1¼0

X1
j2¼0

ps1 ;s2 s
j1
1 s

j2
2 ð3Þ

where ps1, s2 was the probability that an infectious individual of type i generated s1 secondary
cases of type 1 and s2 cases of type 2. We assumed that stochasticity in transmission was repre-
sented by a Poisson process, and that the individual offspring distribution followed a negative
binomial distribution [14]:

hiðs1; s2Þ ¼ 1þ R1i

k
ð1� s1Þ

� ��k

1þ R2i

k
ð1� s2Þ

� ��k

: ð4Þ

It was possible to separate this probability generating function into two components,

hiðs1; s2Þ ¼ g1iðs1Þg2iðs2Þ : ð5Þ
Extending approaches used for a single-type population [16], we could specify the probability
that a certain number of cases of type i are generated by infectives of type j (see Text S1 for de-
tails):

Pðz cases of type i generated by n cases of type jÞ ¼ Tn
ij ðzÞ ð6Þ

¼ 1

z!
dz

dsz
½gijðsÞ�njs¼0

: ð7Þ

Inserting the relevant part of Equation 4 into Equation 7, we obtained

Tn
ij ðzÞ ¼

Qz�1

w¼0ðknþ wÞ
z!

Rij

k

� �z

1þ Rij

k

� ��z�kn

: ð8Þ

Note that in this paper we set k = 1. This was equivalent to assuming that recovery times were
exponentially distributed, as in the standard SIR model.

Outbreak size distribution
We used the offspring distribution to calculate the probability that an outbreak results in the
following outcome: n total cases in group 1;m total cases in group 2; a12 infections in group 1
caused by infective hosts in group 2; and a21 infections in group 2 caused by infective hosts in
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group 1. There were two situations to consider. Ifm = 0, then a12 = a21 = 0 and hence [23],

Pðn;mÞ ¼ Tn
11ðn� 1ÞTn

21ð0Þ
n

: ð9Þ

Ifm> 0, we had [24],

Pðn;m; a21; a12Þ ¼ a21T
n
11ðn� a12 � 1ÞTn

21ða21ÞTm
12ða12ÞTm

22ðm� a21Þ
nm

: ð10Þ

Finally, we used Equations 9–10 to calculate r1n;m, the probability the infection will cause an

outbreak of size n in group 1 andm in group 2, given that the initial case was in group 1:

r1n;m ¼
XA2

a12¼0

Xm
a21¼0

Pðn;m; a21; a12Þ ð11Þ

where

A2 ¼
0 if m ¼ 0

n� 1 else
: ð12Þ

(

By symmetry, we can obtain an analogous expression for r2n;m.

Inference
If Ni

n;m was the number of chains that start in group i and resulted in n cases in group 1 andm

cases in group 2, then by Equation 11 the likelihood of parameter set θ given data X was:

Lðy j XÞ ¼
Y1
m¼1

Y1
n¼1

ðr1n;mÞN
1
n;mðr2n;mÞN

2
n;m : ð13Þ

When only the total number of cases in a cluster was known, and not the age distribution,
we instead inferred the reproduction number from the overall outbreak size distribution [16].
If Nn was the number of chains of size n, and rn was the probability a transmission chain has
size n, the likelihood function was:

Lðy j XÞ ¼
Y1
j¼1

rNn
n : ð14Þ

We obtained maximum likelihood estimates for θ = {R0, S} by calculating the two-dimen-
sional likelihood surface and using a simple grid-search algorithm to find the maximum point.
For a higher dimensional model, it might be necessary to use an alternative technique, such as
Markov chain Monte Carlo [41], to ensure robust and efficient parameter estimation. Confi-
dence intervals were calculated using profile likelihoods: for each value of R0, we found the
maximum likelihood across all possible values of S; the 95% confidence interval was equivalent
to the region of parameter space that was within 1.92 log-likelihood points of the maximum-
likelihood estimate for both parameters [42].

Performance metrics
It was not possible to obtain a tractable expression for the maximum likelihood (ML) estimates
of ρ and S, and hence R, using Equation 13. Instead we calculated the ML estimate of the repro-

duction number, R̂, using the numerically estimated maximum likelihood values for ρ and S.

We used two metrics to assess the accuracy of R̂: the estimator bias and relative error [15].
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Having generatedM sets of outbreak data using the same R, and found R̂i for each set i, the es-
timator bias was

d1 ¼ lim
M!1

1

M

XM
i¼1

R̂i � R ; ð15Þ

and the root mean square relative error was given by:

d2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lim
M!1

1

M

XM
i¼1

R̂i � R
R

� �2
s

: ð16Þ

Mean outbreak size in two group model
Let μ denote the mean outbreak size matrix. If we denote entries of μ by μij, then ∑j μij is the
mean outbreak size in group i. If the eigenvalues of the next generation matrix R, denoted λi,
are such that jλij< 1 for all i, we have

m ¼ IAþRAþR2Aþ . . . ¼
X1
k¼0

RkA ¼ ðI�RÞ�1
A ð17Þ

where

A ¼
s1 0

0 s2

 !
ð18Þ

and σi is the probability the primary infection was in group i.

Supporting Information
S1 Fig. Contact matrix data used in model. (A) Reported physical contacts in Great Britain in
POLYMOD study [20], (B) Average across 8 European countries [20], (C) Example child-dom-
inated matrix, (D) Example adult-dominated matrix, (E) Reported physical contacts in South-
ern China [38].
(TIFF)

S2 Fig. Simulation results for error as number of chains increases. (A) R0 = 0.2 and S = 0.2.
Blue line, relative error in maximum likelihood estimate for R in single-type model; red line,
error in estimate for R in age-structured model. (B) R0 = 0.2 and S = 1.
(TIFF)

S3 Fig. Inferred value of R using overall mean outbreak size (Equation 17). Blue line, popu-
lation fully susceptible (S = 1); green line, over 20 age group have susceptibility reduced by half
relative to under 20 group (S = 0.5). If the probability that the infection is introduced into
group 1 (i.e. under 20 age group)
(TIFF)

S4 Fig. Estimates of R0 and relative susceptibility, S, when simulation model is a multi-type
branching process with 15 age groups.We simulated 1000 sets of 50 outbreaks, and found
the maximum likelihood estimates (MLEs) for parameters for each set. White dots show true
parameter values; heat map shows distribution of the 1000 MLEs.
(TIFF)
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S5 Fig. Estimates of R0 and relative susceptibility, S, when inference model assume GB con-
tact patterns and simulation model uses average mixing patterns across 8 European coun-
tries (S1B Fig.).We simulated 1000 sets of 50 outbreaks, and found the maximum likelihood
estimates (MLEs) for parameters for each set. White dots show true parameter values; heat
map shows distribution of the 1000 MLEs.
(TIFF)

S6 Fig. Estimates of R0 and relative susceptibility, S, when inference model assume GB con-
tact patterns and simulation model uses generic child-dominated next generation matrix
(S1C Fig.).We simulated 1000 sets of 50 outbreaks, and found the maximum likelihood esti-
mates (MLEs) for parameters for each set. White dots show true parameter values; heat map
shows distribution of the 1000 MLEs.
(TIFF)

S7 Fig. Estimates of R0 and relative susceptibility, S, when inference model assume GB con-
tact patterns and simulation model uses generic adult-dominated next generation matrix
(S1D Fig.).We simulated 1000 sets of 50 outbreaks, and found the maximum likelihood esti-
mates (MLEs) for parameters for each set. White dots show true parameter values; heat map
shows distribution of the 1000 MLEs.
(TIFF)

S8 Fig. Estimates of R0 and relative susceptibility, S, as number of spillover events in-
creased. In simulations, R0 = 0.25 and S = 0.5. Age-specific contact patterns were based on re-
ported physical contacts in Great Britain in POLYMOD study [20].
(TIFF)

S1 Table. Accuracy of R estimation when inference matrix is mis-specified (Matrix in
S1B Fig.).
(PDF)

S1 Code. Simulation and inference code. Simulation model generates stochastic multi type
outbreaks from a two-class mixing matrix. The inference model generates maximum
likelihood estimates of R0 and S from outbreak size data.
(R)
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