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ABSTRACT

In Ethiopia, malaria transmission is seasonal and epidemic-prone, with both Plasmodium
falciparum and Plasmodium vivax being endemic. Such spatial and temporal clustering of
malaria only serves to underscore the importance of regularly collecting up-to-date malaria
surveillance data to inform decision-making in malaria control and improve responsiveness to

potential epidemics.

This thesis compares indicators and strategies used for the monitoring and surveillance of
malaria in Ethiopia. Cross-sectional school-based surveys were conducted throughout Oromia
Regional State, generating data on malaria prevalence by microscopy, risk factors for
infection and intervention use. Filter paper blood samples collected during these school
surveys were subsequently tested to determine exposure to malaria based on presence of
anti-Plasmodium antibodies, and Bayesian geostatistical modelling was employed to predict
P. falciparum and P. vivax seroprevalence across Oromia. In southern Ethiopia, a school-
based syndromic surveillance system was piloted, exploring the utility of school absenteeism
as a complementary indicator of malaria epidemics at community level. Finally, findings from
the school surveys, measured and modelled seroprevalence, as well as data from the national
Malaria Indicator Survey in 2011 were compared with spatially congruent estimates of
malaria incidence collected from health facilities and to modelled parasite rate from the

Malaria Atlas Project.

Findings from this thesis demonstrate the limitations of microscopy as a primary indicator of
malaria infection in cross-sectional surveys in areas of very low transmission. The work
highlights the potential of serological indicators of Plasmodium exposure for inclusion in
periodic large-scale malaria monitoring activities and develops a first ever geostatistical risk
map based on serological indictors. This was supported by comparative analysis of a range of

survey and modelling indicators against estimates of incidence from passive surveillance,



indicating the inadequacy of cross-sectional surveys estimating population parasitaemia to
reflect the spatial extent and temporal variability of transmission. The piloted syndromic
surveillance system indicates that monitoring school absenteeism has potential as a
complementary epidemic alert system, operating alongside the existing system at health

posts, but is limited by low school enrolment in the piloted setting.

The findings of this thesis indicate that existing periodic monitoring strategies and tools are
insufficient to fully describe the extent of malaria in settings where Plasmodium transmission
is spatially and temporally variable. Modifications to monitoring strategies are

recommended, including incorporation of serological indicators and spatial modelling.
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number of health facilities reporting data to the Health Management Information

System from 2007 £0 2010 .....ccccciiiiiiieeee e e et e e e e e e e e e e e st — e e e e e e e e e e e e e aabrbraaraaaaaaaaeaaanns

183

17



LIST OF TABLES

Table 1.1 — Example case definitions in a syndromic surveillance system in the Pacific
islands and territories [93]. Note that fever is defined as 38°C of higher, or fever or chills

reported by caregiver or patient if no thermometer is available. ...........cccoovveeeiiiiriiiiciin,

Table 1.2 - Key characteristics of major malaria vectors in Ethiopia, including their
primary habitat, preferred blood meal source and biting locations, biting time, and

I A Ta Y= CoTor:kuTo] o I [ -1 ) U UUUPRUOt

Table 1.3 - Characteristics of the Federal Ministry of Health defined malaria
epidemiological strata, the interventions targeted to each strata, and parasite rate (all

ages) measured in each strata during Malaria Indicator Survey 2011..........ccccocvvvveeeeeeeeeennn.

Table 2.1 - Sampling stratification used to select schools in Oromia Regional State,
Ethiopia, based on ecological zones defined according to epidemiologically significant
differences in elevation and rainfall, based on classifications used by the Ministry of

Health and WHO Ethiopia office [162].......uuuiiiiiiiiiiiiiiiiiiiieee et e e e e e e anrraae e e e

Table 2.2 - Prevalence of P. falciparum, P. vivax and anaemia among primary school
children in 197 schools in Oromia Regional State, Ethiopia in 2009, by sex, age group,

survey phase and malaria tranSmiSSION ZONE. .......uuuiiieeeieeiei i e e e e ee e e e e e e e e e e

Table 2.3 — Univariate analysis for associations between P. falciparum and P. vivax and
potential risk factors among sampled school children, adjusting for clustering within

Yol 1o o] K- PPN

Table 2.4 - Fitted parameters in Bayesian multivariate models for P. falciparum and P.
vivax among school children in Oromia Regional State, Ethiopia in 2009, with and

Without spatial COMPONENTS. ...t e e e e e e e e e et rrareeeeaaeeeeeans

Table 3.1 - Number of schools and children tested by enzyme-linked immunoassay
(ELISA) against each antigen, stratified by school selection criteria: high microscopy

prevalence, high anaemia prevalence, randomly selected.......cccccceeeeiiiiciiiiiiieeeee s

Table 3.2 - Description of frequency of diagnostic test (microscopy and serology) results
at individual level. Combinations of microscopy and seropositivity by antigen are
presented for P. falciparum and P. vivax separately. Data are only presented for

individuals with results recorded for P. falciparum microscopy, PfGLURP and PfMSP-1

..46

.82

.87



List of tables

(N=5102), and individuals with complete results for P. vivax microscopy, PvAMA and

PUMSP=1 (NZ5053). «.vrveeveereeeeseeesesseesesesesssesesssesesesessseesesssessssesasesesesesessasesessseesesesassseesanees 106

Table 3.3 - Univariate frequentist associations of key environmental variables with

school seroprevalence of P. falciparum and P. VIVOX...........cocccceiiiiieiiieeeeeeeecccciireeeee e e e e 108

Table 3.4 - Final Bayesian P. falciparum model developed using data from 62 schools,
and P. vivax model developed from 71 schools’ data. Both models retained school-level
and spatial random effects. School and spatial variance (stchoo| and ozspaﬁa|), rate of
decay of spatial correlation (¢), range in km at which correlation between schools falls to
5% are presented with 95% Bayesian credible intervals. The P. falciparum model
includes parameter values and 95% BCI for standardised environmental fixed effects. No

environmental fixed effects were retained in the final P. vivax model. ......cccccooovvviiineenrnnnn. 111

Table 4.1 - Selected syndromic surveillance systems reported in the literature: the
setting, target diseases, indicators, system complexity and outcomes of their application.
Reported studies are those which use school absenteeism as a key indicator, or systems

applied in resource-limited settings for epidemic prone diseases including malaria............. 123

Table 4.2 - Description of key indicators collected during Phase 1 school- and
community-based surveys at six sites. The number of individuals providing blood
samples across all visits to each site, and range of RDT prevalence by survey iteration at
each site are shown, to demonstrate changes in malaria infection in each community
over the study period. In addition, the range in total clinical malaria (febrile illness),
confirmed malaria and test positivity rate by week at each health centre and health post

are presented for @ach STUAY SItE ....uuiiiiiiiii i e e e e e e e e 138

Table 4.3 - Description of school-aged population by site, and reported enrolment in
primary school by health of household from community-based surveys in Phase 1.
Factors which may influence likelihood of school enrolment are also described at each of
the survey sites. Number in brackets are 95% confidence intervals unless otherwise

L= 1 =L e RN 141

Table 4.4 - Multivariate model of risk factors for non-enrolment of school-age children
(as reported by head of household during community survey). Fixed effects are
presented, the multilevel model included random effects at household- and study-site
level. Data were available from 1794 unique children and total 908 households, sampled

from SiX Sit€S iN SNINPRS N 2012, . .ciiieiiieiiiieeee ettt e e ettt e e e e et b e s e e s esaaa s eseenes 142

19



List of tables

Table 4.5 - Description of frequency of usual school attendance and reasons for recent
absence from school, as reported during school- and community-based surveys, by

PRase 1 STUAY SIT cieeeeiiiiiiiiiiiee ettt e e et e e e e e e e e e e e s bbb ba e e e e eaaeeeeeesnnsnstssaeeeaaeas 144

Table 5.1 - Key descriptive characteristics of the various surveillance data compiled for

TNE CUITENT STUAY et e e e e e e e et a e e e e e e e e e e e e asabtaareeaaaaaeeeannns 164

Table 5.2 - Two-way matched data available from the five surveillance data. Data are
matched using woreda location, therefore number of cross-sectional survey clusters and
encompassing woredas are presented for each combination of data. It was possible for

more than one cross-sectional survey cluster to be present in a single woreda.................... 166

Table 5.3 - Description of parameters of surveillance system performance, leading to

development of scoring for each Parameter.......coouveeeeei i 174

Table 5.4 - Scoring framework for programme monitoring and evaluation. Scores
assigned by the author, justifications and description listed in Table 5.3. Scoring system:
1=poor, 2=neutral, 3=good. Higher parameter levels are judged to be better for all
variables except complexity and cost, where high scores are assigned for the lowest

(o1 =1 0 4T =T gl V7<) £ UUUPRROt 176

Table 5.5 - Scoring framework for surveillance. Scores assigned by the author,
justifications and description listed in Table 5.3. Scoring system: 1=poor, 2=neutral,

<o o Lo FRU U UEPUUTN 177

Supplementary Table 1 - Principal components (scoring factors) for the variables
included in wealth index, together with population mean and standard deviation for

LT 1ol o BV LR T | o] (=TT 235

Supplementary Table 2 - Mean variable values for each wealth category, according to
classification of wealth index calculated by principal component analysis. The mean

wealth index value by group is also presented for both school and community surveys. .....236
Supplementary Table 3 - Univariate analysis of school survey Plasmodium infection ........... 237

Supplementary Table 4 - Minimal multivariate model of RDT result (binary) and risk
factors for infection in school-based survey, with study site random effects. Multivariate

models could not be produced for slide-corrected RDT result due to small numbers........... 238
Supplementary Table 5 - Univariate analysis of community survey Plasmodium infection ...239

Supplementary Table 6 - Minimal multivariate multilevel model of RDT result (binary)

and risk factors for infection in community-based survey, with random effects at

20



List of tables

household- and study site-level. Multivariate models could not be produced for slide-

corrected RDT result due to small NUMDBEIS. ... 240

21



CHAPTER 1. INTRODUCTION

1.1 BACKGROUND AND CONTEXT

Investment in malaria prevention and control in Africa has increased dramatically since the
Abuja declaration of 2000, in recognition of the ongoing detrimental effect of Plasmodium
infection on public health [1]. Scale up in coverage of insecticide-treated mosquito nets,
renewed interest in indoor residual spraying using alternative insecticides, as well as the
availability of effective treatment for Plasmodium falciparum malaria using artemisinin
combination treatments are all contributing to reductions in malaria morbidity and mortality

in Africa [2-5].

Both the increased investments and documented reduction in malaria morbidity and
mortality have prompted recognition of the need to invest in surveillance, monitoring and
evaluation to track changes in malaria burden and progress towards key targets [6].
Monitoring and surveillance needs are particularly high in the 34 countries targeting malaria
elimination [7] since the aim is to break transmission, therefore, there is a need to identify
Plasmodium infections rather than just clinical cases, and indicators should have fine spatial
and temporal resolution [6]. As the 64 countries [7] currently in the ‘controlling malaria’
phase successfully transition from high to low malaria endemicity, the need for evidence-
based and appropriate monitoring and surveillance tools for low and unstable transmission

settings will only increase.

Malaria epidemiology in areas of both recently reduced and historically low transmission is
diverse and complex, presenting unique challenges in targeting interventions to locations or
populations at greatest risk, diagnosing Plasmodium infections, monitoring malaria control
programme impact and developing effective surveillance systems for timely epidemic

detection.
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Periodic surveys such as the Demographic and Health Surveys (DHS), as well as Multiple
Cluster Indicator Surveys (MICS) and Malaria Indicator Surveys (MIS) are valuable in
monitoring access to and use of key malaria interventions, as well as the reported burden of
malaria and number of malaria-attributable deaths. These tools were developed at a time
when many malaria-endemic countries did not routinely generate nationally representative
indicators, and there was a desire to develop standardised but adaptable tools for monitoring
and evaluation across countries to track performance of malaria control programmes [8].
Suggested approaches to data collection in the Roll Back Malaria framework included the
routine health information system, demographic surveillance systems, community surveys,
health facility surveys and review of existing documents. While large-scale household surveys
are useful to gather data from the community on knowledge of malaria, access to diagnosis
and treatment as well as ownership and use of mosquito nets, the justification for inclusion
of malariometric indicators, particularly focussing on children less than five years of age and

pregnant women, is equivocal for low transmission settings [9].

Epidemiological surveillance, particularly in areas of low transmission, requires survey
methodologies sufficiently powered to measure the extent of malaria transmission and
parasitaemia within the population. Sampling strategies used in DHS, MICS and MIS are able
to generate nationally-representative estimates of parasite prevalence, but are severely
limited in low transmission settings by the use of light microscopy or rapid diagnostic test
(RDT), due to poor sensitivity in detection of low density Plasmodium infections [10] and
difficulties in capturing the temporally dynamic nature of malaria using cross-sectional survey
methods. Use of molecular diagnostics may offer benefits to malariometric surveys due to
their higher sensitivity in detection of Plasmodium parasites [10], as may the use of
serological tools to describe population exposure to Plasmodium as opposed to current

infection [11].
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An effective health information system, which reports timely and accurate data to a central
level and generates feedback to those collecting the data, is also crucial to malaria monitoring
and surveillance. Spatial and temporal heterogeneity, presence of multiple Plasmodium
species, presence of low density infections, as well as the potential for devastating epidemics
to occur are all additional considerations to be addressed in development of effective malaria

surveillance systems in low transmission areas.

School-based surveys were used during historical malaria reconnaissance activities [12-15],
and their use as an alternative platform for large-scale periodic monitoring surveys has been
demonstrated successfully more recently in Kenya, a moderate to low transmission setting
[16]. School surveys offer practical advantages over household surveys, yet there are limited
data to describe whether school surveys are a reliable alternative to standard household
surveys in low and unstable transmission settings, and whether this approach may offer
improved value for money. Schools have also been explored as a complementary infectious
disease early warning system in high income countries, particularly for pandemic influenza
[17-19], however this approach of school-based surveillance and epidemic detection has not
been adapted for resource-constrained settings where routine health facility-based systems

commonly underperform.

A major development in infectious disease monitoring has been the application of
geostatistical methods to model associations between available malaria data and
environmental predictors in order to predict these malaria indicators together with estimates
of precision in areas lacking data. To date, geostatistical modelling and prediction have not
used estimates of exposure to malaria to explore malaria endemicity in settings with

temporally unstable transmission.

Considering the continued popularity of household surveys and availability of new tools such

as model-predicted endemicity maps, and alternative platforms for monitoring and
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surveillance, there is a need to compare the data generated by each tool to allow countries to
make informed and evidence-based decisions of the strategies that they should prioritise in

an environment of limited resources.

This chapter provides further information of the biology of Plasmodium and the pathology,
transmission dynamics and epidemiology of infection with this parasite. Information is
presented on various strategies for malaria surveillance, including routine passive
surveillance at health facilities, periodic cross-sectional surveys, epidemic detection methods
and the potential of syndromic surveillance. Next, an overview is given of the indicators that
may be of use for malaria surveillance in low and unstable transmission settings. Finally, |
provide a summary of the epidemiology and control of malaria in Ethiopia, where data used

in this thesis are collected.

1.2 BIOLOGY, EPIDEMIOLOGY AND CONTROL OF MALARIA

1.2.1 Parasite lifecycle

Malaria is caused by infection with protozoan parasites of the Plasmodium genus. Human
malaria is caused by five species of Plasmodium: P. falciparum, P. vivax, P. malariae, P. ovale
and P. knowlesi. Plasmodium falciparum has been generally regarded to have the greatest
public health impact of all the Plasmodium species, particularly in sub-Saharan Africa. While
P. falciparum, P. vivax, P. malariae and P. ovale are all found in sub-Saharan Africa [20-22],

this thesis will focus on P. falciparum and P. vivax.

Malaria is a vector-borne disease, transmitted by female Anopheles mosquitoes. Different
combinations of Anopheles species are responsible for Plasmodium transmission across the

diverse environments of the globe where malaria is present [23]. The lifecycle of Plasmodium
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has developmental stages in both the vector and human hosts, with sexual reproduction

taking place in the vector and asexual reproduction in humans.

Male and female Plasmodium gametocytes ingested by female Anopheles during a blood
meal fuse in the mosquito stomach to form a zygote, which develops into a motile ookinete.
The ookinete moves through the mosquito stomach wall, forming an oocyst on the outer
surface of the stomach wall. Up to one thousand sporozoites develop inside a single oocyst
over a period of eight to 35 days. Sporozoite development time is dependent on both
parasite species and external temperature. When mature, the sporozoites penetrate the wall
of the oocyst and migrate to the mosquito salivary glands, where they are injected to a new

host when the mosquito takes a blood meal (Figure 1.1).

Figure 1.1 - Lifecycle of Plasmodium spp. Adapted from Ménard et al. [24]
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In the human host, sporozoites enter hepatocytes and develop into exo-erythrocytic
schizonts. When mature, over 10,000 merozoites will be released into the bloodstream upon
rupture of the infected hepatocyte. Merozoites invade erythrocytes and undergo cyclical
asexual replication. Inside the erythrocyte over a period of 48-72 hours, the parasite develops
into a trophozoite and then mature schizont, at which point the erythrocyte ruptures and

releases between eight and 30 erythrocytic merozoites to invade further erythrocytes.

A fraction of merozoites released from erythrocytes will develop into gametocytes, the
transmissible parasite form ingested by female Anopheles mosquitoes when taking a blood
meal. The time for appearance of gametocytes varies between species: they can usually be
found approximately three days after first identification of asexual P. vivax parasites, and
after approximately ten days for P. falciparum. Immature gametocytes are sequestered in the
bone marrow or spleen, and released to the circulation once mature. Gametocytes are found
in both low- and high-density infections, symptomatic and asymptomatic. Gametocytes
typically circulate at very low densities, but submicroscopic gametocytaemia is known to be

infectious to mosquitoes [25,26].

Plasmodium vivax and P. ovale differ from P. falciparum in the ability to form hypnozoites, a
parasite stage which develops from sporozoites but persists in hepatocytes for months or
years. During this time, hypnozoites may develop further; generating merozoites and

commencing asexual replication cycles in erythrocytes, leading to relapse in malaria.

1.2.2 Malaria pathology

Classic uncomplicated malaria is described as a cycle of chills, then fever, headache and
vomiting, and finally sweating. However, the majority of Plasmodium infections have more
variable symptoms, including some combination of fever, muscle and joint pain, headache,
sweating, chills and anorexia. Historical controlled human malaria infection studies indicated

that symptoms cycle, with attacks occurring every two days for P. falciparum, P. vivax and P.
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ovale, while attacks due to P. malariae occur every three days [27]. In practice, however,
most naturally acquired infections are not so clearly cyclical in presentation of symptoms.
Symptoms of uncomplicated malaria are associated with rupture of erythrocytic schizonts
and the immune response to release of toxic contents of the lysed cells [28]. After several

cycles of P. falciparum asexual reproduction, anaemia and splenomegaly may develop [29].

The case fatality rate for non-immune adults and young children infected by P. falciparum can
reach 10-40% [30]. Patients who progress to severe malaria are more likely to die than those
with uncomplicated infection. Severe malaria is the result of organ failure or abnormalities in
the patient’s blood or metabolism as a result of P. falciparum infection and parasite
sequestration. Symptoms of severe malaria include acute encephalopathy, respiratory
distress, renal failure, hypoglycaemia, lactic acidosis, severe anaemia, coagulation defects

and jaundice [31].

While P. vivax had long been considered a relatively benign infection compared to P.
falciparum, an increasing body of evidence describes instances of severe malaria caused by P.
vivax, indicating that the public health burden of P. vivax malaria may have been
underestimated [32-34]. Mechanisms contributing to severe disease in P. vivax infection
include destruction of uninfected erythrocytes leading to severe anaemia and cytokine-

related changes in alveolar permeability causing respiratory distress [35].

1.2.3 Transmission dynamics of malaria

Historical categorisation of malaria endemicity into holoendemic, hyperendemic,
mesoendemic and hypoendemic was defined according to the proportion of a population
with a palpably enlarged spleen. However this classification was challenged by some who
believed that defining malaria transmission as either stable or unstable was more appropriate

in consideration of transmission dynamics of this vector-borne parasite [9].
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The Ross-Macdonald model of malaria transmission defines the reproductive number (Ry) of
malaria as the number of new infections arising from a single infected person in the absence

of immunity and malaria control, after one generation of the parasite:

B ma’bcp”
" r(-lnp)

The components of the Rq calculation are the ratio of anopheline mosquitoes to humans (m),
human biting rate of anophelines (a), transmission efficiency of anophelines to humans (b)
and humans to anophelines (c), number of days for recovery by humans from infection (r),
proportion of mosquitoes surviving one day (p) and the number of days required for

sporogeny (n) [36].

A major assumption of the Ross-Macdonald model is that of homogeneous transmission in a
well-mixed population. In practice, the Ross-Macdonald model is violated by presence of
immunity in a population, biasing infectivity of humans to mosquitoes and vice versa [36]. In
addition, vector biting is often heterogeneous with 80% of infectious bites received by 20% of
people, introducing a sampling bias between selection of humans by vectors and selection for
inclusion in a study [37]. Contemporary malaria transmission models have attempted to
incorporate heterogeneity at different scales, from small scale where human and mosquito
behaviour result in heterogeneous biting, to larger scale where vector composition and
dynamics are influenced by ecological factors [38]. A further key innovation was
incorporation of host-parasite interactions and immuno-epidemiology into transmission

models [38].

The basic reproductive number is generally interpreted to be Ry>1 in situations of increasing
transmission, and Ro<1 to mean declining transmission since each infection leads to less than

one subsequent infection on average. Estimating R, can be valuable in malaria control
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planning, assist in setting achievable targets and identifying priorities, however it is rarely

estimated using data from the field. Indicators such as parasite rate and entomological

inoculation rate are more commonly generated metrics, but can be combined with other

parameter estimates to approximate R, for local settings [36].

While Ry describes interactions between the human, vector and parasite populations, the

vectorial capacity describes the number of subsequent infectious bites arising from a single

person-day of exposure. Vectorial capacity also describes those components of transmission

which are temperature dependent (Figure 1.2).

Figure 1.2 - Diagrammatic representation of vectorial capacity model used as an early warning system

for malaria epidemics. The model demonstrates how temperature and rainfall (red and blue connector

lines, respectively) can trigger epidemics by increasing vectorial capacity [39]
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The various species of Anopheles involved in malaria transmission across the world have

preferences in their breeding sites, resting locations, as well as in favoured biting species,
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time and location [23,40]. These preferences show some plasticity [41], often in response to
changes in human behaviour or activity. Examples include changes in peak biting time as a
result of use of insecticide-treated mosquito nets while sleeping [42], as well as shifting from

indoor to outdoor biting and resting locations following indoor-residual spraying [43].

Minimum temperature, rainfall levels and humidity are among factors that determine the
suitability of an environment for mosquito breeding and survival [39,44]. The suitability of a
habitat for mosquitoes determines the probability that a mosquito will survive sufficiently
long for ingested Plasmodium gametocytes to develop to the infective sporozoite stages and
be transmitted to another human host. Altitude is commonly used as a proxy for suitability
for transmission, since the fall in minimum temperature with increasing altitude is often the
limiting factor in vector survival and malaria transmission in highland areas. Numerous
studies in the highlands of East Africa have demonstrated this inverse relationship between
altitude and indices of malaria transmission or burden [45-48]. Sporogeny for both P.
falciparum and P. vivax takes eight to ten days at 28°C, but increases to 16 days when the
temperature falls to 20°C. The minimum temperature at which P. falciparum sporogeny will
take place is 16°C, but P. vivax can generate sporozoites at a minimum temperature of 14.5°C
[49]. The ability of P. vivax to generate sporozoites at a lower temperature than P. falciparum
results in potential for P. vivax transmission at higher altitudes, and therefore likely different

spatial extents of transmission for the two species [50].

While much of sub-Saharan Africa has environmental and climatic conditions that support
perennial malaria transmission, arid areas and highlands typically experience seasonal
transmission since low temperature or rainfall limits mosquito survival and transmission
potential [51,52]. In these settings, malaria transmission tends to peak following seasonal

rainfall, then declines during the dry season [53-56].
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In unstable transmission settings, epidemics may occur when environmental conditions
become favourable for increased transmission, or when infection is introduced into
susceptible populations [52,57-60]. Malaria epidemics are broadly defined as unusual
increases in the burden of malaria illness, that are “clearly in excess of normal expectancy”
[61]. Therefore, in areas which are largely malaria-free, a single locally-acquired case may be
considered as a potential epidemic. While in low-endemic or seasonal settings, an epidemic
may have a more subjective or programmatic definition, such as being more cases than can
be managed by routine health service capacity [62]. Malaria epidemics may be due to P.
falciparum or P. vivax, but generally occur in populations without protective immunity

against Plasmodium [63].

1.2.4 Epidemiology and burden of malaria

The World Health Organization (WHO) has estimated that 207 million cases of malaria
occurred worldwide in 2012 and 627,000 malaria deaths, incorporating both recorded cases
and those which area estimated to occur but are not captured by health information systems
[64]. Geostatistical modelling estimated that 2.57 billion people were at risk of P. falciparum
worldwide in 2010 [20], and 3.5 billion at risk of P. vivax. Africa was estimated to contribute
31% of the global population at risk of P. falciparum, but only 3.5% for P. vivax due to the
widespread Duffy negative phenotype in sub-Saharan Africa [21]. Of these total populations
at risk for each species, 44% occupy areas of unstable P. falciparum and 61% of population at

risk of P. vivax reside in areas of unstable transmission.

Malaria transmission intensity influences age-specific risks of infection, clinical disease, and
mortality. In areas of intense malaria transmission, individuals acquire protective immunity as
a result of exposure, but with reducing transmission intensity and therefore exposure,
functional protective immunity develops at older ages, until low transmission settings where

the population generally do not have protective immunity against Plasmodium.
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The focus of many malaria programme evaluation indicators has been to explore morbidity
and mortality in children under five years of age, however modelling using data from a range
of malaria transmission intensities indicates that age patterns of clinical malaria, malaria-
diagnosed deaths and hospital admissions with malaria are less biased toward younger ages

in areas of seasonality and low transmission [65].

Figure 1.3 demonstrates the relationship between age and parasite rate across high to low
transmission intensities. Where transmission is most intense, parasite rate increases rapidly
up to age two, remaining high until age ten and then declining in adulthood, attributable to
protective acquired immunity. However even in areas of low transmission intensity,
moderately higher parasite rates can be seen in children compared to adults [66]. The
association between age-specific parasite rate and transmission intensity has been
demonstrated in settings where transmission has reduced due to control interventions,

where a right shift occurred in Plasmodium prevalence by age [67].

Figure 1.3 - The relationship between age and P. falciparum parasite rate (PfPR) across various
transmission intensities, from very low in Somalia to high in Tanzania. The grey box indicates the usual

age of primary school children in Africa, 5-14 years. Adapted from Brooker et al. [68]
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Identification of individuals with Plasmodium infection is also complicated by presence of
asymptomatic and low density infections. Increasing evidence demonstrates that
asymptomatic and low density infections are common even in low transmission settings
[10,69,70], contradicting previous assumptions that a non-immune population would
experience symptomatic and high-density infections due to their lack of acquired immune
response. ldentification of low density Plasmodium infections is crucial when countries are
moving towards pre-elimination and transmission control, where it is estimated that
submicroscopic carriers are the source of 20-50% of all transmission from humans to

mosquitoes [71].

1.2.5 Malaria control strategies

The current recommended first-line treatment for uncomplicated P. falciparum malaria is
artemisinin combination therapy (ACT), following development of resistance to previously
used drugs including quinine, chloroquine and sulphadoxine-pyrimethamine (SP). While ACT
is effective in the majority of settings in clearing asexual parasite forms and alleviating
symptomes, it does not kill all gametocytes. Plasmodium falciparum resistance to artemisinin
has been identified in several foci in the greater Mekong sub-region, and containment of
artemisinin resistance has been designated a global priority [72]. ACTs are being increasingly
used in areas where both P. falciparum and P. vivax are endemic [73], but the majority of
countries where P. vivax transmission takes place continue to use chloroquine to treat P.

vivax mono-infection.

Use of primaquine is being considered in some countries due to its gametocytocidal action,
although there is no conclusive evidence that addition of primaquine is effective in reducing
of P. falciparum transmission [74]. Primaquine is also of interest as a radical cure for P. vivax

due to its action in clearing hypnozoites [75], but has not been widely adopted due to
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haemolytic effects in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency

[76-80].

The development of long lasting insecticide-treated mosquito nets (LLINs), which do not
require re-treatment with insecticide, led to a global drive for increased access to vector
control. Early studies in the Gambia indicated that the use of insecticide-treated mosquito
nets was associated with a 60% reduction in mortality among children aged one to four years
[81]. LLINs are impregnated with pyrethroid insecticides, and expected to remain effective for
up to five years. However the useful life of LLINs may be reduced due to physical damage,
with households preferring not to use old nets that have become severely torn [82,83].
Consistent use of LLINs within households has also proven challenging, with a wide range of
contextual factors contributing to the likelihood of net use every night, as well as the decision
of which household members use the available nets [84,85]. In addition to providing personal
protection for the individuals sleeping under the mosquito net, insecticide-treated nets also

have a community effect as a result of reduction in the mosquito population [86-88].

Indoor residual spraying (IRS) has been demonstrated to be effective in reducing malaria
prevalence within a community [89,90], by killing or reducing the lifespan of mosquitoes
resting on indoor walls of the household prior to or after taking a blood meal. IRS may also
elicit a repellent effect on mosquitoes seeking a blood meal, reducing the number of

mosquitoes entering households to feed.

The evidence for additionality of both IRS and high coverage of ITNs in the same area is
conflicting. A meta-analysis indicates that there is no additional effect of implementing both
IRS and ITNs [91]. However, a subsequent cluster randomised trial in Tanzania found that
implementing both interventions resulted in a decrease in mean PfPR among children [92].

This result may be partly attributable to only moderate (36 to 50%) use of ITNs in this
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population, although ITN users were found to be additionally protected if their houses

received IRS.

1.3 PLATFORMS FOR MONITORING, EVALUATION AND SURVEILLANCE

Collection of data to describe the implementation, outputs and impact of malaria control
programmes is essential to ensure that the programme remains relevant, effective and
responsive to needs of the population and context. Both monitoring and surveillance are
included in this section and generally referred to as surveillance, although is it acknowledged
that the formal definitions may differ: surveillance generally understood to be continuous
and ongoing, while monitoring is interpreted to be intermittent or episodic collection of data

[61].

1.3.1 Routine surveillance

Routine recording, reporting and analysis of clinical data from health facilities is a core
component of an effective health system. Routine data are reported in a number of different
formats, the primary and original system being the Health Management Information System
(HMIS). HMIS is usually a paper-based system whereby reports on mortality, morbidity,
health resource and preventative indicators are generated quarterly from public hospitals
and health centres. HMIS also includes reporting of the level of completeness of available
data. Due to the widespread adoption of HMIS, these data are often available to describe

longer time periods than other surveillance data.

The Integrated Disease Surveillance and Response (IDSR) system was launched to improve
timeliness of reporting on major endemic diseases of public health importance, diseases
targeted for elimination or epidemic-prone diseases [93]. The IDSR aims to strengthen the

capacity of countries to conduct effective surveillance activities, integrate multiple
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surveillance systems to improve efficiency of surveillance resources, and to improve the flow
of surveillance information between and within levels of the health system. The principle of
community participation in detection and response to public health problems, along with

increasing involvement of clinicians are also key components of IDSR.

There are limitations to the utility of routine data from health facilities to estimate the impact
of disease control programme efforts on population health [94]. Population access to health
services is one potential bias in routine data from health facilities; inequities may exist as a
result of distance to health facilities, socio-economic status and ability to pay for transport to
facilities, or cultural norms which limit the ability of sub-populations to access health services.
Validity and representativeness of data may also be restricted, and should be acknowledged
when interpreting results from analysis of routine health facility data. Use of sentinel sites,
can provide an interim solution to enable timely epidemic detection and response as well as

programmatic evaluation in settings where routine surveillance system are inadequate [95].

Quality of routinely collected data from health facilities may be limited by lack of feedback on
submitted data, as health workers lose the motivation to invest sufficient time in completing
data accurately. Duplication and redundancy in data reporting as a result of multiple
recording systems can also impact on quality of routine data. For example, health centres
collect data in outpatient registers, integrated management of childhood illness (IMCI)
registers for children under five years of age, and laboratory registers of diagnostic tests
conducted. Resolving differences between these data sources can be challenging and time

consuming for staff compiling data.

One systematic approach to evaluate performance of a surveillance system is to determine
the completeness of data submitted, or spot-checks may be conducted during supervisory
visits to compare facility records with information submitted to the central surveillance

system. To improve performance of health workers, some countries have adopted strategies
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whereby money or goods are transferred to the health worker, conditional on achieving
defined targets or taking measurable action. While this strategy of performance-related pay
has been shown to improve maternal and child health services in Rwanda [96], evidence of

the impact of this strategy in other countries is inconclusive [97].

Statistical analysis methods which take into account the spatial and temporal heterogeneity
in malaria cases have been presented which estimate the likely values of missing routine data
from health facilities, allowing generation of more reliable estimates of malaria burden from
routine data [98]. While this is likely too complex a strategy to be widely used at national
level to overcome limitations in the routine data, this method may have value in periodic
retrospective analysis of health facility data with specialist statistical support. In Zimbabwe,
clinical data from health facilities were used to model malaria risk, generating smoothed
maps of seasonal trends in malaria burden [53]. Alternative strategies have been proposed
whereby routine data are combined with cross-sectional prevalence data to estimate the

force of infections in a low transmission setting using a reversible catalytic model [99].

In elimination settings, reactive case detection strategies have been trialled whereby routine
surveillance data from health facilities is used as a trigger to conduct reactive screening and
treatment around the index case in the community [100]. In elimination settings using a
reactive case detection strategy, investments must be made in quality of malaria diagnostic
services to ensure that symptomatic Plasmodium infections are captured by the surveillance
system, and reactive screening quickly implemented. The spatial and temporal clustering of
malaria cases in very low transmission settings indicates that foci of transmission could be
identified by tracing the residence of passively identified cases. Reactive screening and
treatment is intended to prevent onward transmission, but due to the high proportion of
infections in these elimination or pre-elimination settings which will be low density and
asymptomatic, it is advantageous to use diagnostic tools with high sensitivity to detect low

density infections, as well as provide treatment with gametocytocidal drugs to block onward
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transmission. This strategy has been piloted in Swaziland and Senegal, where individuals
living in the same or neighbouring household to an index case diagnosed at the health facility
were screened by RDT, but both pilots found the strategy to be operationally demanding,

resource intensive, and identified few additional infections [101,102].

1.3.2 Periodic monitoring surveys

Large-scale cross-sectional surveys are used in most malaria transmission settings to gather
information on population health, including access to services and preventative measures.
Malaria is no exception, with a range of cross-sectional survey strategies for use across all
transmission settings, designed to measure parasitaemia, reported malaria morbidity and
mortality, as well as access to and use of key malaria interventions. Key considerations of
cross-sectional surveys in low transmission settings are the indicator to which the survey is
powered to measure, whether temporal and spatial heterogeneity are captured, the target

population, frequency of data collection and cost.

Demographic and Health Surveys are nationally-representative household surveys which
collect monitoring and impact evaluation indicators for a range of population, health and
nutrition factors [103]. DHS are usually conducted every five years, and countries choose
appropriate modules to include in the DHS, such as anaemia, child health, education, family
planning, malaria, maternal health, nutrition and wealth. The sample size for DHS is usually
between 5,000 and 30,000 households, in order to generate nationally representative
indicators, with the whole survey process requiring on average 18-20 months to complete.
DHS usually includes a household questionnaire, as well as a separate questionnaire for
women of reproductive age. Biomarkers such as blood samples for haemoglobin
measurement and identification of Plasmodium infection by microscopy may be included in

the DHS, but are not a core component. Key data collected from DHS relevant to malaria
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control programme monitoring are household ownership and individual reported use of

mosquito nets.

Malaria Indicator Surveys are a tool developed by the Roll Back Malaria Partnership (RBM) to
allow national malaria control programmes to generate standard indicators for monitoring
coverage of malaria control interventions [104]. MIS are nationally-representative household
surveys, designed to gather information on core household indicators defined by Roll Back
Malaria [105]. The key themes that MIS are designed to collect data on include coverage of
LLINs and IRS, use of mosquito nets by pregnant women and children under five years of age,
intermittent preventative treatment during pregnancy, diagnosis and treatment of malaria
among children under five, all cause under five mortality, and morbidity indicators from
children under five years (anaemia and parasitaemia). The RBM guidance on design and
implementation of MIS suggests that parasitological testing of children aged six to 59 months

should take place in areas of stable malaria transmission [104].

An alternative to DHS and MIS is UNICEF's multiple indicator cluster survey (MICS) [106].
Similar to DHS and MIS, MICS are nationally representative household surveys, but use an
alternative sampling strategy to select households for inclusion in the survey. MICS generates
indicators related to health, education, child protection and HIV/AIDS, harmonising indicators
with DHS and MIS where possible. Countries can choose the modules that are most relevant
for inclusion in their questionnaire, but the aim is to monitor progress toward national and
global commitments on the situation of children and women, such as the Millennium

Development Goals.

While the DHS, MICS and MIS do provide a nationally-representative estimation of key
indicators at the time of the survey, a major limitation to the use of these monitoring surveys
is their periodic implementation; as a result of the significant investments that must be made

in implementing these activities, they are usually conducted at intervals of three to five years.
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An alternative strategy termed "rolling MIS" has been proposed, but not widely adopted. The
rolling MIS generates data at a much finer temporal scale, by adapting a cross-sectional
evaluation tool into a continuous monitoring tool, to more closely monitor changes in malaria

burden as a result of rapid scale up in coverage of malaria interventions [107].

A further strategy for periodic monitoring surveys is sampling individuals within schools,
rather than conducting household surveys [16]. School malaria surveys have been used
historically for malaria reconnaissance in sub-Saharan Africa [12,13] and the Americas
[14,15,108,109]. School surveys are logistically attractive since all eligible individuals for
random selection are gathered in a single location. Furthermore, in areas of high school
enrolment and attendance the school-attending population should be representative of the
wider community. This allows school surveys to be completed more quickly and at lower cost
than standard household surveys: school surveys usually require only one day to sample 100
children at each site, while household surveys require census, randomisation, and sampling
stages and often require two or three days to complete one site. There are however,
potential biases in the use of school-attending children for health surveys, since children
attending school may differ from non-attending children by wealth, health status, or area of

residence within a community.

School surveys have been demonstrated to generate reliable estimates of community
coverage of insecticide-treated mosquito nets in Uganda [110]. In Kenya, a study found that
estimates of parasitaemia from testing using RDTs correlate between school and community
surveys conducted at the same locations. However, although the estimates correlate, they
were statistically discordant, and school survey parasite rate was consistently higher than
parasite rate in community surveys [111]. A review of the potential uses of schools for
malaria surveillance and programme evaluation highlighted use of school surveys for
estimating coverage of interventions and parasite prevalence, as well as epidemic alert

systems and active case finding [68].
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1.3.3 Epidemic detection

Malaria epidemics are usually defined by assessment of the number of cases of malaria
identified at a health facility compared to the expected burden at that time. Definitions of

IM

“normal” burden of malaria vary, but the upper and lower limits of normality are often
defined as being two standard deviations around the mean number of cases for a facility in a
defined time period, after excluding previous epidemic periods [62]. In order to successfully
identify and respond to malaria epidemics, the temporal resolution of indicators becomes

critically important, as it is the ongoing collection, analysis and feedback of data that enables

responses to be mounted sufficiently early to prevent large-scale morbidity.

Epidemic detection systems collect similar indicators to HMIS, a passive surveillance system,
but the number of indicators is reduced and frequency of collation and reporting is increased.
The definition of an epidemic requires a threshold for the expected or normal number of
cases of malaria to be defined. Where malaria case data are available from previous years, it
is recommended that these data are used to define the threshold. A common technique for
epidemic definition is the quartile method [62], where the threshold is the third highest
weekly total confirmed malaria cases for the current calendar week, taken from the previous
five years' data for that health facility. Another method using historical data from the facility
to define the epidemic threshold is the cumulative sum, or c-sum approach [112]. The c-sum
method generates a “base year” describing the expected number of cases using the mean
value for that month from the previous five years’ data, but also incorporates the mean of
the preceding and following month. In practice, health facilities may not have five years'
complete data to be able to define the epidemic threshold using this method. Alternative
strategies to define epidemic thresholds include doubling the previous year’s number of
cases for the same week at the facility, or the Cullen method, whereby the threshold is the

annual mean number of cases plus the standard deviation multiplied by two [113,114].
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Incidence thresholds, usually the weekly total number of cases by district which have been
identified through the routine health facility surveillance system, expressed per 1000 people
resident in the district, are used for other epidemic-prone infectious diseases such as
meningococcal meningitis [115], but it is important that such incidence thresholds are locally-
defined and appropriate, to improve responsiveness to potential epidemic years at a district

level [116].

While literature exists comparing the sensitivity of various surveillance algorithms for rare
and notifiable diseases in high-income countries [117-119], few examples exist for resource-
poor settings comparing different strategies to define epidemic thresholds. A study in Kenya
compared the use of the Cullen, c-sum and quartile methods to define epidemic thresholds
for malaria data from health facilities [120]. While the lack of gold standard definition for an
epidemic limits the ability to formally compare the methods, use of the Cullen threshold
correctly identified the highest burden years at more facilities than the other thresholds. A
similar comparative study in Ethiopia found a simple percentile cut-off value to be as useful in

defining epidemics as more complicated algorithms [121].

In settings where the limiting factor in epidemic identification is timeliness of data
submission, analysis and response, temporal resolution can be improved by use of mobile
phones to report weekly or even daily number of cases of key infectious diseases including
malaria. In Madagascar, a pilot network of sentinel general practitioners submitted at least
daily text messages by mobile telephone to a central management team, reporting fever
cases, RDT-confirmed malaria, influenza, arboviral syndromes and diarrhoeal diseases. The
system identified ten clusters of febrile illness which were not identified by the traditional
surveillance system [122]. In Zambia, health centres piloted a weekly short-message service
(SMS) reporting system for malaria, submitting the number of individuals tested and total
confirmed malaria cases, with the aim to identify foci of infection or even index cases in areas

of low malaria transmission [123].
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A complementary strategy to identification of epidemics by analysis of passive case detection
data from health facilities, is through use of a climate-based early warning system [124,125].
Climate-based early warning systems provide earlier alerts than are generally possible using
malaria case data, enabling targeting of resources to at-risk areas and control interventions to
be implemented earlier than may be otherwise possible [126]. An internet-based Malaria
Early Warning System is available, which identifies rainfall anomalies across malaria
epidemic-prone areas, with a 10-day resolution [127,128]. Lack of internet access by district
health staff in resource-constrained countries limits the utility of this alert system, however it
may still be possible for the system to be accessed at national level and alerts disseminated
to local staff through a cascade system when necessary. Various studies in areas of unstable
malaria transmission have developed statistical models which demonstrate associations
between remotely-sensed climatic data and temporal changes in malaria burden reported at

health facilities, including epidemics [129-131].

While use of mobile telephones to report confirmed malaria cases from health facilities has
the potential to improve surveillance system timeliness, there remain challenges in
identification of Plasmodium infections in the community, either as a result of limitations in
diagnostic tool performance, lack of availability of diagnostics or poor access to health
services by the population. The use of pre-diagnostic indicators or even surrogate data may

offer an alternative surveillance indicator for malaria.

1.3.4 Syndromic surveillance

Classical epidemic detection systems including those described in the previous section can be
limited in effectiveness due to delays in reporting, incomplete data recording or use of
inaccurate data, all of which can contribute to delays in identifying and responding to malaria
epidemics [132-134]. A complementary system for surveillance is the use of pre-diagnostic

indicators of clinical disease, whereby daily or weekly data are reported from health facilities
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without the need to wait for confirmatory tests. This surveillance strategy can also be
expanded to incorporate the use of surrogate non-clinical data indicating early illness,
particularly exploiting data sources and indicators that are already routinely recorded or

easily accessible. These approaches are often described as syndromic surveillance [135].

While there are differing interpretations of syndromic surveillance, the Centers for Disease
Control's definition appears to be the most widely accepted: “an investigational approach
where health department staff, assisted by automated data acquisition and generation of
statistical alerts, monitor disease indicators in real-time or near real-time to detect outbreaks
of disease earlier than would otherwise be possible by traditional public health methods”
[136]. The key aspect of syndromic surveillance is, therefore, to improve temporal resolution
and responsiveness, allowing faster responses to potential epidemics. These systems are
generally intended to run in parallel to the more sensitive and specific surveillance systems
reporting indicators of confirmed disease, since syndromic surveillance systems have low

specificity and therefore may generate false positive alerts.

A syndromic surveillance system was developed for use in the Pacific islands and territories,
acknowledging the challenges that geographically isolated communities with limited
diagnostic capacity have when attempting to implement traditional data-intensive
surveillance systems requiring confirmatory results for notifiable diseases. The syndromic
surveillance system implemented generated a set of syndromic case definitions relating to
the epidemic-prone diseases of interest (Table 1.1), thereby negating the need for laboratory

confirmation before reporting and limiting the number of indicators on which to report [137].
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Table 1.1 — Example case definitions in a syndromic surveillance system in the Pacific islands and
territories [137]. Note that fever is defined as 38°C of higher, or fever or chills reported by caregiver or

patient if no thermometer is available.

Syndrome Case definition Potential causative disease

Sudden onset of fever, with acute  Measles, dengue, rubella, meningitis,

Acute fever and rash . L
non-bleeding rash leptospirosis

Viral and bacterial gastroenteritis
including cholera, food poisoning,
ciguatera fish poisoning

Three or more loose or watery

Diarrhoea .
stools in 24 hours

Sudden onset of fever, with cough Influenza, other viral or bacterial

Influenza-like illness . . .
and/or sore throat respiratory infections

Malaria, typhoid fever, dengue,
leptospirosis, other communicable
diseases

Any fever lasting three or more

Prol d f
rolonged fever days

Reporting based on a defined set of syndromes reflecting key reportable (e.g. acute flaccid
paralysis, haemorrhagic fever) or epidemic-prone infectious diseases (acute watery
diarrhoea, bloody diarrhoea, prolonged fever, acute fever and rash) has also been used in
India, Papua New Guinea and South Africa [138-140]. In Madagascar a syndromic reporting
system was piloted with a focus on diarrhoeal disease and febrile illness, but also included
the reporting of RDT-confirmed Plasmodium infections [122]. An alternative syndromic
reporting system was used in French Guiana, developing an index of febrile patients who are

confirmed to not have malaria as a proxy for possible dengue outbreaks [141].

Expanding access to and use of technology, particularly expanding coverage of mobile
telephone networks, is facilitating an increased interest in syndromic surveillance in resource-
poor settings [142]. In Papua New Guinea, mobile reporting of syndromic case definitions was
found to be more sensitive than monthly hospital-based surveillance in detecting a measles
epidemic, but had potentially reduced sensitivity for malaria compared to the standard
paper-based national surveillance system [139]. In Zambia, mobile reporting of data was
combined with global positioning system coordinates to incorporate a spatial component in

the data generated by the surveillance system [123].
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In high-income countries that have robust health information systems, syndromic
surveillance is applied to improve timeliness of epidemic alerts through the use of pre-clinical
data to identify changes in population health prior to any increase in access to health services
for diagnosis and treatment. This method has proven particularly popular for the
identification of influenza epidemics [143]. Mining of existing data is the basis for this type of
syndromic surveillance systems favoured by high-income countries, either by tracking
pharmacy sales of non-prescription drugs, internet search engine terms, social media posts or
school attendance [17-19,144-151]. However, this type of surveillance using surrogate
indicators may also be appropriate in resource poor-settings, should appropriate surrogate
indicators be available which are routinely recorded yet reflect health events occurring within

the community.

1.4 INDICATORS FOR MALARIA SURVEILLANCE

The choice of indicator used for a surveillance system is influenced by the transmission
intensity, quality of routine health services and reporting, as well as the temporal scale at
which data are required. A key concept relevant to all indicators that are reported according
to a defined schedule is that of zero reporting, where reports are generated and submitted

even if no cases are identified during the reporting period [152].

1.4.1 Pre-diagnostic and surrogate indicators

The potential of syndromic surveillance platforms in resource-poor settings has been
discussed in section 1.3.4. Surrogate and pre-diagnostic indicators are presented in the
context of syndromic surveillance systems. Case definitions for pre-diagnostic syndromes are
used primarily in resource-poor settings