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ABSTRACT

Summary: SVAMP is a stand-alone desktop application to visualize

genomic variants (in variant call format) in the context of geographical

metadata. Users of SVAMP are able to generate phylogenetic trees

and perform principal coordinate analysis in real time from variant call

format (VCF) and associated metadata files. Allele frequency map,

geographical map of isolates, Tajima’s D metric, single nucleotide

polymorphism density, GC and variation density are also available

for visualization in real time. We demonstrate the utility of SVAMP in

tracking a methicillin-resistant Staphylococcus aureus outbreak from

published next-generation sequencing data across 15 countries. We

also demonstrate the scalability and accuracy of our software on 245

Plasmodium falciparum malaria isolates from three continents.

Availability and implementation: The Qt/Cþþ software code, bin-

aries, user manual and example datasets are available at http://cbrc.

kaust.edu.sa/svamp

Contact: arnab.pain@kaust.edu.sa or arnab.pain@cantab.net

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Associating sequence variants [single nucleotide polymorphisms

(SNPs) and indels] with sample metadata such as geographical

location and drug susceptibility have played a key role in study-

ing the population structure (Manske et al., 2012), identifying

mechanisms of drug resistance (Downing et al., 2011) and track-

ing the transmission of an infectious disease (Harris et al., 2010).

With the increasing application of deep sequencing as an ap-

proach, the number and volume of population studies with

geo-biological information and associated genomic data will con-

tinue to grow. This increases the demand for tools to integrate,

visualize and analyse complex genomic epidemiological data in

real time, including browsing genome variation patterns and as-

sessing population structure or geo-phylogeny. Although soft-

ware such as Polylens (Berry et al., 2013) and GenGIS (Parks

et al., 2009) can integrate geographical and genetic sequence

data, there is a need to scale up to whole genome variation in

the standardized VCF format (Danecek et al., 2011) with inform-

ative population genetic analysis. This motivated us to develop

SVAMP, a stand-alone Qt/Cþþ application capable of analys-

ing variants in the context of geography and aiding in making

inferences on the population structure. SVAMP is built on the

open-source software VarB (Preston et al., 2012).

2 METHODS

Input to SVAMP software is a bundle of multisample VCF file, reference

FASTA, annotation general feature format (GFF) and a precalculated

SQLite database file. The bundle preparation script included as a part of

SVAMP software captures the geographical coordinates, date of isolation

and the genome coverage of samples. The files when loaded into SVAMP

will aid the user in performing key population genomics analysis in real

time and visualize the results. Two popular methods of analysing sample

relatedness, principal coordinate analysis [PCoA; Torgerson–Gower scal-

ing (Gower, 1966)] and geo-phylogenetic tree, are integrated into

SVAMP. The pairwise dissimilarity matrix D is first computed based

on the Hamming distance (Hamming, 1950) (d) between pairs of samples

(i, j) using equation

dði, jÞ ¼ 1=L
XL

k¼1

½Si, k 6¼ Sj, k�

where k is the index of the genomic position out of L considered pos-

itions. Si,k is the genotype called by sample i at position k in the genome.

Positions that have missing genotype information are ignored in the com-

putation; therefore, the multisample VCF file should ideally consist of

samples and variants with reasonably complete data. The matrix D forms

the basis for subsequent PCoA and phylogenetic tree reconstruction and

consists of N (number of samples) rows and K (number of variant pos-

itions) columns.

PCoA, equivalently multidimensional scaling, is computed as per the R

function cmdscale, and the phylogenetic tree is constructed using Fitch–

Margoliash algorithm (Fitch and Margolia, 1967). The user is provided

with an option to group colours based on a known phenotype (e.g. drug

susceptibility) or a custom classification. The ability to perform tree com-

putation using external phylogeny package is also supported by saving

alignments in a compatible format and visualizing the tree in SVAMP.

The PCoA, phylogenetic tree and exporting alignments can be performed

on multiple regions of interest within a subset of samples. Integrating

popular bam viewers such as LookSeq (Manske and Kwiatkowski,

2009) to view read alignment evidence for variants is an added feature

of SVAMP.

3 RESULTS

We have evaluated the application and scalability of SVAMP

using two published datasets: (i) a bacterial population study

(Harris et al., 2010) on methicillin-resistant Staphylococcus

aureus (commonly known as MRSA) and (ii) a worldwide
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population structure study (Manske et al., 2012) on Plasmodium

falciparum malaria parasite. Both these example datasets are

available for download at http://cbrc.kaust.edu.sa/svamp as a

packaged SVAMP bundle.

3.1 MRSA outbreak analysis using SVAMP

The MRSA dataset visualised in SVAMP as shown in Figure 1

contains 4310 SNP sites determined from 63 isolates obtained

from various hospitals across 15 countries, spanning a period of

425 years. The linear phylogenetic tree constructed using SVAMP

is shown in Supplementary Figure S1, and the circular tree in

Supplementary Figure S2 is consistent with that described in the

paper by Harris et al. (2010). Supplementary Figure S3 shows the

Portuguese samples on the tree overlaid on the geographical map

displaying the year of isolation and location. Supplementary

Figure S4 shows the two European isolates DEN907 and TW20

clearly joining the Asian clade. From Supplementary Figure S1, it

can also be observed that five isolates from Thailand S21, S24,

S39, S42 and S81 obtained from the same hospital cluster together

to form a single subclade. Colour coding the isolates based on the

country of origin allows the visualization of the geographical map

and the tree simultaneously, assisting with making genomic epi-

demiological inference.

3.2 Exploring the population structure of Malaria isolates

using SVAMP

The raw sequencing data obtained from P. falciparum diversity

study (Manske et al., 2012) were mapped using smalt, and SNPs

were called using samtools. Resulting variants were merged using

vcftools. Only coding region variants that do not fall in var, rifin

and stevor gene (the hypervariable gene families in malaria) sites

were included. After filtering for quality and missing data, 26 918

SNPs were retained. This dataset consists of 245 samples from

six countries: three from Africa (AFR), two from Southeast Asia

(SEA) and Papua New Guinea (PNG). The PCoA analysis using

SVAMP in Supplementary Figure S5 clearly shows three differ-

ent clusters as three different groups AFR, SEA and PNG, as

seen in the paper by Manske et al. (2012). As expected, individual

continental PCoA analyses demonstrate separation between East

and West African samples (Supplementary Fig. S6) and between

Thailand and Cambodia samples. The commands and param-

eters used to obtain the final dataset used in SVAMP are ex-

plained in the Supplementary Materials.

3.3 Memory and computational speed of SVAMP on

MRSA and malaria datasets

Memory usage and computational speed of SVAMP was evalu-

ated on a laptop computer with 2 cores (4 GB RAM) and on a

workstation with 12 CPU cores (96 GB RAM). The results were

averaged for both MRSA and malaria datasets and are shown in

Table 1.

CONCLUSIONS

By using the sequence variant and associated geographical infor-

mation, we believe the software SVAMP will aid greatly in ana-

lysing isolates from an outbreak, as well as predicting the

population structure in epidemiological studies.
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