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Abstract The Enhancing NeuroImaging Genetics through
Meta-Analysis (ENIGMA) Consortium is a collaborative
network of researchers working together on a range of large-
scale studies that integrate data from 70 institutions
worldwide. Organized into Working Groups that tackle

questions in neuroscience, genetics, and medicine, ENIGMA
studies have analyzed neuroimaging data from over 12,826
subjects. In addition, data from 12,171 individuals were
provided by the CHARGE consortium for replication of
findings, in a total of 24,997 subjects. By meta-analyzing
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results from many sites, ENIGMA has detected factors
that affect the brain that no individual site could detect
on its own, and that require larger numbers of subjects
than any individual neuroimaging study has currently
collected. ENIGMA’s first project was a genome-wide
association study identifying common variants in the
genome associated with hippocampal volume or
intracranial volume. Continuing work is exploring genetic
associations with subcortical volumes (ENIGMA2) and
white matter microstructure (ENIGMA-DTI). Working
groups also focus on understanding how schizophrenia,
bipolar illness, major depression and attention deficit/
hyperactivity disorder (ADHD) affect the brain. We
review the current progress of the ENIGMA Consortium,

along with challenges and unexpected discoveries made on
the way.

Keywords Genetics .MRI . GWAS . Consortium .

Meta-analysis .Multi-site

Introduction

Origins of brain imaging in human populations

During the “Decade of the Brain” in the 1990s (Jones and
Mendell 1999), a number of major neuroimaging centers
began to scan hundreds of patients and healthy individuals
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using a variety of neuroimaging methods. The accelerating
pace of data collection was driven mainly by the wide
availability of MRI around the world. The structure and
function of the living brain was beginning to be mapped in
unprecedented detail in human populations.

In a typical neuroimaging study—both now and 20 years
ago—between ten and a few hundred subjects might have
been scanned, and statistical models would be fitted to identify
factors that affect brain structure and function. Early
studies—such as lesion studies—correlated radiological
measures with clinical diagnosis and behavior, but the
study of large populations represented a new movement
in human brain mapping. Fundamental questions in
neuroscience could now be examined—what are the
effects of aging, degenerative disease and psychiatric

illness on the living brain? How do brain measures
relate to cognition and behavior? Do brain measures
predict our risk for disease, or prognosis in those who
are ill?

There was growing confidence that questions of broad
societal and medical impact could be better understood if
enough brain scans were collected—projects were initiated
to examine effects on the brain of psychiatric medications,
drugs and alcohol abuse, dietary factors, and many other
factors including education, cardiovascular fitness, as well as
pharmacologic and behavioral interventions.

At the same time, the broad availability of brain scans
led to the development of widely adopted tools to analyze
the resulting data. Software such as Statistical Parametric
Mapping (SPM; Friston et al. 1995; Frackowiak 1997),
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FSL (Jenkinson et al. 2012), BRAINS (Pierson et al.
2011) and FreeSurfer (Fischl et al. 2004) among many
other tools, were widely distributed over the internet. This
made it feasible to analyze neuroimaging data and
compute standardized measures from brain scans in a
consistent and agreed way, albeit with methods that are
continually refined.

Early neuroimaging consortia

Early consortium efforts in neuroimaging included the
International Consortium for Brain Mapping (ICBM;
Mazziotta et al. 1995), which recognized the need to establish
normative data on the brain from a wide range of human

populations scanned in different parts of the world. The
ICBM began with an effort to scan around 150 healthy
subjects in Los Angeles, Montreal, and San Antonio, Texas,
and grew to include sites in Europe and Asia that broadened
the age range and ethnic groups assessed. Later, the ICBM
also extended the depth of the neuroimaging measures to
include functional MRI and even post mortem histology and
cytoarchitecture (Amunts et al. 1999).

Given the wide variations in brain anatomy even among
healthy subjects, consortia such as the ICBM developed a
range of “average” anatomical templates based on MRI scans
of hundreds of healthy subjects. Analysis software for brain
images disseminated these average brain templates, and
provided methods to relate new data to previously compiled
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atlases and data collections. This led to the notion of statistical
representations of imaging signals in standardized coordinate
spaces—or “statistical parametric maps”. The wide adoption
of these standard spaces—such as the ICBM or MNI
(Montreal Neurological Institute) spaces—was eased by the
development of automated registration and alignment
methods (Woods et al. 1993; Collins et al. 1994; Ashburner
et al. 1999; Jenkinson et al. 2002) that allowed researchers to
rapidly align their own data to the templates. This effort led to
the rise of voxel-based morphometric approaches and
statistical mapping approaches in general. These
developments also allowed any group to compare and contrast
their findings with ongoing findings from other groups around
the world—a movement that was stimulated by the
development of the Talairach and Tournoux brain atlases,
which defined anatomical regions in stereotaxic space

(Talairach et al. 1993). The Talairach atlas was among the first
to compile a coordinate-based reference system, and it
allowed researchers worldwide to relate their findings to
existing data collections. In the mid-1990s, a group in San
Antonio developed the “Talairach Daemon”, allowing
electronic pooling of findings from brain mapping studies
based on their coordinates in Talairach space. In addition to
the use of standard anatomical templates for reporting results,
this coordinate system opened the door for clinically-oriented
consortia to scan and analyze large-scale patient populations
in a consistent way. The rapid development of nonlinear
registration methods also made it possible to improve the
alignment of new datasets to digital anatomical templates,
for coordinate based reporting of results.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI),
for example (Weiner et al. 2012), scanned around 800 people
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in its first phase, including healthy elderly people, individuals
with mild cognitive impairment and patients with Alzheimer’s
disease. ADNI began in 2005, after testing the feasibility and
reproducibility of a range of scanning protocols. This led to
standardized scanningmethods implemented at 58 sites across
North America (Leow et al. 2009; Jahanshad et al. 2010; Jack
2012; Zhan et al. 2012). Many other neuroimaging consortia
have been established, including the functional Brain Imaging
Research Network (FBIRN) (Potkin and Ford 2009) which
has developed standardized methods for multi-center
functional MRI studies (Glover et al. 2012) and the Mind
Clinical Imaging Consortium (Gollub et al. 2013) focusing
on schizophrenia, as well as research networks focusing on
pediatric imaging (Evans 2006), autism (Ecker et al. 2013),
HIV/AIDS (Cohen et al. 2010) and many others. In fact, the

successes of these multi-site initiatives have led to large-scale
neuroimaging efforts being initiated and funded in other
countries (Carrillo et al. 2012; Alzheimer’s Association
2013; White et al. 2013).

Genome-wide association studies (GWAS)

At the same time, a number of genetic studies using twin or
family-based designs had shown that many brain-derived
measures were significantly heritable (Thompson et al.
2001; Baaré et al. 2001; White et al. 2002; Wright et al.
2002; van Erp et al. 2004a, b; Hulshoff Pol et al. 2006;
Winkler et al. 2010; Kochunov et al. 2010; Blokland et al.
2012; Koten et al. 2009). In other words, a substantial fraction
of the variability in brain measures—especially structural but
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also some functional measures, and even brain metabolites
(Batouli et al. 2012)—could be explained by genetic
relationships among individuals. The total amount of gray
and white matter in the brain, the overall volume of the
brain—and even activation patterns on fMRI or connections
tracked with diffusion MRI—were more similar among
family members than unrelated individuals (Peper et al.
2007; Koten et al. 2009; Glahn et al. 2010; Brouwer et al.
2010; Fornito et al. 2011; Blokland et al. 2012; Jahanshad

et al. 2013a; Thompson et al. 2013; Van den Heuvel et al.
2013).

Arguably, it is equally important to identify regions or
measures with low heritability as well. The reliability of
imaging measures varies considerably by region or network,
and so does the ability to detect heritability, even if present.
Such information is immensely useful in constraining the
potential phenotypes worth pursuing and interpreting results;
we consider this further below.
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Despite the high heritability of many brain measures (h2 up
to 0.89; Kremen et al. 2009; or even up to 0.96: van Soelen et
al. 2012), the specific genetic variants that contribute to this
variability remain largely unknown. A possible exception is
the Alzheimer’s disease (AD) risk gene, APOE : carriers of
one or more risk-conferring alleles (APOE4 ) demonstrate
accelerated gray matter loss with age (Lu et al. 2011). They
also have a roughly three-fold increased risk for late-onset
AD, for each risk allele they carry (Corder et al. 1993). In a
recent meta-analysis of 35 prospective cohort studies with an
average follow-up of 2.9 years, the odds ratio for conversion
from mild cognitive impairment to Alzheimer’s dementia in
APOE4 carriers was determined to be 2.29, relative to non-
carriers (Elias-Sonnenschein et al. 2011). Other prior papers
reported a higher odds ratio, around 4 for heterozygotes and
>7 for homozygotes, with some differences depending on the
ancestry of the cohort. According to another more recent
review, one copy of ApoE4 increases risk by ~2.6–3.4, and
homozygotes for ApoE4 have an odds ratio of 14.9 compared
to the reference genotype of E3/3 (Liu et al. 2013).

A number of groups around the world began to perform
GWAS on measures derived from brain images, with the goal
of finding new genetic variants that might account for more of
the variation in brain structure and function, and also for
disease risk. The genetic variants of interest in a GWAS are
single nucleotide polymorphisms, or SNPs, commonly carried
variants in the genetic code. SNPs are DNA sequence
variations that occur when a single nucleotide (A, G, C, or
T) is altered; SNPs are thought to be point mutations that were
not so damaging that evolution allowed them to be retained in
a significant proportion of the population of a species. Within
a population, SNPs can be assigned a minor allele
frequency—the proportion of chromosomes in the population
carrying the less common variant. Figure 1 illustrates the ideas
behind this approach. Before we discuss GWAS, it is worth
noting a distinction between narrow and broad-sense
heritability: broad-sense heritability is the proportion of
variation in a phenotype (here, individual variations in brain
measures) that can be explained by genetic effects. These
effects may include dominance and epistasis—interactions
between SNPs or genes in different parts of the genome. The
narrow-sense heritability is the proportion of variance in a
brain measure that is accounted for by additive genetic factors
(and this is typically a smaller proportion of the trait variance).
These additive genetic effects are the types of statistical effects
that GWAS aims to detect.

In a typical GWAS analysis, one might test ~2.5 million
common SNPs in the genome, to see if any of these genetic
variants are associated with a trait, such as a brain-derived
measure, or a specific disease such as AD. Although not the
only important type of genetic variation, SNPs can be
measured using readily available genotyping arrays, and
individually provide adequate statistical power as the variants

are common enough to test their effects statistically. Because
only selected SNPs capturing the variability of the genome are
genotyped, many authors have argued that this genotyping
technology is much less expensive than whole-genome
sequencing. However, new technologies using low coverage
sequencing with imputation may in some cases yield several
times the effective sample size of GWAS based on SNP array
data, and a commensurate increase in statistical power as
described in Pasaniuc et al. (2012).

GWAS has had many successes. Many common poly-
morphisms have now been found that increase genetic risk
for AD (Harold et al. 2009; Lambert et al. 2009; Naj et al.
2011), age-related cognitive decline (Davies et al. 2012),
schizophrenia (Almasy et al. 2008; Stefansson et al. 2009;
Ripke et al. 2011; Rietschel et al. 2012), bipolar disorder
(Sklar et al. 2011; Cichon et al. 2011) as well as obesity
(Yang et al. 2012), alcohol drinking (Schumann et al. 2011),
tobacco smoking (Thorgeirsson et al. 2008), cardiovascular
disease (CARDIoGRAMplusC4D Consortium et al. 2013),
osteoporosis (Estrada et al. 2012), prevalent psychiatric
disorders (Cross-Disorder Group of the Psychiatric
Genomics Consortium et al. 2013) and for many other traits
and diseases.

Imaging may play a role in finding out how these genes
create risk for illness through their impact on the brain, by
comparing brain scans of carriers versus non-carriers. One
such example is the ZNF804A story. A variant within
ZNF804A was the first genome-wide significant SNP
associated with risk for schizophrenia (O’Donovan et al.
2008). The function of this variant was initially not clear.
Prominent papers later appeared (e.g., Esslinger et al. 2009)
using imaging to establish disturbed connectivity as a
neurogenetic risk mechanism for psychosis. They showed that
some variant in ZNF804A (or some variations in linkage
disequilibrium with them) must be functional in the human
brain. This was one of many early studies to validate the
intermediate phenotype strategy in psychiatry.

Ongoing work comparing genome-wide data from patients
with AD and healthy elderly people had begun to unearth a
growing set of new AD risk genes (Bertram 2009). By 2009,
meta-analyses of GWAS from multiple elderly cohorts had
implicated a trio of new AD risk genes—CLU , CR1 and
PICALM (Harold et al. 2009). Each of these appeared to affect
AD risk by around 10–20 %, consistently, in cohorts around
the world (Logue et al. 2011). Additional AD risk variants
were rapidly discovered as GWAS expanded to more
populations with dementia and healthy controls (Hollingworth
et al. 2011).

A flurry of such studies occurred—some showed brain
differences in Alzheimer’s disease risk gene carriers a full
50 years before AD typically strikes (Braskie et al. 2011;
Bralten et al. 2011). Others showed a pattern of brain changes
in unaffected carriers that resembled the “footprint” of
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Alzheimer’s disease in the living brain (Biffi et al. 2010; Erk et
al. 2011, Rajagopalan et al. 2013). These findings will require
follow-up but illustrate the potential of using neuroimaging
measures to explore the effects of genetic variation.

But a much more adventurous goal provided the driving
force behind the new and emerging fields of imaging
genomics. This goal was to use neuroimaging data directly,
to screen the genome for common variants that might affect
the brain. In other words, rather than using the images in
secondary studies of what disease risk genes do, images could
be screened to discover important genetic associations.
(Instead of imaging genetics, the somewhat interchangeable
term “imaging genomics” is also used; genomics tends to refer
to any method that directly assesses variation in the genome,
as opposed to studies that may assess a single locus only, or
simpler family studies that may not even analyze DNA). The
growing computational power to screen very large
neuroimaging datasets—for the purpose of extracting
meaningful features from them—made this an interesting
and achievable objective. Advocates of “imaging genetics”—
the genetic analysis of brain images (Glahn et al. 2007; Turner
et al. 2006)—suggested that it might even be more efficient to
screen traits derived from brain images to provide
endophenotypes for brain disorders.

The main motivation to screen brain images was to find
some heritable measure of disease burden that might be closer
to the underlying genetic effect than clinical diagnosis based
on cognitive and clinical tests. The endophenotype
hypothesis, long advocated by psychiatric geneticists such as
Irving Gottesman (Gottesman and Gould 2003; Blangero
2004; Goldman 2012; White and Gottesman 2012; Kendler
and Neale 2010) suggested that one might fruitfully apply

genetic screening to any reliable and heritable biomarkers of
a disease—measures from the blood or cerebrospinal fluid
(CSF), or even from brain scans, which by now had become
quite plentiful. The original definition of “endophenotype” for
an illness or disorder (see Gottesman and Gould 2003)
suggested that an endophenotype should (i) be associated with
the illness/disorder of interest, (ii) be heritable, (iii) be state-
independent, i.e., seen in people even when they do not show
symptoms of the illness/disorder, (iv) co-segregate with
illness/disorder within families, and (v) be observed in
relatives of affected family members at a higher rate than in
the general population.

The search for endophenotypes of disease, for genetic
analysis, is related to the goal of finding biomarkers for AD
or any psychiatric illness, although the quest for biomarkers
pre-dated efforts to find endophenotypes of disease. In
addition, biomarkers may not be stable, as they may change
during the disease course. The term “biomarkers” has been
used with many different meanings, but in general biomarkers
are measures of disease burden that can be objectively
quantified, ideally allowing more objective or earlier
diagnosis, and making it easier to test the effects of treatment
or prevention.

Advocates of using imaging for genetic analysis pointed to
several advantages that imaging provides now, as well as
several potential advantages that it could provide in the
foreseeable future. First, neuroimaging can yield reproducible
measures of brain structure and (perhaps to a lesser extent) brain
function. Structural measures of the brain, from MRI, tend to
have relatively high reproducibility across measurement
methods, and are generally consistent with expert tracings of
the same structures (see Supplement of Stein et al. 2012; many

Fig. 1 Steps involved in a genome-wide association study. A heritable
brain measure (or “phenotype”) - which could be binary, such as a disease
state, or continuous, such as the intracranial volume (ICV) - is extracted
from brain imaging scans from a large group of people. To determine if
there is any statistical association between this brain measure and the
inter-subject variations at a single SNP, the genetic variations among
individuals can be assessed at a single location along the genome, and
correlated with differences in the trait of interest (here, ICV). Genome-
wide association scans involve an unbiased search across the whole
genome to discover novel genetic loci associated with the trait. Testing
a million or more SNPs requires a strict multiple comparisons correction

threshold, to avoid reporting spurious results; normally, credible findings
have to achieve a significance value more extreme than p <10−8. The so-
called “Manhattan plot” on the right (by analogy with the Manhattan
skyline in New York) displays the −log10 of the p-value for associations
between the brain measure and genetic variation at each position along
the genome; the higher the point on the plot, the more likely it is that an
association exists. Of course, it is important not to see genome-wide
significance as a “binary state”, whose conditions are either fulfilled or
not—but rather a measure of the level of evidence for a genetic
association. Findings in these plots must typically be replicated in several
independent cohorts before they are considered credible or generalizable
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studies have investigated the reliability of measures from brain
MRI, e.g., Pengas et al. 2009). In a recent GWAS analysis,
Holmes et al. (2012) showed high reliability for automated
brain volumes of hippocampus (r =.98), amygdala (r =.91),
and intracranial volume (r =.99) for a cohort of data collected
across investigators and matched scanners. Nugent et al. (2012)
also studied the inter-scanner reliability of the FIRST software
for segmentation (Patenaude et al. 2011), and found it to be
high. However, it is overly optimistic to always expect high
reproducibility from automated segmentations of brain MRI,
and the reproducibility is region specific. For example, both
FSL and FreeSurfer tend to do less well in segmenting small
structures relative to larger structures. There are also differences
in accuracy and reliability among different methods for
automated segmentation of the brain (Shokouhi et al. 2011).
Cortical thickness and other local gray matter density measures
can show reduced reliability owing to sensitivity to image
contrast variability, which becomes particularly challenging in
multicenter studies (Schnack et al. 2010). The volumes of some
structures, such as the caudate, may even show systematic
biases in certain populations because of tissue class ambiguity
that arises as a consequence of white matter degradation near
graymatter structures. Some cortical regions are also difficult to
delineate accurately due to the large intersubject variability. As
noted below, one goal of ENIGMA has been to screen brain
measures for reproducibility, heritability, and association with
disease, to see which ones are likely to be promising for genetic
analysis (we return to this topic below; see also Table 1).

Second, measures of brain volume, integrity, receptor
distribution, or chemical composition, might be more directly
related to the function of genes—both genes whose function is
unknown, and known candidate genes—such as growth
factors, transcription factors, guidance molecules, or
neurotransmitters and their transporters. Many of these had
already been implicated in the risk for psychiatric illness, and
imaging offered the opportunity to study differences in brain
connectivity or function, in carriers of genetic variants
associated with disease risk. In the future, advanced MRI
methods such as [1H]MR spectroscopy could be used for
population genetic studies of the brain’s chemical
composition, or PET studies to measure receptor distribution,
but work soon began in earnest on the genetic analysis of more
common and widely available types of brain scans—MRI and
DTI (Diffusion Tensor Imaging).

At the same time, some seasoned geneticists were skeptical
about imaging genetics. Concerns were raised about the costs
of image acquisition, relative to a standard psychiatric
diagnostic test. For a study to be feasible, the cost of data
collection must be borne in mind, regardless of which method
is ultimately more efficient in discovering genes and
mechanisms contributing to brain disease.

By 2009, a number of GWAS studies had been performed
on neuroimaging data. Among the first studies to report a

positive finding—a so-called “genome-wide hit”—was the
report by (Potkin et al. 2009a) that identified a key genetic
variant in TOMM40 , in linkage disequilibrium with APOE ,
the known risk gene for AD. Using hippocampal atrophy as a
quantitative phenotype in a genome-wide scan, they assessed
381 participants in the ADNI (Alzheimer’s Disease
Neuroimaging Initiative) study, to identify SNPs for which
there was an interaction between the genotype and diagnosis
on the quantitative trait. Variants in TOMM40 appeared to
affect hippocampal volume differently in AD patients versus
controls. Working with genetic-founder populations, some
GWAS-based studies revealed genome-wide hits in relatively
small samples; in the Saguenay Youth Study, genetic
variations in the KCTD8 region were associated with brain
size in a community-based sample of adolescent girls
(rs716890, P=5.40×10−9); (Paus et al. 2012). Furthermore,
genotype in the top hit (rs716890) interacted with prenatal
exposure to maternal cigarette smoking vis-à-vis cortical area
and cortical folding; in exposed girls only, this genotype
explained ~21 % of variance in the cortical area (Paus et al.
2012).

The ADNI work analyzed a publicly available dataset
(adni.loni.usc.edu) for which MRI scans and GWAS data
could be freely downloaded from approximately 800 people.
The ease of access of the ADNI data, and the principle of
broad dissemination of the genomic data with fairly few
restrictions led to over 100 genetic studies of the ADNI data,
many of them using GWAS designs (Saykin et al. 2010).

The ADNI dataset stimulated work in imaging genetics, as
evidenced by the large number of published papers using the
data (all ADNI genetics studies from the period 2009–2012,
are reviewed by Shen et al., 2013; this volume). Even so, data
from other elderly cohorts is needed to determine how well
ADNI’s genetic findings generalize to other non-selected
cohorts. ADNI deliberately selected participants who are
predominantly Caucasian, and relatively free from drug or
alcohol abuse and vascular disease. Genetic associations
detected in ADNI may be stronger or weaker, or even not
supported at all, in cohorts with different ethnic composition,
or with other co-morbid health conditions. Because of this, it
is important to recognize that some genetic associations may
depend on the cohort studied, diagnostic or demographic
criteria, and we should not expect all true genetic associations
to be detectable in all cohorts.

Sample sizes and power for GWAS

As with other phenotypes, the first GWAS findings for
imaging phenotypes were difficult to replicate, probably due
to the limited availability of replication samples. Prior work
had cautioned that, using the most standard kind of univariate
analysis of SNP effects, very large sample sizes would be
required—far larger than a typical neuroimaging study—to
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discover influential genetic variants, unless their effect sizes
on the brain phenotypes being analyzed were unusually large
(Potkin et al. 2009b). The power of a GWAS study depends on
the number of null genetic variants assessed, the expected
effect size of the genetic variant (typically less than 1 % of
the trait variance), and the population frequency of the variant
(Potkin et al. 2009b; Flint et al. 2010; Paus et al. 2012). The
power obviously also depends on the genetic architecture of
the trait—key factors are the large number of effectively
independent LD regions in the genome (regions of linkage
disequilibrium, with correlated SNPs) and the number of
detectable causal loci per phenotype (which is typically
small). The first series of studies identifying genetic markers
for MRI phenotypes that replicated across independent
samples, used a Norwegian discovery sample and replicated
the findings in the ADNI or PING cohorts (Joyner et al. 2009;
Rimol et al. 2010; Bakken et al. 2012).

Even for high frequency variants, neuroimaging databases
of 1,000 subjects would be underpowered to detect commonly
observed effect sizes. We must bear in mind that, in the
standard experimental design (see below for others), the
significance of a genome-wide hit has to be at least 20 million
to one, to account for the very large number of variants tested.
Some have argued that neuroimaging studies reporting effects
of candidate genes—such as COMT or BDNF—are also at
risk for false positive effects, in the sense that any number of
genes could have been assessed, with no way to verify
whether the paper was selectively reporting the successes
(Flint and Munafo 2013; Ioannidis 2005). While this problem
is shared by selective reporting of results in many fields,
imaging genetics is particularly at risk because of the ease
of retesting the same data. Some have raised the concern
that a considerable proportion of neuroimaging genetics
associations, especially those found in small samples, may

Table 1 Selection of brain measures for genetic analysis. In ENIGMA,
the brain measures chosen for analysis had to be feasible to measure
consistently and efficiently at a large number of sites, according to agreed

protocols (available at enigma.ini.usc.edu). As power is limited in
GWAS, various tactics may be useful in the future to boost the power
to find genetic associations. Some of these are categorized here

Power enhancement approach Principle Pros and cons

1. Enhance the dataset Increase the sample size (some GWAS studies now
assess 100,000+ subjects (Lango Allen et al. 2010;
Speliotes et al. 2010))

Identifies variants with smaller effect sizes, but is more
costly

Increase genomic coverage/sequencing Picks up rarer variants, but requires evenmore subjects for
power to detect effects of low frequency variants. Also
is more costly than genotyping common SNPs through
genotyping arrays, but the cost is rapidly decreasing

Increase the range of phenotypes studied May be able to find a high effect size phenotype, but also
need to correct for the number of measures assessed,
which may be large (e.g., in “voxel-based” GWAS;
Stein et al. 2010; Ge et al. 2012); if too many are
assessed, power is low

2. Data reduction Focus on candidate SNPs/genes, candidate pathways,
candidate phenotypes

Avoids heavy statistical correction, but may miss
unexpected variants or phenotypes

2.1. Based on classical genetics
principles

Heritability screening—remove or de-emphasise
measures with low heritability

This may empower genomic screens of complex
phenotypes (e.g., genome-wide connectome-wide
screens; Jahanshad et al. 2013b), see ENIGMA-DTI
(Jahanshad et al. 2013a).

Genetic Clustering—find parts of an image or 3D
cortical surface with common underlying genetic
determination

GWAS on the resulting “genetic clusters” appears to
have higher power than standard voxel-based
approaches (Chiang et al. 2011, 2012; Chen et al.
2011, 2012)

2.2. Based on relevance to disease Endophenotype ranking value (ERV; Glahn et al. 2012),
aims to rank biomarkers in terms of their promise as
endophenotypes for any heritable illness

Balances the strength of the genetic signal for the
endophenotype and the strength of its relation to the
disorder of interest

2.3. Based on using multivariate
statistics

Use multiple predictors in the genome or image or both
(reviewed inHibar et al. 2011a; Thompson et al. 2013;
Meda et al. 2012);

Sparse regression (Vounou et al. 2010, 2012; Ge et al.
2012; Silver et al. 2012), compressive sensing,
parallel ICA, machine learning methods

Can search both the image and the genome simultaneously
Difficult to apply to distributed remote datasets for meta-

analysis andmay be difficult to interpret the biological
relevance of the signal

3. Multimodality approaches
Exploit joint information in several

imaging modalities or other
biomarkers at the same time

Multimodal data fusion using ICA (Calhoun et al. 2009)
Seemingly Unrelated Regression to pool information
across simultaneous models (SUR; Jahanshad et al.
2013c)

More work required to analyse multiple data modalities
at once (e.g., anatomical MRI and DTI)
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not replicate in subsequent analysis. Clearly, although the
number of genes in the human genome is limited, an almost
unlimited number of candidate genes could be still tested
(Bishop 2013; Flint and Munafo 2013).

Even so, others have argued that this might be an obvious
but not in itself sufficient argument for needing very large
sample sizes, as it does not take into account the increase in
effect sizes enabled by careful selection of phenotypes (this is
an area of neuroimaging research in itself; see Table 1),
nor corroborative evidence from other sets of data, nor
independent replication of top hits—which is commonly
performed in GWAS studies. Clearly, an alternative way to
avoid false positives is to collect additional functional evidence
for a variant (the “convergent approach”). A final approach is
to focus on candidate variants with known molecular function,
and there is a long tradition of work relating genetic variants in
the monoamine neurotransmitter pathways to risk for
psychiatric illness. For instance, lower hippocampal but larger
amygdala volumes have been associated with the long variant
of the serotonin transporter polymorphism in major depression
(Frodl et al. 2004, 2008), and variants in the 5-HT1A receptor
gene have been related to amygdala volume in borderline
personality disorder (Zetzsche et al. 2008). Variants in the
Huntington’s disease gene have also been shown to affect
normal brain structure (Mühlau et al. 2012).

As the field began to come to terms with the sample sizes
needed to demonstrate or replicate a genome-wide hit,
alliances began to form and some studies reported genetic
associations with volumetric brain measures supported by
evidence from more than one cohort. Stein et al. (2011)
reported a variant associated with caudate volume in young
and old cohorts scanned on two continents at two different
field strengths. Hibar et al. (2013b) also reported a variant
associated with the volume of the lentiform nucleus on MRI
scans. In some of these reports, a meta-analysis approach was
used, to combine the evidence for genetic association across
cohorts, in a way that weights the cohorts by their sample size
or error variance.

Formation of the ENIGMA Consortium and first project
(ENIGMA1; Stein et al. 2012)

In December 2009, a group of researchers expert in large-scale
neuroimaging or large-scale genetics studies formed a
network called “Enhancing NeuroImaging Genetics through
Meta-Analysis” or ENIGMA. The goal of the effort was to
bring together researchers with genome-wide data and images,
to meta-analyze evidence in neuroimaging datasets worldwide
(see Fig. 2).

In Stein et al. (2012), the ENIGMA consortium, in
collaboration with another multi-site consortium (CHARGE;
Seshadri et al. 2010; Fornage et al. 2011; Bis et al. 2012;
Ikram et al. 2012) reported that the mean bilateral volume of

the hippocampus was significantly associated with the
intergenic variant rs7294919 (see Forest plots, Fig. 3).

The genotype at that locus was also nominally associated
with expression levels of the positional candidate gene TESC
in adult human temporal lobe tissue, based on the UCL
database of brain tissue resected during epilepsy surgeries.
TESC is currently not well studied, but it is known that it is
expressed during brain development in mice and chickens
(Bao et al. 2009). It encodes tescalcin, which interacts with
the Na+/H+ exchanger (NHE1) (Baumgartner et al. 2004),
important in the regulation of intracellular pH, cell volume
and cytoskeletal organization. In addition, intracranial volume
was significantly associated with a variant (rs10784502) in the
HMGA2 gene that had been previously tied to height. The
CHARGE consortium had focused on elderly cohorts
recruited primarily for studies of cardiovascular health in old
age, whereas ENIGMA had aggregated data from cohorts
across the lifespan showing the genetic effect was strong,
happening over multiple stages of brain growth. Both efforts
had strengths—the number of cohorts in ENIGMA (23) was
larger than that of CHARGE, but some of the constituent
cohorts in CHARGE numbered over 2,800 individuals.

Practical considerations and opportunities

The first ENIGMA project demonstrated the feasibility of
discovering statistically significant effects of “single letter”
genomic differences in brain data worldwide, using imaging
and genetic data collected using diverse protocols. Novel,
harmonized data analysis and meta-analysis protocols were
vital to the success of this project.

First, all genotypic data was imputed to the HapMap3
reference dataset to correct for diversity of the genotyping
chips (this reference was subsequently updated to the 1,000
Genomes dataset for ENIGMA2, which began in May 2012).
The imputation protocols (detailed at enigma.ini.usc.edu) and
the standard reference datasets allow the consistent reporting
of genotypes at the same set of genetic loci across cohorts.
Imputation effectively adds prior knowledge to the data and
may in this way also increase the power of a study. Not all
ENIGMA cohorts are Caucasian: the GOBS cohort consists of
Mexican-Americans and the NIMH cohort contains a
significant number of African-Americans. As in any GWAS,
population structure is taken into account during the statistical
modeling of associations, to ensure that differences in SNP
frequencies with ancestry are not picked up as spurious
associations. Also in the imputation step, the appropriate
reference populations are used for each individual, which
may in some cases be Yoruban or Hispanic, as well as the
CEU population that is used to represent Caucasians.
However, it is not a computationally trivial task to impute
very large samples of data from so many subjects. The
successive refinement of reference panels means that re-
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imputing the same dataset to the most current standards is
likely to further boost power.

Second, the exchange of data between the ENIGMA and
CHARGE consortia, for the Stein et al. (2012) study, involved
a reciprocal look-up rather than an exchange of the full meta-
analyzed data across the entire genome. This effort found that
the top hits of both consortia were in fact the same ones—
providing extremely high credibility to the hits. Even so, the
full genomic data were not exchanged or meta-analyzed; this
more powerful effort is currently underway.

Third, the effort to harmonize the analysis of imaging data
involved development of new quality control procedures.
Considerable time was devoted to checking outliers, testing
of the histograms and statistical distributions of brain structure
volumes, and checking the allele frequencies, genomic
inflation factors, and other statistical summaries of the cohort
data. The genetic and MRI analysis protocols used in
ENIGMA2, including quality control steps, are available online,
at http://enigma.ini.usc.edu/ongoing/gwasma-of-subcortical-
structures/ and the DTI analysis protocols are available at
http://enigma.ini.usc.edu/ongoing/dti-working-group/.

In a project of such a scale, the need for adequate data
curation is paramount. Several measures were assessed to
determine whether structures had values in the expected range
for volume, hemispheric asymmetry, etc. In the end, the large
number of contributing authors and contributing sites made it
easier to identify sites that had outliers in their genotypic or

brain measurement data, partly because normative data were
becoming available from all the other sites. All relevant
demographic factors were controlled for at each site, including
population structure that might lead to ancestry differences
masquerading as true genetic associations to brain traits.

Among these tests, we demonstrated that different, widely-
used programs to measure regional brain volumes produced
consistent results on a broad range of cohorts worldwide,
based on data from young and old samples and mixtures of
both (Stein et al. 2012; see supplement comparing FSL and
FreeSurfer segmentations). It was not feasible to require all
sites to use one specific program to measure brain regions; as
might be predicted, no single algorithm performed best for
quantifying brain volumes across all datasets.

Fourth, ENIGMA did not use the “mega-analysis” model
adopted by the Psychiatric Genomics Consortium, where all
phenotypic and genotype data are sent to a centralized site for
analysis. Instead, ENIGMA uses a “meta-analysis” concept:
GWAS was run locally using pre-agreed covariates—often
with and without adjustments that may affect interpretation
(e.g., adjustments for overall head size). Subsequently, and
after quality control at each site, the p -values and regression
coefficients were combined and meta-analyzed in a way that
weights the results based on the sample sizes of each
contributing cohort.

Many cohorts within ENIGMA have restrictions on data
use and data access. Some preclude the sending of data out of

Fig. 2 ENIGMA founding sites. The first ENIGMA project (Stein et al.
2012) was initiated in 2009, by a consortium of research groups
worldwide involved in neuroimaging and genetics. Several existing
consortia and research networks are taking part, including IMAGEN,
EPIGEN, SYS, FBIRN, and ADNI. Many of these efforts pre-dated

ENIGMA and continue today; each conducts its own projects in addition
to their collaborative work within ENIGMA. ADNI collects data at 58
sites around the U.S.; for clarity, not all data collection sites are shown
here. Each symbol represents a site contributing to ENIGMA, as
of June 2013
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the lab where the data were collected. Some restrict the
sending of personally identifying information to any other
site. A founding goal of ENIGMAwas to not require cohort
data to be shared outside the center that collected it, to avoid
creating ethical and legal issues for the study sites. Although
data sharing is a laudable goal in science, a more pragmatic
compromise has been to send protocols to distributed sites and
analyze summaries of the resulting data that lack personally
identifying information. This also encourages maximum
participation as each site retains fiduciary responsibility for
their data and its curation and integrity. Nevertheless, there is a
growing perception of the community that data sharing is one
fundamental building block of reproducibility in science, and
a rapidly expanding number of imaging datasets are being
shared thus facilitating discoveries. Newways of acknowledging
data acquisition are being developed concurrently (Poline et al.
2012).

However, there are also disadvantages associated with the
meta-analysis approach. For instance, it is more challenging to
perform meta-analyses for more complex and potentially

more informative analyses such as (1) polygenic scoring,
which determines how much of the phenotypic variance can
be explained by common SNPs in aggregate (Purcell et al.
2009), (2) structural equation modeling to demonstrate
evidence for the endophenotype concept (Kendler and Neale
2010), and (3) stepwise linear or ridge regression, to identify
the causal variant at an associated locus (McCarthy et al.
2008; McCarthy and Hirschhorn 2008). Not being able to
perform interaction analyses (e.g., disease by SNP) is also a
limitation, although this could be overcome as ENIGMA’s
disease related working groups expand.

In the aftermath of ENIGMA1, several investigators
requested access to the GWAS meta-analyzed results, and
the meta-analyzed data were made available online through
an interactive website named ENIGMA-Vis (Novak et al.
2012; http://enigma.ini.usc.edu/enigma-vis/). This interface
allows a user to input any gene (or SNP) that they are
interested in, and query its effects on a wide variety of brain
measures. The current dataset also allows targeted studies of
individual genes, enabling research groups, even if they are

Fig. 3 Forest plots from the ENIGMA1 study (adapted from Stein et al.
2012). Forest plots are a graphical display designed to illustrate the
relative strength of an effect in different cohorts. In the left panel , we
show the effect of the genetic variant at rs7294919 on the hippocampal
volume, in a range of cohorts in ENIGMA. In ADNI, for example, the
confidence interval on the effect overlaps zero, which means that there is
no evidence to reject the hypothesis of no effect, if only that cohort were
considered. The “ENIGMA Discovery” line combines the effects of all
cohorts above it. At the bottom of the figure, the meta-analysis of all

effects above the line includes data from another large consortium,
CHARGE, and several replication samples. The area of each square is
proportional to the study’s weight in the meta-analysis. The right panel
shows a similar plot for the effect on intracranial volume of the common
genetic variant at rs10784502. It is not necessary for the effect to be
detected in all cohorts for the meta-analysis to support the effect. The
abbreviations denote the names of the different cohorts in ENIGMA
(please see Stein et al. 2012, for details). [Adapted, with permission, from
Stein et al., Nature Genetics, April 15 2012]
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not involved in human studies, to assess the possible impact
on the brain of genes they are studying (via the ENIGMA-Vis
search tool).

In one study, Bulayeva and colleagues (Bulayeva et al.
2013) performed a linkage analysis of psychosis and mental
retardation in population isolates in remote areas of Dagestan
and Chechnya. They were able to implicate the top hits in
ENIGMA1 in these illnesses, supporting a psychiatric effect
of the genetic variant in human populations. Erk et al. (2013)
also studied rs7294919—ENIGMA1’s top hit for association
with hippocampal volume, and found that it related to
behavioral differences and different patterns of brain
activation in memory tasks. Work by Ming Li and colleagues
(Li et al. 2013) also found SNPs in the candidate geneCREB1
that were associatedwith bipolar disorder (themost significant
of which was rs6785) and were also associated with measures
of hippocampal volume and function.

Current projects of the ENIGMA Consortium

ENIGMA2 is a follow-on study from ENIGMA1, in which
the volumes of all major subcortical structures are subjected to
genome-wide association analysis (Hibar et al. 2013a). These
volumes are known to be moderately to highly heritable, with
one recent study reporting highest heritability estimates for the
thalamus (0.80) and caudate nucleus (0.88) and lowest for the
left nucleus accumbens (0.44; den Braber et al. 2013). The
structures are also implicated in a wide range of psychiatric
and degenerative brain disorders, making it crucial to identify
genetic and environmental factors that may influence them.
Preliminary meta-analysis is underway which will be
followed by functional characterization of the key hits, with
a full report to be submitted soon. A range of functional
evaluations is envisaged over the short and long term, ranging
from in silico assessments of eQTL data (for instance), all the
way to new functional experiments in neuronal cell lines or
animal models. This kind of follow up study is crucial, given
the difficulties of obtaining robust functional variants from
GWAS studies.

ENIGMA-CHARGE genome-wide meta-analysis

Researchers from the ENIGMA and CHARGE consortia have
recently joined forces to perform a genome-wide meta-analysis
of hippocampal and intracranial volume using updated versions
of the data analyzed in ENIGMA1. Specifically, both CHARGE
and ENIGMA will be meta-analyzing GWAS results from the
much more densely sampled 1,000 Genomes reference set;
rather than exchanging only the top hits, the entire genome-wide
data is being meta-analyzed. In addition, the ENIGMA project
will be contributing updated results from many new samples
who have joined the effort since the completion of the
ENIGMA1 project. This analysis is currently ongoing.

ENIGMA-DTI is a Working Group developing a
harmonized protocol for analyzing DTI data for GWAS
meta-analysis (Kochunov et al. 2012). Diffusion tensor
imaging offers a range of measures that reflect the
microstructure of both white and gray matter (by probing the
diffusion profile of the water molecules). It is also possible to
reconstruct macroscopic structures such as tracts, using the
tensor’s directional information. Understanding the genetic
factors underlying the connections of the brain is one of the
most challenging projects in the imaging genetics field. This is
especially true since the inherent plasticity of the developing
brain allows for the remodeling of connectivity based on
environmental influences. Interestingly though, heredity of
diffusion weighted measures remains quite high, suggesting
that factors related to brain growth, development, and
plasticity are also highly heritable (White et al. 2013).

A major theme in prioritizing brain phenotypes for large-
scale genetic analyses is the presence of significant
heritability, indicating that a proportion of individual variance
in the phenotypes can be explained by genetic variation. The
effect size of individual variants cannot be inferred from the
heritability and higher heritability does not translate to a
higher likelihood of a positive GWAS finding. However,
phenotypes whose heritability is not significantly different
from zero may not be good candidates for GWAS analysis
because of the lack of variance due to additive genetic factors.
Jahanshad et al. (2013a) screened a number of regions of
interest across multiple cohorts, finding high heritability for
most major white matter pathways and consistent heritability
across pedigree-based and twin-based samples (Fig. 4;
Kochunov et al. 2012; Jahanshad et al. 2013a). A variety of
DTI parameters could be measured reliably among
individuals, and genetic factors explained a substantial
proportion of the variance for the most commonly used DTI
measures.

Penke et al. (2010) showed strong correlations among
measures of DTI-derived fractional anisotropy (FA) from a
range of major white matter tracts in the Lothian Birth Cohort
1936 (LBC1936), a group of community-dwelling subjects in
their seventies. Applying principal component analysis, a
general white matter integrity factor was found that explained
around 45 % of the individual differences in FA across eight
tracts, and was significantly correlated with processing speed.
Lopez et al. (2012) conducted a GWAS on this general white
matter integrity factor on 535 subjects of the LBC1936 study
and found suggestive genome-wide association with SNPs in
ADAMTS18 and LOC388630 . Initial studies suggest that a
proportion of the variance in fiber integrity can be predicted
from common variants (Kohannim et al. 2012; Jahanshad et
al. 2012, 2013c; Thompson and Jahanshad 2012; Braskie et
al. 2012; Sprooten et al. 2013).

Genome-wide screens of connectome data have also been
successful, and have shown the benefit of ranking connections

170 Brain Imaging and Behavior (2014) 8:153–182



by their heritability, prior to entering the genome-wide
screening phase (Jahanshad et al. 2013b; Thompson et al.
2013). ENIGMA has not yet attempted a multi-site genetic
study of brain connectivity. Agreement on a protocol depends
on ongoing harmonization of DTI analysis across ENIGMA
sites, which is being finalized by the ENIGMA-DTI working
group (Jahanshad et al. 2013a). The harmonized DTI analysis
will also allow a multi-cohort examination of the association
between white matter integrity and general cognitive ability
across the life course from late adolescence to old age (see also
Penke et al. 2012). Also underway is a harmonization of
cortical segmentation, which is being studied empirically by
the ENIGMAworking groups that focus on psychiatric illness
(see below).

ENIGMA Disease Working Groups

An implicit goal of ENIGMA is to see whether genetic
variants impact the brain in a way that affects disease risk. In
fact, a number of imaging genetics papers have identified
genetic variants that appear to affect the brain and behavior;
Hall et al. (2006) and McIntosh et al. (2008) reported a variant
in the neuregulin 1 gene that was associated with abnormal
cortical function, altered white matter integrity, and with
psychosis, and there are many other examples of variants with
wide-ranging effects.

Around a third of the data in ENIGMA is from patients with
psychiatric illness, so once ENIGMA1 was complete, a large
volume of new data could be brought to bear on the question of
brain differences in a variety of disorders. To make connections
between psychiatric risk genes and brainmeasures, it maymake
sense to prioritize brain measures with robust case–control

differences. Of course, robust case–control differences do not,
in themselves, imply that the same genetic variants influencing
the phenotype will be the same as those associated with disease
risk. A more informed way to rank brain measures for genetic
screening is to use the endophenotype ranking value (ERV;
Glahn et al. 2012), which aims to rank biomarkers in terms of
their promise as endophenotypes for any heritable illness.

The ERV balances the strength of the genetic signal for the
endophenotype and the strength of its relation to the disorder
of interest. It is defined using the square-root of the heritability
of the illness (h i

2), the square-root of the heritability of the
endophenotype (he

2), and their genetic correlation (ρg):

ERVie ¼ √hi2 √he2ρg
�
�

�
�:

In schizophrenia, for example, decades of studies have
reported morphometric differences in patients versus controls,
for a range of different structures. ENIGMAoffers a promising
framework to rank brain measures in order of their effect sizes
for case–control differences; these effects could also be further
weighted based on their genetic correlation with the illness, to
give another ranking. Nor is it expected that the disease should
have identical effects on the brain in all cohorts; the variety of
participating cohorts in ENIGMA makes it possible to dig
deeper into medication-related, or even geographic or
demographic factors to explain why brain differences vary so
drastically across different studies (see Fig. 5 for the locations
of ENIGMA sites in disease-related working groups).

In a meta-analysis of data from 1,136 patients and 1,401
controls, the ENIGMA-Schizophrenia Working Group found
that hippocampal volume gave among the highest effect sizes
for any subcortical brain structural difference in schizophrenia

%
 heritable (100*h

2) 

Fig. 4 A meta-analysis of tract-wise heritability, by the ENIGMA-DTI
working group, showed most tracts in the brain are moderately to highly
heritable across cohorts of different ethnicities, even though they were
imaged with different parameters. The “skeleton” of the white matter,
reconstructed using a widely used DTI analysis program called “tract-

based spatial statistics” (TBSS; Smith et al. 2006), is shown in purple for
reference. The corticospinal tract (in light blue) was the least heritable
region of interest and therefore, will not be carried forward as a phenotype
in an initial GWAS of DTI-FA measures. Other methods for phenotype
selection and prioritization are summarized in Table 1
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(Turner et al. 2013; van Erp et al. 2013). In a related meta-
analysis of structural MRI data from 1,022 patients and 1,415
controls, the ENIGMA-Bipolar Disorder Working Group
found consistent differences across the subcortical regions,
but in a different pattern than that characteristic of
schizophrenia (Hibar et al. 2013a). There were significant
reductions in the bilateral thalamus, hippocampus, and
amygdala in patients diagnosed with bipolar disorder. In
general, the trend revealed a decrease in subcortical volumes
throughout the brain in patients with bipolar disorder. This
work is clinically important, as the alterations in limbic and
some cortical regions are thought to underlie some of the
affective symptoms in bipolar disorder; even so, the source
of many of the subcortical and cortical differences in the
disorders has been a matter of debate, and for many structures,
morphometric findings have not always been consistent. This
work is still ongoing, with a total sample of 4,729 subjects
from 15 cohorts worldwide (2,060 patients and 2,669 controls,
as of November 2013).

In addition, following the model of the Schizophrenia
and Bipolar Disorder and working groups, an ENIGMA-
Major Depressive Disorder (MDD) Working group was
recently initiated. It already includes structural MRI data
from 1,850 patients and 3,483 controls. Data analysis is currently
in progress.

An additional working group on attention deficit/
hyperactivity disorder is currently being formed, ENIGMA-
ADHD, which will analyze data from more than 1,500 cases
(children and adults) with the disorder and over 2,000 controls.

An even more recent extension is a developing ENIGMA-
Addiction working group that will analyze data relevant to
addiction phenotypes including case-control comparisons
across a variety of substances, and going beyond this to
examine the influence of comorbidities, gender and stages of
disorder. The ENIGMA meta-analytic approach will be used
to aggregate data from case-control and developmental
cohorts to examine the relative contribution of various genetic
and brain correlates to risk for early onset substance misuse,
transition to regular use, susceptibility to dependence, and
individual differences in relapse vulnerability. We will also
examine variants common to all addictive behaviors, and
attempt to identify those that might be specific to
homogeneous addiction profiles. To date, a pooled sample
of 8,000 participants with neuroimaging, genetics and
addiction phenotypes has been identified; their data will be
re-analyzed to address these questions.

Clearly, these studies aggregate data from cohorts that are
heterogeneous in terms of duration of illness, disease etiology,
medication history, demographics, exposure to potentially
neuroprotective substances such as lithium, and many other

Fig. 5 Locations of the ENIGMA Working Groups. After ENIGMA’s
first project was completed (ENIGMA1; Stein et al. 2012), large amounts
of brain imaging data had been analyzed from patients with a variety of
psychiatric disorders. Working groups (WGs) were formed to understand
the effects on the brain of bipolar disorder, major depressive disorder
(MDD), schizophrenia, by pooling and comparing data from many
neuroimaging centers. These groups are open to any researchers who
have collected MRI scans from patients with these illnesses. No genetic

data is needed to join. In fact, most projects study factors that might
influence how these disorders affect the brain—medications, geographic
factors, and the age and gender of the patient. A further working group
focuses on diffusion tensor imaging, which assesses white matter
integrity; current projects relate DTI measures to individual differences
in cognition and genetic make-up. The institutions in the working groups,
as of June 2013, are shown on the map (see color key, inset)
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factors. But part of the richness of the ENIGMA efforts is that
they afford sufficient power to begin to see which of these
factors—including geographic factors, perhaps—affect disease
expression in the brain and the universality, or otherwise, of the
biomarkers of brain disease. Based on these findings, a key
direction for ENIGMA is to see how genes that affect the brain
relate to genes that affect risk for psychiatric illness (identified
by the Psychiatric Genomics Consortium, https://pgc.unc.edu/),
to identify shared biology between brain characteristics and
disease. A collaboration between ENIGMA and the PGC is
now underway to study these relationships.

One limitation of ENIGMA to date is that the sites
contributing to the meta-analysis include a clinically somewhat
heterogeneous group of population-based studies, and case–
control cohorts from multiple psychiatric and neurological
diseases. ENIGMA’s working groups on psychiatric disorders
are meta-analyzing representative datasets from schizophrenia,
bipolar, depressed, ADHD, autism, OCD, 22q deletion
syndrome, HIV, addiction, and other cohorts worldwide.
Eventually, cross-disorder comparisons should be able to
identify common and distinctive patterns of brain morphometry,
and how they depend on genetic variation, and diagnostic
criteria. Psychiatric cohorts vary in their inclusion and exclusion
criteria, and in duration of illness, medication history, ethnicity,
and in other demographics. Some studies include patients with
co-morbid conditions deliberately excluded by other studies.
The diversity of psychiatric cohorts in ENIGMA suggests a
second wave of analyses to understand cohort-specific factors
that might account for, or contribute to, the heterogeneity in
results across sites. Recent work by the Psychiatric Genomics
Consortium Cross-Disorders working group has identified
considerable genetic overlap between several major disorders,
at the level of common genetic variants (Lee et al. 2013).
ENIGMA may be able to do the same from a neuroimaging
perspective, to determine if genetic factors implicated in
different disorders account for some of the cross-disorder
differences in the brain imaging meta-analyses.

Future directions and caveats

Perhaps the most exciting strength of ENIGMA is its ability to
unite researchers using neuroimagingworldwide in a common
purpose. The fact that so many investigators are actively
involved makes it possible to benefit from the combined
resources and talents of all participants for “crowd-sourcing”
discovery. Also, the sample sizes involved—unprecedented
for a neuroimaging study—alleviate some of the concerns
about underpowered studies and unreliable findings (Button
et al. 2013). In addition, apart from identifying genetic
variants, another important role for the ENIGMA consortium
is to help understand how GWAS-derived genetic variants for
behavioral phenotypes influence the brain. Exploring the
effects of disease risk alleles on brain measures can help us

understand the brain systems affected, and at which stage—
and also whether the effects are pervasive or selective
(de Geus 2010).

Much of this overview of the history and future efforts of
ENIGMA highlights its relevance to studies of disease,
focusing on psychiatric and neurodegenerative disorders such
as Alzheimer’s disease. Even so, only around a third of the
ENIGMA data comes from patients with psychiatric illness,
and much can be learned about the genetic factors that drive
normal variation in the general population. A great deal of
fundamental information on the biology of the human brain
can be discovered from efforts such as ENIGMA, irrespective
of whether it has a direct relevance to any specific disease.

There are limitations to a study like ENIGMA despite its
strengths. The first is that many other types of genetic or
epigenetic variation other than GWAS are important—rare
variants, CNVs, expression and methylation analyses are all
crucial; they simply have not yet been evaluated through
ENIGMA, but that is likely to change in the future. In recent
genome-wide complex trait analyses (“GCTA” analyses;
Yang et al. 2011; Lee et al. 2011), Wray, Visscher and their
colleagues have shown that GWAS data may account for a
surprisingly high proportion of genetic variance in a trait, even
when the individual predictive value of a given locus or SNP
is low.

As a basic principle of genetics, an overall large heritability
does not guarantee locus specific heritability, but recent
discoveries have surprised some geneticists in supporting the
explanatory power of SNPs. For example, despite early results
that accounted for about 5 % of the variance in height, large
studies have now demonstrated SNPs can account for around
45 % of the variance in height (for which the overall
heritability is around 80 %). Also, common causal variants
may account for around 23 % of the risk for schizophrenia
(Lee et al. 2013) and up to 60 % of the risk for autism (Klei et
al. 2012). Given the polygenic architecture of these disorders,
these results suggest that more individual SNP associations
will be detected for each disorder, as sample sizes increase.

Some authors have emphasized that similar kinds of
“polygene” scores to the ones used to predict illness risk can
be used to explain variation in related phenotypes, such as
cognition (Davies et al. 2011), structural MRI (Holmes et al.
2012), neural activation on functional MRI (Whalley et al.
2013a) and white matter integrity (Whalley et al. 2013b).

Even so, some geneticists argue that rarer variants are in
some cases more worthy of study than GWAS as they tend to
have larger effects that are more easily validated functionally.
GWAS has been successful when used for QTL localization,
but the over-arching goal of complex disease genetics is to
identify the causal genes and functional variants responsible
for phenotypic variation. So some have argued that GWAS is
useful for detecting the signal from common variants, but that
few GWAS results have turned into functional variants or

Brain Imaging and Behavior (2014) 8:153–182 173

https://pgc.unc.edu/


genes (across all disease domains). In principle, ENIGMA
could be used to study rare variants as well, but a range of
complementary approaches are always necessary.

Second, the geographical diversity of ENIGMA is higher
than that of most neuroimaging studies, but there may be
important ethnic differences in allele frequency that complicate
the generalization of results to all human populations. This
limitation is not specific to ENIGMA, and its consortium
structure could be expanded geographically to assess ethnic
differences in factors associated with disease and their
relationship to brain structure. Ethnic differences in genetic
effects are well known: the meta-analysis of the effects of the
APOE risk gene for Alzheimer’s disease shows a difference
between European and Asian populations. So far, people in
Africa and Asia are under-represented on the ENIGMA map;
we are therefore keen to include samples from these continents.

Third, the need for multivariate analysis has long been
known in the neuroimaging field—no serious neuroscientist
would predict diagnosis from a single pixel or voxel in an
image—the multivariate pattern of signals is paramount.
Methods to access and recover the maximum amount of
pertinent information in an image dataset are only just in their
infancy in the fields of genetics and neuroimaging—partially
due to the lack of sufficient data to test competing methods,
until recently (Liu et al. 2009; Stein et al. 2010; Hibar et al.
2011b; Vounou et al. 2010; Le Floch et al. 2012; Rosenblatt et
al. 2013; Meda et al. 2010, 2012).

Fourth, the discovery of a GWAS hit—in ENIGMA or any
other GWAS study—is the beginning of a long road of
discovery, especially if the finding is intergenic or in a gene
of unknown function. Some genomic screens of anatomical or
structural connectivity data have implicated genes such as
SPON1 (Jahanshad et al. 2013b) and FRMD6 (Ryles et al.
2012) that were discovered in later case–control studies to be
risk genes for AD (Hong et al. 2012; Sherva et al. 2013).
Functional validation of genetic variants reliably implicated in
large scale studies will be the way we learn new biological
processes and further our understanding of risk for psychiatric
diseases.

Fifth, ENIGMA has started by analyzing those phenotypes
that are easily measured in a standardized way. Brain images
can be analyzed in more sophisticated ways than traditional
morphometric methods; shape analysis, for example, has long
been used to characterize features of brain structure, including
cortical complexity, curvature, fractal dimension, spectral
content, and other indices. Also, the reporting of regional
summaries from DTI data clearly does not exploit all of the
available information in the data—DTI can be analyzed using
automatic whole-brain tractography to reveal the brain’s fiber
patterns and measure connectivity, and even the topology of
these brain networks. Despite the ever-expanding landscape
of brain features that can be studied, the large samples
required for genetic analysis have motivated the study of the

simplest brain measures first. Undoubtedly the future will
hold large scale genetic studies of brain connectivity,
anatomical shapes, functional networks, and features that are
as yet unknown and undiscovered.

As a final limitation, ENIGMA analyses have been
cross-sectional to date, rather than longitudinal. Genetic
predictors of brain changes over time have substantial
importance for clinical trial enrichment (e.g., TREM2 ,
which harbors variants that predict rates of brain atrophy
over time; Rajagopalan et al. 2013; see Kohannim et al.
2013, for an approach to boost power in drug trials by
multi-locus genetic profiling; see Andreasen et al. 2012,
for an approach examining epistatic relationships
between multiple genes and progressive brain tissue loss
in schizophrenia).

Are fewer subjects needed with imaging?

An open question is whether GWAS meta-analyses really do
require fewer subjects with imaging than they do when
behavior is the target of study. In 2009, before ENIGMA
began, one of its founders noted, “Just because the phenotypes
are expensive to collect does not change the power
calculations.” (N. Martin, pers. commun., 2009). But more
recently, Rose and Donohoe (2013) performed an empirical
analysis of effect sizes in genetic studies of cognitive and
neuroimaging traits in schizophrenia, and found evidence
supporting the efficiency of using imaging traits. However,
some evidence does suggest that imaging traits may have
intermediate effect sizes when compared to phenotypes
theoretically closer or farther away from the underlying
biology. The percent variance explained in gene expression
GWASs (often called eQTL studies) for the top SNP hits are
well above 10 % of the variance in the expression of a
particular gene (Stranger et al. 2007). The percentage of trait
variance in hippocampal volume explained by the top genetic
variant in ENIGMA1 was 0.27 % (Stein et al. 2012) although
independent cohorts will be required to estimate the explained
variance in the population at large. Finally, the top hit in one
genome-wide analysis of traits correlated with cognition—
such as educational attainment—explained 0.02 % of the
variance (Rietveld et al. 2013).

It is interesting to compare the effect of ENIGMA’s top
SNPs with the effects of common psychiatric and neurological
conditions on hippocampal volumes. In a recent meta-analysis
(Barnes et al., 2009), patients with Alzheimer’s disease have a
24.1 % mean hippocampal volume deficit. Patients with mild
cognitive impairment have a 15.3 % deficit relative to
cognitively healthy controls (calculated from Table 9 in
Leung et al. 2010). In psychiatric disorders, the hippocampal
volume deficit is typically reported to be smaller. Although
hippocampal volume deficits are one of the more robust MRI
findings in schizophrenia, they are not always evident in
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single site studies (Shenton et al. 2001). The ENIGMA
Disease Working Groups now suggest a mean hippocampal
volume deficit, relative to controls, of around 3.6 % in
schizophrenia and 2.9 % in bipolar disorder—depending, of
course, on cohort-specific factors (medication, duration of
illness, etc.). By contrast, in ENIGMA1, the rs7294919
genetic variant was associated with a hippocampal volume
decreased by 47.6 mm3 or by 1.2 % of the average
hippocampal volume per risk allele. Bearing in mind that the
cause of the effects is quite different, the effect of ENIGMA’s
top hippocampal SNPs on hippocampal volume is
approximately 5 % of the mean effect of Alzheimer’s disease,
around one-third of the effect of schizophrenia, and around
40 % of the effect of bipolar disorder. If such effect sizes are
typical, sample size requirements will generally be larger in
genetic association studies than in neuroimaging studies of
disease effects on the same phenotypes, but not vastly larger.

To some researchers, these preliminary observations
suggest an expected pattern of effect sizes, whereby GWAS
for cognitive traits may have top hits with smaller effect sizes
than those for imaging traits, which in turn may tend to have
smaller effect sizes than expression traits. Also, now that
consistent hits have been identified in ENIGMA1 and
ENIGMA2, it should be possible to estimate effect sizes for
the same hits in new replication samples, to understand what
sample sizes are sufficient to detect them. Conversely, some
have argued that the available data on genetic effect sizes at
different levels of neuroscience are currently too limited to
draw conclusions from only the three data points cited here.
Clearly, we do not yet have sufficient information to say
whether imaging genetics effects sizes will always be larger
than effect sizes for cognitive/behavioral phenotypes. One
way to begin to address this question might be to quantify
effects of some specific functional SNP at three different
related levels, such as eQTL data from the hippocampus,
hippocampal volume on MRI, and a behavior that is tightly
dependent on hippocampal function; this may show the
appropriate differential effect sizes in one framework.

A further interesting angle is the follow-up of the top
ENIGMA1 hits in ethnically isolated cohorts of Dagestan
and Chechnya by Bulayeva et al. (2013). Genetic isolates
can be valuable for studying any human phenotypes; required
sample sizes for studying genetic effects can be smaller than in
heterogeneous outbred populations due to the genetic
homogeneity of these isolates. This has long been noted by
classical statistical and population geneticists (e.g., Falconer
1960; Neel 1992; Bulayeva et al. 2005). As genetic isolates
have a high rate of traditional endogamy and inbreeding, it is
not possible to perform GWAS, but genome-wide linkage
analysis is possible (Sheffield et al. 1998). In particular, the
analysis of isolated populations makes it less challenging to
study polygenic disorders by reducing the number of loci
possibly involved in the disorder.

ENIGMA now focuses on genetic analysis of
neuroimaging measures, but psychiatric diagnosis is
important as well. ENIGMA does not simply relate imaging
data to genetics; many of its working groups study the
relationship between imaging measures and diagnosis. So, in
a sense, psychiatric diagnosis is also a key target of study. For
example, recent GWAS and follow-up studies have provided
strong statistical evidence that variation in theNCAN gene is a
common risk factor for bipolar disorder and schizophrenia
(Cichon et al. 2011; Mühleisen et al. 2012). Both studies
found that the A allele of SNP rs1064395 is a risk-mediating
allele and that rs1064395 influences risk to a broad psychosis
phenotype. To identify a putative mechanism, Schultz et al.
(2013) tested whether the risk allele has an influence on brain
structure. In patients with schizophrenia, they found a
significant association with higher folding in a right lateral
occipital region and at a trend level for the left dorsolateral
prefrontal cortex. Controls did not show an association. The
findings suggest a role of NCAN in visual processing and top-
down cognitive functioning. Both major cognitive processes
are known to be disturbed in schizophrenia. Another GWAS
study by Rietschel et al. (2012) identified a risk factor for
schizophrenia in a chromosomal region harboring the genes
AMBRA1/CHRM4/DGKZ/MDK (rs11819869). In an
independent follow-up analysis, they found that healthy
carriers of the risk allele T showed altered activation in the
subgenual cingulate cortex during a cognitive control task.
This brain region is a critical interface between emotion
regulation and cognition, which are structurally and
functionally abnormal in schizophrenia and bipolar disorder.

The recent successes of psychiatric GWAS have unearthed
a vast resource of findings when sample sizes became
very large (Ripke et al. 2011, for the Schizophrenia
Psychiatric Genome-Wide Association Study (GWAS)
Consortium; Sklar et al. 2011, for the Psychiatric
GWAS Consortium Bipolar Disorder Working Group;
Cichon et al. 2011, for the MooDS consortium Bipolar
Disorder Group; Rietschel et al. 2012, for the MooDS
consortium Schizophrenia Group; Cross-Disorder Group
of the Psychiatric Genomics Consortium et al. 2013). In
fact, it was the need for large samples that encouraged
the ENIGMA groups to work together, realizing that
otherwise their power tomake credible discoveries in genomic
scans would be severely limited.

A second question is which of the recently reported GWAS
findings are true or credible if they were discovered in small
cohorts. ENIGMA focuses on meta-analyses, but some have
argued that smaller individual studies—when replicated—
may discover interesting (and strong) associations. Paus et
al. (2012) noted that they had run a successful GWAS in only
around 300 participants. Also, some GWAS signals may be
important in the context of some individual cohorts, but may
be washed out in meta-analyses. A more skeptical line of
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argument is that if we need 20,000+ samples to detect an
effect, most likely what we see has very small effect size.
Even so, some recent GWAS analyses appear to have picked
up variants with strong effects—e.g., that roughly double
disease risk (e.g., in TREM2), and these effects have been
confirmed in smaller cohorts by comparing brain images from
carriers and non-carriers (Rajagopalan et al. 2013).

One testable hypothesis is that GWAS would be more
powerful and efficient if we select imaging phenotypes in a
principled way; if this is true, it may be possible to perform
GWAS with consistently replicated hits, that do not require
tens of thousands of subjects to reject the null hypothesis. In
fact, the ENIGMAworking groups each aim to find heritable
brain measures that maximize case–control differentiation, for
studies of disease. This will help us to prioritize the future
targets of study for influential genes. Although ENIGMA is
data-driven, that does not mean that we cannot use patterns in
the findings to design more targeted approaches that prioritize
phenotypes and genetic loci for follow-up analyses.

One such analysis (Desrivieres et al. 2013) evaluates pre-
selected genes that are expressed in the brain and change in
their expression throughout brain development. By narrowing
the search space to genes that are likely to play a role—and
whose functions have more chance of being understood—the
power of the study is also increased, as is its practical value for
neuroscience and medicine. This must be balanced with the
knowledge that approximately 88 % of GWAS hits are in
intergenic regions (Hindorff et al. 2009) and almost all genes
are expressed at some location in the brain at some period of
the lifespan (www.brainspan.org).

ENIGMA, to date, has used a mass-univariate analysis,
where each trait (or brain measure) is considered on its own,
and each genetic variant is considered on its own. Recent
multivariate analyses can cluster voxels in the brain—or
SNPs on the genome—to empower analyses, sometimes with
both forms of clustering occurring at once (Hibar et al. 2011a;
Thompson et al. 2013). Some of these multivariate analysis
methods have been used to detect significant hits in image-
wide genome-wide searches in cohorts of under 1,000
subjects (Ge et al. 2012; Chen et al. 2012b; Jahanshad et al.
2013b). In most analyses, multivariate refers to condensing
information on the imaging side, not the genetic side, although
both methods and joint methods are emerging. Multivariate
methods can be quite sophisticated mathematically. Some
draw upon a century of powerful work in classical quantitative
genetics and twin designs. Chiang and colleagues (Chiang et
al. 2011, 2012), for example, computed the “cross-trait cross-
twin correlation” between all pairs of voxels in an image, to
pull out “image clusters” with common genetic determination
(see also Chen et al. 2011, 2012a). Others have incorporated
knowledge of the genetic or imaging relationships to guide the
solution (Chen et al. 2013). Such tactics, among others, offer a

principled way to mine high-dimensional datasets, boosting
power for any subsequent GWAS.

A further line of work studies the “interactome”: it is now
possible to search pairs or sets of SNPs for interaction effects
in images (Hibar et al. 2013c) and some have argued that this
is the norm for mechanisms of gene action, and the context of
other genetic variants should be included in the analyses
(Hariri and Weinberger 2003). For instance, Roffman et al.
(2008) were the first to show functional MRI evidence of
epistasis in schizophrenia. Their findings were consistent with
epistatic effects of the COMT and MTHFR polymorphisms
on prefrontal dopamine signaling, suggesting that in
schizophrenia patients, the MTHFR 677 T allele exacerbates
prefrontal dopamine deficiency. Andreasen et al. (2012) used
a machine learning algorithm to identify genes/SNPs that were
interacting with one another and predicting a continuous
outcome measure that is a biologically meaningful phenotype
(“intermediate phenotype”) for schizophrenia: changes in
brain structure occurring after the onset of the illness.

Expanding the study of interactions to the whole genome,
Kam-Thong et al. (2012) presented a whole genome analysis
of epistasis (SNP-by-SNP) on several traits, including
hippocampal volume. Pandey et al. (2012) reported a pathway
analysis, which includes information from the network of
gene–gene interactions as well as main effects when prioritizing
genes for pathway analysis. Clearly no genetic variant acts
alone; however, multiple comparisons increase exponentially
with this approach implying difficulty obtaining enough power.

In conclusion, when the next round of ENIGMA studies
has been completed, there will be a scaffolding of credible
genetic variants on which to build and test new models of
macroscale brain development, the implications of those
variants for neuropsychiatric disease, and a new basis to probe
the genetic architecture of the living human brain.
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