
Booth, T., Stumpf, S., Bird, J. & Jones, S. (2016). Crossed Wires: Investigating the Problems of

End-User Developers in a Physical Computing Task. Paper presented at the Conference on

Human Factors in Computing Systems (CHI), 7-12 May 2016, San Jose, USA.

City Research Online

Original citation: Booth, T., Stumpf, S., Bird, J. & Jones, S. (2016). Crossed Wires: Investigating

the Problems of End-User Developers in a Physical Computing Task. Paper presented at the

Conference on Human Factors in Computing Systems (CHI), 7-12 May 2016, San Jose, USA.

Permanent City Research Online URL: http://openaccess.city.ac.uk/14844/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/42630694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

 Crossed Wires: Investigating the Problems of End-
User Developers in a Physical Computing Task

Tracey Booth1, Simone Stumpf1, Jon Bird1, Sara Jones2

City University London
London, UK

1Centre for HCI Design; School of Mathematics, Computer Science and Engineering
2Centre for Creativity in Professional Practice; Cass Business School

{tracey.booth.1, simone.stumpf.1, jon.bird, s.v.jones}@city.ac.uk

ABSTRACT

Considerable research has focused on the problems that end
users face when programming software, in order to help
them overcome their difficulties, but there is little research
into the problems that arise in physical computing when
end users construct circuits and program them. In an
empirical study, we observed end-user developers as they
connected a temperature sensor to an Arduino
microcontroller and visualized its readings using LEDs. We
investigated how many problems participants encountered,
the problem locations, and whether they were overcome.
We show that most fatal faults were due to incorrect circuit
construction, and that often problems were wrongly
diagnosed as program bugs. Whereas there are development
environments that help end users create and debug
software, there is currently little analogous support for
physical computing tasks. Our work is a first step towards
building appropriate tools that support end-user developers
in overcoming obstacles when constructing physical
computing artifacts.

Author Keywords

Physical computing; End-user development; Electronics;
End-user support; Debugging.

ACM Classification Keywords

H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION

The rise of the Maker Movement and DIY creation [41],
underpinned by the ready availability of open source tools
and affordable components, has resulted in a growing

number of end-user developers—artists, designers,
researchers, and hobbyists—who create interactive physical
computing artifacts. Increasing numbers of end-user
developers are also building complex systems using the
'Internet of Things' [28,22,14], for example, taking charge
of their well-being and health by adapting programmable
medical devices and developing health-related information
appliances [1]. This area is of burgeoning interest to HCI
research, both as a cultural phenomenon and for developing
tools to support people who are interested in building these
interactive systems and devices [39,40,2].

While users' engagement with physical computing is
beyond a doubt [6], the challenges faced by end-user
developers are still considerable: they must learn and apply
both programming and electronics concepts, and also
develop some understanding of the relationship between the
software and hardware of their systems in order to solve
problems that arise. We already know from the literature
that program debugging is difficult but it has been
suggested that localizing errors may present even greater
challenges for inexperienced end-user developers when
both hardware and software are involved [43].

There has been considerable work in end-user software
engineering (EUSE) that aims to understand the problems

Figure 1. A participant constructing a prototype circuit in
our study. The task involved connecting a temperature
sensor to an Arduino and writing a program to read the

sensor and visualize the values using LEDs.

that users face in programming, in order to provide an
empirical basis for the design of development environments
and support tools [7,8,9,18,24,36]. There are development
tools that aim to make physical computing development
easier [17, 20], however, to date, there has been little
research into the problems faced by end users as they
develop physical computing artifacts, in order to provide
appropriate help in overcoming the challenges they face.

Our work provides the first step in addressing this lack of
knowledge and in establishing an empirical foundation for
future tool design. We conducted an empirical study
involving 20 participants who constructed and programmed
a 'Love-O-Meter' (Figure 1)—a relatively simple interactive
device that uses an Arduino microcontroller and three LEDs
to visualize the readings of a temperature sensor when it is
touched. We present an account of where participants'
problems occurred, and describe the relationship between
these problems and participants' background experience.
We investigate how difficult these problems were to
overcome, and the faults that led to task failure. We offer
some initial suggestions about how end-user developers can
be best supported in physical computing tasks. Our research
questions were:

 How many problems do users encounter, and where are
they located? Are there aspects of developing physical
computing devices that are particularly prone to
problems? How do users' backgrounds and experience affect the
challenges they face in physical computing tasks? What are the problems that can be easily overcome,
and what problems prove insurmountable?

The contribution of our paper is to provide the first
systematic investigation of the problems faced by end users
in physical computing tasks, extending findings from end-
user software engineering (EUSE) beyond programming to
physical computing. Our results can inform the design of
tools to support end-user developers overcome the physical
computing challenges they commonly face.

In the remainder of the paper, we first give an overview of
related work in end-user programming and physical
computing. We then describe our study design and present
the results of our analyses. Finally, we discuss implications
for how users can be supported, and describe future work.

BACKGROUND

End-User Programming and Software Engineering

Previous research has investigated the difficulties faced by
end-user programmers [35,27,9,24], in order to help
overcome them. Much of this work focuses on simplifying
programming languages or environments, for example,
programming by demonstration [33,15] eases the effort of
learning a new programming language. A different way to
help users is through providing features built directly into
the programming environment, in order to support problem-
solving activities during programming. For example,

StratCel and WYSIWYT aimed to help end users test and
debug spreadsheets [18,8], and this approach has also
proven effective in programming web mashups [30], and
supporting end users in debugging intelligent systems [29].
We draw inspiration from this work for end users
developing physical computing prototypes, and are
investigating the problems these end users face, with the
aim of building appropriate support tools.

There are a number of different approaches to categorizing
the programming problems end-user programmers face.
One frequently used approach is to categorize end-user
programming problems in terms of 'learning barriers' [27].
Learning barriers have been shown to occur when end users
develop web mashups [10] and debug machine learning
systems [29]. Another way is to focus on the causes of
software errors [26], based on research in human error [37],
that has suggested that errors are due to 'cognitive
breakdowns' in which end users encounter problems
applying skills, rules, or knowledge. Breakdowns can be
investigated by classifying the action being performed, the
interface the action is performed on, and the information
being acted on. The data analysis in this study was
informed by a focus on breakdowns.

Although there is some evidence of learning barriers
occurring in programming environments for physical
computing [5], very little research has investigated the
problems that end users face when constructing physical
computing devices that combine elements of both
programming and electronics. The goal of our study was to
address this by identifying these problems, as a first step
towards developing support solutions that can help end
users to overcome the common problems they face in
physical computing.

Physical Computing Tools

Physical computing integrates computing with the physical
world, often in the form of electronic devices or systems
that interact with the environment via sensors and actuators
[21]. These devices can take input from the world, through
sensors that measure aspects of the environment, such as
temperature, proximity, or light, and respond in some way,
for example, though sound, motion or vibration. [4,23,16].

Developing a physical computing device typically involves
coordinating the behavior of sensors and actuators by
connecting them to a microcontroller and programming
their behavior. Platforms like Arduino [3] aim to lower the
barriers to entry to this type of activity, but creating
electronic circuits and programming them still requires
some knowledge and skill, and troubleshooting physical
computing issues can be tricky.

Some work in this area has aimed to make it easier to
construct the electronics or hardware. For example,
'Programmable Bricks' [38] enabled children to easily
create physical computing devices by connecting sensors
and motors to a computer embedded in a LEGO brick and

program them using the Logo programming language.
Phidgets [17] are 'physical widgets' that facilitate rapid
prototyping with minimal electronics knowledge. Other
systems, such as .NET Gadgeteer [45], also aim to make it
easier for end-user developers by providing plug-and-play
hardware components.

A different strand of research has focused on lowering the
bar for programming, by providing visual programming
environments for physical computing platforms, which are
proposed as being easier for end users to master (for
example, [20,34]).

Very few support systems have been developed to help
build and debug the simple circuits typically involved in
physical computing. SHERLOCK [32] is an environment
for teaching sophisticated electronics troubleshooting to
fighter airplane engineers. Tools aimed at end-user
developers include Fritzing [25], which allows users to
graphically lay out circuits on a virtual breadboard (see
Figure 2 for an annotated example), and Autodesk's 123D
Circuits Electronics Lab web application [48], which
combines virtual circuit construction with a code editor and
a simulator, so that users can 'upload' their program to their
virtual circuit and simulate run-time behavior.

However, there is very limited empirical evidence of what
problems end-user developers face in physical computing
tasks that can be used to inform the design of appropriate
support tools. Our study addressed this issue.

STUDY SETUP

We conducted an empirical study, using a 'think-aloud'
approach, in which participants undertook a naturalistic
physical computing task. In order to analyze the nature of
the problems they faced, we collected a rich set of data,
including video transcripts, the artifacts that participants
constructed, and information about participants'
backgrounds and experience.

Participants

We recruited 20 adult participants (8 female, 12 male, mean
age of 32 years) through local Maker communities and
universities, targeting hobbyists with some experience of
using the Arduino platform, but excluding professionals
who develop physical computing artifacts for monetary
gain. All participants received a £20 gift voucher as an
incentive.

Physical Computing Development Task

We used an Arduino microcontroller in our study. Arduino
has achieved wide adoption by many types of end-user
developers, including hobbyists, and is currently the most
popular physical computing platform. We chose the official
Arduino UNO revision 3 as the development board—a
commonly used starter board included in the official
Arduino Starter Kit. As the development environment we
used the official Arduino IDE (version 1.61 for Windows),
running on a Microsoft Windows 7 desktop PC.

The task was a simplified version of project 3 in the official
Arduino Starter Kit [50]. The physical computing device
that the participants attempted to build was a 'Love-O-
Meter': this uses three LEDs to visualize the values read
from a temperature sensor, lighting up one LED at lower
temperatures, two at medium temperatures and three at
higher temperatures. The temperature can be increased by
touching the sensor. Building this device involves
connecting seven electronic components to a
microcontroller and writing a short program to coordinate
their behavior. Participants used a breadboard and jumper
wires to build the electronic circuit and no soldering was
involved in the task.

We now briefly describe the steps involved in successfully
completing the task, so that the problems that participants in
our study had when constructing the circuit and the
program (see Results section, What Went Fatally Wrong?)
are better understandable.

It is possible to first build the complete circuit and then
write the program controlling it, or to decompose the task
into smaller parts and complete them in turn, for example,
first build the sensor circuit and write the code for reading
the temperature values, and then move on to building and
programming an LED circuit. Here we describe how to
build the circuit first and then the associated program.

Building the circuit

This involves connecting the electronic components to the
Arduino board. Figure 2 shows how the components could
be wired up successfully.

The temperature sensor (TMP36) [49] is an analog device
that has three legs, each of which has to be correctly wired
into an Arduino analog pin, ground and power in order for
the sensor to operate correctly. Miswiring the connections
to the sensor can result in unusual readings, or the sensor
itself heating up to a high temperature. The Arduino analog
pin readings are converted into digital values between 0 and
1023. No additional components are needed for the sensor

Figure 2. The simplest way to build the circuit for the study
task. Each wire or resistor connects two locations in the

circuit: either a pin on the Arduino or the leg of a
component.

to work correctly. Participants can cause noticeable changes
in the readings by touching it.

Each LED has two legs, and its positive leg (anode) needs
to be connected to an Arduino digital output pin and its
negative leg (cathode) connected to ground. Because it is a
diode, reversing the signal and ground connections means
the LED will not light up. A resistor of appropriate value
should be wired either between the positive leg and the
digital pin, or the negative leg and ground, to regulate
electrical current to the LED. If the resistor value is too
high, the LED will not light up. If no resistor is used, it
may cause other problems, such as the LED burning out
prematurely and even damaging the Arduino board.
Additionally, we found that when resistors were not
included in the circuit, the LEDs drew large currents from
the Arduino, which in turn affected the temperature
readings from the sensor.

Given that an Arduino UNO has only three ground pins but
wiring all of the components into the circuit requires four
connections to ground (one for the sensor and one for each
of the three LEDs), it was necessary for participants to set
up a ground rail on the breadboard that could be shared by
the components.

Writing the program

An Arduino program has two main parts: a setup()
function which executes only once when the program is
first run, and a loop() function that then executes
repeatedly at a very high speed. Variables such as which
Arduino pins are being used are typically declared globally
at the top of the program, outside of the setup() and
loop() functions.

We first describe the programming steps involved in
reading and displaying the temperature sensor values in the
Arduino IDE and then describe the programming steps to
control the LEDs.

Sensor program

The first step is to state which analog pin on the Arduino
board is connected to the sensor, so that the temperature
values can be read. In order to display the temperature
values being sent to the Arduino in the monitor built into
the IDE, it is then necessary to add a line of code to the
setup() function, to set up serial communication between
the Arduino and the computer. The rest of the program code
goes in the loop() function. First, the analog pin that is
connected to the temperature sensor has to be read, and the
value ideally stored in a variable. Then, the current
temperature value can be written to the Serial Monitor built
into the Arduino IDE, where it can be viewed.

LED program

The first step is to state which digital pin on the Arduino
board each of the LEDs is connected to. Each of these
digital pins can then be used as a switch in the program to

turn the connected LED on or off. Each of the digital pin
numbers used can be stored in global variables at the top of
the program. In the setup() function, each digital pin
connected to an LED has to be configured as an output pin,
so it can be used to switch an LED on or off. In the loop()
function, each LED can be switched on or off by reference
to its pin.

Conditional statements are needed to switch on the
appropriate number of LEDs to visualize the temperature
read from the sensor. In order to write this code, a
participant has to understand the range of temperature
values that can be generated by holding the sensor between
their fingers, what the sensor value is at room temperature,
and determine appropriate temperature value thresholds that
should be used to switch the LEDs on and off.

Procedure

During the session, participants first completed two
background questionnaires that gathered information about
their demographics, background and experience, and self-
efficacy in physical computing. They then were given a task
instruction sheet, giving a brief description of the goals that
the artifact had to satisfy. They had 45 minutes to complete
the task. We chose this length of time because this is the
recommended time for project 3 in the Arduino Starter Kit,
and attempts at building it unaided during a pilot study took
approximately 30 minutes. Participants had access to the
task instruction sheet that specified the artifact they had to
build, an Arduino UNO microcontroller, a breadboard, a
labeled kit of electronic components, a digital multimeter
and the Arduino IDE. They were allowed to follow their
usual working method, including using the help content and
examples built into the Arduino IDE, searching online for
sources of information and copying code snippets. As they
were working, they were asked to think aloud. A facilitator
helped the participants to become familiar with the task
specification but did not assist in building the prototype or
overcoming development problems. The facilitator only
intervened to remind participants to think aloud (if they fell
silent for approximately 10 seconds), or when there was a
danger of physical harm to a participant. At the end of the
task participants were asked to demonstrate their prototype.

Data Collection

We captured participants' relevant experience and self-
efficacy in physical computing. They self-assessed their
programming, electronics, physical computing development
and Arduino expertise on 7-point scales, from complete
beginner (1) to expert (7). Self-efficacy was rated on a scale
of 0-100 through an adapted questionnaire based on
computer self-efficacy [11], in which participants rated
their self-confidence in completing a physical computing
task of moderate complexity using the Arduino platform.

We video-recorded the participants during the task from
multiple vantage points and also recorded screen activity
using Morae Recorder software. We synchronized and
merged these videos to a single, composite, split-screen
video (Figure 3) per participant, for use in analysis. We
used digital photographs and Fritzing breadboard diagrams
[25] to capture circuit configuration, and saved all programs
created or adapted by each participant.

Analysis

We first established whether each participant had
successfully completed the task. The task was counted as
completed when the prototype was shown to meet the
specification given—the participant demonstrated the
prototype at the end of the session, and after the session we
examined the circuit and program for evidence that they
were indeed correctly constructed.

We analyzed the split-screen video recordings of each
session, for evidence of problems encountered by
participants when they were doing the physical computing
task. We transcribed key events from these videos and
coded them, first distinguishing three different kinds of
problems: obstacles (where participants hit hurdles to
overcome), breakdowns (on evidence of errors in action or
thinking) and bugs (on evidence of faults introduced).

Obstacles were coded in the following circumstances: 1)
when participants stated that they did not know or
understand something; 2) when they said that they needed
to do something but there was evidence that they faced a
problem doing it, for example, if a participant said that they
needed to wire up the LEDs, and then searched online for
information that showed them how to do this; 3) if a
participant showed signs of confusion or frustration, for
example, a puzzled expression on viewing sensor readings
in the Serial Monitor. Hence, our obstacle code includes
what previous research has termed 'information gaps' [24].

Inspired by previous classifications of errors [37,26], we
also looked for evidence of breakdowns. In our analysis, we
coded breakdowns when there was evidence that: 1)
participants carried out a wrong action, that is, they made a
slip or mistake, for example, mistyping a variable name or
using an inappropriate command; 2) they made an incorrect
assessment, for example, saying something was working
when in fact it was not; 3) there were observed faults in
their knowledge or reasoning, for example, stating
something factually incorrect.

An obstacle might cause a breakdown but it could also be
overcome without causing any further problem, for
example, when a participant said that they did not
understand the online tutorial page they were reading, but
then simply closed it and instead found one that they did
understand.

A breakdown could result in a bug, that is, a fault that a
participant introduced through their actions or beliefs. For
example, a breakdown in which a participant forgot to add a

semi-colon to the end of a variable declaration statement
would lead to a bug in the program which needed to be
fixed. On the other hand, adding extraneous code to the
program, such as declaring a variable that is never used, is
an example of a breakdown that does not lead to a bug. We
coded as bugs all the individual faults created by the
participant that needed to be solved. For example, if a
participant forgot, in their program, to configure all three of
the digital pins connected to the LEDs as outputs (using the
pinMode() function), we coded this as three separate bugs.

Importantly, the participant might not have been aware that
they had introduced a bug that needed solving; while some
bugs provide clues that make it easy for a user to spot that
there is a problem, other bugs can impact more subtly on
the behavior of the prototype in a way that makes fault
localization and diagnosis very difficult.

We then analyzed where each of these three problem types
originated, either relating to the circuit, the program, or the
development environment, similar to [26]. For example, if a
breakdown occurred in which a participant used a wrong
comparison operator in their code, it was assigned the
'program' location. If a participant encountered an obstacle
in which they were unable to figure out where to find a
particular function/option in the development environment,
then the 'IDE' location code was assigned.

In some cases, problems straddled both program and circuit,
for example, when a participant had difficulty
understanding the sensor readings in the Serial Monitor
(which are the result of interaction between the circuit and
the program), misunderstood the relationship between the
program and the circuit, or said that they did not know how
to wire up and program a component. In these cases, we
assigned the 'circuit+program' code to the observed
problem.

Having identified all the obstacles, breakdowns and bugs
for each participant, we then analyzed whether they were
overcome or not during the session.

Figure 3. Composite, split-screen video of physical computing
task, showing onscreen activity, participant's face, overhead

zoom of circuit construction, and wider frontal view of
equipment use.

RESULTS

We considered participants' expertise, its role in task
success and the impact on how much they struggled. We
then investigated the location of problems encountered and
whether participants managed to overcome these problems.
We finally examined sources of failures in detail and which
kinds of activities were challenging for participants.

How Many Problems?

To be successful at a physical computing task, end-user
developers need to be sufficiently proficient at
programming and at building an electronic circuit but we
would hardly expect them to be experts. Participants in our
study rated their expertise in physical computing between
complete beginner and expert on a 7-point scale
(mean=3.60, SD=1.19), with their programming expertise
(mean=4.40, SD=1.47) being slightly higher than their
electronics expertise (mean=3.10, SD=1.33). Participants
usually had more years of programming experience
(mean=10.89, SD=7.53) than electronics experience
(mean=6.75, SD=7.63) or physical computing development
experience (mean=3.23, SD=2.03). Participants reported
receiving some form of training or instruction in
programming but mostly being self-taught in constructing
circuits, which might explain this difference. Our study task
involved the Arduino platform and our participants
considered themselves reasonably knowledgeable in this
environment (mean=3.75, SD=1.41) and relatively self-
confident at tackling a task of moderate complexity
(mean=69.70, SD=10.78).

However, only six of the 20 participants—P3, P5, P6, P7,
P17, P18—successfully built a working prototype that met
the specification given. We found no significant
relationships between successful task completion and self-
efficacy or self-rated expertise.

Every participant was impeded in their progress in
completing the task in some way (Figure 4), through
obstacles, breakdowns or bugs; most participants
experienced all three types of problem. Participants
encountered a mean of 41.60 obstacles (SD=14.17), 21.05
breakdowns (SD=13.4), and created 13.7 bugs (SD=9.85)
over the 45 minutes they worked on the task. This means
that participants struggled a great deal, even though the task
was appropriate for their experience and background.

We then investigated whether task success was linked with
how many problems were encountered. A Mann-Whitney
test showed that the six participants who succeeded had
significantly lower total numbers of obstacles (U=13.00,
p=0.015) and breakdowns (U=10.00, p=0.006) than
participants who did not succeed. Furthermore, although
not significant (U=18.00, p=0.051), successful participants
also marginally introduced fewer bugs. It appears that the
successful participants were simply better at physical
computing development—either knowing more, or doing
fewer things wrong—than their unsuccessful counterparts.

Where Did Problems Occur?

We were interested in where participants' problems were
located. Figure 5 shows the distribution of obstacles,
breakdowns and bugs in the circuit, program,
circuit+program and IDE.

The overwhelming majority of obstacles (49%) occurred in
relation to the program (mean=20.40, SD=8.93), followed
by 28% associated with circuit construction (mean=11.55,
SD=6.36), while 20% of obstacles occurred in the
interaction between the program and circuit (mean=8.25,
SD=7.87). The same pattern also held for breakdowns: 52%
occurred in the program (mean=10.95, SD=8.41), while
31% of breakdowns were circuit-related (mean=6.45,
SD=5.97). This means that participants carried out more
wrong actions, and made more incorrect assessments and
factually incorrect statements when they were programming
than when they were constructing the circuit. We also found
that bugs introduced by participants related overwhelming
to their program (66%) instead of their circuit (33%).

Considering that participants rated their programming
expertise higher than their electronics expertise, we were
surprised that they appeared to struggle more with program-
related than circuit-related problems. We did not find any
significant correlation between their electronics expertise
and how many circuit-related obstacles, breakdowns or
bugs they had in constructing the prototype, nor a
relationship between their self-assessed programming
expertise and their program-related obstacles, breakdowns
or bugs. Although not significant, there was a marginal
relationship between programming expertise and program-

Figure 5. Number of obstacles (blue), breakdowns (orange)
and bugs (green) per location.

0

50

100

150

200

250

300

350

400

Circuit Program Circuit+
Program

IDE

C
o

u
n

t

Figure 4. Number of obstacles (blue), breakdowns (orange)
and bugs (green) per participant. Successful participants are

indicated with a green smiley.

related obstacles (r=-0.431, p=0.058) and breakdowns (r=-
0.400, p=0.081). Taken together, this means that in general
participants were poor judges of how good they are at
constructing physical computing prototypes.

Only very few obstacles (3%) stemmed from use of the IDE
(mean=1.05, SD=1.39). This echoes findings from end-user
programming which showed that users tend to have few
information gaps about features of the programming
environment and that the majority of problems arise due to
issues in problem-solving on a strategic level, that is,
knowing how to test or debug or what to do next [24].

It might be tempting to deduce that programming was the
major challenge for participants in the task. However, the
number of problems encountered and where they occurred
does not show the severity of problems or whether they
were successfully resolved. We now turn to our analysis of
whether these problems could be overcome.

Were Problems Overcome?

Some problems might be more easily overcome than others
by end-user developers. For this analysis, we looked only at
obstacles and bugs, since they represent faults which can be
overcome, whereas breakdowns manifest as actions or
spoken thoughts that cannot be 'undone'. Initially, it
appeared that a large number of all obstacles and bugs were
overcome by participants, wherever their location (Figure
6). However, when obstacles involved the interaction of the
circuit with the program, less than half were resolved
(46%), highlighting that these problems seemed to be
particularly challenging.

We then investigated differences between participants who
were successful at completing the task and those who were
unsuccessful (Figure 7). Successful participants overcame
97% of their obstacles and all of their bugs. Unsuccessful
participants, on the other hand, only overcame 69% of their
obstacles and 64% of their bugs. Three participants—P09,
P16, P19—did not complete the task due to a fault in their
program code, however, they all managed to construct the
circuit correctly. These participants did much better than
the rest of the unsuccessful participants, in both overcoming
obstacles and resolving bugs. In particular, even
unsuccessful participants who constructed a working circuit
overcame 100% of their circuit-related obstacles and 75%
of their circuit-related bugs, whereas the other unsuccessful
participants only solved 79% and 59% of the same problem
types, respectively. Unsuccessful participants with circuit
problems also did much worse when the obstacles
concerned the interaction between the circuit and the
program: they overcame only 35% of 'circuit+program'
obstacles, whereas participants who correctly constructed
the electronic circuit overcame 63% of these.

It seems then that some types of obstacles and bugs
prevented participants from completing the task. We
wondered what activities caused these fatal problems, and
we present the analysis in the next section.

What Went Fatally Wrong?

We now present a detailed analysis of what participants did
which caused them to not complete the task, that is,
breakdowns that led eventually to task failure or were very
difficult to address. It should be noted that often it was not
just one problem that caused task failure but rather a series
of bugs were introduced that compounded the difficulty of
overcoming them. We will compare the 'ideal' solutions
(see Study Setup section, Physical Computing Development
Task) with participants' actions.

Program construction

Three participants constructed the circuit correctly but had
some faults in their program that prevented them from
completing the task. Common faults included using the
wrong temperature thresholds in the conditional statements,
incorrect conditional logic, and numerous problems with
variable declarations, assignment and referencing (compare
Study Setup section, Writing the program). For example,
participant P16 forgot to add a statement to read the sensor
in their program and then referred to the wrong variable in
their conditional statements. As a result, the participant saw
temperature readings that always remained at 0, regardless
of whether they touched the sensor. To remedy this issue,
they copied in code, but this did not address the previous
two bugs. To compound the issue, they forgot to change the
variable names in the code they had copied in, so now these
did not match the ones they were already using in their
program. Challenges in learning to program have been
explored extensively (for example, [31]), and it seems that
many participants struggled with very basic and common
programming activities.

Circuit construction

The most common fatal error that caused ten participants
not to succeed in the task was some kind of fault in circuit
construction. We looked in more detail at what went wrong
in these cases.

A surprisingly high number of breakdowns involved
miswiring: incorrectly connecting circuit components. We

Figure 6. Total number of resolved obstacles (blue), resolved
bugs (green) and unresolved obstacles and bugs (red).

0

50

100

150

200

250

300

350

400

O
b
s
ta

c
le

s

B
u

g
s

O
b
s
ta

c
le

s

B
u

g
s

O
b
s
ta

c
le

s

B
u

g
s

O
b
s
ta

c
le

s

B
u

g
s

Circuit Program Circuit+
Program

IDE

C
o
u
n
t

observed 87 of these miswiring breakdowns. All but one of
the unsuccessful participants encountered these mistakes
and for five participants—P01, P04, P08, P10, P11—this
caused a fatal error that prevented them from completing
the task successfully. The most common miswiring
breakdown was connecting the legs of the temperature
sensor or LEDs to the wrong types of Arduino pin (compare
section Study Setup, Building the circuit). For example,
participant P01 accidentally miswired the sensor very early
in the task, resulting in unpredictable sensor readings.
Deciding it was an "accuracy" problem, they searched
online for ways to programmatically make the readings
more reliable, and copied in unnecessary code, to no avail.
Forum posts found online—none relevant to the bug—led
them to make yet more changes to both their circuit and
program, none of which addressed the original miswiring,
and eventually they gave up: "It's the world. It's just
unpredictable in the world. […] It's technically doing what
I want it to do, but it's the world that's breaking, as in, I
can't get it to get to the right temperature" (P01).

A particular case of miswiring—bad seating of the sensor
or an LED into the breadboard—was observed for three
participants. In one case, the participant did not realize that
a badly seated sensor, not connected to the rest of the
circuit, was the cause of the unpredictable sensor readings
they experienced and the bug went unresolved, leading to
task failure: "So why does the sensor don't work? [sic] It
should be work. [sic] So it goes to zero. I didn't change
anything with the sensor" (P04).

Another kind of circuit error that prevented task success
involved five participants either not using resistors with the
LEDs or adding extraneous resistors to the sensor (compare
section Study Setup, Building the circuit). In this task, the
missing resistors caused a very insidious problem because it
affected the behavior of the temperature sensor and made
readings very unpredictable: "I mean, it should work. The

problem is just that the sensor doesn't seem to be very
responsive. Because it starts at 150 and when you put your
hand there it went over 180, and never came back to 150"
(P20). None of the five participants who did not use
resistors with their LEDs ever fixed this bug. Instead,
unable to determine the fault location in the circuit, three of
these participants tried to fix the fault through extraneous
program code.

We also noticed that four participants chose too high a
value of resistor to use with the LEDs. For three
participants this meant that the LEDs lit up but were dim,
while one participant wired a single resistor of such a high
value to all of their LEDs that two did not light up and the
third only blinked intermittently. To address this they
disconnected the resistor from two of the LEDs, causing the
same insidious sensor readings problem mentioned in the
previous paragraph—a problem they never resolved.

Testing

Testing a physical computing artifact is more complex than
testing a program. In two instances, participants who had
constructed their prototype correctly, touched their
temperature sensor and the LEDs did not light up. In fact,
they had cold fingers, that is, their test 'input' was bad. In
one instance, this led a participant to believe there was a
fault when there was not. In software, a more appropriate
test strategy would be to use a variety of test inputs
including edge cases, something that is sometimes difficult
to do in physical computing prototype development.

Debugging

Professional software development environments usually
provide a debugger, which helps programmers to locate and
fix faults, and end-user programming environments have
started to do the same [8]. Unfortunately, physical
computing does not have analogous support tools and thus
it was sometimes difficult for participants in our study to
identify what the problem was.

Figure 7. Total number of resolved obstacles (blue), resolved bugs (green) and unresolved obstacles and bugs (red) by task
success.

0

50

100

150

200

250

300

O
b
s
ta

c
le

s

B
u

g
s

O
b
s
ta

c
le

s

B
u

g
s

O
b
s
ta

c
le

s

B
u

g
s

O
b
s
ta

c
le

s

B
u

g
s

O
b
s
ta

c
le

s

B
u

g
s

O
b
s
ta

c
le

s

B
u

g
s

O
b
s
ta

c
le

s

B
u

g
s

O
b
s
ta

c
le

s

B
u

g
s

O
b
s
ta

c
le

s

B
u

g
s

O
b
s
ta

c
le

s

B
u

g
s

O
b
s
ta

c
le

s

B
u

g
s

O
b
s
ta

c
le

s

B
u

g
s

Circuit Program Circuit+
Program

IDE Circuit Program Circuit+
Program

IDE Circuit Program Circuit+
Program

IDE

Task completed Task failed Task failed but circuit OK

C
o
u
n
t

One particular miswiring fault that four participants were
able to identify and fix was when they erroneously reversed
the power and ground connections of the temperature
sensor. This meant that the component overheated, and as a
result they burnt themselves momentarily when they
touched it: although slightly uncomfortable, this helped
them localize the fault to a particular part of the circuit.

We have already highlighted the insidious problem
resulting from missing and extraneous resistors. The only
way that participants were able to spot this problem was by
noticing that the sensor readings were incorrect when
viewing them in Arduino IDE. However, perhaps because
their focus was on the programming environment at this
point, they usually tried to debug this issue by making
changes to their program code.

Summary

Why did it go so wrong for many of the participants? The
study showed that problems in physical computing are to be
expected, even for users who are eventually successful, but
we also showed that problems resulting from faults in
circuits were particularly hard to identify and remedy. Five
participants did not even realize that a circuit-related error
was preventing their prototype from working, and
attempted to fix the perceived fault by changing their code.
Obviously, that proved in vain, and also caused four of
them to introduce more bugs into their program. This might
also explain why we observed so many program-related
obstacles, breakdown and bugs, and the high proportion of
problems that were associated with the interaction of circuit
and program; once participants started to incorrectly believe
that the issue was in the program instead of the circuit, they
often created further problems in this location. A major
contributory factor here might be that testing and debugging
physical computing prototypes are both very challenging
and appropriate support tools are not currently available.

DISCUSSION

We believe that our findings can generalize beyond our
simple task in an Arduino environment. The most common
breakdown in our study—miswiring—can in fact occur
during any activity that is part of constructing a physical
component, even when setting up and configuring off-the-
shelf devices, for example, setting up a home router and
Wi-Fi network. Hence, our study holds important lessons
for interactions between end users and other physical
devices that possibly require less electronics and
programming expertise.

How might we better support end users' physical computing
activities? While software engineering has been brought to
end-user programming [8], a similar approach is still
lacking for end-user physical computing development.
Thus, we propose tackling this in two ways: 1) providing
tools that offer in-context support to improve the practice of
creating, testing and debugging physical computing
artifacts; and 2) better educating the physical computing
end-user developer.

Tools for Good Physical Computing Practice

Currently, there are no development environments for
physical computing that are as comprehensive as the
professional ones available for writing software. What
would such a development environment look like? There
are already some encouraging approaches for end-user
programmers that we could leverage for this domain. For
example, the Idea Garden is a plug-in to existing
development environments that offers novice programmers
hints and strategies to try out, based on background analysis
of what they are doing [9]. We can distinguish two areas
where this kind of help would be useful for developing
physical computing artifacts: first, supporting the
construction of circuits; and secondly, helping to
systematically test and debug them if needed.

Construction

Good software engineering practice is to decompose the
program into modules and unit test these to incrementally
build a working solution. In our study, we had one
participant who, although less experienced, encountered
fewer problems through such a careful, systematic approach
and was successful in completing the task. She quickly
broke the task down into simpler parts, then built and tested
them individually. For example, she first wired up the
temperature sensor and wrote the code to read its values, to
ensure that they were understandable. She then wired up a
single LED, added code for it and tested that it worked,
before building the circuit for the other two LEDs and
testing them. Finally, she combined the LED code and
sensor code. We could imagine providing strategies and
heuristics in a physical computing environment that
encourage people to follow systematic development
approaches, including encouraging users to develop unit
tests or offering design patterns that might be appropriate.

Such a development environment for physical computing
could also include a run-time simulator, such as the 123D
Circuits Electronics Lab [48] described earlier. Once the
virtual circuit and program work as desired, they could be
reproduced with actual components and the code uploaded
to a physical microcontroller. The virtual aspect would
allow more targeted support to be made available during
construction of a circuit, which would otherwise be very
difficult to provide.

Testing and Debugging

Software engineering also deals to a great extent with
finding and fixing bugs: "the realization came over me with
full force that a good part of the remainder of my life was
going to be spent in finding errors in my own programs"
[47]. Unlike software, there are no compilers or debuggers
to help localize bugs in circuits. Where a bug manifests is
often far from the actual cause of the problem. For example,
in our task, the sensor readings were displayed in the
Arduino IDE but they could be incorrect because of
miswiring bugs in the sensor or LED connections. Fault
localization strategies could also be communicated in such
a development environment, possibly drawing from

existing troubleshooting checklists (such as [12,42]).
Additional features could help end users test their circuits,
by creatively considering possible input values, edge cases
and testing strategies, akin to WYSIWYT and
WYSIWYT/ML [8,19]. Approaches in formally verifying
physical circuits [13] could also be useful in this respect.

Educating the Physical Computing End-User Developer

Physical computing is increasingly used within education to
engage students in STEM subjects. In our study,
participants' programming expertise was higher than their
electronics expertise and they seemed to struggle more with
circuit-related problems. Therefore, we suggest more focus
on teaching concepts useful to circuit construction, testing
and debugging. Given the prevalence of miswiring
problems, end users should be encouraged to follow good
electronic engineering practice, such as correct color coding
conventions for wiring their circuits (for example, power is
always red, ground black, and signals should have different
colors for different components, as in Figure 2), and not
crossing wires, if possible, as it makes it harder to debug a
circuit. It would also be helpful to teach people how to use
a multimeter, for example, to check for continuity or
measure current. We provided one in our study sessions but
only four participants used it.

Finally, it is still an open question how best to teach
electronics subjects to end-user developers. Recent work
has looked at how DIY practices can be supported by online
tutorials [46]; the careful design of information to help end
users understand components and tools used in these
activities seems especially crucial.

Future Work

Our study has pointed to a number of open research
questions that warrant further investigation. First, we did
not look into how people managed to overcome their
problems. We noticed that frequently participants simply
looked up information, copied code from external sources
or fixed bugs through trial-and-error, and future work could
specifically focus on the problem-solving strategies of end-
user physical computing developers. We have begun
analyzing data from the study reported in this paper, to
identify the strategies employed by the participants, and we
look forward to sharing our findings.

Second, we would like to look deeper into what caused the
problems for participants in terms of shortcomings in their
knowledge or skills. Recent work [31] has looked into the
problems that novice programmers face with a view to
addressing specific aspects that prove particularly
troublesome and a similar approach might be useful for
physical computing. Similarly, a key skill in programming
is abstraction, which might also affect physical computing
tasks [44].

Finally, we hope to implement some of the support
mechanisms we suggested in a suitable development

environment for physical computing and assess, in further
studies with end-user developers, the benefits of doing so.

CONCLUSION

This paper reports the results of an empirical study
exploring the problems encountered by end-user developers
undertaking a physical computing task that involves both
circuit construction and programming. We learned that:

 All participants encountered problems, some more than
others, however background factors such as self-efficacy
and self-rated expertise did not predict whether they
would complete the task, or the number and type of
problems they experienced.

 Most problems occurred in programming, however, the
majority of task failures were due to circuit-related
problems. Participants did not always realize there was a
fault or error in their circuit and often incorrectly tried to
fix the perceived problem through their program.

 Miswiring and missing electronic components accounted
for 80% of circuit-related task failures but participants
had serious difficulties localizing these faults.

Our study showed that end-user developers would benefit
from increased support and we suggested two main areas
where they require help: constructing circuits correctly, and
diagnosing errors and implementing appropriate fixes. This
support can be provided by creating development
environments that offer in-context advice during the
construction process, and also by educating end-user
developers in good practice.

Physical computing affords new possibilities to create
artifacts that interact with the world in novel, useful and
meaningful ways. Understanding how best to provide
effective support will be an important step towards the
democratization of physical computing, in which users will
finally become developers.

ACKNOWLEDGEMENTS

We thank our study participants.

REFERENCES

1. Swamy Ananthanarayan, Nathan Lapinski, Katie Siek,
and Michael Eisenberg. 2014. Towards the crafting of
personal health technologies. In Proceedings of the
2014 conference on Designing interactive systems
(DIS '14). ACM, New York, NY, USA, 587-596.
http://dx.doi.org/10.1145/2598510.2598581

2. Rafael Ballagas, Meredith Ringel, Maureen Stone, and
Jan Borchers. 2003. iStuff: a physical user interface
toolkit for ubiquitous computing environments. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '03). ACM, New
York, NY, USA, 537-544.
http://dx.doi.org/10.1145/642611.642705

3. Massimo Banzi. 2009. Getting Started with Arduino.
Make: Books, O’Reilly Media, Inc., Sebastopol, CA,
USA.

4. Jon Bird, Paul Marshall, and Yvonne Rogers. 2009.
Low-fi skin vision: a case study in rapid prototyping a
sensory substitution system. In Proceedings of the 23rd
British HCI Group Annual Conference on People and
Computers: Celebrating People and Technology (BCS-
HCI '09). British Computer Society, Swinton, UK, UK,
55-64.

5. Tracey Booth and Simone Stumpf. 2013. End-user
experiences of visual and textual programming
environments for Arduino. In End-User Development,
Yvonne Dittrich, Margaret Burnett, Anders Mørch and
David Redmiles (eds.). Springer Berlin Heidelberg,
25–39. http://dx.doi.org/10.1007/978-3-642-38706-7_4

6. Leah Buechley, Mike Eisenberg, Jaime Catchen, and
Ali Crockett. 2008. The LilyPad Arduino: using
computational textiles to investigate engagement,
aesthetics, and diversity in computer science education.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '08). ACM, New
York, NY, USA, 423-432.
http://dx.doi.org/10.1145/1357054.1357123

7. Margaret Burnett, Curtis Cook, Omkar Pendse, Gregg
Rothermel, Jay Summet, and Chris Wallace. 2003.
End-user software engineering with assertions in the
spreadsheet paradigm. In Proceedings of the 25th
International Conference on Software Engineering
(ICSE '03). IEEE Computer Society, Washington, DC,
USA, 93-103.
http://doi.org/10.1109/ICSE.2003.1201191

8. Margaret Burnett, Curtis Cook, and Gregg Rothermel.
2004. End-user software engineering. Commun. ACM
47, 9 (September 2004), 53-58.
http://dx.doi.org/10.1145/1015864.1015889

9. Jill Cao, Scott D. Fleming, Margaret Burnett, and
Christopher Scaffidi. 2014. Idea Garden: Situated
support for problem solving by end-user programmers.
Interacting with Computers 27, 6 (November 2015):
640–660. http://doi.org/10.1093/iwc/iwu022

10. Jill Cao, Yann Riche, Susan Wiedenbeck, Margaret
Burnett, and Valentina Grigoreanu. 2010. End-user
mashup programming: through the design lens. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '10). ACM, New
York, NY, USA, 1009-1018.
http://dx.doi.org/10.1145/1753326.1753477

11. Deborah R. Compeau and Christopher A. Higgins.
1995. Computer self-efficacy: development of a
measure and initial test. MIS Quarterly 19, 2: 189–211.
http://doi.org/10.2307/249688

12. Brock Craft. 2013. Ten Troubleshooting Tips. In
Arduino Projects for Dummies (1st edition). John
Wiley & Sons, Ltd., Chichester, West Sussex, UK,
359–367.

13. Paul Curzon and Ian Leslie. 1996. Improving hardware
designs whilst simplifying their proof. In Proceedings
of the 3rd International Conference on Designing
Correct Circuits (DCC '96), Mary Sheeran and Satnam
Singh (Eds.). British Computer Society, Swinton, UK.

14. Irena Pletikosa Cvijikj and Florian Michahelles. 2011.
The toolkit approach for end-user participation in the
Internet of Things. In Architecting the Internet of
Things, Dieter Uckelmann, Mark Harrison and Florian
Michahelles (eds.). Springer Berlin Heidelberg, 65–96.
http://doi.org/10.1007/978-3-642-19157-2_4

15. Allen Cypher, Mira Dontcheva, Tessa Lau, and Jeffrey
Nichols. 2010. No Code Required: Giving Users Tools
to Transform the Web. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

16. Sarah Gallacher, Jenny O'Connor, Jon Bird, Yvonne
Rogers, Licia Capra, Daniel Harrison, and Paul
Marshall. 2015. Mood Squeezer: lightening up the
workplace through playful and lightweight interactions.
In Proceedings of the 18th ACM Conference on
Computer Supported Cooperative Work & Social
Computing (CSCW '15). ACM, New York, NY, USA,
891-902. http://dx.doi.org/10.1145/2675133.2675170

17. Saul Greenberg and Chester Fitchett. 2001. Phidgets:
easy development of physical interfaces through
physical widgets. In Proceedings of the 14th Annual
ACM Symposium on User Interface Software and
Technology (UIST '01). ACM, New York, NY, USA,
209-218. http://dx.doi.org/10.1145/502348.502388

18. Valentina I. Grigoreanu, Margaret M. Burnett, and
George G. Robertson. 2010. A strategy-centric
approach to the design of end-user debugging tools. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '10). ACM, New
York, NY, USA, 713-722.
http://dx.doi.org/10.1145/1753326.1753431

19. Alex Groce, Todd Kulesza, Chaoqiang Zhang, Shalini
Shamasunder, Margaret Burnett, Weng-Keen Wong,
Simone Stumpf, Shubhomoy Das, Amber Shinsel,
Forrest Bice, and Kevin McIntosh. 2014. You are the
only possible oracle: effective test selection for end
users of interactive machine learning systems. IEEE
Trans. Softw. Eng. 40, 3 (March 2014), 307-323.
http://dx.doi.org/10.1109/TSE.2013.59

20. Björn Hartmann, Scott R. Klemmer, Michael
Bernstein, Leith Abdulla, Brandon Burr, Avi
Robinson-Mosher, and Jennifer Gee. 2006. Reflective
physical prototyping through integrated design, test,
and analysis. In Proceedings of the 19th Annual ACM
Symposium on User Interface Software and
Technology (UIST '06). ACM, New York, NY, USA,
299-308. http://dx.doi.org/10.1145/1166253.1166300

21. Dan O'Sullivan and Tom Igoe. 2004. Physical
Computing: Sensing and Controlling the Physical

World with Computers. Course Technology Press,
Boston, MA, United States.

22. Tom Jenkins and Ian Bogost. 2014. Designing for the
Internet of Things: prototyping material interactions. In
CHI '14 Extended Abstracts on Human Factors in
Computing Systems (CHI EA '14). ACM, New York,
NY, USA, 731-740.
http://dx.doi.org/10.1145/2559206.2578879

23. Vaiva Kalnikaite, Yvonne Rogers, Jon Bird, Nicolas
Villar, Khaled Bachour, Stephen Payne, Peter M.
Todd, Johannes Schöning, Antonio Krüger, and Stefan
Kreitmayer. 2011. How to nudge in Situ: designing
lambent devices to deliver salient information in
supermarkets. In Proceedings of the 13th International
Conference on Ubiquitous Computing (UbiComp '11).
ACM, New York, NY, USA, 11-20.
http://dx.doi.org/10.1145/2030112.2030115

24. Cory Kissinger, Margaret Burnett, Simone Stumpf,
Neeraja Subrahmaniyan, Laura Beckwith, Sherry
Yang, and Mary Beth Rosson. 2006. Supporting end-
user debugging: what do users want to know?. In
Proceedings of the Working Conference on Advanced
Visual Interfaces (AVI '06). ACM, New York, NY,
USA, 135-142.
http://dx.doi.org/10.1145/1133265.1133293

25. André Knörig, Reto Wettach, and Jonathan Cohen.
2009. Fritzing: a tool for advancing electronic
prototyping for designers. In Proceedings of the 3rd
International Conference on Tangible and Embedded
Interaction (TEI '09). ACM, New York, NY, USA,
351-358. http://dx.doi.org/10.1145/1517664.1517735

26. Andrew J. Ko and Brad A. Myers. 2005. A framework
and methodology for studying the causes of software
errors in programming systems. J. Vis. Lang. Comput.
16, 1-2 (February 2005), 41-84.
http://dx.doi.org/10.1016/j.jvlc.2004.08.003

27. Andrew J. Ko, Brad A. Myers, and Htet Htet Aung.
2004. Six Learning Barriers in End-User Programming
Systems. In Proceedings of the 2004 IEEE Symposium
on Visual Languages and Human-Centric Computing
(VLHCC '04). IEEE Computer Society, Washington,
DC, USA, 199-206.
http://dx.doi.org/10.1109/VLHCC.2004.47

28. Thomas Kubitza and Albrecht Schmidt. 2015. Towards
a toolkit for the rapid creation of smart environments.
In End-User Development, Paloma Díaz, Volkmar
Pipek, Carmelo Ardito, Carlos Jensen, Ignacio Aedo
and Alexander Boden (eds.). Springer International
Publishing, 230–235. http://doi.org/10.1007/978-3-
319-18425-8_21

29. Todd Kulesza, Simone Stumpf, Weng-Keen Wong,
Margaret M. Burnett, Stephen Perona, Andrew Ko, and
Ian Oberst. 2011. Why-oriented end-user debugging of
naive Bayes text classification. ACM Trans. Interact.

Intell. Syst. 1, 1 (October 2011), 2:1–2:31.
http://doi.org/10.1145/2030365.2030367

30. Sandeep Kaur Kuttal, Anita Sarma, and Gregg
Rothermel. 2013. Debugging support for end user
mashup programming. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI '13). ACM, New York, NY, USA, 1609-1618.
http://dx.doi.org/10.1145/2470654.2466213

31. Michael J. Lee, Faezeh Bahmani, Irwin Kwan, et al.
2014. Principles of a debugging-first puzzle game for
computing education. Proceedings of the 2014 IEEE
Symposium on Visual Languages and Human-Centric
Computing (VLHCC '14), IEEE Computer Society,
57–64. http://doi.org/10.1109/VLHCC.2014.6883023

32. Alan Lesgold, Susanne Lajoie, Marilyn Bunzo, and
Gary Eggan. 1992. SHERLOCK: A coached practice
environment for an electronics troubleshooting job. In
Computer-Assisted Instruction and Intelligent Tutoring
Systems: Shared Goals and Complementary
Approaches, Jill H. Larkin and Ruth W. Chabay (eds.).
Lawrence Erlbaum Associates, Hillsdale, NJ, 201–238.

33. Henry Lieberman. 2001. Your Wish is My Command:
Programming by Example. Morgan Kaufmann, San
Francisco.

34. Amon Millner and Edward Baafi. 2011. Modkit:
blending and extending approachable platforms for
creating computer programs and interactive objects. In
Proceedings of the 10th International Conference on
Interaction Design and Children (IDC '11). ACM, New
York, NY, USA, 250-253.
http://dx.doi.org/10.1145/1999030.1999074

35. John F. Pane and Brad A. Myers. 1996. Usability
Issues in the Design of Novice Programming Systems.
Carnegie Mellon University, School of Computer
Science Technical Report CMU-CS-96-132,
Pittsburgh, PA. Retrieved from
http://repository.cmu.edu/isr/820

36. John F. Pane and Brad A. Myers. 2006. More natural
programming languages and environments. In End
User Development, Henry Lieberman, Fabio Paternò
and Volker Wulf (eds.). Springer Netherlands, 31–50.
http://doi.org/10.1007/1-4020-5386-X_3

37. James Reason. 1990. Human Error. Cambridge
University Press, Cambridge England ; New York.

38. M. Resnick, F. Martin, R. Sargent, and B. Silverman.
1996. Programmable Bricks: toys to think with. IBM
Systems Journal 35, 3.4: 443–452.
http://doi.org/10.1147/sj.353.0443

39. Dries De Roeck, Karin Slegers, Johan Criel, Marc
Godon, Laurence Claeys, Katriina Kilpi, and An
Jacobs. 2012. I would DiYSE for it!: a manifesto for
do-it-yourself internet-of-things creation. In
Proceedings of the 7th Nordic Conference on Human-

Computer Interaction: Making Sense through Design
(NordiCHI '12). ACM, New York, NY, USA, 170-179.
http://dx.doi.org/10.1145/2399016.2399044

40. Yvonne Rogers, Jeni Paay, Margot Brereton, Kate L.
Vaisutis, Gary Marsden, and Frank Vetere. 2014.
Never too old: engaging retired people inventing the
future with MaKey MaKey. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI '14). ACM, New York, NY, USA, 3913-
3922. http://dx.doi.org/10.1145/2556288.2557184

41. Joshua G. Tanenbaum, Amanda M. Williams, Audrey
Desjardins, and Karen Tanenbaum. 2013.
Democratizing technology: pleasure, utility and
expressiveness in DIY and maker practice. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '13). ACM, New
York, NY, USA, 2603-2612.
http://dx.doi.org/10.1145/2470654.2481360

42. Chris Taylor. 2010. Beginner Troubleshooting -
SparkFun Electronics. SparkFun. Retrieved September
23, 2015 from https://www.sparkfun.com/tutorials/226

43. Daniel Tetteroo, Iris Soute, and Panos Markopoulos.
2013. Five key challenges in end-user development for
tangible and embodied interaction. In Proceedings of
the 15th ACM International Conference on Multimodal
Interaction (ICMI '13). ACM, New York, NY, USA,
247-254. http://dx.doi.org/10.1145/2522848.2522887

44. Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and
Michael L. Littman. 2014. Practical trigger-action
programming in the smart home. In Proceedings of the

SIGCHI Conference on Human Factors in Computing
Systems (CHI '14). ACM, New York, NY, USA, 803-
812. http://dx.doi.org/10.1145/2556288.2557420

45. Nicolas Villar, James Scott, and Steve Hodges. 2011.
Prototyping with Microsoft .Net Gadgeteer.
Proceedings of the Fifth International Conference on
Tangible, Embedded, and Embodied Interaction (TEI
'11), ACM, New York, NY, USA, 377-380.
http://dx.doi.org/10.1145/1935701.1935790

46. Ron Wakkary, Markus Lorenz Schilling, Matthew A.
Dalton, Sabrina Hauser, Audrey Desjardins, Xiao
Zhang, and Henry W.J. Lin. 2015. Tutorial authorship
and hybrid Designers: The Joy (and Frustration) of
DIY Tutorials. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI '15). ACM, New York, NY, USA, 609-618.
http://dx.doi.org/10.1145/2702123.2702550

47. Maurice V. Wilkes. 1985. Memoirs of a Computer
Pioneer. The MIT Press, Cambridge, MA, USA.

48. 123D Circuits Electronics Lab. Autodesk 123D
Circuits. Retrieved July 12, 2015 from
https://123d.circuits.io/lab

49. TMP36 datasheet and product info | Voltage Output
Temperature Sensors | Analog Devices. Retrieved
September 21, 2015 from
http://www.analog.com/en/products/analog-to-digital-
converters/integrated-special-purpose-
converters/integrated-temperature-sensors/tmp36.html

50. Arduino Starter Kit. Retrieved July 21, 2015 from
https://www.arduino.cc/en/Main/ArduinoStarterKit

