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Abstract

Background: Strongyloidiasis is a persistent human parasitic infection caused by the intestinal nematode, Strongyloides
stercoralis. The parasite has a world-wide distribution, particularly in tropical and subtropical regions with poor sanitary
conditions. Since individuals with strongyloidiasis are typically asymptomatic, the infection can persist for decades without
detection. Problems arise when individuals with unrecognized S. stercoralis infection are immunosuppressed, which can
lead to hyper-infection syndrome and disseminated disease with an associated high mortality if untreated. Therefore a
rapid, sensitive and easy to use method of diagnosing Strongyloides infection may improve the clinical management of this
disease.

Methodology/Principal Findings: An immunological assay for diagnosing strongyloidiasis was developed on a novel
diffraction-based optical bionsensor technology. The test employs a 31-kDa recombinant antigen called NIE derived from
Strongyloides stercoralis L3-stage larvae. Assay performance was tested using retrospectively collected sera from patients
with parasitologically confirmed strongyloidiasis and control sera from healthy individuals or those with other parasitoses
including schistosomiasis, trichinosis, echinococcosis or amebiasis who were seronegative using the NIE ELISA assay. If we
consider the control group as the true negative group, the assay readily differentiated S. stercoralis-infected patients from
controls detecting 96.3% of the positive cases, and with no cross reactivity observed in the control group These results were
in excellent agreement (k= 0.98) with results obtained by an NIE-based enzyme-linked immunosorbent assay (ELISA). A
further 44 sera from patients with suspected S. stercoralis infection were analyzed and showed 91% agreement with the NIE
ELISA.

Conclusions/Significance: In summary, this test provides high sensitivity detection of serum IgG against the NIE
Strongyloides antigen. The assay is easy to perform and provides results in less than 30 minutes, making this platform
amenable to rapid near-patient screening with minimal technical expertise.
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Introduction

Strongyloidiasis is a persistent human parasitic disease caused

by the intestinal nematode, Strongyloides stercoralis. It is endemic

in the tropical and subtropical regions of the world where sanitary

conditions are poor, and is increasing in prevalence even in

resource-rich settings due to widespread travel and migration

[1–3]. Worldwide, strongyloidiasis is estimated to affect at least

370 million people [4]. The exact prevalence of strongyloidiasis is

not known because in many tropical and subtropical countries S.
stercoralis can infect up to 60% of the population [5]. The

majority of infected individuals are either asymptomatic or display

intermittent, subtle, non-specific clinical symptoms that do not

come to medical attention. Moreover, due to the unusual ability of
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S. stercoralis to auto-infect, infection can be life-long with most

patients remaining unaware of their infection [5,6]. Immunosup-

pression in infected patients, particularly with corticosteroids, can

lead to a hyper-infection syndrome with uncontrolled dissemina-

tion of larvae and an associated mortality of up to 80% if untreated

[7–12].

Currently, several imperfect methods exist for diagnosing

strongyloidiasis. Stool examination with microscopic identification

of larvae is considered the gold standard diagnostic procedure

[13,14]), showing good specificity with experienced staff. However,

because of low numbers of adult parasites and irregular larval

output during chronic, asymptomatic disease, this method lacks

sensitivity, with false negative results in up to 70% of proven

infections [13,15–17]. Diagnostic sensitivity can be improved by

analyzing serial stool samples [14,17–19], larval enrichment from

fecal samples by Baermann or concentration methods, or by agar

plate coproculture [13,14,18,20]. However, these approaches are

time consuming, require a fresh stool sample and special technical

training, and still lack sufficient sensitivity since they rely on the

presence of intermittently shed larvae in the stool. Immunological

approaches for detecting parasite-specific antibodies in serum by

indirect enzyme-linked immuosorbent assays (ELISA) are well-

described [6,13,21–28]. Most employ crude S. stercoralis filari-

form larvae extract and achieve reasonably high diagnostic

sensitivity (,85%) but lower specificity because of cross-reactivity

with other tissue helminth infections [6,13,29]. While generally

effective and suitable for batch testing, ELISA-based tests require

moderately-sophisticated laboratory facilities to perform, limiting

their use in many regions where S. stercoralis is endemic.

To circumvent the cross-reactivity associated with crude larval

extracts, focus has recently turned to the use of recombinant

antigens for Strongyloides serodiagnostics. In 2002, Ravi and

colleagues [30] identified a 31 kDa recombinant antigen from an S.
stercoralis L3 cDNA library which they named NIE. An NIE-based

immunoassay had excellent sensitivity and did not cross-react with

samples from individuals with other parasitic infections [13,28,31].

In this report, we describe a rapid and high-sensitivity assay for

S. stercoralis antibody using recombinant NIE antigen and a novel

diffraction-based optical biosensor technology. The dotLab mX

System (Axela, Inc., Toronto, ON) utilizes diffractive optics

technology (dot) [32,33] to provide label-free analysis of biomo-

lecular interactions in real-time. Interactions occur in high

precision, disposable, plastic biosensors which consist of a linear

array of assay spots along the bottom of a 10 mL flow channel

(Figure 1A). Each spot is comprised of capture molecules arranged

in a defined pattern of parallel lines creating a diffraction grating.

When illuminated with a laser, the grating generates a predictable

diffraction image (Figure 1B) that increases in intensity as ligands

bind. Changes in diffraction image intensity are monitored using a

photodiode detector and yield real-time measurement of the

binding events (Figure 1C). This approach combines the benefits

of improved assay specificity using recombinant NIE with a robust

platform that provides rapid, high-sensitivity results.

Materials and Methods

Ethics statement
Serum samples were obtained from multiple reference labora-

tories including the Canadian National Reference Centre for

Parasitology (NRCP, Montreal, QC), University College London

Hospitals (London, UK), the National Institutes of Allergy and

Infectious Diseases (Bethesda, MD), the Centers for Disease

Control and Prevention (Atlanta, GA) and the Albert Einstein

College of Medicine (Bronx, NY) and were considered exempt. All

samples used in this study were anonymized.

Patient serum samples
Positive ‘‘gold standard’’ serum samples (confirmed stool

positive for S. stercoralis; n = 54) were obtained from multiple

reference laboratories. Negative control samples (n = 47) consisted

of sera obtained from: 1) healthy individuals residing in Canada

with no prior history of travel outside of Canada (n = 7); and 2)

individuals with confirmed diagnosis of other parasitic infections

including trichinosis (n = 8), filariasis (n = 9), schistosomiasis (n = 9),

echinococcosis (n = 6) and amebiasis (n = 8), and were negative for

Strongyloides by an ‘in-house’ NIE-based ELISA (NRCP). All of

the selected control samples displayed very high ELISA optimal

density (OD) in their assays for the respective antibody. A further

44 samples from patients with suspected S. stercoralis (i.e.: serology

was requested by the treating physician) were obtained from the

NRCP. All serum samples were stored at 280uC until use.

Study design
Two sub-studies were performed: i) serum taken from patients

with stool positive for Strongyloides vs negative controls who were

healthy or had other parasites found. We used this retrospective

study to set a threshold for the assay and derive the sensitivity and

specificity estimates; ii) a second study was performed prospec-

tively using serum from the same pool as well as 44 others with

possible infection (i.e.: serology ordered by treating physician).

This study evaluated the agreement between the NIE ELISA and

the new test.

Recombinant NIE antigen
NIE cDNA cloned into pET30b plasmid was generously

provided by Dr. Franklin Neva (National Institutes of Health,

Bethesda, MD). The plasmid was transformed into E. coli strain

BL21 (DE3) and the NIE was isolated from insoluble inclusion

bodies at the NRCP as previously described [30]. Briefly, the

purified NIE protein contained a plasmid-encoded 52 amino acids

including six His tags at its N-terminal. The NIE fusion protein

was purified using the His Bind Kit (Novagen, Inc., Billerica, MA),

Author Summary

A rapid and sensitive serodiagnostic assay for strongyloi-
diasis based on a 31-kDa recombinant antigen from
Strongyloides stercoralis (NIE) was developed using a novel
diffraction-based optical biosensor technology. Assay
performance was tested using retrospectively collected
sera from patients with parasitologically confirmed stron-
gyloidiasis (n = 54) and control sera from healthy individ-
uals (n = 7) or those with other parasitoses including
schistosomiasis, trichinosis, echinococcosis or amebiasis
(n = 40). If we consider the control group as the true
negative group, the assay readily differentiated S. stercor-
alis-infected patients from controls detecting 96.3% of the
positive cases, and with no cross reactivity observed in the
control group. These results were in excellent agreement
(k= 0.98) with results obtained by an NIE-based enzyme-
linked immunosorbent assay (ELISA). A further 44 sera
from patients with suspected S. stercoralis infection were
analyzed and showed 91% agreement with the NIE ELISA.
This test provides high sensitivity detection of serum IgG
against the NIE Strongyloides antigen. The assay is easy to
perform and provides results in less than 30 minutes,
making this platform amenable to rapid near-patient
screening with minimal technical expertise.

Strongyloides Assay by Diffractive Optics
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concentrated by ultrafiltration and then run on a size exclusion

column (Superdex 75 HiLoad 16/60; Amersham Pharmacia

Biotech, Baie d’Urfe, QC) to remove high molecular weight

contaminants. Following a series of dialysis reactions in decreasing

concentrations of urea (5-0.25 M in 20 mM Tris-HCl, pH 7.5,

300 mM NaCl, 5 mM EDTA, 2 mM DTT) to allow slow

renaturation, the eluates were dialysed against PBS for 4 hours.

Oligonucleotide-based addressing system and NIE
conjugation

The panelPlus oligonucleotide-based addressing system was

used for NIE immobilization onto dotLab Sensors (Axela, Inc.,

Toronto, ON). This approach is based on oligonucleotide

hybridization to target the immobilization of capture molecules

to specific locations on dotLab Sensors. The system consists of

complementary pairs of 30-bp oligonucleotides, one of which is

used to tag capture molecules with the other pre-coated on the

dotLab Sensors. Incubation of oligonucleotide-conjugated capture

molecules in panelPlus Sensors (Axela, Inc., Toronto, ON) results

in their immobilization onto the sensor surface. The panelPlus

system allows for either replicate analysis of individual assays or

multiplexing capabilities using sensors pre-coated with several

different oligonucleotides. Recombinant NIE was conjugated to D

oligonucleotides using the panelPlus Labeling Kit (Axela, Inc.,

Toronto, ON) following the manufacturer’s recommended proto-

col. NIE conjugation was performed at roughly a three

oligonucleotide to one NIE molar ratio.

NIE dot assay
All assays were performed on the dotLab mX System using

panelPlus D Sensors (Axela, Inc., Toronto, ON). These sensors are

provided with a capture surface consisting of D anchor oligonu-

cleotides complementary to the D oligonucleotides conjugated to

recombinant NIE. Serological assays were performed using the

panelPlus Serology Kit (Axela, Inc., Toronto, ON) with a running

buffer of HEPES buffered saline containing 0.1% Tween-20

Figure 1. Schematic representation of a dotLab biosensor. (A) Each sensor consists of a contiguous array of 8 assay locations spotted on the
bottom of a 10 mL flow channel where reagents and samples are introduced. Each assay location is comprised of a repeating pattern of capture
molecules arranged in a defined series of parallel lines creating a diffraction grating. (B) Illumination of an assay spot with a laser generates a
predictable diffraction image. The intensity of the diffraction image is monitored in real time by a photodiode detector. (C) Increases in the height (h)
of the diffraction grating due to molecular binding events results in a proportionate increase in the diffraction image intensity (DDI).
doi:10.1371/journal.pntd.0003002.g001

Strongyloides Assay by Diffractive Optics
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(HBST). Briefly, sensors were blocked with blocking buffer,

followed by a two minute incubation with oligonucleotide D-

conjugated recombinant NIE (NIE@D; 231 ng/assay) resulting in

NIE immobilization on the sensor surface. The sensors were

washed with running buffer, and then incubated for three minutes

with a 1:20 dilution of patient serum (3.5 mL of neat serum).

Following a brief wash, antibody binding signal was amplified

using a 1:10 dilution of goat anti-human IgG antibody-coated

40 nm gold colloid (BioAssay Works, LLC., Ijamsville, MD).

Assays were performed with three-spot monitoring yielding three

separate serum antibody measurements per assay.

NIE ELISA
All serum samples were also tested by an NIE ELISA that was

developed and validated at the NRCP. In brief, 96-well microtiter

plates (Immulon 2; Thermo Labsystems, Franklin, MA) were

coated overnight at 4uC with recombinant NIE diluted in 18 mM

Na2CO3, 45 mM NaHCO3, pH 9.6. Wells were washed four

times with phosphate-buffered saline containing 0.05% Tween 20

(PBST) and then blocked using 100 mL of 2% BSA in PBST. One

hundred microliters of diluted test sera (1:200) was added to each

of the wells and incubated for one hour at 37uC. Following four

washes with PBST, 100 mL of horseradish peroxidase (HRP)-

conjugated goat anti-human antibodies (1:16,000 dilution; Perki-

nElmer, Waltham, MA) was added to the wells for 30 minutes.

The wells were washed three times with PBST and then 100 mL of

3,39,5,59-tetramethyl-benzidine (TMB) substrate (Millipore Corp.,

Billerica, MA) was dispensed into each well. After 10 minutes, the

reaction was stopped by the addition of H2SO4. The plates were

read in a spectrophotometer at 450 nm. Samples with optical

densities (OD),0.2 were considered negative, OD$0.2 but ,0.3

were considered equivocal and OD$0.3 were considered positive

for Strongyloides infection.

Data analysis
The amplitude of the 40 nm gold colloid binding signal (DGNP)

was normalized to the amplitude of the NIE@D binding curve

(DNIE) to account for slight variations in sensor surface binding

capacity yielding a normalized diffractional intensity (nDI) value

that is proportional to antibody titer. Binding curve amplitudes

and nDI calculations were performed using the Quantitation

Editor module in version 1.1.3.4 of the dotLab Software (rev 8170;

Axela, Inc., Toronto, ON). Assays were performed with three-spot

monitoring, generating three independent titer measurements. An

exclusion criterion of DNIE,0.075 DI or DNIE.0.310 was used

to omit spots within a sensor. Each serum sample was analyzed

twice and the average of the duplicate assays was taken as the

measurement of antibody titer. For sample classification, a cutoff

of five standard deviations above the mean nDI of the control

samples was taken as the diagnostic threshold.

Statistical analysis
Assay variability was evaluated based on the replicate analysis

(n = 5) of a Strongyloides positive serum sample performed with

three spot monitoring. Intra-assay reproducibility was calculated

as the average coefficient of variance (CV) of the three spots

monitored per assay while inter-assay variability was as deter-

mined by the CV of the five assays. Comparisons between

parasitologically proven Strongyloides and control groups were

performed using the Mann-Whitney U test. A p value of #0.05

was considered statistically significant. Concordance between the

NIE dot assay and NIE ELISA was determined using Cohen’s

kappa coefficient (k).

Results

NIE dot-based serological assay
To determine the optimal serum concentration for antibody

detection sensitivity, a series of serum dilutions were analyzed. A

Strongyloides positive serum sample was tested at dilutions of 1:10,

1:20, 1:50 and 1:100. As shown in Figure 2, the highest antibody

signal was obtained at serum dilutions of 1:10 and 1:20 with no

difference in signal between the two dilutions (p = 0.17). However,

a significant reduction in signal was observed between dilutions of

Figure 2. Serum dilution optimization. A series of different
dilutions of Strongyloides positive serum were analyzed to determine
the optimal serum concentration for use in dot-serology assays.
Dilutions of 1:10 and 1:20 generated the highest antibody signal with
no differences between the two dilutions (p = 0.17), while a significant
decrease in signal intensity was observed between 1:20 and 1:50
dilutions (p,0.001). A serum dilution of 1:20 was determined to be
optimal for the dot-based Strongyloides assay. Data represent mean 6
SD.
doi:10.1371/journal.pntd.0003002.g002

Figure 3. Representative trace of a dot-based serological
analysis of a Strongyloides positive serum sample. The dotLab
mX System outputs a real time trace displaying each reagent incubation
and wash step in the assay. Note the binding curves representing the
immobilization of NIE@D conjugate and serum anti-NIE antibodies.
Significant signal amplification is achieved using anti-human IgG
antibody conjugated gold nanoparticles (GNP). The three superimposed
traces represent the results of a single assay performed with three spot
monitoring.
doi:10.1371/journal.pntd.0003002.g003

Strongyloides Assay by Diffractive Optics
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1:20 and 1:50 (p,0.001). Therefore, in order to obtain maximal

signal at the highest possible dilution, a serum dilution of 1:20 was

used for all assays.

Figure 3 represents a typical trace obtained from the analysis of

a Strongyloides positive serum sample on the dotLab mX System.

The regions of the trace highlighted in pink correspond to the

incubation of each of the reagents used in the assay while the non-

highlighted regions represent washes with running buffer. Sample

delivery to the sensors, incubations and washes were fully

automated on the dotLab mX System and total assay time was

less than 30 minutes. Assay reproducibility was determined based

on five replicate analysis of a pooled Strongyloides positive serum

sample performed with three-spot monitoring. These results

displayed good reproducibility with an intra-assay and inter-assay

CV of 9.9% and 14.0% respectively.

Diagnostic performance of NIE dot assay
The dot-based Strongyloides serological assay using recombi-

nant NIE was effective in distinguishing parasitologically proven S.
stercoralis patients from controls. All 54 gold standard Strongy-
loides serum samples displayed a detectable antibody signal with

an average normalized diffractional intensity (nDI) of 17.41 (range

0.36 to 41.22) compared with an average nDI of 0.14 (range 2

0.10 to 0.83) for the 47 control samples (p,0.001). As shown in

Figure 4, a significant difference was found between the nDIs of

the gold standard Strongyloides sera and each of the control

groups: 1) healthy uninfected (n = 7; p,0.001); 2) trichinosis (n = 8;

p,0.001); 3) filariasis (n = 9; p,0.001); 4) schistosomiasis (n = 9;

p,0.0001); echinococcosis (n = 6; p,0.001); and amebiasis (n = 8;

p,0.001).

To estimate assay sensitivity and specificity in this particular

selection of specimens, a cutoff of 0.93 nDI representing the

average nDI of the control samples plus five standard deviations,

was used for sample classification. Based on this criterion, 52 of 54

gold standard sera were classified as positive, corresponding to a

sensitivity of 96.3%. Assay specificity was 100% with all 47 control

sera yielding signal below the cutoff.

Comparison with NIE ELISA
The qualitative agreement between the NIE dot assay and NIE

ELISA was determined by calculating the kappa coefficient (k).

Results for all gold standard and control samples showed almost

perfect concordance between these two methods with k= 0.98.

The analysis of a further 44 samples from patients with suspected

S. stercoralis infection also showed excellent agreement between

NIE dot and ELISA with agreement in 40 of 44 (91%) samples.

The four discordant samples were classified as Strongyloides
positive by NIE ELISA but had OD values just above the defined

equivocal threshold. There was no evidence of a pro-zone effect

noted in samples with high antibody titers at the 1:20 serum

dilution used.

Discussion

Due to the subclinical nature of most infections with S.
stercoralis and its ability to auto-infect, strongyloidiasis is a

persistent disease that can remain undetected for decades

following initial exposure. With increasing use of corticosteroids

and other immunosuppressive/immunomodulatory therapies for

the treatment of a wide variety of disease states [12,34–36], there is

Figure 4. Box and whiskers plot of seven groups of sera tested for anti-NIE IgG antibodies. The plots summarize the results of gold
standard Strongyloides samples (n = 54) and six control groups comprised of healthy individuals (n = 7) as well as those with trichinosis (n = 8), filariasis
(n = 9), schistosomiasis (n = 9), echinococcosis (n = 6) and amebiasis (n = 8). The lower and upper boxes represent the samples in the second and third
quartile respectively while the error bars above and below the box correspond to the 95th and 5th percentiles. The horizontal lines separating the
boxes represent the median and the diamond denotes the mean. X represents the minimum and maximum values. A significant difference was
observed between the gold standard Strongyloides and all control groups (p,0.001).
doi:10.1371/journal.pntd.0003002.g004
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considerable cumulative life-time risk of release of S. stercoralis
from immune control. Disseminated disease in these individuals

can be associated with high mortality [12,37–40]. Serological

assays performed by enzyme-linked immunosorbent assay (ELISA)

using crude extract of infective larvae have emerged as an

alternative method of diagnosing Strongyloides infections

[23,25,28,29,41]. Although relatively simple, these assays still

have several limitations in regions where Strongyloides is endemic

including availability, turn-around-time and the requirement for

moderately-sophisticated laboratory infrastructure. For critically ill

patients with hyper-infection syndrome and importantly, screening

those at risk of harboring occult Strongyloides infection prior to

their starting immunosuppression, a truly rapid test would have

real advantages, though antibody may not be detectable in

advanced immunosuppression [13,42,43].

In this study, we describe a rapid and simple serological assay

based on real-time optical diffraction (NIE dot) that can accurately

differentiate patients infected with S. stercoralis from both healthy

individuals and those infected with other tissue parasitic infections.

This assay clearly resolved infected individuals from controls with

a 133-fold difference in average signal intensity. In this study, we

defined the healthy subjects and other parasite controls group as

the ‘true negative’ group and the subjects with stool positive

Strongyloides group as a ‘true positive’ group. So, using a

diagnostic cutoff of five standard deviations above the average

signal obtained from all control samples, the NIE dot assay would

have a sensitivity of 96.3% and specificity of 100% in this selected

population. Although these results were based on a relatively small

sample set, these findings represent a significant improvement over

ELISAs based on crude S. stercoralis antigen which have reported

sensitivity and specificity ranges of 83%–97% and 78%–98%

respectively [6,13,23–26,28,41,44]. Typically these studies showed

a strong reciprocal relationship between better specificity at the

expense of sensitivity or vice versa. The excellent performance of

the NIE dot assay can be partially attributed to the use of

recombinant NIE rather than crude antigen. Cross-reactivity of

Strongyloides ELISAs based on crude larval antigens is common

for subjects with other tissue helminth infections, particularly

filariasis and schistosomiasis [23–26,45,46]. Consistent with our

findings, other recent studies using immunoassays based on

recombinant NIE had little cross-reactivity [28,30,31]. NIE-based

assay formats such as ELISA, luciferase immunoprecipitation

system (LIPS) and NIE dot have all reported .95% specificity

while achieving .97% sensitivity, with the understanding that true

negatives are difficult to define. In addition to reduced cross-

reactivity, the use of recombinant proteins significantly simplifies

the antigen preparation process. Crude Strongyloides antigen is

produced from filariform larvae obtained from fecal cultures from

heavily infected patients or experimental animals [47,48]. This

process is dangerous (L3 larvae are infective to humans), time-

consuming and labor intensive as fecal samples need to be cultured

for almost a week, then concentrated and purified to obtain

suitable larvae for antigen preparation. Crude larval antigen is

therefore difficult to produce reliably and in large quantities,

leading to variation between antigen lots. The use of the

recombinant NIE antigen therefore represents a significant

advance in Strongyloides serodiagnosis.

This study is limited by the lack of control samples from patients

infected with other intestinal parasites (e.g.: hookworms, Ascaris
lumbricoides). This could theoretically lead to an overestimation of

the specificity of dotLab NIE. However, in other hands, the NIE

antigen has shown good specificity in this type of specimen [28].

As described by several authors and reviewed by Requena-

Mendez [13], in immunosuppressed patients, the sensitivity of the

ELISA might be lower. At the time this work was performed, we

had access to only one sample from a patient with disseminated

Strongyloides on which NIE ELISA was negative. Unfortunately

the remaining sample was insufficient to be tested with the dotLab

NIE. Further prospective study will be required to validate the

performance of the NIE antigen in general and these immuno-

compromised subjects in particular.

The dotLab mX diffractive optics system used in this study offers a

number of distinct advantages over conventional immunoassay

platforms. The system is simple to operate and generates results in

less than 30 minutes, making it amenable for more general

distribution and near-patient settings. The panelPlus oligonucleo-

tide-based addressing system used to immobilize recombinant NIE

to the dotLab Sensors facilitates customization of multiplex assays.

This system utilizes a library of unique 30-bp oligonucleotides, each

of which can be conjugated to a different protein target. Using

panelPlus sensors bearing a linear array of spots, each coated with

different oligonucleotides complementary to those used for target

conjugation, multiple antigens can be immobilized on a single sensor

at user designated locations. The dotLab mX System interrogates

each spot independently during an assay and yields multiple real-

time traces representing molecular interactions that occur on each

spot. Therefore, the dotLab mX System using panelPlus has the

potential to perform multiplex assays in near-patient settings.

For Strongyloides, a number of different recombinant proteins in

addition to NIE have previously been described as potential

antigens for serodiagnostic use. These include 5a [49], 12A [49] and

SsIR [31]. Multiplex serological assays using a combination or all of

these antigens may provide improved assay performance over single

antigen tests. Indeed, Ramanathan and colleagues recently showed

that an LIPS assay using both NIE and SsIR improved overall assay

performance compared to NIE alone [31]. Based on our work,

multiplexing one or more Strongyloides antigens with antigens from

other pathogens having similar clinical presentations on the dotLab

mX System could serve as a rapid screening test in some settings.

Lastly, S. stercoralis co-infection with human T cell lymphotropic

virus type 1 (HTLV-1) is known to have important clinical

implications. HTLV-1infection results in T cell proliferation leading

to a shift from a Th2 to Th1 immune response and concomitant

increase in interferon gamma (IFN-c) and interleukin 10 (IL-10),

and lower levels of interleukin 4 (IL-4), 5 (IL-5), 13 (IL-13) and

parasite-specific IgE [50–52]. Co-infected patients are at much

greater risk of developing disseminated strongyloidiasis [51,52]. A

multiplex Strongyloides assay that included HTLV-1 screening

might improve the management of these patients.

In summary, we have developed a rapid, simple serodiagnostic

assay for detecting S. stercoralis IgG using recombinant NIE

antigen and a novel, high-sensitivity diffractive optics technology

(dot). This assay performed as well as an NIE-based ELISA and

LIPS. This platform generates results in less than 30 minutes and

is fully automated requiring minimal user intervention, making it

potentially attractive for near-patient testing and for use in regions

where technical expertise or adequate laboratory facilities may not

be available. With the ability to create custom multiplex assays

using an oligonucleotide-based addressing system (panelPlus), the

dotLab mX System could also be used further to improve

Strongyloides serodiagnostics by incorporating multiple recombi-

nant antigens in a multiplex format or by simultaneously screening

for clinically relevant co-infections such as HTLV-1.
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