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SUMMARY

Measles vaccination is estimated to have averted 13·8 million deaths between 2000 and 2012.
Persisting heterogeneity in coverage is a major contributor to continued measles mortality, and a
barrier to measles elimination and introduction of rubella-containing vaccine. Our objective is to
identify determinants of inequities in coverage, and how vaccine delivery must change to achieve
elimination goals, which is a focus of the WHO Decade of Vaccines. We combined estimates of
travel time to the nearest urban centre (550000 people) with vaccination data from Demographic
Health Surveys to assess how remoteness affects coverage in 26 African countries. Building on a
statistical mapping of coverage against age and geographical isolation, we quantified how
modifying the rate and age range of vaccine delivery affects national coverage. Our scenario
analysis considers increasing the rate of delivery of routine vaccination, increasing the target age
range of routine vaccination, and enhanced delivery to remote areas. Geographical isolation plays a
key role in defining vaccine inequity, with greater inequity in countries with lower measles vaccine
coverage. Eliminating geographical inequities alone will not achieve thresholds for herd immunity,
indicating that changes in delivery rate or age range of routine vaccination will be required. Measles
vaccine coverage remains far below targets for herd immunity in many countries on the African
continent and is likely to be inadequate for achieving rubella elimination. The impact of strategies
such as increasing the upper age range eligible for routine vaccination should be considered.
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INTRODUCTION

Vaccination has proved one of the most successful
public health interventions, resulting in substantial

mortality and morbidity reductions worldwide [1, 2].
Between 2000 and 2012, it was estimated that
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vaccination averted 13·8 million deaths [3], and future
impacts are anticipated to be large [4]. However, de-
spite major successes in ramping up vaccination [5],
significant outbreaks occurred across the African
continent between 2009 and 2011 [6]; and many indi-
viduals remain at risk. Both low coverage of routine
vaccination programmes, and suboptimal implemen-
tation of the catch-up or follow-up campaigns de-
signed to reach susceptible children (Supplementary
Immunization Activities, or SIAs) who had accumu-
lated over the previous years of low routine coverage
[7] contribute to this. Nevertheless, all six World
Health Organization (WHO) regions currently have
measles elimination goals [8]. The impact of inequities
in vaccination rates, and the resulting heterogeneity in
the population landscape of immunity on the measles
endgame, is consequently a key public health ques-
tion. A related issue is how these heterogeneities affect
the prospect of introduction of rubella-containing
vaccine, which can have negative impacts if vaccine
coverage is inadequate. Here, we show that geographi-
cal isolation plays a key role in shaping vaccination
inequity across a range of countries in Africa and ex-
plore how modalities for enhancing vaccination cover-
age will impact geographical inequity.

The considerable variability in the opportunity that
children have for vaccination is well-recognized in the
literature [9]. Various correlates of low coverage have
been suggested, linked to health service availability
and performance [10], socio-demographic character-
istics of families and communities [11, 12], and their
perceptions and attitudes to vaccination [13–15]. A
range of work suggests that geographical location
may be important [16–18], usually linked to access
to care [10], with particular emphasis on urban/rural
differences [14, 19, 20]. For example, coverage in the
northern states of Nigeria is about half of that in the
southern states, and lower in rural than urban areas
[21]. However, there are also exceptions, e.g. in
Kenya, travel time to vaccine clinics did not have
any discernible impact on coverage [22]. Such geo-
graphical variation is of particular public health rel-
evance for measles, as geographical clustering of
unvaccinated individuals may be crucial in allowing
persistent circulation of the virus [23]. Rubella vac-
cine, until recently rarely used in low-income countries
[24], is being introduced with increasing frequency
since funding for its introduction became available
via the Global Alliance for Vaccines and Immuniz-
ation (GAVI) [25]. Rubella vaccination is easily com-
bined with the measles vaccine, and existing measles

programmes are consequently the likely delivery mech-
anism if the vaccine is introduced [26]. Consequently,
measles coverage levels are informative for the advis-
ability of rubella introduction. Inequities in coverage
are also particularly significant for rubella control
[27]. Areas of low coverage that are of insufficient
size to maintain circulation of rubella (i.e. are below
the critical community size [28]) may be particularly
vulnerable to accumulation of late age susceptible
individuals [27] and thus increase the main burden
of rubella linked to infection of women during early
pregnancy [29].

Here we systematically analyse the impact of geo-
graphical isolation on coverage of the first dose
of measles-containing vaccines (MCV1) in Africa.
We show a link between coverage and average per per-
son travel time (across available modes of transport)
to population centres of 550000 people. We use
our analysis to assess the penetration of routine
vaccination into rural communities, and to investigate
modified scenarios of vaccine delivery, including
changing the rate of delivery, changing the target
age range of delivery, or reducing travel-linked in-
equities to identify which most effectively move popu-
lations towards the 95% vaccination coverage
estimated as a threshold for measles elimination [30].
We also quantify the magnitude of change necessary
in remote populations to achieve 80% coverage, con-
sidered to be a key threshold for introduction of
rubella vaccination [26] (although note that this may
be too low in some circumstances [31, 32]).

METHODS

Vaccination coverage data

Measles vaccination status, age, and approximate
geographical longitudes and latitudes of residence
for children aged 9–59 months were obtained from
Demographic Health Surveys (DHS) on the African
continent occurring during or after 2000 [33]. These
surveys select a large random sample of households
to provide nationally, and sometimes regionally, rep-
resentative estimates of key demographic and health
indicators, including vaccination coverage [33]. In
reporting the geographical coordinates (standard lati-
tude and longitude values [34]), points are displaced to
protect the confidentiality of the survey respondents.

In the course of surveys, mothers were asked whe-
ther the child had a vaccination card; and additionally
whether ‘the child had a measles injection or an MMR
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injection – i.e. a shot in the arm at the age of
59 months – to prevent him/her from getting mea-
sles?’ [33]. We used the latter to develop an indicator
variable defining whether children had ever been
vaccinated (taking the value 1 if mothers reported
positively, 0 if mothers reported negatively, and NA
if mothers did not report). Although the number of
measles vaccine doses received by children is also of
considerable public health relevance (WHO recom-
mends that each child should receive two doses, be-
cause of interference from maternal immunity), with
the data available, we could not quantify this over
the broad scales of interest, so we focused on pres-
ence/absence of vaccination.

Supplementary Table S1 provides numbers of chil-
dren for which vaccination and age information was
available per country and country-specific details of
SIAs based on WHO data. Given the lack of exact
dates of delivery of vaccines during SIAs and the
difficulty in determining the age of many children in
countries without birth registration, the age ranges
assumed to be eligible during each survey are approxi-
mate. The coverage reported by mothers does not dis-
tinguish between whether vaccination was provided as
part of routine or SIA campaigns, so we were unable
to disentangle the roles of these different modes of
immunization.

Remoteness data

Spatial datasets on Africa-wide road networks
(GRoads: www.ciesin.columbia.edu/confluence/
display/roads/; VectorMap0: www.mapability.com;
OpenStreetMap: www.openstreetmap.org; plus
national transportation network GIS datasets from
Kenya, Namibia, Tanzania, Swaziland, Rwanda,
Niger, Zambia, Angola, Somalia and Djibouti), land
cover [35], settlement locations [36] (www.worldpop.
org.uk), inland water bodies [37] and topography
[38] were obtained and assembled within a geographi-
cal information system (GIS). The datasets were the
most detailed and complete available, and all were
constructed within the last 10 years to represent as
closely as possible conditions during the period within
which the DHS surveys were conducted. These data-
sets formed the basis for constructing a ‘friction’ sur-
face used to calculate travel times to the nearest
settlement of 550000 people in 2010, following the
methodology outlined by Nelson [39].

The gridded travel time dataset was used to map out
areas at travel times of 1-h intervals (0–1 h, >1–2 h, etc.,

up to >10 h) from settlements of 550000 population,
which we refer to as ‘urban’. These mapped classes
were then overlaid onto a 2010 gridded population
dataset [36] and the population sizes residing in each
class for each country were calculated. We use travel
time from large urban centres rather than, say, dis-
tance to the nearest health facility because travel
time data is broadly available and comparable across
countries whereas health facility data is more variable.

Model fitting

We first explored various parametric hazard re-
gression models for coverage as a function of age
and distance. However, no such models adequately
captured the varying patterns seen across the con-
tinent. We therefore used non-parametric binomial re-
gression to estimate the probability of vaccination as a
function of age and remoteness using local polynomial
regression with a logit link and a binomial error [40].
Local polynomials are akin to regression splines but
are better able to accommodate unequally spaced
data (e.g. [41]). For each country/year, the model
was fit to data from all children for whom vaccination
data, age, and location were available. We combined
this with data on population numbers found across
travel-time classes to estimate country-level coverage
and compared this with previous DHS scaled esti-
mates (obtained via the DHS website, http://www.
statcompiler.com) to validate the models.

Kinetics of vaccination over age and geography

We explored the impact of a range of different scenar-
ios on country-level measles vaccine coverage. First,
we quantified what increase in coverage may be ob-
tained by improving rates of routine vaccination, as-
suming that within each travel time category (taken
in hourly increments) rates of vaccination attained
over 1 week between 9 and 12 months increased by
half the baseline rate [see Supplementary Fig. S1: for
example, if baseline coverage increased from 50% to
51% with one additional week of age, then coverage
was assumed to increase by 0·15=1·5×(0·51–0·5)
over the same week of age]. Second, we quantified
what increase in coverage may be obtained by increas-
ing the upper age range considered for routine vacci-
nation. To do this, we assumed that the maximum
rate of vaccine delivery attained between 9 and
10 months represented coverage achieved under rou-
tine vaccination, and explored the impact if this rate
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of delivery was applied for ages up to 15 months (see
Supplementary Fig. S1 for a representation of this
modification; broadly similar results are obtained if
the value is applied up to 18 months). Third, we quan-
tified what increase in coverage may be achieved by re-
moving urban/rural inequities, i.e. assuming that all
rural areas would get the same access to vaccination
as urban locations in that country. For all these
comparisons, we focused on coverage attained at
24 months (since increasing the age range will show
no impact at 12 months).

Throughout, institutional ethics approval was not
sought because this is a retrospective study and the
databases are anonymized and free of personally iden-
tifiable information.

RESULTS

Figure 1a shows the distance effect on measles vaccine
coverage achieved by 13 months and 60 months from
the most recent survey for all countries for which data
was available (shown respectively in pink and blue, see
Supplementary Fig. S2 for detailed plots of all ages).
These ages were chosen since most children are likely
to have received their routine dose by 13 months; SIAs
may increase the coverage observed at 60 months,
which also reflects the upper age available with the
data. The remoteness effect for the full range of avail-
able data is shown in Figure 1b (see Supplementary
Fig. S3 for how travel times map onto the various
countries). Both plots indicate a clear signal of urban/
rural inequity in most countries, and Figure 1b
shows that the inequity is amplified in countries with
lower overall coverage. Estimates of country-level
coverage across the dataset concur with estimates
from the DHS (Supplementary Fig. S4), indicating
that our mapping from coverage across age and travel
time classes combined with population distribution
across travel time classes provides a reasonable reflec-
tion of the overall coverage for the different countries.

The analysis of modification of the kinetics of vac-
cination (Fig. 2a) indicates that all three scenarios
would increase coverage but their relative effectiveness
is country-specific. In those countries with the most
to gain in vaccination coverage (baseline <0·70), the
greatest benefits would come from removing ‘rural
penalty’ (grey circles, Fig. 2a; coverage raised by be-
tween 3 and 25 percentage points and on average
increased by 16 percentage points). However, with
the exception of a few of the countries that currently
report coverage >90%, removing rural penalty alone

would be insufficient to raise coverage over the 95%
elimination threshold. For this additional adjustments
such as increased rate of vaccination during routine,
or an increased target age range (which by increasing
the window of time for vaccination can substantially
increase coverage by 24 months) would be required
(see Supplementary Fig. S5A for the ratio of extra
doses deployed that this corresponds to). Figure 2b
lays out the various country-specific scenarios re-
quired to reach 95% coverage; the red bars indicate
the factor by which the rate of routine vaccination
must be multiplied; and the blue bars indicate the in-
creased age limit required given current uptake rates.
The corresponding increase in the number of doses
administered for rate- or age-range increase scenarios
(Supplementary Fig. S5B) tends to be rather similar,
as one would expect. Note that in these illustrations,
the various kinetic changes are independent and con-
sidered separately.

Countries with the lowest coverage also have the
largest shortfall to achieve either measles elimination
targets (95%), or minimal levels of coverage for rolling
out rubella containing vaccine currently recommen-
ded by WHO (80%) in the most remote communities.
Coverage achieved in the most remote communities
relative to these two thresholds is shown in Figure 3.

DISCUSSION

Reducing inequity in vaccine coverage is a key stra-
tegic objective of the Decade of Vaccines [42]. The
2013 Action Plan [42] called for strategies to go be-
yond the 2002 concept of ‘Reaching Every District’
to encompass ‘Reaching Every Community’. This
Action Plan emphasized that implementing such stra-
tegies requires that the underserved be identified; and
that progress in accessing this group be monitored
[42]. Our analysis provides a simple predictive variable
of vaccine-related inequity: vaccination coverage is
lower in more remote locations as measured by av-
erage per person travel time. Furthermore, due to its
simplicity, this metric can easily be re-evaluated to as-
sess progress towards equity goals.

Countries for which the effect of remoteness
on measles vaccine coverage is relatively small tend
to be those with overall high measles vaccine coverage
(e.g. Egypt or Ghana). In many countries with repeat
surveys, an increase in coverage has been accom-
panied with a marked reduction in inequity. For
example, in Ghana between 2003 and 2008, Kenya
between 2003 and 2008, and Namibia between 2000
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(a) (b)

Fig. 1. The effect of travel time on vaccination coverage. (a) The proportion of the population vaccinated (y axis) achieved between 12 and 13 months of age (blue areas)
and 58 and 60 months of age (pink polygons) as a function of travel time in hours to the nearest city of 550000 people (x axis) for the most recent Demographic Health
Survey (DHS) available from each country. (b) The maximum proportion of the population vaccinated by age 60 months at 0·5, 4, and 8 h travel time (legend, colours)
for the full range of available DHS data available for each country, ordered by coverage achieved in the most recent DHS survey. For the approximate age range eligible
for Supplementary Immunization Activities and where they occurred, see Supplementary Table S1.
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(a) (b)

Fig. 2. Impact of modifying kinetics of measles vaccination coverage by country. (a) Vaccination coverage by country achieved at 24 months (black points), obtained by
scaling estimated coverage by the size of populations living at different travel times (assuming an even distribution of population across ages up to age 5 years); the
coverage level by 24 months that would be obtained if the rate of vaccination between 9 and 12 months could be increased by 50% (red points); or if the age range
whereby the maximum rate of coverage was obtained was extended up to 15 months (blue points); or everyone obtained the coverage estimated in the larger urban
centres (grey points). Results are ordered by maximum coverage obtained over age (see Fig. 1). (b) The factor by which the rate of vaccination between 9 and 12 months
would need to be multiplied to achieve 95% coverage by 24 months (red) and the degree to which the upper age of vaccination must be increased to achieve 95%
coverage by 24 months (blue) shown to reflect geographical clustering.
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and 2006 the ‘rural penalty’ is considerably reduced
(Fig. 1b), suggesting that strategies to reach more com-
munities have been successful. However, there are
exceptions to this pattern (e.g. Burkina Faso 2003–
2010). The mechanisms underlying this inequity, and
how it changes in the face of improved global cover-
age are likely to be broadly linked to infrastructure,
although geographic variation in socioeconomic
status, ethnic group and other family and community
characteristics may also play a role [11, 12]. How these
factors can be mitigated via design of delivery of rou-
tine and supplementary immunization activities will
be an additional important issue in reaching target
vaccine coverage. SIAs in particular are intended spe-
cifically to redress this type of inequity by reaching
children in remote and underserved communities [8].
The data available here were not sufficient to disen-
tangle the role of SIAs vs. routine vaccination since
the data report on whether or not children were vacci-
nated, but not the means by which the vaccine had
been distributed. A key research question is to estab-
lish the degree to which SIAs reduce inequities, par-
ticularly across spatial scales.

Our analysis of possible changes to the kinetics of
immunization, including increasing the rate of vacci-
nation, and increasing the upper age to which routine

vaccination is applied appear to have potentially large
effects on measles coverage. Most interestingly, in-
creasing the upper age of eligibility for routine-like
vaccination is predicted to have substantial effects, a
result of considerable interest as this change in control
does not require any changes in infrastructure. How-
ever, some countries remain below the threshold of
herd immunity for measles even with these changes
(Liberia, Benin, Mali, DRC, Guinea, Sierra Leone,
Ethiopia, Nigeria). It is key to acknowledge that
other heterogeneities will affect these results – in our
scenario analyses, we assume that individuals of the
same age and at the same travel time have an equal
opportunity of vaccination. In reality, there may be
parts of local populations that has greatly reduced
opportunities for vaccination [43]. Increasing rates of
vaccination, or the upper age of routine vaccination
will be less likely to affect such strata.

Finally, as we approach measles elimination, achiev-
ing high coverage not just at the scale of the country,
but also in pockets where infection is likely to persist
is of increasing importance. Various lines of evidence
suggest that remote communities may have lower R0,
as transmission rate is thought to increase with density
of contacts [44, 45]. For measles, the lower the R0, the
lower the critical threshold of vaccination required for

Fig. 3. Shortfall in measles vaccination coverage in remote communities. The y axis indicates the level of measles
vaccination coverage attained at 24 months for children living at travel times reflecting the 0·75 quartile of the travel time
(i.e. the most remote children) for countries shown on the x axis. Distance below the horizontal lines indicate the
necessary increase in measles vaccination coverage in the least served communities required to achieve values >80% in
every community (dark red line, suggested minimum for safe introduction of rubella-containing vaccine) or >95% in every
community (lighter red line, suggested level required to achieve measles elimination).
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elimination. However, this remains relatively poorly
understood – for example, seasonal fluctuations and
aggregation might also be higher in such areas,
potentially driving a very high seasonal peak of trans-
mission [45].Whatever the case, the impact of persisting
pockets may considerably complicate and extend the
duration of the endgame [46]. For rubella, lower levels
ofR0 alsomay lead to higher probability of local extinc-
tion of the virus in remote communities, and thus
greater potential for build-up of late-age susceptible
individuals [47]. The pattern of coverage shortfalls in
remote communities (Fig. 3) reflects that of the pattern
of coverage in general, once again emphasizing that
reaching these remote communities is key.

Inequities in vaccine coverage are often quantified at
broad spatial scales (e.g. provinces, countries) or in
terms of gender, or socioeconomic indicators. Finer
scale analyses of healthcare accessibility require con-
siderably more data, and thus are often narrower in
scope. Our analysis combines broad scale data with a
relatively simple measure of accessibility to address
this question. Evidence for remote under-vaccinated
populations is both of considerable importance given
the dynamical consequences of unvaccinated com-
munities, but also as another simple indicator of
where underserved populations are to be found, with
the potential to guide policy to address their needs.

SUPPLEMENTARY MATERIAL

For supplementary material accompanying this paper
visit http://dx.doi.org/10.1017/S0950268814001988.
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