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B ipolar disorder (BD) is characterized by mood dysregu-
lation and a typically remitting-relapsing course.1 Ge-
nome-wide association studies (GWASs) have success-

fully identified several common risk-conferring variants,
including markers within the CACNA1C (HGNC 1390) and ANK3
(HGNC 494) genes.2,3

The CACNA1C gene encodes the alpha subunit of the
L-type voltage-dependent calcium (Ca+2) channel Cav1.2.
These channels mediate the influx of Ca+2 on membrane
polarization, thus influencing neuronal ability to generate
and transmit electrical signals.4 In addition, the L-type Ca+2

channel subunit Cav1.2 contributes to the development and

maturation of parvalbumin (PV) γ-aminobutyric acid–
transmitting (GABAergic) interneurons.5 The ANK3 gene en-
codes ankyrin G, a cytoskeletal scaffolding protein located in
the axon initial segment of neurons and in the nodes of
Ranvier.6 Ankyrin G determines action potential generation by
the cooperative activation of sodium gated channels at the
nodes of Ranvier7 and promotes the formation of GABAergic
synapses at the axon initial segment.8 Of particular interest
from the perspective of the neural systems is the link be-
tween CACNA1C and ANK3 and the GABAergic interneurons.
Brain oscillatory activity, considered a hallmark of neuronal
network function,9 crucially depends on GABAergic function.10

IMPORTANCE Genome-wide association studies (GWASs) indicate that single-nucleotide
polymorphisms in the CACNA1C and ANK3 genes increase the risk for bipolar disorder (BD).
The genes influence neuronal firing by modulating calcium and sodium channel functions,
respectively. Both genes modulate γ-aminobutyric acid–transmitting interneuron function
and can thus affect brain regional activation and interregional connectivity.

OBJECTIVE To determine whether the genetic risk for BD associated with 2 GWAS-supported
risk single-nucleotide polymorphisms at CACNA1C rs1006737 and ANK3 rs10994336 is
mediated through changes in regional activation and interregional connectivity of the facial
affect–processing network.

DESIGN, SETTING, AND PARTICIPANTS Cross-sectional functional magnetic resonance imaging
study at a research institute of 41 euthymic patients with BD and 46 healthy participants, all
of British white descent.

MAIN OUTCOMES AND MEASURES Blood oxygen level–dependent signal and effective
connectivity measures during the facial affect–processing task.

RESULTS In healthy carriers, both genetic risk variants were independently associated with
increased regional engagement throughout the facial affect–processing network and
increased effective connectivity between the visual and ventral prefrontal cortical regions. In
contrast, BD carriers of either genetic risk variant exhibited pronounced reduction in ventral
prefrontal cortical activation and visual-prefrontal effective connectivity.

CONCLUSIONS AND RELEVANCE Our data demonstrate that the effect of CACNA1C rs1006737
and ANK3 rs10994336 (or genetic variants in linkage disequilibrium) on the brain converges
on the neural circuitry involved in affect processing and provides a mechanism linking BD to
genome-wide genetic risk variants.
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Thus, CACNA1C and ANK3 may independently influence neu-
ronal firing and coupling.

Functional magnetic resonance imaging (fMRI) studies
have begun to uncover the effects of risk variants in CACNA1C
and ANK3 at the neural system level in healthy individuals. Re-
search to date has focused on GWAS-supported single-
nucleotide polymorphisms at CACNA1C rs1006737 (signal maxi-
mum at rs1006737; P = 7.0 × 10−8) and ANK3 rs10994336 (signal
maximum at rs10994336; P = 9.1 × 10−9).2,3 Although in-
tronic, these single-nucleotide polymorphisms are associ-
ated with altered gene expression in the brain.11,12 The CACNA1C
rs1006737 risk allele has been associated with overactivation
of the amygdala (AMG)–hippocampal complex and the pre-
frontal cortex during cognitive and affect-processing
tasks.11,13-15 In addition, the CACNA1C rs1006737 risk allele in-
fluences connectivity between the right and left hippocampus16

and between the prefrontal cortex and the AMG17 and subcor-
tical regions.18 Genetic variation in ANK3 may also influence
prefrontal function19 and occipital-prefrontal coupling.20 These
functional changes in the brain may underpin the association
between either risk allele and increased behavioral reactivity
to negative affective stimuli.21 Therefore, CACNA1C and ANK3
risk alleles may be relevant to reports of disease-associated dys-
function in engagement and connectivity between prefrontal
regions with limbic22-30 and occipital areas.31

In this study, we combined conventional Statistical Para-
metric Mapping (SPM) and dynamic causal modeling (DCM)32

of fMRI data to define the functional consequences in the brain
of CACNA1C rs1006737 and ANK3 rs10994336 during affect pro-
cessing in euthymic patients with BD compared with healthy
individuals. Facial affect is processed mainly in a right-sided
network that involves occipital and temporal regions of the ven-
tral visual pathway within the inferior occipital gyrus (IOG),
fusiform gyrus (FG), AMG, and ventral prefrontal cortex
(VPFC).33-35 We focused on this network primarily because it
overlaps with regions implicated in BD.36 Moreover, initial re-
ports have confirmed that at least 1 of the risk alleles of inter-
est, CACNA1C rs1006737, is functional within this network; in
patients with BD, the presence of this risk allele amplifies fron-
tolimbic abnormalities during facial affect processing.15,18

Based on this evidence, we tested the hypothesis that dur-
ing facial affect processing, CACNA1C rs1006737 and ANK3
rs10994336 risk variants will independently act to increase dis-
ease-related abnormalities in activation and effective connec-
tivity within the facial affect–processing network. Specifi-
cally, we hypothesized that in patients with BD, the presence
of either risk allele will increase neural responses in posterior
facial affect–processing network regions while exacerbating ab-
normalities in activation and connectivity in ventral prefron-
tal regions.

Methods
Participants
Eighty-seven participants of self-reported white British an-
cestry were identified through departmental databases as part
of ongoing studies on the pathophysiology of BD. Details of the

sample assessment are provided in the online material (Supple-
ment [eMethods]). Forty-one euthymic patients with bipolar
I disorder, diagnosed according to DSM-IV criteria,1 were in-
cluded in the study. Forty-six healthy individuals without a per-
sonal or a family history of Axis I DSM-IV disorders and
matched to the patients on age, sex, and IQ (measured using
the Wechsler Adult Intelligence Scale–Revised37) were se-
lected as a control group. All participants underwent screen-
ing to exclude past, present, and hereditary medical disor-
ders; DSM-IV lifetime alcohol or other drug dependence;
alcohol or other drug abuse in the preceding 6 months; and con-
traindications to MRI. Psychopathology was assessed using the
Hamilton Depression Rating Scale,38 the Young Mania Rating
Scale,39 and the Brief Psychiatric Rating Scale (BPRS).40

The study was approved by the Joint South London and
Maudsley and Institute of Psychiatry research ethics commit-
tee. All participants provided written informed consent be-
fore study participation.

DNA Extraction and Genotyping
We obtained DNA from the participants using buccal swabs and
conventional procedures. The CACNA1C (rs1006737; risk al-
lele A) and ANK3 (rs10994336; risk allele T) genotypes were de-
termined by an allelic discrimination assay (TaqMan Assay
C_31344821_10; Applied Biosystems). End-point analysis was
performed using fast real-time polymerase chain reaction
analysis (7900HT; Applied Biosystems). Genotypes were called
with the manufacturer’s software (SDS, version 2.3; Applied
Biosystems), and the output was checked visually to ensure
genotypes fell into distinct clusters. The call rate was 100% be-
cause buccal swabs were repeated for 7 individuals for whom
initial genotyping results were undetermined. Accuracy was
assessed by duplicating 15% of the sample, and reproducibil-
ity was 100%.

Facial Affect Paradigm
The paradigm included 3 negative facial emotions (fear, an-
ger, and sadness) in 3 separate experiments conducted in a
single acquisition session in a randomized order. This para-
digm consisted of 3 event-related tasks lasting 5 minutes each.
In each task, 10 different facial identities (http://paulekman
.com/) depicting 150% intensity of a negative (fear, anger, or
sadness) or a neutral facial expression were presented in a pseu-
dorandom order interspersed with a fixation cross. The 150%
level of intensity was chosen to minimize ambiguity about the
nature of the stimuli. The stimuli (affective and neutral faces
and the fixation cross) were each displayed for 2 seconds and
repeated 20 times. The interstimulus interval followed a Pois-
son distribution and varied between 3 and 9 (mean interval,
5) seconds. Participants were instructed to press the right or
the left button with their dominant hand on an MRI-
compatible response box to indicate whether the face had an
emotional or a neutral expression. Response time and accu-
racy data were collected.

Image Acquisition
Anatomical and functional imaging data were acquired dur-
ing the same session using a 1.5-T MRI system (GE Sigma; Gen-
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eral Electric). Gradient-echo planar magnetic resonance (MR)
images were acquired at each of the 16 noncontiguous
planes paral lel to the intercommissural (anterior
commissure–posterior commissure) plane. We acquired T2*-
weighted MR images reporting blood oxygenation level–
dependent contrast (repetition time, 2000 milliseconds;
echo time, 40 milliseconds; flip angle, 70°; section thick-
ness, 7 mm; section skip, 0.7 mm; matrix size, 64 × 64;
voxel dimensions, 3.75 × 3.75 × 7.7 mm). For each partici-
pant, 450 fMRIs were acquired. A high-resolution
T1-weighted structural image was acquired in the axial
plane for coregistration (inversion recovery-prepared,
spoiled gradient-echo sequence; repetition time, 18 milli-
seconds; echo time, 5.1 milliseconds; inversion time, 450
milliseconds; flip angle, 20°; slice thickness, 1.5 mm; matrix
size, 256 × 192; field of view, 240 × 180 mm; voxel dimen-
sions, 0.9375 × 0.9375 × 1.5 mm; number of excitations, 1).

Statistical Parametric Mapping
Data analysis was implemented using SPM8 (www.fil.ion.ucl
.ac.uk/spm/; Wellcome Trust Centre for Neuroimaging). Pre-
processing involved spatial transformations (realignment and
transformation into standard stereotactic Montreal Neurologi-
cal Institute space using the participants’ anatomical image)
and smoothing with an isotropic gaussian kernel of 8 mm full-
width half maximum. For each participant, the fMRI data from
the 3 event-related tasks (fear, anger, or sadness vs neutral)
were concatenated and modeled with a general linear (con-
volution) model. Vectors of onset representing correct re-
sponses were convolved with a canonical hemodynamic re-
sponse function. Six movement parameters were also entered
as nuisance covariates. The means of the 3 sessions were also
modeled, as was the transition at the end of each session. For
each participant, contrast images (affective > neutral facial ex-
pressions) were produced.

Group-level analyses were based on random-effects analy-
ses of the single-subject contrast images using the summary
statistic approach. Data were analyzed using 2 approaches. For
each genetic variant, the primary hypothesis-testing analy-
ses focused on the effect of the diagnosis, the genotype, and
their interaction within volumes of interest (VOIs) defined
within the facial affect–processing network, followed by whole-
brain analyses to test for significant main effects or interac-
tions outside the predefined areas.

Based on previous work from our laboratory,35 we se-
lected VOIs within the IOG, FG, AMG, and VPFC, which are the
key brain regions engaged in facial processing. These VOIs were
defined using a mask derived from the automated anatomi-
cal labeling atlas in Wake Forest University PickAtlas (version
3.0.3; www.fmri.wfubmc.edu/software/PickAtlas).

For the VOI and whole-brain analyses, statistical infer-
ence was based on a threshold of P < .001, uncorrected, with
a voxelwise extent threshold of k = 20; in addition, for the VOI
analysis, a small-volume correction was applied (VOI radius,
10 [measured as percentage of change in BOLD signal]; P < .05
at cluster level, familywise error).41 We used response times
and the BPRS total score as covariates in all analyses. The BPRS,
Hamilton Depression Rating Scale, and Young Mania Rating

Scale scores were highly correlated (for all, R > 0.82 [P > .0001]).
To avoid collinearity, we used the total BPRS score as a covar-
iate because, unlike the other scales, it is applicable to non-
clinical populations. In the BPRS, symptoms are rated from 1
(absent) to 7 (extremely severe), with ratings below 4 corre-
sponding to nonpathological experiences.

Measures of brain activation (weighted parameter
estimates)42 were extracted for each VOI from 1-sample t tests
(contrast images affective > neutral facial expressions) for each
diagnostic group using a region-of-interest toolbox for SPM
(MarsBaR; http://marsbar.sourceforge.net). These measures
were imported in commercially available software (SPSS, ver-
sion 17; SPSS, Inc) to examine their association with task per-
formance and with medication type and dose on the day of
scanning.

Dynamic Causal Modeling
Dynamic causal modeling32 is a Bayesian model comparison
procedure that estimates directed interactions within neural
systems. Crucially, DCM models these neural interactions
and distinguishes between endogenous and context-
specific coupling while accounting for the effects of experi-
mentally controlled network perturbations (in contrast to
stimulus-locked coupling).32,43 In the previous study from
our laboratory,35 the strategy for determining the most par-
simonious model for facial affect processing was detailed.
In summary, a 4-area DCM was defined for all participants
with endogenous connections between VOIs specified in
the IOG, FG, AMG, and VPFC, with the main effect of all
faces as the driving input to the IOG. We then produced and
tested 7 models that included all possible permutations
regarding how facial affect (fear, anger, or sadness) could
modulate connections within the network (Supplement
[eFigure]).

Model comparison was implemented using random-
effects Bayesian model selection in DCM8 to compute ex-
ceedance and posterior probabilities at the group level44 sepa-
rately for controls and patients with BD. The exceedance
probability of a given model denotes the probability that this
model is more likely than any other model tested. To produce
quantitative measures of the strength of effective connectiv-
ity and its modulation, we used random-effects Bayesian model
averaging to obtain mean connectivity estimates (weighted by
their posterior model probability) across all models and all
subjects.45 Once the optimal models for controls and patients
were determined, we tested the modulation of the model con-
nections by each of the risk variants separately in SPSS, ver-
sion 17, using 2-sample t tests or nonparametric tests when data
were not normally distributed based on the Kolmogorov-
Smirnov criterion, with α = .05.

Results
Participants
Demographic and Clinical Data
Results for the CACNA1C rs1006737 (risk allele A) are shown
in Table 1. Individuals with the CACNA1C AA allele (5 patients
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Table 2. Demographic and Clinical Characteristics of the Study Participants by Diagnosis, ANK3 Genotype (rs10994336; Risk Allele T), and
Diagnosis×Genotype Interactiona

Characteristic

Effect of Diagnosis Effect of ANK3 Genotype Diagnosis × Genotype Interaction

BD Patients
(n = 41)

Controls
(n = 46)

TT+CT
(n = 30)

CC
(n = 57)

BD Patients
With TT+CT

(n = 16)

Controls With
TT+CT

(n = 14)

BD Patients
With CC
(n = 25)

Controls With
CC

(n = 32)
Age, y 44.3 (11.9) 40.3 (13.2) 42.3 (13.0) 38.5 (13.4) 42.0 (10.7) 40.6 (12.2) 43.3 (12.3) 39.3 (12.3)

Sex, No. of
Participants

Male 20 25 17 27 9 7 11 18

Female 21 21 13 30 7 7 14 14

Educational level 3.5 (1.0) 3.6 (1.0) 3.5 (1.0) 3.5 (0.9) 3.5 (0.9) 4.2 (0.8) 3.1 (0.8) 3.6 (1.0)

IQ 117.9 (17.9) 112.6 (14.5) 121.7 (16.3) 111.8 (15.8) 112.3 (16.2) 110.7 (12.9) 121.7 (16.3) 116.7 (14.5)

HDRS total scoreb,c 4.8 (5.3) 0.1 (0.5) 2.9 (4.8) 0.5 (0.9) 5.3 (4.6) 0.4 (0.9) 1.5 (0.9) 0.1 (0.4)

YMRS total scorec,b 1.4 (3.0) 0.2 (0.6) 0.8 (2.2) 0.1 (0.3) 1.6 (2.9) 0.2 (0.4) 0.7 (1.4) 0.2 (0.6)

BPRS total scoreb,c 27.5 (4.0) 24.3 (0.7) 26.2 (3.7) 24.6 (1.0) 27.3 (4.3) 24.8 (1.1) 25.9 (1.9) 24.2 (0.6)

Age at onset, y 24.7 (8.0) … … … 23.3 (7.7) … 21.5 (7.2) …

Duration of illness, y 20.2 (10.5) … … … 22.6 (9.0) … 16.3 (10.7) …

No. of depressive
episodes

5.7 (7.5) … … … 11.3 (14.0) … 4.2 (3.8) …

No. of manic
episodes

5.6 (7.7) … … … 12.2 (16.2) … 3.7 (2.8) …

Correctly identified
faces, %

90.3 (4.1) 93.1 (4.8) 92.7 (5.9) 91.4 (8.3) 91.2 (6.2) 95.0 (4.1) 90.0 (9.4) 92.8 (7.0)

Response time, msb 1491 (209) 1109 (241) 1223 (260) 1165 (231) 1244 (221) 1193 (328) 1252 (249) 1096 (185)

Abbreviations: BD, bipolar disorder; BPRS, Brief Psychiatric Rating Scale;
ellipses, not applicable; HDRS, Hamilton Depression Rating Scale; YMRS, Young
Mania Rating Scale.
a Unless otherwise indicated, data are expressed as mean (SD).

b Scores for BD patients are significantly greater than those for controls
(P < .02).

c Scores for BD patients in the CT+TT group are significantly greater than those
for all other groups (P < .02).

Table 1. Demographic and Clinical Characteristics of the Study Participants by Diagnosis, CACNA1C Genotype (rs1006737; Risk Allele A), and
Diagnosis×Genotype Interactiona

Characteristic

Effect of Diagnosis Effect of CACNA1C Genotype Diagnosis × Genotype Interaction

BD Patients
(n = 41)

Controls
(n = 46)

AA+AG
(n = 42)

GG
(n = 45)

BD Patients
With AA+AG

(n = 17)

Controls With
AA+AG

(n = 25)

BD Patients
With GG
(n = 24)

Controls With
GG

(n = 21)
Age, y 44.3 (11.9) 40.3 (13.2) 40.1 (11.1) 39.5 (12.4) 44.4 (12.3) 36.3 (10.4) 44.1 (11.6) 38.1 (13.4)

Sex, No. of
participants

Male 20 25 21 24 6 16 14 12

Female 21 21 21 21 11 9 10 9

Educational level 3.5 (1.0) 3.6 (1.0) 3.8 (0.9) 3.3 (1.0) 3.6 (0.9) 3.9 (0.9) 3.2 (1.0) 3.4 (1.0)

IQ 117.9 (17.9) 112.6 (14.5) 113.6 (18.4) 114.4 (13.0) 118.7 (20.2) 101.5 (12.5) 116.9 (14.5) 111.8 (17.2)

HDRS total scoreb,c 4.8 (5.3) 0.1 (0.5) 2.0 (3.5) 3.2 (5.5) 6.8 (6.5) 0.1 (0.5) 3.3 (3.8) 0.1 (0.5)

YMRS total scoreb,c 1.4 (3.0) 0.2 (0.6) 0.3 (0.7) 1.1 (2.7) 2.4 (3.5) 0.3 (0.6) 0.8 (2.3) 0.1 (0.7)

BPRS total scoreb,c 27.5 (4.0) 24.3 (0.7) 25.4 (2.1) 26.4 (4.2) 29.1 (5.0) 24.4 (0.7) 26.3 (2.6) 24.2 (0.6)

Age at onset, y 24.7 (8.0) … … … 26.4 (9.3) … 22.2 (4.7) …

Duration of illness, y 20.2 (10.5) … … … 19.0 (11.1) … 21.9 (9.7) …

No. of depressive
episodes

5.7 (7.5) … … … 4.7 (3.7) … 7.9 (12.1) …

No. of manic episodes 5.6 (7.7) … … … 4.0 (3.5) … 8.2 (11.5) …

Correctly identified
faces, %

90.3 (4.1) 93.1 (4.8) 91.7 (7.7) 91.7 (7.8) 90.9 (7.9) 92.9 (6.5) 89.4 (8.8) 93.3 (6.6)

Response time, msb 1491 (209) 1109 (241) 1189 (267) 1171 (200) 1240 (249) 1125 (285) 1265 (236) 1097 (128)

Abbreviations: BD, bipolar disorder; BPRS, Brief Psychiatric Rating Scale;
ellipses, not applicable; HDRS, Hamilton Depression Rating Scale; YMRS, Young
Mania Rating Scale.
a Unless otherwise indicated, data are expressed as mean (SD).

b Scores for BD patients are significantly greater than those for controls
(P < .02).

c Scores for BD patients in the AA+AG group are significantly greater than those
for all other groups (P < .03).
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with BD and 4 controls) were considered together with AG het-
erozygotes (19 patients with BD and 17 controls) within each
diagnostic group. Results for the ANK3 rs10994336 (risk allele
T) are presented in Table 2. Because of the rarity of the risk
T allele (HapMap CEU minor allele frequency, 0.07; www
.hapmap.org), individuals with TT (2 patients with BD and 1
control) and CT (14 patients with BD and 13 controls) alleles
were considered together within each diagnostic group.
We found no effect of either genotype or of the geno-
type × diagnosis interaction on demographic data (P > .11)
or on clinical variables (P > .29) except for BD carriers of the
CACNA1C or ANK3 risk allele who had higher symptom
scores compared with all other groups (P < .02). Similar
behavioral changes have been observed in healthy carriers
of either risk allele who report higher ratings of anxiety,
anhedonia, and neuroticism.16,21

Task Performance
Details are shown in Tables 1 and 2. No significant effect of di-
agnosis, genotype, or their interaction was observed for accu-
racy (P > .63). Patients had longer mean response times com-
pared with the controls, but no effect of genotype or of a
genotype × diagnosis interaction was detected (P > .56).

Statistical Parametric Mapping
Processing of affective compared with neutral facial expres-
sions was associated with enhanced activation throughout the
relevant network in both diagnostic groups (Supplement
[eTable]). However, compared with controls, patients with BD

(regardless of genotype) showed reduced activation in the vi-
sual cortex (IOG), temporal visual association cortex (FG), and
the VPFC. The CACNA1C and ANK3 risk alleles were indepen-
dently associated with increased activation in the IOG, FG, and
AMG in all participants regardless of diagnosis (Figure 1). A sig-
nificant diagnosis × genotype interaction was noted in the
VPFC. The presence of either risk allele was associated with
increased VPFC activation in controls but reduced VPFC acti-
vation in patients with BD (Figure 1). The main effect of geno-
type and the genotype × diagnosis interaction observed in the
VOI analyses remained significant in the whole-brain volume
analyses. The latter analyses identified further regions with sig-
nificant effect of genotype in the angular gyrus (x = −30,
y = −54, z = 34 [z score, 3.34]) for carriers of the CACNA1C risk
allele and the middle occipital gyrus (left: x = −26, y = −90,
z = −4 [z score, 3.70]; right: x = 48, y = −66, z = −14 [z score,
3.68]) for carriers of the ANK3 risk allele.

Dynamic Causal Modeling
Results are presented in Figure 2. For simplicity, we used a
single modulatory term labeled facial affect. The models
contain distinct modulatory inputs for fear, anger, and sad-
ness, allowing us to test their individual influence on
connectivity.

In the controls, we replicated the previous finding35 that
the optimal model for facial processing with an exceedance
probability of 41% contains reciprocal connections among all
4 network areas (IOG, FG, AMG, and VPFC). Affect processing
(regardless of valence or genotype) was associated with sig-

Figure 1. Effect of Bipolar Disorder (BD) Risk Genes on Facial Affect Processing
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The effect of CACNA1C rs1006737
and ANK3 rs10994336 risk variants
on the inferior occipital gyrus (IOG),
fusiform gyrus (FG), amygdala (AMG),
and ventral prefrontal cortex (VPFC)
function during facial affect
processing in patients with BD and
healthy controls (HC) in mean signal
intensity (reported as a percentage of
whole-brain volume signal change).
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nificantly increased modulation of the forward connection
from the IOG to the VPFC (Figure 2A and Supplement [eFig-
ure, model 1]). In the controls, the presence of the CACNA1C

(P = .02) and ANK3 (P = .04) risk alleles further increased ef-
fective connectivity between these regions (Figure 2B).

In the patients with BD, as in the controls, the optimal
model with an exceedance probability of 32% also contained
reciprocal connections among all 4 network areas (IOG, FG,
AMG, and VPFC). Affect processing (regardless of valence or
genotype) was associated with reduced visual-prefrontal con-
nectivity coupled with increased modulation in the forward
connection from the AMG to the VPFC (Figure 2A and Supple-
ment [eFigure, model 3]). Moreover, BD carriers of the
CACNA1C (P = .02) or ANK3 (P = .04) risk variant expressed fur-
ther reductions in connectivity from the IOG to the VPFC
(Figure 2B).

Differences between the 2 diagnostic groups were noted
in the modulation by facial affect of the IOG to VPFC (P = .02)
and AMG to VPFC (P = .03) connections. Furthermore, the
genotype × group interaction for the IOG to VPFC connection
was statistically significant for the CACNA1C (P = .003) and
ANK3 (P = .01) genotypes.

No significant effect of medication was found in any of the
analyses. In addition, no significant correlation between medi-
cation dose and any brain activation or connectivity param-
eters (P > .42) was found.

Discussion
We used SPM and DCM to investigate the effect of CACNA1C
and ANK3 GWAS-supported risk variants on regional activa-
tion and interregional connectivity during facial affect pro-
cessing in healthy controls compared with euthymic patients
with BD. We found that both genetic risk variants were inde-
pendently associated with (1) increased engagement in the ven-
tral visual pathway and in the AMG irrespective of diagnosis,
(2) increased VPFC activation and visual-prefrontal effective
connectivity in controls, and (3) increased deviance in ven-
tral prefrontal activation and visual-prefrontal effective con-
nectivity in patients with BD.

The Effect of CACNA1C and ANK3 Variation on the Facial
Affect–Processing Network in Controls
As expected,35,46 facial affect processing enhanced regional ac-
tivation within the corresponding network regardless of geno-
type. The presence of either risk allele amplified these affect-
related neural responses. This genotype effect has been
reported previously in the AMG14,15 and VPFC15 for CACNA1C
rs1006737. Our study suggests that genetic modulation of re-
gional activation by CACNA1C rs1006737 within this network
is not limited to frontolimbic regions but extends to the ven-
tral visual pathway (IOG and FG). A similar pattern of affect-
related overactivation throughout the facial-processing net-
work was also present in ANK3 rs10994336 risk allele carriers.

Regardless of genotype, optimal processing of visual
stimuli depends on visual-prefrontal cortical coupling. Spe-
cifically, visual cortical areas in the IOG rapidly project par-
tially analyzed information directly to the VPFC; this coarse
representation subsequently triggers predictions within
temporal regions (FG and AMG) about the most likely inter-

Figure 2. Results of Dynamic Causal Modeling (DCM) and Bayesian
Model Averaging in Healthy Controls and Patients With Bipolar Disorder
(BD)
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A, Optimal DCM selection. Models compromised by a 4-area DCM are specified
with bidirectional endogenous connections among all regions (inferior occipital
gyrus [IOG], fusiform gyrus [FG], amygdala [AMG], and ventral prefrontal cortex
[VPFC]) and a driving input of all faces into the IOG. For ease of display, affect
modulations are labeled as facial affect (black dot) but correspond to the
distinct modulations of fearful, angry, and sad faces. B, Alterations in effective
connectivity within the facial processing network established by Bayesian
model averaging across all models considered. For controls, the bold black
arrows indicate significantly increased connectivity from the IOG to the VPFC
modulated by the CACNA1C (rs1006737) and ANK3 (rs10994336) risk variants.
For patients with BD, the dashed arrows indicate significantly decreased
connectivity from the IOG to the VPFC modulated by the CACNA1C (rs1006737)
and ANK3 (rs10994336) risk variants. Black solid arrows indicate all other
network connections.
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pretations of the stimulus.47-49 When visual stimuli include
affective information, this early visual-prefrontal coupling is
further increased.50 Accordingly, we found a robust modula-
tion of effective connectivity between the IOG and VPFC by
facial affect that was further enhanced in carriers of the
CACNA1C rs1006737 or the ANK3 rs10994336 risk allele.
Therefore, one could argue that neural overresponsiveness to
affective information could represent a common biological
pathway shared by these 2 risk-conferring single-nucleotide
polymorphisms for BD. This notion is further supported by
neurophysiological evidence showing greater startle
reactivity,21 indicating increased neuronal excitability, in
healthy carriers of either risk allele.

Although the underlying molecular mechanisms are
beyond the resolution of neuroimaging, we hypothesize
that the neurogenetic effects of either risk allele are medi-
ated through changes in brain oscillatory activity. The func-
tional coupling of visual and prefrontal cortices during
visual processing relies on synchronized long-range oscilla-
tions within the gamma frequency band.10,51 Recent optoge-
netic experiments have confirmed that gamma oscillations
originate from PV-GABAergic interneurons following excit-
atory input from pyramidal cells.10 The CACNA1C and ANK3
genes are known to modulate neuronal firing, signaling, and
PV-interneuron function, which are pertinent to the genera-
tion of gamma oscillations4,5,7,8 and offer a plausible link
between the molecular properties of the genes and their
putative system-level effects observed here.

Effect of CACNA1C and ANK3 Variation on the Facial
Affect–Processing Network in BD
Regardless of genotype, patients with BD showed VPFC hy-
poactivation, consistent with previous reports.26,27,52 This ab-
normality was exacerbated in BD carriers of either risk allele.
In all other network regions, the presence of either risk allele
amplified affect-related neural responses. This genotype-
related imbalance in engagement between posterior facial net-
work regions and the VPFC has been previously described for
CACNA1C rs1006737.15 Our findings suggest a similar effect for
the ANK3 rs10994336 risk allele.

Regardless of genotype, the patients with BD showed evi-
dence of significant reduction in visual-prefrontal cortical ef-
fective connectivity but increased forward connectivity be-
tween the AMG and VPFC compared with the controls. These
findings confirm previous reports of increased AMG-
prefrontal coupling in BD22-30 and provide new evidence of vi-
sual-prefrontal reduction in effective coupling. The latter was
affected by CACNA1C and ANK3 variation because BD carri-
ers of either risk allele show greater dysfunction. Several re-
ports have found abnormal neuronal synchronization in BD in
the long-range gamma band during multiple tasks,53-55 includ-
ing facial affect processing,56 that provides a plausible mecha-

nistic explanation for the observed reduction in visual-
prefrontal cortical connectivity in BD.

Central Role of VPFC Dysfunction in the Pathophysiology
of BD
Our results also strengthen the case for VPFC pathology in the
pathogenesis of BD.57 Postmortem studies in BD report neu-
ropathological abnormalities in the VPFC, leading to regional
reductions in the number and density of pyramidal cells and
PV interneurons.58,59 The mechanisms involved are not estab-
lished, but multiple lines of evidence implicate reduced ex-
pression of neurotrophins,60 abnormalities in oxidative en-
ergy generation,60,61 and mitochondrial dysfunction resulting
in altered Ca+2 regulation60 and PV-interneuron reduction.62

Given the known properties of the CACNA1C and ANK3 risk
alleles discussed here, we postulate that the risk alleles may
further reduce the integrity of the interactions between excit-
atory signals from pyramidal neurons and inhibition by
GABAergic interneurons.10,63 A more precise formulation of a
pathophysiological model for BD crucially depends on the fu-
ture availability of data directly testing these predictions.

Methodological Considerations
Several methodological issues require further consideration.
First, possible medication effects on the study results cannot
be conclusively refuted. However, we found no significant re-
lationship between medication and measures of regional ac-
tivation or effective connectivity. Second, we did not test for
epistatic effects because the number of individuals carrying
both risk variants was small (3 patients and 3 controls). This
finding is expected, given the rarity of the ANK3 risk allele.
However, Moskvina and colleagues64 found no convincing evi-
dence of epistasis between the GWAS-supported single-
nucleotide polymorphisms in ANK3 and CACNA1C in the Well-
come Trust Case Control Consortium data (1868 cases with BD
and 2938 controls). They suggested that GWAS-supported loci
may be detectable because they do not require interactions to
exert an effect. Finally, the absence of a diagnosis or a geno-
type effect on task performance is a particular strength of the
study and confirms the increased assay sensitivity of neuro-
imaging in uncovering the neural correlates of diagnostic and
genetic variability. The genetic risk factors examined here and
the results obtained show at least partial overlap with find-
ings in other disorders, primarily schizophrenia.59,65 This ob-
servation adds to accumulating evidence that the diagnostic
categories used in clinical practice are unlikely to represent un-
derlying genetic and pathophysiological risk accurately.

In summary, we demonstrated that the effect of CACNA1C
rs1006737 and ANK3 rs10994336 (or genetic variants in linkage
disequilibrium) on the brain converges on neural circuitry in-
volved in facial affect processing. Thus, we provide a mecha-
nism linking BD with genome-wide genetic risk variants.
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