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Text S1. Formulation of livestock effects  

S1.1. Livestock effects on Human blood index 

 

There is compelling evidence that the proportion of vectors that feed on a given host (host 

blood index) may vary under the influence of host and vector related factors. Accordingly, 

the proportion of vector bloodmeals from humans (q) was allowed to explicitly depend on 

the abundance and availability of alternative host types (livestock and human) to the vector 

population. The availability of humans can be defined as the likelihood that a vector will 

bite humans, if humans and livestock are equally abundant, in an area where these two host 

types are the only significant bloodmeal source. 

 

In the absence of insecticide, the following relationship was used to model the proportion 

of vector bloodmeals on humans (after Sota and Mogi [1]): 
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where Ah and Al are the proportional availabilities of the human and livestock hosts, 

respectively, and can take any value between 0 and 1, inclusive.  

 

Contrarily to previous models that used absolute availability values [2,3], here proportional 

values are used, as that overcomes the uncertainty around possible estimates of the 

absolute values. Therefore, throughout this work, when the term “availability” is used it 

will refer to “proportional availability”, unless otherwise stated. Al/Ah is the relative 

availability of livestock compared to humans, in an area where humans and livestock are 

the only significant blood sources (otherwise, for additional blood sources, the expression 

needs to be modified accordingly), and is equivalent to the Feeding Index defined by Kay, 

Boreham, and Edman [4]. 

 

The simplified expression above facilitates the process of fitting to data, because the four 

initial parameters are reduced to two: the ratio between livestock and human numbers 

(Nl/Nh), and the ratio between livestock and human availabilities (Al/Ah). Knowing the 

human blood index (HBI, which corresponds to q in our model) and the (absolute or 

relative) abundance of hosts, the relative availability can therefore be readily estimated 

from the derived expression [1]: 
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In the presence of insecticide treatment, the expression for the human blood index is 

generalized as 
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where  is the proportion of livestock population with insecticide at a given point in time, 

hereafter referred as treatment coverage, and   is the diversion probability, which is the 

probability that a host-seeking mosquito will be diverted away from ( 0 , repellency) or 

towards ( 0 , attractancy) an insecticide-treated animal. 

The term availability includes: the accessibility of each host to the vector, the intrinsic 

propensity of a vector to feed upon humans versus animals, and to feed in the location 

where the host resides. In cases where cattle are kept at a considerable distance from 

human dwellings, this distance also changes host accessibility, consequently affecting 

availability. For instance, in a rice growing community where the village is surrounded by 

breeding sites, the effect of geographical positioning of the cattle sheds could be magnified 

if the cattle are at the edge of the village for example, where their encounter with malaria 

vectors would be significantly increased relative to situations where the cattle distribution 

in the villages is even, relative to human distribution. If the animals are located at the edge 

of the village closer to the breeding sites, their availability would increase for young 

susceptible vectors , but not latent vectors, which would likely be more abundant within 

the villages. Similarly, it would attenuate the diversion related effects of repellent 

insecticides if used on cattle.  

 

S1.2. Livestock effects on vector mortality  

 

The assumption that increases in untreated livestock relative abundance and/or availability 

simply decrease the HBI without affecting any other parameter would, by itself, reduce the 

human biting rate [HBR=(Nv/Nh)aHBI], and consequently decrease malaria transmission. 

However, although such zooprophylactic effect has sometimes been observed, for example 

in Papua New Guinea [5] and in Sri Lanka [6], the opposite has been documented in other 

regions, such as Ethiopia [7,8], Pakistan [9,10] and Philippines [11,12]. A possible 

explanation has been attributed to the impact of livestock abundance and/or availability 

upon vector mortality and/or density, which may vary between and even within settings. 

 

By increasing the number of available bloodmeal hosts, such as livestock, fewer attempts 

may be required for vectors to obtain a successful bloodmeal. This may increase the 

probability of vectors having a successful bloodmeal during each gonotrophic cycle and 

decrease their mortality rate. The resulting increased vector survival has two 

epidemiological implications. Firstly, it will increase the probability of infected vectors 

surviving the parasite extrinsic incubation period and becoming infectious. Secondly, since 
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vectors can have more bloodmeals during their prolonged life, more eggs can be produced 

and laid, potentially generating more larvae. However, this will also lead to increased 

larval competition in the breeding sites [13,14,15,16,17,18], and therefore, the resulting 

outcome in the recruitment rate of emerging adult vectors will depend on the density-

dependent constraints that may be acting. 

 

Previous works have modelled the possible increase in malaria risk associated with the 

presence of untreated livestock, as being due to either an increase in vector emergence rate 

[1,19], or a decrease in vector mortality rate [3,20]. For the present model, the latter 

approach was chosen, as it enables exploring not only the resulting effect of increasing 

vector density, but also the effect of increasing the proportion of vectors that survive the 

parasite extrinsic incubation period and therefore become infectious. Accordingly, the 

model was expanded to incorporate: 1) variable vector mortality as a function of relative 

host abundance and/or availability, and 2) variable vector density as a function of the 

system’s carrying capacity. 

 

The model also accounts for potential repellency and attractancy effects upon vectors due 

to exposure to insecticide-treated livestock. Repellency is modelled assuming a worst case 

scenario, where vectors are diverted from ITL before sufficient exposure to a knock-down 

or lethal (i.e. a life expectancy changing) dose of insecticide. The model is therefore not 

considering situations where mosquitoes may be repelled following exposure to a dose of 

insecticide that has either an immediate lethal effect or a knock-down effect that induces 

premature death of the knocked-down mosquitoes by their predators. Repellency does 

however increase the vector search-related mortality, due to decreasing the availability of 

the insecticide-treated animals and therefore increasing the time needed to find a 

bloodmeal host. Conversely, attractancy decreases the search-related mortality but 

increases vector mortality due to the direct lethal effect of insecticide applied on livestock.  
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