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SUMMARY

Understanding the spatial distribution of disease is critical for effective disease control. Where
formal address networks do not exist, tracking spatial patterns of clinical disease is difficult.
Geolocation strategies were tested at rural health facilities in western Kenya. Methods included
geocoding residence by head of compound, participatory mapping and recording the self-reported
nearest landmark. Geocoding was able to locate 72·9% [95% confidence interval (CI) 67·7–77·6]
of individuals to within 250 m of the true compound location. The participatory mapping exercise
was able to correctly locate 82·0% of compounds (95% CI 78·9–84·8) to a 2×2·5 km area with
a 500 m buffer. The self-reported nearest landmark was able to locate 78·1% (95% CI 73·8–82·1)
of compounds to the correct catchment area. These strategies tested provide options for quickly
obtaining spatial information on individuals presenting at health facilities.
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INTRODUCTION

Many infectious diseases show microepidemiological
geographical variation. Outbreaks of (emerging) in-
fectious diseases may be geographically confined or
start in small pockets that later give rise to larger out-
breaks [1–4]. For endemic infectious diseases with
stable disease transmission, considerable geographical
heterogeneity in the intensity of transmission has been

described [2, 5–8]. Geographical variation for both
epidemic and endemic infectious disease occurrence
has important public health consequences. Identifying
regions with higher disease burden can facilitate cost-
effective prioritization of control efforts [9–11]. Within
regions, identifying areas of persistent and intense
transmission may prevent outbreaks of disease that
spread from these areas and support disease elimin-
ation strategies when overall disease occurrence has
declined [2, 12, 13]. To allow spatial targeting of dis-
ease control efforts, attributing a geographical lo-
cation to each disease occurrence is ideal, and the
minimum number required for accurate monitoring
is likely to be disease specific [9, 14, 15].
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Given adequate address information, automated
geocoding software packages can generate accurate
spatial coordinate data for a large proportion of indi-
viduals [16, 17], thereby providing a basis for the spa-
tial analysis of disease transmission [18–20]. In
circumstances where formal address data are unavail-
able or privacy concerns limit the use of precise spatial
locations, other approaches have been used to obtain
geographical information on incident cases. Catch-
ment areas of, for example, community pharmacies
or general practitioners have been used for describing
spatial patterns in disease occurrence [6, 15, 20–22]. In
areas with well-developed public health infrastructure,
catchment areas tend to be well defined and suffi-
ciently small to allow a meaningful attribution of
localities to clinical cases based on the facility they
attended [20, 22]. Geolocation approaches are likely
to have less utility for resource-poor settings where
formal address systems are commonly unavailable
and where health-facility catchment areas are rela-
tively large and poorly defined [5, 23, 24]. Alternative
approaches to geolocation strategies are needed in
such settings.

Two of the most commonly used geolocation strate-
gies for rural resource-poor environments are distri-
buting compound ID cards after an enumeration
exercise or actively visiting compounds and geolocat-
ing the area of residence for individuals of interest
[25]. Although these methods provide accurate spatial
information, they are not operationally attractive out-
side research settings [10, 21, 25]. Approaches that can
be implemented without the need for house-to-house
visits would facilitate the incorporation of spatial in-
formation into routine data collection and public
health planning at the local level. If this can be done
with sufficient precision it would support the identifi-
cation of local-level disease heterogeneity [5, 18, 25].

Here, we examine the accuracy and precision of
three approaches to geolocate health facility attendees
in a rural area of western Kenya: geocoding on name
of head of compound, participatory mapping using
satellite imagery, and attributing participants to the
catchment area of the self-reported nearest landmark.

METHODS

Study site

The study was conducted in a rural area of
Rachuonyo South district, Nyanza Province in the
western Kenyan highlands that spans about 300 km2.

There is one main road that runs through the area
and the landscape consists of rolling hills and several
large rivers (Fig. 1). The population mostly comprises
people from the Luo ethnic group whose main occu-
pation is subsistence agriculture. Compounds typically
comprise extended families living in proximity to their
fields or in multi-unit structures in the few, more
urban, market centres [26].

Five rural health facilities were identified whose
catchments overlapped with community-based cross-
sectional surveys being performed (Fig. 1) [27].
Cross-sectional malaria surveys in the health facilities
were conducted in October 2011 and in July 2012 to
coincide with the bimodal seasonal peaks in malaria
transmission. Four of the five health facilities were
sampled during both surveys. One facility was
replaced for the second year to maximize overlap
with the ongoing community work. All patients and
accompanying individuals attending the outpatient
clinic were recruited for the survey. A questionnaire
was administered to all consenting participants to ob-
tain information on malaria indicators and their area
of residence, as described below. Tracing individual
compounds from health-facility attendees is a labor-
ious and costly exercise because of the large catchment
areas and inaccessible terrain and could therefore not
be completed for all attendees. For operational rea-
sons, following the facility survey, 30% of participants
were randomly selected and traced to their com-
pounds, to validate the geolocation strategies being
tested. Compounds were mapped using a GPS re-
ceiver.

Geolocation strategies

Method 1: Geocoding

A system of geocoding was developed to match ‘postal
addresses’ to an existing spatial database. In this set-
ting in rural Kenya, compounds are known by the
name of the compound head, usually the patriarch
of the family. Individuals have three names, two
given and one family name. Names of the compound
head were collected as part of the questionnaire at the
facility. Names were matched to an existing database
of names of compound heads with associated spatial
coordinates collected as part of a large cross-sectional
survey in the area. This community survey sampled
about one third of the population [27]. As not all com-
pounds were sampled during the community survey,
the names of the three nearest neighbours were also
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collected at the facility to increase the probability of
finding a match. This method would be useful in
areas that have existing and updated registries with
accompanying spatial information and could easily
be applied to all scales, depending on the availability
of baseline data.

Analysis was restricted to those compounds located
in the area of the community survey. Names from the
two databases were matched using Levenshtein’s dis-
tance algorithm [28] for string matching using Stata
v. 12.1 (StataCorp, USA). Possible matches, where
the matching probability was 580%, were checked
manually. Matches were discarded if: (a) there was
more than one compound head with the same name
in either database; (b) if only one of the three names
was recorded; or (c) if all three names were provided
but at least one of the names did not match. This pro-
cess was repeated for the names of the nearest neigh-
bours. All likely matches were plotted in ArcGIS
v. 10.1 (ESRI, USA) and the distance between the
actual geolocated compound and the matched com-
pound from the community survey was calculated.

Compounds from the health-facility survey were con-
sidered successfully located if they were <250m from
the corresponding compound in the community sur-
vey. This resolution was a pragmatic choice as it
was deemed an acceptable balance between accuracy
and spatial resolution, as this area would only likely
comprise 2 or 3 compounds.

Method 2: Participatory mapping

The second method assessed was participatory
mapping, and was similar to the recently published
‘map-book’ exercise [25] and involved pro-
ducing poster-sized, high-resolution satellite images
(Quickbird; Digital Globe, USA) of each facility
catchment area (Fig. 2). Locations of health facilities,
schools, markets and other key landmarks were
labelled on the image and a reference grid consisting
of 2×2·5 km ‘blocks’ was superimposed on the area
[27]. Each block comprised 20 ‘cells’, each measuring
500×500 m. Each block/cell combination was given a
unique numeric identifier. The system (including size

Fig. 1 [colour online]. Map of the study area, Rachuonyo South, Kenya (2011–2012), showing the main roads (dashed
lines), rivers (solid lines), location of schools (flags) and health facilities (crosses).
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of polygon) was selected because it was familiar to
the field workers and would provide them a better
frame of reference for facilitating the exercise. As
part of the participant questionnaire, the interviewer
would explain the main features of the satellite map
and with the participant, would attempt to locate
the residence on the map and record the correspond-
ing cell identifier. Due to the spatial resolution
required to locate compounds, this approach is most
applicable to local scale but could be scaled up if sat-
ellite imagery was indexed into a book-format instead
of a poster.

Locations of participants followed to their com-
pounds were plotted in ArcGIS and were classified
as correctly located based on the participatory map-
ping exercise if they fell within the reported cell. To
account for the likely edge effect with compounds
located just outside a grid cell being considered incor-
rect, the proportion of compounds correctly identified
within 500 m (one cell) or 1000 m (two cells) surround-
ing the reported block/cell was also calculated.

The distance between the edge of the cell/buffer and
the incorrectly located compounds was calculated in
ArcGIS to determine the mean error associated with
the approach.

Method 3: Nearest self-reported landmarks

The final method tested was to see if participants
resided in the catchment of self-reported nearest land-
marks. This approach is the most flexible and could
be easily applied at all scales, given a database of
the relevant landmark with accompanying spatial in-
formation is available. At the health facility, each par-
ticipant was asked to name the nearest health facility,
primary school, market and church to their com-
pound. Combinations of responses were also assessed
using overlapping catchment areas to increase the pre-
cision of the approach. Locations of compounds were
plotted using ArcGIS and a compound was con-
sidered to be correctly located if it fell within the

Fig. 2. Participatory mapping example showing the grid of blocks and cells that were overlain on satellite imagery. The
red lines outline the block and block numbers are shown. The cells are outlined by the black lines within each block and
are counted from 1 to 20 starting with the upper left corner and counting from left to right (i.e. 13/01 to 13/20).
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catchment area or intersecting catchment areas that
matched the response provided at the facility.

Catchment areas for each type of landmark were
estimated based on both Euclidian distance (straight-
line) and cost distance [29, 30]. There were some
missing coordinates for certain reported schools.
Therefore, analysis was restricted to participants
who reported residing near the schools with known
coordinates. Euclidian distances were calculated
using the ArcGIS Euclidian distance tool in the spatial
analyst package to delineate catchment areas for
both health facilities (Fig. 3a) and primary schools
(Fig. 3b).

A cost-distance function to account for factors that
may either impede or facilitate travel was also used to
delineate landmark catchment areas. Given the gently
undulating topography of the study area, it was
assumed that ease and speed of travel between com-
pounds and relevant landmarks is determined either
by the presence of roads (facilitating travel) or by
the presence of rivers (impeding travel). Roads and
rivers in the study area were digitized using high-
resolution Quickbird satellite multispectral imagery
at 2·8 m resolution sharpened with a 60 cm resolution
panchromatic image. Roads were classified into four
categories: (1) tarred roads where the likely maximum
speed is 80 km/h; (2) roads that are not tarred but
where vehicles travel at a likely maximum speed of
40 km/h; (3) roads that are not tarred but accessible
to a vehicle or motorbike with likely maximum speeds
of 20 km/h; (4) paths not likely traversed by a vehicle
but by motorbike with likely maximum speeds of
10 km/h. For all other surfaces, including walking
paths or fields, a maximum speed of 5 km/h was
assumed [23]. Rivers were classified as barriers to
movement except where they were intersected by a
road or path. The cost-distance models for both health
facilities (Fig. 3c) and primary schools (Fig. 3d) were
created using IDRISI software (Clark Laboratories,
USA) and imported into ArcGIS for analysis.

The mean error for both methods was calculated
as the distance between the border of the catchment
and the location of the incorrectly located compound.
The distance between each compound and the
centroid of each polygon could have been calculated.
However, due to the irregular shape of many of the
polygons, the distance to the centroid is not be an
accurate reflection of the error rate in this approach
as points that are far away from the centroid but
located to the correct catchment area would generate
a large error rate and be misleading.

Ethical considerations

This study was approved by the ethics committees of
the London School of Hygiene and Tropical
Medicine (LSHTM 5956) and the Kenya Medical
Research Institute (SSC 1589). Individual informed
consent was sought from all participants of the
health-facility survey by signature or thumbprint
accompanied with the signature of an independent
witness. As defined in the Kenya national guidelines,
participants aged <18 years who were pregnant, mar-
ried, or a parent were considered ‘mature minors’ and
consented for themselves [31].

Data analysis

The proportion of study participants whose com-
pounds were correctly located using each geolocation
strategy of all participants that provided responses
for each method and corresponding binomial 95%
confidence interval (CI) was calculated. Mean error
of each method was determined by calculating the dis-
tance between the actual location of the compound
and edge of the identified area. Plotting the propor-
tions for each approach against the mean area iden-
tified the optimum strategy: strategies located in the
top left corner of the plot signified high precision
and accuracy.

RESULTS

Across both surveys, 3034 people were enrolled of
which 830 (27%) were able to be traced back to their
compounds and included in the analysis. Those that
could not be traced were mainly due to running out
of time and inaccurate information provided at the
facility. The participants that could not be traced
were evenly distributed between years and facilities.

Method 1: Geocoding

Of the geolocated participants, 519 lived within the
area of the community cross-sectional malaria survey
and could be used for geolocation. Of the 328
matched compounds, 56% were successfully located
using the head of compound. Of the participants
that were matched, 72·9% were correctly located to
within 250 m (95% CI 67·7–77·6, median distance
36·2 m). Possible reasons for why more people were
not correctly matched may include people not being
familiar with the full names of their neighbours or
reporting different heads of compound for the same
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Fig. 3. Examples of the catchment areas and the spatial distribution of responses for self reported nearest landmark for the Euclidian and cost-distance models, South
Rachuonyo, Kenya, 2011–2012. (a) Health-facility catchment based on Euclidian distance model; (b) primary school catchment based on Euclidian distance model;
(c) health-facility catchment area based on cost-distance model; (d) school catchment area based on cost-distance model.
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compound (e.g. the grandfather vs. the father of the
family). The median distance from the true location
to the matched compound of those that were incor-
rectly matched was 4440·9 m [interquartile range
(IQR) 1610·1–8591·4 m].

Method 2: Participatory mapping

Using the participatory mapping approach, 64·9%
(95% CI 61·2–68·4) of 695 participants who attempted
the mapping exercise were successfully located to the
appropriate 2×2·5 km block (Table 1). When a
500 m buffer in all directions around the block was
included, the proportion correctly located improved
to 82% (95% CI 78·9–84·8) at the block level and
from 12·4% (95% CI 10·0–15·0) to 57·1% (95% CI
53·3–60·8) at the cell level.

However, 135 (16·3%) participants did not partici-
pate in the mapping exercise. Reasons for refusal
were not recorded, but there were no differences in
sex or age distributions in the populations who did
and did not participate in the exercise. Of those willing
to locate their residence, 61·5% were female compared
to 58·9% in the unwilling group (P=0·6). Similarly,
the mean age in the adult populations in those unwill-
ing to locate their residence was slightly higher at
37·9 years compared to 35·3 years in those that did
attempt the exercise, although the difference was not
significant (P=0·3).

For compounds that were incorrectly located, the
median distance to the correct block was 489m
(IQR 229–1036 m), 1036 m (IQR 737–1737), and
1737 m (IQR 1179–2728) for the block only, >500m
buffer, and >1000m buffer, respectively. The median
distance of compounds incorrectly located from the
identified cells was 539 m (IQR 236–1095 m), 1055 m
(IQR 737–1644) including a 500 m buffer, and
1588 m (IQR 1200–2180 m) including a 1000 m buffer.
Moreover, the proportion of people that were cor-
rectly identified to a specific block or cell significantly

varied per facility (block only, P=0·007; >500m, P=
0·003; >1000 m, P<0·0001).

Method 3: Nearest self-reported landmarks

Analysis of self-reported nearest landmarks indicated
that responses for nearest market tended to predomi-
nantly consider relatively large markets, rather than
smaller, local markets. In addition there was too
much variability in responses concerning the nearest
church, the majority of which were small establish-
ments whose spatial coordinates had not been
recorded, to conduct meaningful analysis. For these
reasons only data relating to the nearest health facility
and primary school were retained.

Overall, the nearest health facility and pri-
mary school were reported correctly 84·9% (95% CI
82·2–87·2) and 73·4% (95% CI 68·8–77·7) of the
time, respectively, based on straight-line distance
(median distance 1486 m, IQR 1008–2241 m). The
use of the self-reported nearest primary school was
able to locate 82·0% (95% CI 78·1–85·8) of partici-
pants’ compounds to the correct Euclidian distance
catchment area (mean area of 6·7 km2) (Table 2)
with a median distance to the self-reported nearest
school of 878m (IQR 522–1234 m). The self-reported
nearest health facility was able to locate 78·1% (95%
CI 73·8–82·1) of compounds to an area of 12·3 km2.
When the combination of responses was tested, the
mean area reduced to 1·7 km2 and 48·7% (95% CI
43·6–53·6) of participants’ compounds were correctly
located.

Next, 77·1% (95% CI 74·1–80·0) and 78·1% (95%
CI 73·8–82·1) of participants were located to the cor-
rect health facility and school catchments, respect-
ively, using the cost-distance catchment area. The
combined responses were able to locate individuals
based on the combination of responses with 72·4%
(95% CI 67·8–76·8) of compounds successfully located
to a mean area of 3·7 km2 (table 2).

Table 1. Results of participatory mapping exercise, Rachuonyo South, Kenya, 2011–2012

Block/cell only >500m buffer >1000m buffer

Mean area
(km2)

%
Correct 95% CI

Mean area
(km2)

%
Correct 95% CI

Mean area
(km2)

%
Correct 95% CI

Block 5 64·9 61·2–68·4 7·5 82·0 78·9–84·8 10·5 90·6 88·2–92·7
Cell 0·25 12·4 10·0–15·0 1 57·1 53·3–60·8 2·25 77·1 73·8–80·2

CI, Confidence interval.
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Of those individuals who did not reside in the catch-
ment area of the reported nearest landmark, the mean
distance away from the edge of the catchment area
was 1252 m (IQR 261–1899 m) for catchments based
on Euclidian distance and 496 m (IQR 174–605 m)
using the cost-distance model.

Optimal geolocation approach

Although not directly comparable due to the different
scales, the results across all strategies showed a logar-
ithmic relationship between mean catchment area and
proportion of compounds correctly identified (Fig. 4).
Points that are located in the top left corner represent
the optimal combination of low mean area (high pre-
cision) and a high proportion of people correctly

located using that strategy (high accuracy). The results
of this analysis suggest that using the location of the
nearest primary school as well as the participatory
mapping with buffer was the most promising method
to geolocate rural health-facility attendees in this rural
study setting.

DISCUSSION

A simple and operationally feasible way to identify
the spatial occurrence of disease in rural areas where
homes have no formalized address would be an ex-
tremely useful tool and could easily be employed as
an operationally attractive approach to spatial disease
surveillance in a wide range of settings around the
world. A recent study has been conducted in

Table 2. Results of self-reported nearest landmarks as a geolocation strategy, Rachuonyo South, Kenya, 2011–2012

Euclidian distance Cost distance

Mean area (km2) % Correct 95% CI Mean area (km2) % Correct 95% CI

Health facility 14·9 73·9 70·7–76·8 36·3 77·1 74·1–80·0
Primary school 6·7 82·0 78·1–85·8 12·3 78·1 73·8–82·1
Health facility & school 1·7 48·7 43·6–53·6 3·7 72·4 67·8–76·8

CI, Confidence interval.

100

80

60

40

20

0

0 10 20 30 40
Mean area (km2)

%
 c

om
po

un
ds

 c
or

re
ct

ly
 id

en
tif

ie
d

84

9

10 11
12

7

5
6

3
2

1

13

Fig. 4. Scatter plot showing the summarized results of all geolocation strategies tested with the precision (mean area) of
the approach plotted against the accuracy (% of compounds correctly located): 1, cell [participatory mapping (PM)];
2, cell (>500 m) (PM); 3, combined health facility (HF) & primary school (PS) (Euclidian distance; ED) [nearest landmark
(NL)]; 4, geocoding; 5, block (PM); 6, cell (>1000m) (PM); 7, block (>500m) (PM); 8, combined HF & PS
(cost-distance; CD) (NL); 9, PS (ED) (NL); 10, block (>1000m) (PM); 11, PS (CD) (NL); 12, HF (ED) (NL); 13, HF
(CD) (NL).

Geolocation strategies in rural Kenya 1985



Blantyre, Malawi in an urban setting [25]; however,
our study is, to our knowledge, the first attempt to
examine different methods to geolocate health-facility
attendees in a rural area and to gauge their precision.
Although strategies are not directly comparable due
to the different spatial scales, the current study
showed that there are options available to obtain
spatial information in areas where no formal postal
network exists. Results have shown that it was poss-
ible to correctly locate close to 80% of participant
compounds using either a participatory mapping
exercise (to 2×2·5 km blocks with buffer) or by
using information about the nearest primary school.
This is similar to the level of detection of most geocod-
ing strategies when applied in developed countries,
although the spatial resolution is not as good [17,
32]. In this study, methods based on name-matching
or participatory mapping to the 500×500 m cell
level proved to be less accurate, but are capable of
greater spatial precision.

The ideal geolocation approach in a rural setting
will ultimately depend on the information available,
the objectives, whether it be monitoring for epidemics
or planning for disease control interventions, and the
required spatial precision/accuracy. The geocoding
approach requires that an accurate and up-to-date
list of names of compound heads is available, which
is unlikely to be the case outside areas of active
community-based research. The geocoding approach
also relies on names recorded being complete and
recorded consistently; a difficult task in busy facilities.
There may also be challenges in obtaining correct
information from people who may want to remain
anonymous. Moreover, a systematic bias is inevitable
as compounds whose head has a common name or
is the head of multiple compounds will never be
matched unless other variables are also considered.
However, in areas where a complete database is avail-
able, through land registries for example, or if overall
accuracy is less important, geocoding could provide a
useful geolocation approach.

The participatory mapping exercise also has no-
table limitations. It requires that a map of the study
area be available and that there are personnel familiar
with the area capable of interpreting satellite imagery.
Key features must be identifiable on the map to
help orient readers. Although the age difference
here was not significant, younger generations may
also be more map literate than older generations.
High-resolution satellite imagery can be expensive
to acquire, up to several thousand US dollars [25];

however, free imagery with good resolution is becom-
ing more widely available for even remote areas in
rural and low-income settings and a similar exercise
could be conducted using web-based platforms as
is increasingly being utilized for disaster response
[33–35]. Further, depending on the size of the area
of interest, it may be possible to create a schematic
map of the area using local knowledge [10].

To facilitate participatory mapping, a grid was
superimposed onto the study area, leading to an
edge effect whereby if a person was located just out-
side of the block/cell they would be classified incor-
rectly even though the error margin could be only a
few metres. Edge effect will always be an important
limitation that must be accounted for in any appli-
cation of this methodology particularly when the
focus is on locating residences at a precise spatial res-
olution. However, despite this limitation, this research
has provided important insight into how the edge ef-
fect can be minimized and sensitivity increased by
the addition of buffer zones. Other approaches could
have been used including a hexagonal grid or larger
clusters as was used in the study in Blantyre’s urban
slum area [25]. These approaches will likely reduce,
but not completely eliminate the edge effect. More-
over, in this study, there was a significant difference
in the proportion of people correctly located at each
health facility and not every participant was willing
to complete the exercise. This suggests that the famil-
iarity of the interviewers with the area, their ability to
read and explain the maps to local populations, and
the time they have or choose to dedicate may be im-
portant determinants for success.

The use of the nearest landmark approach requires
that the location of the feature in question (e.g.
church, school) be known. This could be done by vis-
iting and mapping each site using a GPS receiver, or
sites could be located on a map by someone familiar
with the area. National databases of the locations
of such landmarks are becoming more common and
therefore this limitation may be less relevant; however,
to be useful, databases must be up to date and include
all government, faith-based, and private facilities. In
this study, people only correctly located the nearest
landmark around 80% of the time and the accuracy
of this approach was dependent on the definition of
catchment area used. The reporting bias may be due
to factors such as spatial perceptions of ‘closeness’,
the density of that type of landmark in the area, or
reporting known or highly frequented landmarks
rather than those that are closer. Other possible
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landmarks that could be used include nearest chief or
assistant chief, nearest shop, or nearest local transport
point. In terms of defining catchment areas, both
methods produced similar results [36]. The analysis
using the cost-distance catchment areas showed a
lower error rate based on the distance from the edge
of the catchment area suggesting that this approach
may be more robust. However, the utility of this
approach is limited to areas with digitized travel net-
works, access to the required software, and the expert-
ise to create the cost-distance surface is required.

The goals of the geolocation exercise will influence
the optimum strategy. First, the ideal scale will depend
on the spatial pattern of the disease and the size of the
area of interest [5]. For example, if the objective was
to identify foci of infections of a highly heterogeneous
disease such as malaria in a low endemic or epidemic
setting [7, 9, 20] then achieving higher precision would
be essential. Conversely, if the distribution of sexually
transmitted infections was being studied, less precision
may be acceptable or even necessary to guarantee
anonymity [20]. Second, the ideal strategy will depend
on the purpose of geolocating cases. If it is for
programmatic use such as passive public health
surveillance, or to establish disease distribution at a re-
gional or national level, then using the nearest health
facility, with a larger mean catchment area may be
sufficient. However, if greater precision and accuracy
were required, for identification of foci for disease
elimination or identifying where to implement control,
for example, then knowing the exact boundaries of the
catchment area or having a comprehensive postal net-
work that can be geocoded to a high precision would
be essential.

There were some limitations to this study. First,
it was only feasible to trace 27% of participants
to their compounds. Although this provided a large
sample, it is possible that if we could have traced all
individuals, the results and the conclusions on the
applicability of the techniques tested may have been
different. However, as the sample was a random selec-
tion, the impact on the results is expected to be mini-
mal. Similarly, spatial coordinates were only available
for the government-run primary schools in the area,
thereby restricting the sample to those residing near
these schools. The limited number of school locations
that were available as well as the lack of covariates
such as size or perception of academic rigour to in-
clude as part of delineation of catchment areas likely
influenced the size of catchment areas as calculated
by both approaches. However, although altered

catchment area boundaries would impact both the
precision and accuracy of the results, this is not likely
to have a significant impact of the results.

Spatial monitoring of health-facility data has
strengthened public health programmes in developed
countries and facilitates conducting research with
passively collected data [6, 37]. However, the ability
to efficiently geolocate individuals residing in areas
where no formal address network exists or where
the settlement pattern is not conducive to matching
individuals to specific localities is currently lacking,
particularly in areas around the world where infec-
tious disease transmission persists [5, 38]. The geoloca-
tion strategies tested as part of this research exemplify
alternative options for obtaining spatial information
from health-facility patients in a setting that is typical
for much of rural sub-Saharan Africa and other parts
of the world. Easily collected spatial information can
supplement both passive and active disease surveil-
lance to detect foci of transmission, enables the detec-
tion of outbreaks in a timely manner, and facilitates
tracking of how disease spreads through the popu-
lation over time [37, 39, 40]. If validated in other
parts of the world, these results indicate that recording
the nearest primary school or implementation of a
participatory mapping exercise at rural health facili-
ties offer potential strategies to facilitate spatial analy-
sis of disease dynamics. Further research is needed to
demonstrate their utility in a range of settings and
their operational viability before formal testing in a
broader operational context.
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