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Wild Trypanosoma cruzi | genetic diversity in Brazil
suggests admixture and disturbance in parasite
populations from the Atlantic Forest region
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Abstract

Background: Trypanosoma cruzi (Kinetoplastida, Trypanosomatidae) infection is an ancient and widespread
zoonosis distributed throughout the Americas. Ecologically, Brazil comprises several distinct biomes: Amazonia,
Cerrado, Caatinga, Pantanal and the Atlantic Forest. Sylvatic T. cruzi transmission is known to occur throughout
these biomes, with multiple hosts and vectors involved. Parasite species-level genetic diversity can be a useful
marker for ecosystem health. Our aims were to: investigate sylvatic T. cruzi genetic diversity across different biomes,
detect instances of genetic exchange, and explore the possible impact of ecological disturbance on parasite
diversity at an intra-species level.

Methods: We characterised 107 isolates of T. cruzi | (Tcl; discrete typing unit, DTU ) from different major Brazilian
biomes with twenty-seven nuclear microsatellite loci. A representative subset of biologically cloned isolates was
further characterised using ten mitochondrial gene loci. We compared these data generated from Brazilian Tcl
isolates from around America.

Results: Genetic diversity was remarkably high, including one divergent cluster that branched outside the known
genetic diversity of Tcl in the Americas. We detected evidence for mitochondrial introgression and genetic
exchange between the eastern Amazon and Caatinga. Finally, we found strong signatures of admixture among
isolates from the Atlantic Forest region by comparison to parasites from other study sites.

Conclusions: Atlantic Forest sylvatic Tcl populations are highly fragmented and admixed by comparison to others
around Brazil. We speculate on: the possible causes of Atlantic Forest admixture; the role of T. cruzi as a sentinel for
ecosystem health, and the impact disrupted sylvatic transmission cycles might have on accurate source attribution

in oral outbreaks.

Background

Trypanosoma cruzi (Kinetoplastida, Trypanosomatidae)
infection is an ancient and widespread zoonosis distrib-
uted throughout the Americas south of 33" latitude,
where it infects approximately 8 million people [1,2]. T.
cruzi is eclectic in terms of its mammalian hosts and
haematophagous triatomine vectors. Several hundred
species of mammal and many of the 140 extant triato-
mine species maintain transmission of 7. cruzi in wild
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(sylvatic) transmission cycles [2-4]. Transmission to the
host occurs usually via contamination of the mucosae or
abraded skin with infected vector faeces. Oral transmis-
sion to humans via contaminated foods, especially fruit
juices and sugar cane, is increasingly reported, and sus-
pected to occur widely among sylvatic mammals through
opportunistic insectivory of triatomines [5].

T. cruzi population genetic diversity is well described
at a species level. Six discrete typing units (DTUs) are
now accepted by international consensus [6]. Dates for
the origin of T. cruzi in the Americas range between 5
and 1 MYA (calibrated biogeographically at 100 MYA)
[7-9]. Estimates for the MRCA of Tcl strains, arguably
the most widely dispersed and abundant of all the
DTUs, are younger: 1.3-0.2 MYA [7]. Nonetheless, the
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age of Tcl in the Americas has been sufficient to see
this genotype expand throughout multiple ecological
settings, from Amazonian forests [10] to highland An-
dean puna [11]. Furthermore, the last 1.3-0.2 MYA in
Latin America have seen intense climatic fluctuations,
including at least two glaciations [12]. The impact of
Pleistocene cycles of warming and cooling on the bio-
mic, ecological and species diversity of Latin America, in
particular in Brazil and the Brazilian Amazon, are a matter
of long debate [13]. Nonetheless, there is evidence that
historical cycles of forest expansion, contraction and
fragmentation have impacted on the current ecology
of Brazil, including small mammal distribution and
diversity [14].

Today the terrestrial ecology of Brazil is summarized
by several distinct biomes or ‘ecoregions’ [15]. The lar-
gest of these is the Amazon basin to the north, bordered
by the dryer Cerrado and seasonally flooded Pantanal to
the south. North-eastern Brazil is dominated by the xeric
scrubland of the Caatinga. Along the Atlantic coast of
Brazil south of Recife, a tropical forest ecosystem, the
Atlantic Forest, predominates. The diversity of wild Tcl
hosts across this ecological mosaic is striking: cavio-
morph rodents in the Caatinga [16]; lion tamarins in the
Atlantic forest [17]; coatis, peccaries and felid carnivores
in the Pantanal [18-20]; and multiple species of pri-
mates, marsupials and rodents in Amazonia [2]. Some
important genera are widespread — especially Didelphid
opossums. Human Chagas disease was once widespread
in Brazil, especially in central and southern parts of the
country [21]. Indeed, Chagas disease has probably been
endemic in human populations in Brazil since the earli-
est human settlements more than 10,000 years ago. It is
important not to overlook the impact that humans, an
abundant and mobile T. cruzi host species, present
throughout all Brazilian ecoregions, may have had on
contemporary parasite diversity.

Parasite alpha diversity at a species level is recognised
as a marker for ecosystem persistence, productivity,
organization and resilience [22]. Put simply, those eco-
systems in which host organisms are parasitized by an
array of different parasite species, fairly evenly distrib-
uted among hosts and host species, are considered to be
healthy. Furthermore, parasites, with their short life-
cycles and rapid mutational turnover with respect to
their hosts, can facilitate fine-scale analyses of host
population dispersal and differentiation [23]. However,
close association between host and parasite species is a
prerequisite for the use of parasite genetic diversity to
track host populations. Multi-host parasite lineages like
Tcl are therefore unsuitable for such applications. None-
theless, there is some evidence that habitat fragmenta-
tion impacts on both T. cruzi diversity and prevalence of
infection [24-26]. Thus, alpha diversity in a multi-host
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parasite like 7. cruzi might be a useful proxy for parasite
diversity as a whole, and thus for ecosystem health.

Multilocus microsatellite typing (MLMT) is now a
widely established means of defining genetic diversity
among Tcl isolates and clones [27]. Simultaneous ana-
lysis of multilocus sequence data from the mitochondrial
(maxicircle) genome (mMLST) provides a proven means
of detecting genetic exchange among clones [25,28].
Here we undertook a comparison of representative Tcl
isolates from across the ecological diversity of Brazil,
examining the relationship between biomes and diversity
within biomes. We found considerable genetic diversity
among several populations, and multiple instances of
genetic admixture, especially in the Atlantic Forest re-
gion. We consider these data, and the potential affect of
human-mediated habitat fragmentation on the diversity
of wild TcI in Brazil.

Methods

Parasite strains and biological cloning

One hundred and seven strains, the great majority sam-
pled from mammalian reservoir hosts captured at syl-
vatic foci throughout Brazil, were assembled for analysis
and their genotype confirmed as Tcl via sequencing of a
short fragment of the glucose-6-phosphate isomerase
(GPI) gene [29]. Details of strain origin are given in
Additional file 1: Table S1 and geographic distribution in
Figure 1. A total of fourteen strains were selected from
across all biomes and biologically cloned using the plate
cloning technique described by Yeo et al. [30].

Microsatellite analysis

Twenty-seven microsatellite loci, distributed across eight
putative chromosomes, were amplified following previ-
ously described protocols across 107 strains [27]. A re-
duced subset of 19 microsatellites was employed to
evaluate diversity among a larger panel of 161 samples
including the original strains, derived clones and thirty-
three previously published multilocus microsatellite pro-
files [28]. Population genetic diversity parameters were
first calculated from sample groupings based on geog-
raphy and biome for the full 27 locus dataset (Table 1).
There were nine such groupings, as identified in Figure 1
and listed in Additional file 1: Table S1. Population-level
genetic diversity was assessed first using sample size cor-
rected allelic richness (A,) in FSTAT 2.9.3.2 [31]. Sec-
ondly, to provide a better measure on intra-population
sub-clustering, mean pairwise Das and associated stand-
ard deviation was also evaluated per population. Fis, a
measure of the distribution of heterozygosity within and
between individuals, was estimated per locus per popula-
tion in FSTAT 2.9.3.2 [31]. Tests for population specific
departures from Hardy Weinberg Equilibrium at specific
loci were calculated in ARLEQUIN v3.1 and associated
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Figure 1 Composite map and multidimensional scaling plot depicting sample clustering by biome and geography among 107
Trypanosoma cruzi | isolates.
A\

Table 1 Population genetic parameters across nine Trypanosoma cruzi | populations sampled from five biomes in Brazil

Population N A, +SE Das +SD % PL H2 % PL Hd® Fis + SE€

Ceara 14 1746 +0.121 0290+ 0.131 0 0 0020+ 0012
Goais 4 1734 £0.101 0.136 +0.067 0 0 -0.526 0032
PARANoRTH 28 213440143 0445 + 0082 0 192 0.147 + 0,008
PARAsouTH 5 2027 0,152 0416+ 0053 0 0 0250+ 0019
Pantanal 13 1698 40,121 0219+0.197 263 52 0,068 +0.029
Piaui 6 1930+0.140 0357+0.188 0 0 0080+ 0023
Atlantic Forest 27 2010+0.133 0.369+0.199 333 333 0077 +0015
Santa Catarina 3 1412 £0.098 0,057 £ 0,020 0 0 -0.740 £ 0033

Tocantins 7 1959+0.133 036240221 142 0 018040025

N number of isolates in population.

A, allelic richness as a mean over loci + standard error, calculated in FSTAT.
D4s mean pair-wise inverse allele sharing between samples * standard deviation calculated in MICROSAT.
@Proportion of loci showing significant excess heterozygosity after a sequential Bonferroni correction. Calculated in ARLEQUIN v3.1.

PProportion of loci showing a significant deficit in heterozygosity after a sequential Bonferroni correction. Calculated in ARLEQUIN v3.1.

“Mean FIS over loci + standard error, calculated in FSTAT.
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significance levels for p values derived after sequential
Bonferroni correction to minimise the likelihood of Type 1
errors [32].

For the 19 locus dataset, individual level sample clus-
tering was defined via a neighbour-joining tree based on
pairwise distances between multilocus genotypes MLGs
[evaluated using Das (1 — proportion of shared alleles at
all loci/n)] calculated in MICROSAT [33] (Figure 2). For
the 27 locus dataset we defined genetic composition via
a K-means clustering algorithm, implemented in ade-
genet [34], with which the optimal number of popula-
tions is defined by reference to the Bayesian Information
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Criterion. These groupings were subsequently submitted
to a discriminant analysis of principal components (DAPC)
[35], and the resulting plot is found in Figure 1.

Maxicircle analysis

Ten maxicircle sequence fragments were amplified and
sequenced from fourteen 7. cruzi clones (see Additional
file 1: Table S1 for clone identity) following previously
described protocols [28]. Sequence fragments were then
concatenated in each sample and aligned against previ-
ously published sequences prior to analysis [28]. Phylog-
enies were inferred using Maximum-Likelihood (ML)

nDNA

96.6 FRN46
c60
JFV307
JFV306
E
M4810
100
FNS1
-

MLD877b

63.5

L

mtDNA

FRN46 4 89/1.0

C60
JFV306 -]_
JFV307

80/0.98

0425 m——

88/1.0

100/1.0

99/1.0

from Brazil and beyond reveals genetic exchange.

7344
94/1.0\ \
A\
@ 12624 =
@ 6824 88/1.0
12624 ® ® 12630
® G41
12630 @ B2085
X£5167
XE5167 i
'[—'_E G41 @ TclV 100/1.0\ \
\
B2085
. TCIDOM Bc)LHighIands .AMNorth—Central
. VENSyIvatic . BOI‘Lowlands ARGNorth

Figure 2 Comparison of phylogenetic clustering between nuclear and mitochondrial phylogenies among Trypanasoma cruzi | isolates
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implemented in PhyML (4 substitution rate categories)
[36]. The best-fit model of nucleotide substitution was se-
lected from 88 models and its significance evaluated ac-
cording to the Akaike Information Criterion (AIC) in
jMODELTEST 1.0 [37]. The best model selected for this
dataset was GTR + I + G. Bootstrap support for clade top-
ologies was estimated following the generation of 1000
pseudo-replicate datasets. Bayesian phylogenetic analysis
was performed using Mr BAYES v3.1 [38] (settings ac-
cording to jMODELTEST 1.0). Five independent analyses
were run using a random starting tree with three heated
chains and one cold chain over 10 million generations
with sampling every 10 simulations (25% burn-in).

Results
Nuclear microsatellite loci demonstrated considerable
genetic diversity among the 107 strains studied. For com-
parative purposes isolates were grouped a priori according
to both geography and biome of origin (Figure 1). As such
nine populations were defined. Sample assignment to
these populations is presented in Additional file 1: Table S1
and population genetic parameters associated with them
in Table 1. Of primary interest are sample size corrected
values for allelic richness (A,). A, is highest among
PARAnorTH and PARAsoury samples in the Eastern
Amazon (A, =2.027 & 2.134), as well as in the Atlantic
Forest (A,=2.010) and Tocantins, in the Cerrado (A,
1.959). While A, is a useful measure of overall sample size
corrected genetic diversity, structured diversity within a
population may be overlooked. We thus also calculated
mean pairwise allele sharing (Das) between multilocus ge-
notypes (MLGs) in each population — Table 1. The stand-
ard deviations associated with mean Djg values are
particularly informative. Diverse populations with elevated
standard deviations (e.g. Atlantic Forest — 0.369 + 0.199,
Tocantins - 0.362 +0.221) are likely to possess intra-
population sub-clusters. By contrast genetic diversity is
uniformly distributed among samples within popula-
tions with low standard deviations about the mean
Das (PARAnorri - 0445 + 0.082, PARAsouTy - 0416 +
0.053). Observed heterozygosity varied considerably across
populations. However, where population sizes (N > 10) are
likely to facilitate meaningful interpretation, positive
values for Fis prevailed, and by inference heterozygous
deficit compared to Hardy-Weinberg expectations (Table 1).
Sample clustering based on pair-wise nuclear genetic
distances provides insight into the idiosyncratic patterns
of genetic diversity noted across populations. As such,
considerable admixture is present between multiple pop-
ulations. This phenomenon is best represented by the
composite bars adjacent to the clusters in the multidi-
mensional scaling plot displayed in Figure 1. Samples re-
covered from the Atlantic Forest and Tocantins cluster
among multiple, divergent groups. Meanwhile Tcl from
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PARAnorTH, PARAsoutn and Ceara occur among the
same or closely related clusters. Remaining clusters rep-
resent intermediates between these two extremes. In
summary, genetic diversity among some populations
looks considerably more fragmented than among others.
Mean pair-wise values for Dpg and their associated SD
seem to reflect this (Table 1).

Given the intense degree of admixture and substruc-
ture in several populations we decided not to calculate
population specific linkage disequilibrium indices. Sub-
structure is known to inflate such measures and increase
the likelihood of a type 1 error [39]. Instead we chose to
evaluate congruence between nuclear and mitochondrial
genome clustering as evidence for rare genetic exchange
events. To make such a comparison we incorporated
previously published nuclear and mtDNA data into our
dataset [28]. Figure 2 shows the resulting trees and the
single recombinant we were able to detect mong the 14
clones assayed — 6824, isolated from Didelphis albiven-
tris in the Caatinga, possesses a mitochondrial genome
of Amazonian origin. The hypothetical direction of the
introgression event (recipient and donor) is detailed in
the map inset.

The inclusion of nuclear reference microsatellite pro-
files from throughout the Americas in Figure 2 provides
insight into the wider affinities of the Brazilian isolates.
Most notably, isolates belonging to cluster 11 in Figure 1
form a homogenous group that cluster basally, well out-
side global Tcl diversity. GPI sequences for this group
nonetheless confirmed this group as Tcl and no affinities
with Tcbat were apparent based on the same target (data
not shown).

Discussion
Tcl diversity in Brazil is clearly considerable by compari-
son to that in the rest of South, Central and North
America. Figure 2 shows a comparison of isolates evalu-
ated in this study with those analysed previously [27].
Nuclear genetic data (left hand tree) indicate a clade
(corresponding to population 11 in Figure 1) that lies
outside the known diversity of Tcl in the Americas. The
presence of a bat trypanosome among this group led us
to suspect that this cluster may be Tcbat, a novel DTU
with affiliations to TcI originally isolated from chiroptera
in Sao Paolo state, but now recognised as more wide-
spread [40,41]. However, sequence comparison of this
clade and Tcbat at the GPI gene rejected this hypothesis
(data not shown). In contrast, all remaining TcI isolates
from Brazil fall alongside their congeners, including iso-
lates from Bolivia and Argentina, but distinct from iso-
lates north of the Amazon basin (Venezuela, North and
Central America).

The available data suggest that genetic exchange is a
fairly common phenomenon among Tcl isolates [25,42],
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which is also capable of genetic recombination in the la-
boratory [43]. A consistent feature of genetic exchange
events is the uniparental inheritance of mtDNA. At a
population level, as well as between DTUs, these events
lead to clear instances of mitochondrial introgression
[25]. Thus a pair of isolates maybe highly genetically
similar on a nuclear level, but lack any affinity between
mitochondrial genomes. We identified one such hybrid
among those clones we assayed - 6824. In a recent re-
view, it was proposed that ‘different evolutionary pres-
sures and molecular clocks’ between non-coding nuclear
microsatellite and coding mtDNA, rather than genetic
exchange, might account for such signals of introgres-
sion [44]. However, such a theory requires a situation in
which two (or more) near identical nuclear genotypes (e.g.
6824 and 9667) experience radically different evolutionary
pressures on their mitochondrial genomes, which end up
closely resembling the mitochondrial genotype of nearby
or sympatric clones, in this case from the same host
(Didelphis albiventris). Given that this pattern of intro-
gression fits precisely with that observed in hybrids in the
laboratory [43], and between DTUs in the field (Tcl/TcIV)
[45], recombination is the only reasonable explanation.

Of particular interest in our study was the distribution
and structure of genetic diversity within and between
ecoregions. Admixture was most common in the Atlantic
forest region, and largely absent from the Amazon re-
gion in Pard state (Figure 1). As such, samples from the
Atlantic Forest region have strong affinity with those
from around Brazil and are thus distributed across mul-
tiple genetic clusters in Figure 1. The inset in Figure 1
provides fine details of parasite genetic diversity in the
Atlantic Forest region. Isolates at the northern extreme
of this region have predictable affinity with samples from
the Caatinga (cluster 5). However, admixture into Atlantic
forest from other populations is far less predictable, espe-
cially from Amazonia, and the Pantanal, which lie thou-
sands of kilometres from the Atlantic forest. The impact
of Atlantic forest fragmentation on species abundance and
diversity is well documented (e.g. [46-48]). Most studies
report loss of alpha diversity correlating inversely with for-
est fragment size, within as well as between species
[46,49]. In contrast, allelic richness indices in our study
suggested substantial 7. cruzi genetic diversity within the
Atlantic Forest (Table 1). However, invasive species intro-
ductions are common in the Atlantic Forest region (e.g.
[50]), and it seems that several long range introductions
from distant populations may also explain the high genetic
diversity of Tcl in the region. Thus, unlike TcI populations
from Amazonia and Caatinga, which generally exhibit
high genetic diversity but little admixture, high genetic di-
versity in the Atlantic Forest region is explained by these
introductions and associated admixture. Long-range syl-
vatic dispersal of T. cruzi can be achieved by bats. Indeed,
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the presence of T. cruzi clade trypanosomes in Africa can
be explained by rapid aerial dispersal [51]. Cluster 11 con-
tains several isolates from bats, which could explain the
geographic diversity of isolates in this clade (Atlantic
Forest, Pantanal, Cerrado), as well as its genetic homogen-
eity. However, other geographically diverse isolate group-
ings containing Atlantic Forest isolates have no link to
volant mammals.

There is a circumstantial link between Atlantic Forest
loss (88% of its former extent [52]), human population
density, and Tcl genetic admixture in the region. T. cruzi
infection is commonly termed a ‘zoonosis, which implies
unidirectional dispersion from sylvatic transmission cy-
cles to man. Until the successful triatomine eradication
campaigns of the 1970s and 1980s, domestic T. cruzi in-
fection was endemic throughout much (although not all)
of the Atlantic Forest region [21]. It is thus possible that
many of these long-range introductions into the Atlantic
are ‘enzooses, i.e. Tcl strains imported via immigrant hu-
man populations, which subsequently escaped in the
local sylvatic environment.

Conclusions

Rather like primary rainforest, ‘pristine’ sylvatic T. cruzi
diversity may be now relatively rare in South America,
especially where human population densities and infec-
tions rates have been historically high. The presence of
disturbed and admixed sylvatic T. cruzi populations in
populous areas has major implications for the effective
source attribution and thus future prevention of oral
outbreaks [5]. Many such outbreaks have occurred in
Brazil in recent years [53]. As such, the discrimination
of the source of oral outbreak strains as being from ei-
ther the local wild population or from another region via
the importation of foodstuffs becomes complex. This is
because the local wild strains themselves may represent
long-range introductions. Nonetheless, admixture among
sylvatic parasite populations has a possible role as a proxy
for environmental disturbance. Future approaches could
involve high-resolution genotyping and focused sampling
of Atlantic forest fragments, including co-variates like
mammalian and insect biodiversity, to further explore the
use of T. cruzi as a sentinel species for ecosystem health.

Additional file

Additional file 1: Table S1. Trypanosoma cruzi | isolates evaluated in
this study.
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