
Shah, AD; Bartlett, JW; Carpenter, J; Nicholas, O; Hemingway, H
(2014) Comparison of random forest and parametric imputation mod-
els for imputing missing data using MICE: a CALIBER study. Amer-
ican journal of epidemiology, 179 (6). pp. 764-74. ISSN 0002-9262
DOI: https://doi.org/10.1093/aje/kwt312

Downloaded from: http://researchonline.lshtm.ac.uk/1883884/

DOI: 10.1093/aje/kwt312

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alterna-
tively contact researchonline@lshtm.ac.uk.

Available under license: Creative Commons Attribution Non-commercial
http://creativecommons.org/licenses/by-nc/3.0/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSHTM Research Online

https://core.ac.uk/display/42632177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchonline.lshtm.ac.uk/1883884/
http://dx.doi.org/10.1093/aje/kwt312
http://researchonline.lshtm.ac.uk/policies.html
mailto:researchonline@lshtm.ac.uk


Practice of Epidemiology

Comparison of Random Forest and Parametric Imputation Models for Imputing

Missing Data Using MICE: A CALIBER Study

Anoop D. Shah*, Jonathan W. Bartlett, James Carpenter, Owen Nicholas, and Harry Hemingway

* Correspondence to Dr. Anoop D. Shah, Clinical Epidemiology Group, Department of Epidemiology and Public Health, School of Life and Medical

Sciences, University College London,WolfsonHouse, 2-10 StephensonWay, LondonNW12HE, United Kingdom (e-mail: anoop@doctors.org.uk).

Initially submitted April 5, 2013; accepted for publication November 20, 2013.

Multivariate imputation by chained equations (MICE) is commonly used for imputing missing data in epidemio-

logic research. The “true” imputation model may contain nonlinearities which are not included in default imputation

models. Random forest imputation is a machine learning technique which can accommodate nonlinearities and in-

teractions and does not require a particular regression model to be specified. We compared parametric MICE with a

random forest-based MICE algorithm in 2 simulation studies. The first study used 1,000 random samples of 2,000

persons drawn from the 10,128 stable angina patients in the CALIBER database (Cardiovascular Disease Re-

search using Linked Bespoke Studies and Electronic Records; 2001–2010) with complete data on all covariates.

Variables were artificially made “missing at random,” and the bias and efficiency of parameter estimates obtained

using different imputation methods were compared. Both MICEmethods produced unbiased estimates of (log) haz-

ard ratios, but random forest was more efficient and produced narrower confidence intervals. The second study

used simulated data in which the partially observed variable depended on the fully observed variables in a nonlinear

way. Parameter estimates were less biased using random forest MICE, and confidence interval coverage was bet-

ter. This suggests that random forest imputation may be useful for imputing complex epidemiologic data sets in

which some patients have missing data.

angina, stable; imputation; missing data; missingness at random; regression trees; simulation; survival

Abbreviations: CALIBER, Cardiovascular DiseaseResearch using Linked Bespoke Studies and Electronic Records; MAR,missing

at random; MICE, multivariate imputation by chained equations.

Missing data are a pervasive problem in epidemiologic
studies, particularly for research using routinely collected
clinical health records (1). Incomplete data sets are frequently
analyzed using multiple imputation, which involves creating
multiple complete versions of the data with missing values
imputed through random draws from distributions inferred
from observed data (2). Multiple imputation typically as-
sumes that data are missing at random (MAR)—that is, that
missingness is not associated with the missing value, condi-
tional on the observed data (3). Multivariate imputation by
chained equations (MICE), also called full conditional spec-
ification, is a common method of generating imputed values
by drawing from estimated conditional distributions of each
variable given all the others (4). Imputation models must be
appropriately specified for analyses based on imputed data to

yield unbiased parameter estimates and associated standard
errors. The default setting in implementations of MICE is
for imputation models to include continuous variables as lin-
ear terms only with no interactions, but omission of important
nonlinear termsmay lead to biased results (5). Other potential
problems with parametric regression models are that 1) they
cannot include more predictor variables than the number of
observations without recourse to prior information (6) and
2) inclusion of highly correlated variables may cause prob-
lems due to collinearity. In this paper, we propose a new im-
putation method which aims to overcome these problems
using random forest.
Random forest is an extension of classification and regres-

sion trees (7), predictive models that recursively subdivide
the data based on values of the predictor variables. They do
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not rely on distributional assumptions and can accommodate
nonlinear relations and interactions. On simulated data sets
with interactions between variables, imputation of missing
data using MICE with regression trees resulted in less biased
parameter estimates than MICE with linear regression (7).
However, regression trees may “overfit,” following the pat-
tern of noise too closely and producing a complex model
with poor predictive power in new data sets.

Random forest uses bootstrap aggregation of multiple re-
gression trees to reduce the risk of overfitting, and it com-
bines the predictions from many trees to produce more
accurate predictions (8, 9). Random forest is widely used in
genetic epidemiology (10) and has also been used for mod-
eling survival (11, 12) and predicting response to cancer che-
motherapy (13). We propose that random forest may be
useful in multiple imputation of epidemiologic data sets, par-
ticularly if there are large numbers of clinical variables per
participant, as may increasingly be the case (e.g., genomic
or proteomic studies).

Stekhoven et al. (14) developed a random forest-based al-
gorithm for missing data imputation called missForest. This
algorithm aims to predict individual missing values
accurately rather than take random draws from a distribu-
tion, so the imputed values may lead to biased parameter es-
timates in statistical models. Apart from a comparison
between random forest and polytomous regression for imput-
ing tumor stage using MICE (15), we are not aware of other
published evaluations of multiple imputation using random
forest.

In this paper, we compare a standard implementation of
MICE with imputation using missForest, and we propose a
new version of MICE which imputes each variable using ran-
dom forest. We compare these methods in a realistically com-
plex survival analysis based on patients with stable angina in
the CALIBER (Cardiovascular Disease Research using
Linked Bespoke Studies and Electronic Records) database
(16) and in a simulation study with interactions.

METHODS

Imputation of missing data using MICE, where each

variable is imputed using random forest

Within the MICE framework, missing values of continu-
ous variables are conventionally imputed by fitting a linear
regression model for the observed values, predicting the con-
ditional mean for each missing value, and randomly imputing
a value from a normal distribution centered on this condi-
tional mean. Our new method is derived from the “mice.
impute.norm.boot” function in the “mice” package in R (4), in
which linear regression is applied to a bootstrap sample of rec-
ords with observed values of the variable to be imputed. The
purpose of the bootstrap is to accommodate sampling varia-
tion in estimating population regression parameters, which is
part of ensuring that imputations are “proper” (3). The ran-
dom forest algorithm itself involves another level of bootstrap
sampling. Records with missing values in the dependent var-
iable are imputed by random draws from independent normal
distributions centered on conditional means predicted using
random forest. We used the “out-of-bag” mean square error

as the estimator of residual variance (which we assumed to
be normally distributed). Random forest fits each tree to a dif-
ferent bootstrap sample of the data and aggregates the results;
the out-of-bag error is the mean of squared differences be-
tween each observed value and the prediction based on
trees for which that observation is not included in the boot-
strap sample.

For binary or unordered categorical variables, we used ran-
dom forest to fit individual regression trees to a bootstrap
sample of the data and imputed each missing value as the pre-
diction of a randomly chosen tree. This is equivalent to
choosing between 0 and 1 with probability according to the
mean random forest prediction. Our random forest imputation
functions are available from the Comprehensive R Archive
Network (17).

Simulation study based on CALIBER data

CALIBER is a database of linked routinely collected elec-
tronic health records from England (16), comprising data
from primary care (Clinical Practice Research Datalink)
(18), hospital admissions (19), the national registry of acute
coronary syndromes (20), and the national death registry.

The cohort consisted of patients who received a diagnosis
of stable angina while registered at a general practice contrib-
uting to the Clinical Practice Research Datalink. Blood pres-
sure, smoking status, and measurements of blood biomarkers
were taken from routine clinical records before the diagnosis
of stable angina, and patients were followed up for the com-
posite endpoint of death or nonfatal myocardial infarction
(see Web Appendix 1, available at http://aje.oxfordjournals.
org/). The CALIBER record-linkage study has received eth-
ical approval, and this study was approved by the Clinical
Practice Research Datalink Independent Scientific Advisory
Committee.

Analysis of interest. We investigated missing data in the
context of a hypothetical analysis of associations, suggested
in previous studies (21–23), between 3 commonly measured
hematological parameters (hemoglobin concentration, lym-
phocyte count, and neutrophil count) and prognosis among
patients with stable angina in CALIBER. The substantive
analysis was a multivariable Cox model with the composite
endpoint of death or nonfatal myocardial infarction, and
with predictor variables specified a priori. The fully observed
predictor variables were: age, age squared, sex, previous
myocardial infarction, diabetes mellitus, previous stroke,
peripheral arterial disease, and heart failure. Smoking status
was a partially observed 3-category variable (never, former,
or current smoker), and we included the following partially
observed continuous variables: systolic blood pressure
(mm Hg), log neutrophil count (109 cells/L), log lymphocyte
count (109 cells/L), high-density lipoprotein cholesterol level
(mmol/L), hemoglobin concentration (g/dL), and log serum
creatinine concentration (µmol/L). For each of these vari-
ables, we took the mean of any observed values in the 2
years prior to the start of follow-up. We used the Efron ap-
proximation (24) for ties. We did not investigate alternative
models and ignored clustering by general practice.

Generation of sample data sets for simulation study. For
the simulation study, we created data sets with missing data
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for which we knew the “true” values, with a missingness pat-
tern similar to that observed in the actual data set but which
was missing at random, such that the MAR assumption un-
derlying most multiple imputation approaches was satisfied
(Figure 1). We denoted the entire cohort of 52,576 stable an-
gina patients data set “A.” Patients with no missing values for
any of the variables in the survival model were denoted data
set “B” (13,308 patients).
We used logistic regression based on completely observed

variables to investigate factors associated with a patient’s

having a complete record (i.e., whether a patient was in
data set B). We included the first value after cohort entry of
partially observed continuous variables as auxiliary variables
to help predict missing covariates in imputation models. The
subset of patients with complete recording of all analysis and
auxiliary variables was denoted data set “C” (10,128 pa-
tients), and they formed the basis for the resampling study.
We artificially made some values of predictor variables miss-
ing in one thousand 2,000-patient random samples (with re-
placement) from data set C. We carried out simulations with

Figure 1. Generation of data sets with artificial missingness from a population of patients with stable angina in the CALIBER database, 2001–
2010. Data sets D1, D2, . . . , D1,000 are samples of 2,000 patients with replacement from data set C. CALIBER, Cardiovascular DiseaseResearch
using Linked Bespoke Studies and Electronic Records; MAR, missing at random; MCAR, missing completely at random; MICE, multivariate impu-
tation by chained equations.
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one of 2missingness mechanisms: 1)MAR in a pattern similar
to that of data set A or 2) an artificial pattern of missingness
completely at random in which only categorical variables
were missing (see Web Appendix 1 for more details).

Multiple imputation of test data sets. Imputation models
included all of the variables in the substantive Cox model,
event status, marginal Nelson-Aalen cumulative hazard
(25), and the following auxiliary variables: type of endpoint,
whether the practice was receiving electronic laboratory
results, and the earliest recorded value after the index date
for blood pressure and the 5 blood biomarkers. We imputed
continuous variables using MICE with normal-based linear
regression, predictive mean matching with 3 nearest neigh-
bors, and our new random forest method.We imputed categor-
ical variables using either MICE with logistic or polytomous
regression or MICE with random forest (choice of 10 or 100
trees). We also investigated random forest with a single tree to
determine whether bootstrap aggregation had an advantage
over a single regression tree.

We generated 10 MICE imputations, each drawn from a
separate chain with a different random seed, with 10 cycles
of imputation before drawing the imputed data set. We as-
sessed chain mixing by reviewing plots of chain mean values
and standard deviations. For two of the methods (random for-
est with 10 trees and parametric MICE), we also calculated
results using 100 imputations.

In addition to MICE, we also evaluated missForest (14),
which uses random forest in an iterative way to complete a
data set with missing values, where imputed values are
equal to the random forest predictions rather than being ran-
domly sampled from a conditional distribution. We generated
multiple imputed data sets by running missForest using dif-
ferent random seeds, which leads to different random forest
models being generated.

Regardless of the imputation method, all data sets were an-
alyzed using the same multivariable semiparametric Cox
model as described above. For each set of imputed data
sets, the log hazard ratios from the Coxmodel were combined
using Rubin’s rules (26), which assumes that imputed values
were drawn from the appropriate Bayesian posterior. We car-
ried out analyses using R 2.12.1 (27), with the software pack-
ages mice 2.12 (4), missForest 1.3 (28), survival 2.36-2 (29),
and randomForest 4.6-6 (30). Random numbers were gener-
ated using the Mersenne Twister (31).

Comparison of results obtained by different methods. We
considered the Cox proportional hazards model fitted to the
entire data set (data set C) the “true” result for the assess-
ment of bias and confidence interval coverage of hazard ra-
tios. We compared the widths of 95% confidence intervals
between 2 methods using paired-sample t tests. We com-
pared coverage of 95% confidence intervals for each coeffi-
cient separately using McNemar’s test, defining discordant
pairs as data sets in which the 95% confidence interval in-
cluded the “true” value for one method but not the other.
We compared the efficiency of the estimators by calculat-
ing their empirical standard deviations. We calculated the
between-imputation variance of the estimated log hazard ra-
tios, defined as the mean (across simulations) of the variance
of the log hazard ratio estimates from the 10 imputations per
data set.

Simulation study with interactions

We also created simulated data sets to compare the per-
formance of methods when there were nonlinearities in the
association between predictor variables. We generated 2
independent random normal variables with mean 0 and
variance 1, x1 and x2, and a third variable x3 equal to 0.5(x1 +
x2 − x1x2) + e, where e was distributed normally with mean
0 and variance 1. Survival times were generated according
to an exponential distribution with log hazard 0.5(x1 + x2 +
x3). This meant that there were no interactions in the substan-
tive model, but the default parametric imputation model for
x3 (which would not include any interactions) would be in-
correct. Observation times were generated according to a uni-
form distribution in the range from 0 to the 50th percentile
of survival times. If the observation time was less than the
survival time, the patient was considered censored (event
indicator 0, and the patient’s follow-up ended on his or her
censoring date); otherwise the event indicator was 1, with
follow-up ending on the date of the event.

Variable x3 was made 20% MAR according to a logistic
model based on x1 and x2, the marginal Nelson-Aalen cumu-
lative hazard and the event indicator.

We analyzed 1,000 simulated data sets with 2,000 patients
each, imputing missing data using random forest and para-
metric MICE (without interactions), comparing the results
as above (Web Appendices 2 and 3).

RESULTS

Simulation study based on CALIBER data

The prevalence of missingness among partially observed
variables ranged from 1.5% for smoking to 56.7% for lympho-
cyte counts and 56.8% for neutrophil counts (Web Table 1).
Patients with missing data were more likely to experience
the primary endpoint of death or nonfatal myocardial infarc-
tion (age- and sex-adjusted hazard ratio = 1.19, 95% confi-
dence interval: 1.13, 1.25) (Figure 2). Patients with missing
data also tended to have longer follow-up because they entered
the cohort earlier (a median index date of March 1, 2002, vs.
December 6, 2005; P < 0.0001 by Wilcoxon rank-sum test).
The logistic regression model showed that patients with diabe-
tes, peripheral arterial disease, and previous stroke were more
likely to have complete records (Table 1). Web Table 2 shows
that coefficients from Cox models for patients with complete
data (data set C) were similar to the average results from full
data analysis of the subsamples (as we would expect in the ab-
sence of small-sample bias), so we compared imputation esti-
mates with those from data set C.

We found very little difference between results obtained
using 10 MICE imputations and those obtained using 100
MICE imputations (Web Tables 3 and 4), so all results are
based on 10 imputations unless stated otherwise.

Bias. Estimates from complete-record analysis were
biased for some parameters under MAR (missingness
mechanism 1); this may be expected because we had intro-
duced missingness dependent on the outcome (Table 2,
Web Table 3, Web Figure 1). For example, the geometric
mean hazard ratio per doubling of lymphocyte count was
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0.738 from complete-record analysis but 0.799 from full-data
analysis. There was no material bias with parametric MICE
(mean hazard ratio = 0.806) or our random forest MICE

method with 10 trees (“MICE RF 10”; mean hazard ratio =
0.807). The random forest MICE estimate for smoking (cat-
egorical) was biased towards the null (Table 3,Web Figure 2),
but there was no material bias in other parameters estimated
by random forest or parametric MICE (Table 2,Web Tables 3
and 4, Web Figure 3). However, imputation using single-tree
random forest MICE (“MICE Tree”) or missForest produced
materially biased estimates for all continuous variables miss-
ing at random (Figure 3, Table 2, Web Figure 1, Web Table 3).

Efficiency. All of the imputation methods tested produced
more efficient parameter estimates than complete-record anal-
ysis.MICEwith random forest produced slightlymore efficient
estimates than parametric MICE, and the average between-
imputation variance was also lower (Tables 2 and 3, Web
Tables 3–6).

Confidence intervals. Parametric MICE yielded confi-
dence intervals with approximately 93%–95% coverage. The
mean widths of confidence intervals were lower using random
forest MICE than using parametric MICE (P < 0.001 for each
comparison), but coverage was either equal or greater using
random forest MICE (Tables 2 and 3, Web Tables 3–6).
For categorical variables, missForest produced imputed

values which were more likely to be equal to the “true” (ob-
served) value than the MICE methods, but confidence inter-
vals were too small with below nominal coverage, and
between-imputation variance was very small. There was no
difference in bias, precision, or coverage between normal-
based MICE and predictive mean matching (Web Table 5).
Random forest MICE with 100 trees for continuous variables
produced estimates with slightly narrower confidence inter-
vals than random forest MICE with 10 trees (Web Table 5),
but with greater bias, worse coverage of 95% confidence in-
tervals, and 10 times the computational cost. For categorical
variables, random forest MICE with 10 trees and random for-
est MICE with 100 trees produced almost identical results.

Simulation study with interactions

The coefficient estimate for the partially observed variable
(x3) was 10% biased using parametric MICE, 2.6% biased
using random forest with 100 trees, and only 1.0% biased
using random forest with 10 trees (P < 0.001 for 2-way com-
parisons). The bias in the x3 coefficient varied with the num-
ber of trees, with 10 or 20 trees giving minimal bias (Table 4).
Random forest MICE produced narrower 95% confidence in-
tervals for the x3 coefficient than parametric MICE (P <
0.001), and coverage was only 80% using parametric MICE
as compared with 95% using random forest MICE with 5–
100 trees. Further details are given in Web Appendix 2.

DISCUSSION

Summary of main findings

In this resampling study of methods for handling missing
data, parametric and random forest MICE produced estimates
with no material bias for a Cox model on data with artificially
introduced MAR missingness. Random forest-based MICE
produced more efficient estimates and narrower confidence
intervals than parametric MICE, yet in some cases coverage
probability was greater than 95%, suggesting that some

Time, years
0 1 2 3 4 5 6

0.1

0.2

0.3

0.4

0

Not data set B
Data set B

Figure 2. Cumulative incidence of myocardial infarction or death
(Kaplan-Meier failure curve) for patients with stable angina in the
CALIBER database, by complete record status, 2001–2010. The
solid line represents patients in data set A but not data set B (those
with missing data; n = 39,268 at the start, dropping to 17,588 in year
6), and the dashed line represents patients in data set B (those with
complete records; n = 13,308 at the start, dropping to 2,594 in year
6). CALIBER, Cardiovascular Disease Research using Linked
Bespoke Studies and Electronic Records.

Table 1. Factors Associated With Having a Complete Record in a

Study of Patients DiagnosedWith Stable Angina (Logistic Regression

Model), CALIBER Database, 2001–2010

Variable
Odds
Ratio

95% Confidence
Interval

P Value

Age, per 10 years 4.81 4.02, 5.75 <0.001

Age squared, per
10 years squared

0.89 0.87, 0.90 <0.001

Female sex 1.08 1.03, 1.12 0.002

Diabetes mellitus 1.74 1.64, 1.84 <0.001

Peripheral arterial
disease

1.24 1.15, 1.35 <0.001

Previous stroke 1.26 1.17, 1.36 <0.001

Heart failure 0.96 0.89, 1.04 0.333

Previous myocardial
infarction

1.03 0.98, 1.09 0.228

Electronic laboratory
resultsa

4.74 4.48, 5.01 <0.001

Endpoint of fatal coronary
heart disease

0.40 0.36, 0.45 <0.001

Endpoint of nonfatal
myocardial infarction

0.29 0.26, 0.34 <0.001

Endpoint of noncoronary
death

0.42 0.39, 0.45 <0.001

Cumulative hazard 0.03 0.02, 0.03 <0.001

Abbreviation: CALIBER, Cardiovascular Disease Research using

Linked Bespoke Studies and Electronic Records.
a Whether a medical practice was receiving electronic laboratory

results.
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confidence intervals may be conservative. A possible expla-
nation for the efficiency gain with random forest MICE is that
it was able to make better use of the available information by
accommodating nonlinearities among the predictors. In sim-
ulations with an interaction among the predictor variables but
not in the substantive model, random forest MICE was less
biased than parametric MICE, which omitted the interaction.
Using missForest for multiple imputation resulted in very bi-
ased estimates and poor coverage of confidence intervals.
Overall, our results suggest that random forest imputation
may be useful for imputing complex epidemiologic data
sets in which some patients have missing data.

Imputation methods for MICE

It is important that imputation models be correctly speci-
fied for analyses to yield unbiased estimates, and random

forest may help avoid the bias that can occur with parametric
MICE if the latter’s imputation models are misspecified. In
our main study, standard parametric MICE performed well,
suggesting that the true imputation models did not contain
significant nonlinearities or interactions, and hence random
forest did not confer an advantage from the perspective of
bias. However, the simulated data sets had interactions
which were not included in the parametric MICE imputation
models, and in this setting random forest MICE outper-
formed parametricMICE (Web Appendix 2). The default set-
tings for MICE do not include interactions between the
variables, and it is routine practice to include only those in-
teractions that are in the substantive model, rather than ac-
tively search for all possible interactions and nonlinearities.
This shows the importance of checking to be sure that the
imputation models are reasonably well specified. Random
forest reduces the need to investigate associations between

Table 2. Comparisons Between Methods of Handling Missing Data in 1,000 Samples With Continuous Variables

Missing at Random in a Pattern Similar to That of the Original Data Set (Missingness Mechanism 1), CALIBER

Database, 2001–2010

Variable and Method
Biasa

of Log
HR

z Score
for

Biasb

SD of
Estimated
Log HR

Mean
Length of
95% CI

Coverage
of 95% CI,

%

Between-
Imputation
Variance

Neutrophils (109 cells/L),
per doubling

Full data 0.002 0.43 0.158 0.564 92.2

Complete recordc −0.045 −2.67 0.533 1.677 90.1

MICE normal −0.038 −5.15 0.232 0.883 93.4 0.0243

MICE PMM −0.042 −5.68 0.230 0.889 93.4 0.0245

missForest −0.266 27.72 0.303 0.781 63.2 0.0014

MICE RF 10 trees −0.024 −4.55 0.165 0.798 97.9 0.0143

Lymphocytes (109 cells/L),
per doubling

Full data −0.007 −1.23 0.155 0.526 91.6

Complete recordc −0.087 −5.87 0.464 1.544 89.8

MICE normal 0.001 0.13 0.202 0.759 93.2 0.0157

MICE PMM 0.006 0.99 0.205 0.768 92.4 0.0162

missForest −0.190 −22.21 0.270 0.724 72.5 0.0011

MICE RF 10 trees 0.003 0.56 0.156 0.727 97.8 0.0109

Hemoglobin, per g/dL

Full data −0.004 −1.99 0.057 0.202 91.6

Complete recordc −0.022 −3.91 0.180 0.593 90.8

MICE normal −0.007 −2.73 0.076 0.279 92.6 0.0019

MICE PMM −0.004 −1.47 0.077 0.279 92.7 0.0019

missForest −0.056 −19.96 0.089 0.255 77.3 0.0001

MICE RF 10 trees −0.010 −5.61 0.059 0.261 97.2 0.0012

Abbreviations: CALIBER, Cardiovascular Disease Research using Linked Bespoke Studies and Electronic

Records; CI, confidence interval; HR, hazard ratio; MICE, multivariate imputation by chained equations; PMM,

predictive mean matching; RF 10 trees, random forest with 10 trees; SD, standard deviation.
a Bias was measured relative to estimates from analysis of the full data set (data set C) (Web Table 2).
b The z score is defined as the mean bias of the estimate divided by the empirical standard error from simulations,

and it should lie approximately within the interval (−2, +2).
c Results for complete records were based on the 986 samples for which it was possible to estimate hazard ratios

for all parameters.
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predictor variables, because it should automatically accom-
modate nonlinearities and interactions. Imputation models
should also be compatible with the substantive model (32),
and random forest obviates the need to specify how the

outcome should be conditioned on in the imputation models
for covariates.
When using random forest for prediction, a larger number

of trees is preferred in order to obtain precise predictions (30).

Table 3. Comparisons Between Methods of Handling Missing Data in 1,000 Samples With Categorical Variables

Missing Completely at Random (Missingness Mechanism 2), CALIBER Database, 2001–2010

Variable and Method
Biasa

of Log
HR

z Score
for

Biasb

SD of
Estimated
Log HR

Mean
Length of
95% CI

Coverage
of 95% CI,

%

% Falsely
Classifiedc

Previous myocardial infarction

Full data 0.006 1.22 0.154 0.587 94.2 0

MICE logistic −0.013 −2.46 0.168 0.682 95.5 29.6

missForest 0.002 0.27 0.179 0.625 91.8 17.3

MICE RF 10 trees −0.020 −4.21 0.149 0.662 97.3 28.5

Diabetes mellitus

Full data 0.010 2.30 0.156 0.592 93.7 0

MICE logistic 0.016 3.21 0.171 0.685 95.7 32.0

missForest 0.014 2.73 0.182 0.627 90.8 19.7

MICE RF 10 trees −0.021 −4.25 0.149 0.668 97.5 30.7

Previous stroke

Full data 0.005 0.86 0.198 0.707 94.0 0

MICE logistic −0.005 −0.58 0.207 0.828 95.5 17.9

missForest 0.004 0.65 0.211 0.763 92.9 8.4

MICE RF 10 trees −0.011 −1.79 0.183 0.808 97.9 16.7

Peripheral arterial disease

Full data 0.016 2.59 0.199 0.730 93.6 0

MICE logistic −0.002 −0.21 0.218 0.858 94.8 15.5

missForest 0.028 4.18 0.223 0.788 91.9 7.0

MICE RF 10 trees 0.005 0.94 0.192 0.834 97.1 14.5

Heart failure

Full data 0.015 2.47 0.191 0.653 91.7 0

MICE logistic 0.015 2.22 0.207 0.759 93.8 14.6

missForest 0.001 0.08 0.216 0.696 89.4 7.2

MICE RF 10 trees −0.034 −5.78 0.190 0.746 95.5 13.7

Smoking status: current vs. never

Full data 0.019 2.62 0.264 0.969 93.9 0

MICE logistic 0.023 2.65 0.292 1.092 94.0 52.4

missForest −0.036 −3.56 0.308 1.062 91.5 35.0

MICE RF 10 trees −0.098 −12.92 0.237 1.072 95.5 50.0

Smoking status: former vs. never

Full data 0.011 1.66 0.247 0.908 93.6 0

MICE logistic −0.008 −0.82 0.266 1.022 94.1 52.4

missForest 0.045 5.34 0.270 0.980 93.2 35.0

MICE RF 10 trees −0.060 −8.81 0.212 1.000 97.1 50.0

Abbreviations: CALIBER, Cardiovascular Disease Research using Linked Bespoke Studies and Electronic

Records; CI, confidence interval; HR, hazard ratio; MICE, multivariate imputation by chained equations; RF 10

trees, random forest with 10 trees; SD, standard deviation.
a Bias was measured relative to estimates from analysis of the full data set (data set C) (Web Table 2).
b The z score is defined as the mean bias of the estimate divided by the empirical standard error from simulations,

and it should lie approximately within the interval (−2, +2).
c Percentage of imputed values that were different from the “true” (observed) missing value.
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However, when imputing continuous variables using random
forest MICE, bias seemed to tend towards a nonzero limit as
the number of trees increased, with 10 or 20 trees giving min-
imal bias (Table 4). It is possible that the relationship between
the number of trees and bias may have the same functional
form but with a different direction of bias, asymptotic limit,

and optimal number of trees, depending on the data. This
phenomenon warrants further investigation.

A disadvantage of random forest is that the “models” are
complex and not easily interpretable, although arguably
this is not a shortcoming for the purpose of imputation. An-
other disadvantage is that random forest can be biased in

A)

B)

C)

Figure 3. Bias in estimates of log hazard ratios for partially observed variables with data missing at random (missingness mechanism 1) in 1,000
samples of patients with stable angina in the CALIBER database, 2001–2010. A) log neutrophil count (109 cells/L); B) log lymphocyte count (109

cells/L); C) hemoglobin concentration (g/dL). The solid horizontal line is the “true” log hazard ratio from the full data set (data set C); the dashed lines
show ±1 empirical standard error. The boxes span the interquartile range (25th–75th percentiles), and thewhiskers extend to themost extreme data
point, which is no more than 1.5 times the interquartile range from the box. Circles represent outliers. The light gray boxes show results from sim-
ulations with 50% complete records, and the dark gray boxes show results from simulations with 25% complete records. CALIBER, Cardiovascular
Disease Research using Linked Bespoke Studies and Electronic Records; MICE, multivariate imputation by chained equations; PMM, predictive
mean matching; RF, random forest.
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some situations, due to random forest predictions of continu-
ous variables at the extremes of their range being biased to-
wards less extreme values (33). This is because a random
forest prediction effectively consists of a weighted average
of observed values of the variable being predicted; unlike
model-based prediction, it is unable to extrapolate beyond
observed values. In a simulation study, we found that random
forest imputation led to bias when the distribution of missing
values was very different from that for observed values (17),
although in such situations any kind of imputation may pro-
duce poor results. However, we did not find such a bias in our
CALIBER study because missing and observed values had
similar distributions. Another limitation of our random forest
MICE method is the assumption that the residuals from the
random forest regression are normally distributed with con-
stant variance.
On these 2,000-patient data sets, computation time was 3

times as long for random forest MICE with 10 trees as for
parametric MICE (137 seconds per data set vs. 48 seconds
per data set on a computer with an Intel Xeon 3.47-GHz pro-
cessor (Intel Corporation, Santa Clara, California)), but on a
10,000-patient data set, random forest took 6.5 times as long.
However, random forest may yield a saving in analyst time
because there is theoretically less need for transformation
of fully observed variables or investigation of nonlinearities
and interactions. It is also possible to include a large number
of related predictor variables in random forest models without
encountering problems due to collinearity.
We included missForest and rfImpute in our study as ex-

amples of algorithms for completing single data sets (14).
They replace missing values with predicted values rather
than draw from a distribution, such that the imputed values
do not have the correct joint distribution, leading to biased
parameter estimates. Better predictions do not mean better
coverage of confidence intervals; it is important that imputa-
tion methods incorporate the correct amount of variation in
order to produce unbiased estimates with correct coverage
of confidence intervals (34).

There was no difference in the results between linear re-
gression and predictive mean matching. This was probably
because the partially observed continuous variables in our
data were approximately normally distributed; predictive
mean matching may be preferred for variables that are not
(conditionally) normally distributed (35).

Limitations

Although this study had strengths (it was based on real
data, and the analysis was realistically complex), it also had
important limitations. The most important limitation in pro-
ducing general recommendations is that it was based on a sin-
gle analysis of a single study, so results should be generalized
to other data sets with caution.
A limitation of our resampling methodology was that in

order to avoid excessive computing time we used only 10 im-
putations for most of the comparisons, leading to noisy esti-
mates of between-imputation variability. To save time, we
also restricted the number of cycles of MICE to 10, and al-
though we evaluated plots of chain means and standard devi-
ations between cycles for a few runs, this is a crude way of
assessing chain convergence; it is possible that the chains
may not have converged by the end of every run.
We ignored practice-level clustering at the imputation and

analysis stages, for simplicity. If patients from the same prac-
tice are more similar than patients from different practices,
the variance of parameter estimates might be underestimated,
and parameter estimates may also be biased. This could be
properly accounted for by using hierarchical models for anal-
ysis and imputation (36).

Recommendations for further development

We consider random forest multiple imputation to be
promising, but it should be tested on a larger range of data
sets and in simulations to explore whether it gives unbiased
estimates where there are nontrivial nonlinearities or

Table 4. Comparisons Between Methods of Handling Missing Data in a Survival Analysis of 1,000 Simulated Data

Sets With a Predictor Variable Missing at Random That Is Associated With Fully Observed Predictors in a Nonlinear

Way

Method
Bias of
Log HRa

SE of
Bias

z Score
for Bias

SD of
Estimate

Mean Length of
95% CI

Coverage of
95% CI, %

Full data −0.0002 0.001 −0.1 0.037 0.148 96.1

rfImpute 0.119 0.001 86.5 0.044 0.154 17.4

missForest 0.079 0.002 53.7 0.046 0.158 50.9

MICE RF with 5 trees −0.021 0.001 −17.1 0.038 0.172 95.3

MICE RF with 10 trees −0.005 0.001 −3.9 0.039 0.170 97.3

MICE RF with 20 trees 0.006 0.001 4.5 0.039 0.168 96.3

MICE RF with 50 trees 0.011 0.001 9.0 0.040 0.167 95.8

MICE RF with 100 trees 0.013 0.001 10.5 0.040 0.167 94.7

Parametric MICE −0.055 0.001 −44.8 0.039 0.178 79.8

Abbreviations: CI, confidence interval; HR, hazard ratio; MICE, multivariate imputation by chained equations; RF,

random forest; SD, standard deviation; SE, standard error.
a The true log hazard ratio was set at 0.5.
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interactions in imputation models, such that a standard para-
metric MICE imputation which ignores them gives biased re-
sults. Random forest tuning parameters (such as the number
of trees and number of nodes) should be further investigated.

Conclusions

MICE is one of the recommended methods for multiple
imputation in electronic health-record data, and we have
shown that standard parametric MICE and our new random
forest MICE method work reasonably well under artificially
introduced missingness at random in a realistically complex
data set. Random forest imputation should be further investi-
gated in situations where MICE with default parametric im-
putation models produces biased results.
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