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ABSTRACT 

Considerable research has focused on the problems that end 
users face when programming software, in order to help 
them overcome their difficulties, but there is little research 
into the problems that arise in physical computing when 
end users construct circuits and program them. In an 
empirical study, we observed end-user developers as they 
connected a temperature sensor to an Arduino 
microcontroller and visualized its readings using LEDs. We 
investigated how many problems participants encountered, 
the problem locations, and whether they were overcome. 
We show that most fatal faults were due to incorrect circuit 
construction, and that often problems were wrongly 
diagnosed as program bugs. Whereas there are development 
environments that help end users create and debug 
software, there is currently little analogous support for 
physical computing tasks. Our work is a first step towards 
building appropriate tools that support end-user developers 
in overcoming obstacles when constructing physical 
computing artifacts. 
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INTRODUCTION 

The rise of the Maker Movement and DIY creation [41], 
underpinned by the ready availability of open source tools 
and affordable components, has resulted in a growing 

number of end-user developers—artists, designers, 
researchers, and hobbyists—who create interactive physical 
computing artifacts. Increasing numbers of end-user 
developers are also building complex systems using the 
'Internet of Things' [28,22,14], for example, taking charge 
of their well-being and health by adapting programmable 
medical devices and developing health-related information 
appliances [1]. This area is of burgeoning interest to HCI 
research, both as a cultural phenomenon and for developing 
tools to support people who are interested in building these 
interactive systems and devices [39,40,2]. 

While users' engagement with physical computing is 
beyond a doubt [6], the challenges faced by end-user 
developers are still considerable: they must learn and apply 
both programming and electronics concepts, and also 
develop some understanding of the relationship between the 
software and hardware of their systems in order to solve 
problems that arise. We already know from the literature 
that program debugging is difficult but it has been 
suggested that localizing errors may present even greater 
challenges for inexperienced end-user developers when 
both hardware and software are involved [43]. 

There has been considerable work in end-user software 
engineering (EUSE) that aims to understand the problems 

 

Figure 1. A participant constructing a prototype circuit in 
our study. The task involved connecting a temperature 
sensor to an Arduino and writing a program to read the 

sensor and visualize the values using LEDs. 

 



that users face in programming, in order to provide an 
empirical basis for the design of development environments 
and support tools [7,8,9,18,24,36]. There are development 
tools that aim to make physical computing development 
easier [17, 20], however, to date, there has been little 
research into the problems faced by end users as they 
develop physical computing artifacts, in order to provide 
appropriate help in overcoming the challenges they face.  

Our work provides the first step in addressing this lack of 
knowledge and in establishing an empirical foundation for 
future tool design. We conducted an empirical study 
involving 20 participants who constructed and programmed 
a 'Love-O-Meter' (Figure 1)—a relatively simple interactive 
device that uses an Arduino microcontroller and three LEDs 
to visualize the readings of a temperature sensor when it is 
touched. We present an account of where participants' 
problems occurred, and describe the relationship between 
these problems and participants' background experience. 
We investigate how difficult these problems were to 
overcome, and the faults that led to task failure. We offer 
some initial suggestions about how end-user developers can 
be best supported in physical computing tasks. Our research 
questions were: 

 How many problems do users encounter, and where are 
they located? Are there aspects of developing physical 
computing devices that are particularly prone to 
problems?    How do users' backgrounds and experience affect the 
challenges they face in physical computing tasks?   What are the problems that can be easily overcome, 
and what problems prove insurmountable? 

The contribution of our paper is to provide the first 
systematic investigation of the problems faced by end users 
in physical computing tasks, extending findings from end-
user software engineering (EUSE) beyond programming to 
physical computing. Our results can inform the design of 
tools to support end-user developers overcome the physical 
computing challenges they commonly face. 

In the remainder of the paper, we first give an overview of 
related work in end-user programming and physical 
computing. We then describe our study design and present 
the results of our analyses. Finally, we discuss implications 
for how users can be supported, and describe future work. 

BACKGROUND 

End-User Programming and Software Engineering 

Previous research has investigated the difficulties faced by 
end-user programmers [35,27,9,24], in order to help 
overcome them. Much of this work focuses on simplifying 
programming languages or environments, for example, 
programming by demonstration [33,15] eases the effort of 
learning a new programming language. A different way to 
help users is through providing features built directly into 
the programming environment, in order to support problem-
solving activities during programming. For example, 

StratCel and WYSIWYT aimed to help end users test and 
debug spreadsheets [18,8], and this approach has also 
proven effective in programming web mashups [30], and 
supporting end users in debugging intelligent systems [29]. 
We draw inspiration from this work for end users 
developing physical computing prototypes, and are 
investigating the problems these end users face, with the 
aim of building appropriate support tools. 

There are a number of different approaches to categorizing 
the programming problems end-user programmers face. 
One frequently used approach is to categorize end-user 
programming problems in terms of 'learning barriers' [27]. 
Learning barriers have been shown to occur when end users 
develop web mashups [10] and debug machine learning 
systems [29]. Another way is to focus on the causes of 
software errors [26], based on research in human error [37], 
that has suggested that errors are due to 'cognitive 
breakdowns' in which end users encounter problems 
applying skills, rules, or knowledge. Breakdowns can be 
investigated by classifying the action being performed, the 
interface the action is performed on, and the information 
being acted on. The data analysis in this study was 
informed by a focus on breakdowns.   

Although there is some evidence of learning barriers 
occurring in programming environments for physical 
computing [5], very little research has investigated the 
problems that end users face when constructing physical 
computing devices that combine elements of both 
programming and electronics. The goal of our study was to 
address this by identifying these problems, as a first step 
towards developing support solutions that can help end 
users to overcome the common problems they face in 
physical computing.  

Physical Computing Tools 

Physical computing integrates computing with the physical 
world, often in the form of electronic devices or systems 
that interact with the environment via sensors and actuators 
[21]. These devices can take input from the world, through 
sensors that measure aspects of the environment, such as 
temperature, proximity, or light, and respond in some way, 
for example, though sound, motion or vibration. [4,23,16]. 

Developing a physical computing device typically involves 
coordinating the behavior of sensors and actuators by 
connecting them to a microcontroller and programming 
their behavior. Platforms like Arduino [3] aim to lower the 
barriers to entry to this type of activity, but creating 
electronic circuits and programming them still requires 
some knowledge and skill, and troubleshooting physical 
computing issues can be tricky. 

Some work in this area has aimed to make it easier to 
construct the electronics or hardware. For example, 
'Programmable Bricks' [38] enabled children to easily 
create physical computing devices by connecting sensors 
and motors to a computer embedded in a LEGO brick and 



program them using the Logo programming language. 
Phidgets [17] are 'physical widgets' that facilitate rapid 
prototyping with minimal electronics knowledge. Other 
systems, such as .NET Gadgeteer [45], also aim to make it 
easier for end-user developers by providing plug-and-play 
hardware components. 

A different strand of research has focused on lowering the 
bar for programming, by providing visual programming 
environments for physical computing platforms, which are 
proposed as being easier for end users to master (for 
example, [20,34]).  

Very few support systems have been developed to help 
build and debug the simple circuits typically involved in 
physical computing. SHERLOCK [32] is an environment 
for teaching sophisticated electronics troubleshooting to 
fighter airplane engineers. Tools aimed at end-user 
developers include Fritzing [25], which allows users to 
graphically lay out circuits on a virtual breadboard (see 
Figure 2 for an annotated example), and Autodesk's 123D 
Circuits Electronics Lab web application [48], which 
combines virtual circuit construction with a code editor and 
a simulator, so that users can 'upload' their program to their 
virtual circuit and simulate run-time behavior. 

However, there is very limited empirical evidence of what 
problems end-user developers face in physical computing 
tasks that can be used to inform the design of appropriate 
support tools. Our study addressed this issue. 

STUDY SETUP 

We conducted an empirical study, using a 'think-aloud' 
approach, in which participants undertook a naturalistic 
physical computing task. In order to analyze the nature of 
the problems they faced, we collected a rich set of data, 
including video transcripts, the artifacts that participants 
constructed, and information about participants' 
backgrounds and experience. 

Participants 

We recruited 20 adult participants (8 female, 12 male, mean 
age of 32 years) through local Maker communities and 
universities, targeting hobbyists with some experience of 
using the Arduino platform, but excluding professionals 
who develop physical computing artifacts for monetary 
gain. All participants received a £20 gift voucher as an 
incentive. 

Physical Computing Development Task 

We used an Arduino microcontroller in our study.  Arduino 
has achieved wide adoption by many types of end-user 
developers, including hobbyists, and is currently the most 
popular physical computing platform. We chose the official 
Arduino UNO revision 3 as the development board—a 
commonly used starter board included in the official 
Arduino Starter Kit. As the development environment we 
used the official Arduino IDE (version 1.61 for Windows), 
running on a Microsoft Windows 7 desktop PC.  

The task was a simplified version of project 3 in the official 
Arduino Starter Kit [50]. The physical computing device 
that the participants attempted to build was a 'Love-O-
Meter': this uses three LEDs to visualize the values read 
from a temperature sensor, lighting up one LED at lower 
temperatures, two at medium temperatures and three at 
higher temperatures. The temperature can be increased by 
touching the sensor. Building this device involves 
connecting seven electronic components to a 
microcontroller and writing a short program to coordinate 
their behavior. Participants used a breadboard and jumper 
wires to build the electronic circuit and no soldering was 
involved in the task. 

We now briefly describe the steps involved in successfully 
completing the task, so that the problems that participants in 
our study had when constructing the circuit and the 
program (see Results section, What Went Fatally Wrong?) 
are better understandable.  

It is possible to first build the complete circuit and then 
write the program controlling it, or to decompose the task 
into smaller parts and complete them in turn, for example, 
first build the sensor circuit and write the code for reading 
the temperature values, and then move on to building and 
programming an LED circuit. Here we describe how to 
build the circuit first and then the associated program.  

Building the circuit 

This involves connecting the electronic components to the 
Arduino board. Figure 2 shows how the components could 
be wired up successfully.  

The temperature sensor (TMP36) [49] is an analog device 
that has three legs, each of which has to be correctly wired 
into an Arduino analog pin, ground and power in order for 
the sensor to operate correctly. Miswiring the connections 
to the sensor can result in unusual readings, or the sensor 
itself heating up to a high temperature. The Arduino analog 
pin readings are converted into digital values between 0 and 
1023. No additional components are needed for the sensor 

 

Figure 2. The simplest way to build the circuit for the study 
task. Each wire or resistor connects two locations in the 

circuit: either a pin on the Arduino or the leg of a 
component. 



to work correctly. Participants can cause noticeable changes 
in the readings by touching it.  

Each LED has two legs, and its positive leg (anode) needs 
to be connected to an Arduino digital output pin and its 
negative leg (cathode) connected to ground. Because it is a 
diode, reversing the signal and ground connections means 
the LED will not light up. A resistor of appropriate value 
should be wired either between the positive leg and the 
digital pin, or the negative leg and ground, to regulate 
electrical current to the LED. If the resistor value is too 
high, the LED will not light up.  If no resistor is used, it 
may cause other problems, such as the LED burning out 
prematurely and even damaging the Arduino board. 
Additionally, we found that when resistors were not 
included in the circuit, the LEDs drew large currents from 
the Arduino, which in turn affected the temperature 
readings from the sensor. 

Given that an Arduino UNO has only three ground pins but 
wiring all of the components into the circuit requires four 
connections to ground (one for the sensor and one for each 
of the three LEDs), it was necessary for participants to set 
up a ground rail on the breadboard that could be shared by 
the components. 

Writing the program 

An Arduino program has two main parts: a setup() 
function which executes only once when the program is 
first run, and a loop() function that then executes 
repeatedly at a very high speed. Variables such as which 
Arduino pins are being used are typically declared globally 
at the top of the program, outside of the setup() and 
loop() functions. 

We first describe the programming steps involved in 
reading and displaying the temperature sensor values in the 
Arduino IDE and then describe the programming steps to 
control the LEDs.  

Sensor program 

The first step is to state which analog pin on the Arduino 
board is connected to the sensor, so that the temperature 
values can be read. In order to display the temperature 
values being sent to the Arduino in the monitor built into 
the IDE, it is then necessary to add a line of code to the 
setup() function, to set up serial communication between 
the Arduino and the computer. The rest of the program code 
goes in the loop() function. First, the analog pin that is 
connected to the temperature sensor has to be read, and the 
value ideally stored in a variable. Then, the current 
temperature value can be written to the Serial Monitor built 
into the Arduino IDE, where it can be viewed. 

LED program 

The first step is to state which digital pin on the Arduino 
board each of the LEDs is connected to. Each of these 
digital pins can then be used as a switch in the program to 

turn the connected LED on or off.  Each of the digital pin 
numbers used can be stored in global variables at the top of 
the program. In the setup() function, each digital pin 
connected to an LED has to be configured as an output pin, 
so it can be used to switch an LED on or off. In the loop() 
function, each LED can be switched on or off by reference 
to its pin. 

Conditional statements are needed to switch on the 
appropriate number of LEDs to visualize the temperature 
read from the sensor. In order to write this code, a 
participant has to understand the range of temperature 
values that can be generated by holding the sensor between 
their fingers, what the sensor value is at room temperature, 
and determine appropriate temperature value thresholds that 
should be used to switch the LEDs on and off.  

Procedure 

During the session, participants first completed two 
background questionnaires that gathered information about 
their demographics, background and experience, and self-
efficacy in physical computing. They then were given a task 
instruction sheet, giving a brief description of the goals that 
the artifact had to satisfy. They had 45 minutes to complete 
the task. We chose this length of time because this is the 
recommended time for project 3 in the Arduino Starter Kit, 
and attempts at building it unaided during a pilot study took 
approximately 30 minutes. Participants had access to the 
task instruction sheet that specified the artifact they had to 
build, an Arduino UNO microcontroller, a breadboard, a 
labeled kit of electronic components, a digital multimeter 
and the Arduino IDE. They were allowed to follow their 
usual working method, including using the help content and 
examples built into the Arduino IDE, searching online for 
sources of information and copying code snippets. As they 
were working, they were asked to think aloud. A facilitator 
helped the participants to become familiar with the task 
specification but did not assist in building the prototype or 
overcoming development problems. The facilitator only 
intervened to remind participants to think aloud (if they fell 
silent for approximately 10 seconds), or when there was a 
danger of physical harm to a participant. At the end of the 
task participants were asked to demonstrate their prototype.  

Data Collection 

We captured participants' relevant experience and self-
efficacy in physical computing. They self-assessed their 
programming, electronics, physical computing development 
and Arduino expertise on 7-point scales, from complete 
beginner (1) to expert (7). Self-efficacy was rated on a scale 
of 0-100 through an adapted questionnaire based on 
computer self-efficacy [11], in which participants rated 
their self-confidence in completing a physical computing 
task of moderate complexity using the Arduino platform.  



We video-recorded the participants during the task from 
multiple vantage points and also recorded screen activity 
using Morae Recorder software. We synchronized and 
merged these videos to a single, composite, split-screen 
video (Figure 3) per participant, for use in analysis. We 
used digital photographs and Fritzing breadboard diagrams 
[25] to capture circuit configuration, and saved all programs 
created or adapted by each participant. 

Analysis 

We first established whether each participant had 
successfully completed the task. The task was counted as 
completed when the prototype was shown to meet the 
specification given—the participant demonstrated the 
prototype at the end of the session, and after the session we 
examined the circuit and program for evidence that they 
were indeed correctly constructed. 

We analyzed the split-screen video recordings of each 
session, for evidence of problems encountered by 
participants when they were doing the physical computing 
task. We transcribed key events from these videos and 
coded them, first distinguishing three different kinds of 
problems: obstacles (where participants hit hurdles to 
overcome), breakdowns (on evidence of errors in action or 
thinking) and bugs (on evidence of faults introduced).  

Obstacles were coded in the following circumstances: 1) 
when participants stated that they did not know or 
understand something; 2) when they said that they needed 
to do something but there was evidence that they faced a 
problem doing it, for example, if a participant said that they 
needed to wire up the LEDs, and then searched online for 
information that showed them how to do this; 3) if a 
participant showed signs of confusion or frustration, for 
example, a puzzled expression on viewing sensor readings 
in the Serial Monitor. Hence, our obstacle code includes 
what previous research has termed 'information gaps' [24].  

Inspired by previous classifications of errors [37,26], we 
also looked for evidence of breakdowns. In our analysis, we 
coded breakdowns when there was evidence that: 1) 
participants carried out a wrong action, that is, they made a 
slip or mistake, for example, mistyping a variable name or 
using an inappropriate command; 2) they made an incorrect 
assessment, for example, saying something was working 
when in fact it was not; 3) there were observed faults in 
their knowledge or reasoning, for example, stating 
something factually incorrect.  

An obstacle might cause a breakdown but it could also be 
overcome without causing any further problem, for 
example, when a participant said that they did not 
understand the online tutorial page they were reading, but 
then simply closed it and instead found one that they did 
understand.  

A breakdown could result in a bug, that is, a fault that a 
participant introduced through their actions or beliefs. For 
example, a breakdown in which a participant forgot to add a 

semi-colon to the end of a variable declaration statement 
would lead to a bug in the program which needed to be 
fixed. On the other hand, adding extraneous code to the 
program, such as declaring a variable that is never used, is 
an example of a breakdown that does not lead to a bug. We 
coded as bugs all the individual faults created by the 
participant that needed to be solved. For example, if a 
participant forgot, in their program, to configure all three of 
the digital pins connected to the LEDs as outputs (using the 
pinMode() function), we coded this as three separate bugs. 

Importantly, the participant might not have been aware that 
they had introduced a bug that needed solving; while some 
bugs provide clues that make it easy for a user to spot that 
there is a problem, other bugs can impact more subtly on 
the behavior of the prototype in a way that makes fault 
localization and diagnosis very difficult.  

We then analyzed where each of these three problem types 
originated, either relating to the circuit, the program, or the 
development environment, similar to [26]. For example, if a 
breakdown occurred in which a participant used a wrong 
comparison operator in their code, it was assigned the 
'program' location. If a participant encountered an obstacle 
in which they were unable to figure out where to find a 
particular function/option in the development environment, 
then the 'IDE' location code was assigned.  

In some cases, problems straddled both program and circuit, 
for example, when a participant had difficulty 
understanding the sensor readings in the Serial Monitor 
(which are the result of interaction between the circuit and 
the program), misunderstood the relationship between the 
program and the circuit, or said that they did not know how 
to wire up and program a component. In these cases, we 
assigned the 'circuit+program' code to the observed 
problem. 

Having identified all the obstacles, breakdowns and bugs 
for each participant, we then analyzed whether they were 
overcome or not during the session. 

 

Figure 3. Composite, split-screen video of physical computing 
task, showing onscreen activity, participant's face, overhead 

zoom of circuit construction, and wider frontal view of 
equipment use.  



RESULTS 

We considered participants' expertise, its role in task 
success and the impact on how much they struggled. We 
then investigated the location of problems encountered and 
whether participants managed to overcome these problems. 
We finally examined sources of failures in detail and which 
kinds of activities were challenging for participants. 

How Many Problems? 

To be successful at a physical computing task, end-user 
developers need to be sufficiently proficient at 
programming and at building an electronic circuit but we 
would hardly expect them to be experts. Participants in our 
study rated their expertise in physical computing between 
complete beginner and expert on a 7-point scale 
(mean=3.60, SD=1.19), with their programming expertise 
(mean=4.40, SD=1.47) being slightly higher than their 
electronics expertise (mean=3.10, SD=1.33). Participants 
usually had more years of programming experience 
(mean=10.89, SD=7.53) than electronics experience 
(mean=6.75, SD=7.63) or physical computing development 
experience (mean=3.23, SD=2.03). Participants reported 
receiving some form of training or instruction in 
programming but mostly being self-taught in constructing 
circuits, which might explain this difference. Our study task 
involved the Arduino platform and our participants 
considered themselves reasonably knowledgeable in this 
environment (mean=3.75, SD=1.41) and relatively self-
confident at tackling a task of moderate complexity 
(mean=69.70, SD=10.78).  

However, only six of the 20 participants—P3, P5, P6, P7, 
P17, P18—successfully built a working prototype that met 
the specification given. We found no significant 
relationships between successful task completion and self-
efficacy or self-rated expertise. 

Every participant was impeded in their progress in 
completing the task in some way (Figure 4), through 
obstacles, breakdowns or bugs; most participants 
experienced all three types of problem. Participants 
encountered a mean of 41.60 obstacles (SD=14.17), 21.05 
breakdowns (SD=13.4), and created 13.7 bugs (SD=9.85) 
over the 45 minutes they worked on the task. This means 
that participants struggled a great deal, even though the task 
was appropriate for their experience and background. 

We then investigated whether task success was linked with 
how many problems were encountered.  A Mann-Whitney 
test showed that the six participants who succeeded had 
significantly lower total numbers of obstacles (U=13.00, 
p=0.015) and breakdowns (U=10.00, p=0.006) than 
participants who did not succeed. Furthermore, although 
not significant (U=18.00, p=0.051), successful participants 
also marginally introduced fewer bugs. It appears that the 
successful participants were simply better at physical 
computing development—either knowing more, or doing 
fewer things wrong—than their unsuccessful counterparts. 

Where Did Problems Occur? 

We were interested in where participants' problems were 
located. Figure 5 shows the distribution of obstacles, 
breakdowns and bugs in the circuit, program, 
circuit+program and IDE. 

The overwhelming majority of obstacles (49%) occurred in 
relation to the program (mean=20.40, SD=8.93), followed 
by 28% associated with circuit construction (mean=11.55, 
SD=6.36), while 20% of obstacles occurred in the 
interaction between the program and circuit (mean=8.25, 
SD=7.87). The same pattern also held for breakdowns: 52% 
occurred in the program (mean=10.95, SD=8.41), while 
31% of breakdowns were circuit-related (mean=6.45, 
SD=5.97). This means that participants carried out more 
wrong actions, and made more incorrect assessments and 
factually incorrect statements when they were programming 
than when they were constructing the circuit. We also found 
that bugs introduced by participants related overwhelming 
to their program (66%) instead of their circuit (33%).  

Considering that participants rated their programming 
expertise higher than their electronics expertise, we were 
surprised that they appeared to struggle more with program-
related than circuit-related problems. We did not find any 
significant correlation between their electronics expertise 
and how many circuit-related obstacles, breakdowns or 
bugs they had in constructing the prototype, nor a 
relationship between their self-assessed programming 
expertise and their program-related obstacles, breakdowns 
or bugs. Although not significant, there was a marginal 
relationship between programming expertise and program-

 

Figure 5. Number of obstacles (blue), breakdowns (orange) 
and bugs (green) per location.  
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Figure 4. Number of obstacles (blue), breakdowns (orange) 
and bugs (green) per participant. Successful participants are 

indicated with a green smiley. 



related obstacles (r=-0.431, p=0.058) and breakdowns (r=-
0.400, p=0.081). Taken together, this means that in general 
participants were poor judges of how good they are at 
constructing physical computing prototypes.  

Only very few obstacles (3%) stemmed from use of the IDE 
(mean=1.05, SD=1.39). This echoes findings from end-user 
programming which showed that users tend to have few 
information gaps about features of the programming 
environment and that the majority of problems arise due to 
issues in problem-solving on a strategic level, that is, 
knowing how to test or debug or what to do next [24].  

It might be tempting to deduce that programming was the 
major challenge for participants in the task. However, the 
number of problems encountered and where they occurred 
does not show the severity of problems or whether they 
were successfully resolved. We now turn to our analysis of 
whether these problems could be overcome. 

Were Problems Overcome? 

Some problems might be more easily overcome than others 
by end-user developers. For this analysis, we looked only at 
obstacles and bugs, since they represent faults which can be 
overcome, whereas breakdowns manifest as actions or 
spoken thoughts that cannot be 'undone'. Initially, it 
appeared that a large number of all obstacles and bugs were 
overcome by participants, wherever their location (Figure 
6). However, when obstacles involved the interaction of the 
circuit with the program, less than half were resolved 
(46%), highlighting that these problems seemed to be 
particularly challenging. 

We then investigated differences between participants who 
were successful at completing the task and those who were 
unsuccessful (Figure 7). Successful participants overcame 
97% of their obstacles and all of their bugs. Unsuccessful 
participants, on the other hand, only overcame 69% of their 
obstacles and 64% of their bugs. Three participants—P09, 
P16, P19—did not complete the task due to a fault in their 
program code, however, they all managed to construct the 
circuit correctly. These participants did much better than 
the rest of the unsuccessful participants, in both overcoming 
obstacles and resolving bugs. In particular, even 
unsuccessful participants who constructed a working circuit 
overcame 100% of their circuit-related obstacles and 75% 
of their circuit-related bugs, whereas the other unsuccessful 
participants only solved 79% and 59% of the same problem 
types, respectively. Unsuccessful participants with circuit 
problems also did much worse when the obstacles 
concerned the interaction between the circuit and the 
program: they overcame only 35% of 'circuit+program' 
obstacles, whereas participants who correctly constructed 
the electronic circuit overcame 63% of these.  

It seems then that some types of obstacles and bugs 
prevented participants from completing the task. We 
wondered what activities caused these fatal problems, and 
we present the analysis in the next section. 

What Went Fatally Wrong? 

We now present a detailed analysis of what participants did 
which caused them to not complete the task, that is, 
breakdowns that led eventually to task failure or were very 
difficult to address. It should be noted that often it was not 
just one problem that caused task failure but rather a series 
of bugs were introduced that compounded the difficulty of 
overcoming them. We will compare the 'ideal' solutions 
(see Study Setup section, Physical Computing Development 
Task) with participants' actions.  

Program construction 

Three participants constructed the circuit correctly but had 
some faults in their program that prevented them from 
completing the task. Common faults included using the 
wrong temperature thresholds in the conditional statements, 
incorrect conditional logic, and numerous problems with 
variable declarations, assignment and referencing (compare 
Study Setup section, Writing the program). For example, 
participant P16 forgot to add a statement to read the sensor 
in their program and then referred to the wrong variable in 
their conditional statements. As a result, the participant saw 
temperature readings that always remained at 0, regardless 
of whether they touched the sensor. To remedy this issue, 
they copied in code, but this did not address the previous 
two bugs. To compound the issue, they forgot to change the 
variable names in the code they had copied in, so now these 
did not match the ones they were already using in their 
program. Challenges in learning to program have been 
explored extensively (for example, [31]), and it seems that 
many participants struggled with very basic and common 
programming activities. 

Circuit construction 

The most common fatal error that caused ten participants 
not to succeed in the task was some kind of fault in circuit 
construction. We looked in more detail at what went wrong 
in these cases. 

A surprisingly high number of breakdowns involved 
miswiring: incorrectly connecting circuit components. We 

 

Figure 6. Total number of resolved obstacles (blue), resolved 
bugs (green) and unresolved obstacles and bugs (red). 
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observed 87 of these miswiring breakdowns. All but one of 
the unsuccessful participants encountered these mistakes 
and for five participants—P01, P04, P08, P10, P11—this 
caused a fatal error that prevented them from completing 
the task successfully. The most common miswiring 
breakdown was connecting the legs of the temperature 
sensor or LEDs to the wrong types of Arduino pin (compare 
section Study Setup, Building the circuit). For example, 
participant P01 accidentally miswired the sensor very early 
in the task, resulting in unpredictable sensor readings. 
Deciding it was an "accuracy" problem, they searched 
online for ways to programmatically make the readings 
more reliable, and copied in unnecessary code, to no avail. 
Forum posts found online—none relevant to the bug—led 
them to make yet more changes to both their circuit and 
program, none of which addressed the original miswiring, 
and eventually they gave up: "It's the world. It's just 
unpredictable in the world. […] It's technically doing what 
I want it to do, but it's the world that's breaking, as in, I 
can't get it to get to the right temperature" (P01). 

A particular case of miswiring—bad seating of the sensor 
or an LED into the breadboard—was observed for three 
participants.  In one case, the participant did not realize that 
a badly seated sensor, not connected to the rest of the 
circuit, was the cause of the unpredictable sensor readings 
they experienced and the bug went unresolved, leading to 
task failure: "So why does the sensor don't work? [sic]  It 
should be work. [sic]  So it goes to zero. I didn't change 
anything with the sensor" (P04). 

Another kind of circuit error that prevented task success 
involved five participants either not using resistors with the 
LEDs or adding extraneous resistors to the sensor (compare 
section Study Setup, Building the circuit). In this task, the 
missing resistors caused a very insidious problem because it 
affected the behavior of the temperature sensor and made 
readings very unpredictable: "I mean, it should work. The 

problem is just that the sensor doesn't seem to be very 
responsive. Because it starts at 150 and when you put your 
hand there it went over 180, and never came back to 150" 
(P20). None of the five participants who did not use 
resistors with their LEDs ever fixed this bug. Instead, 
unable to determine the fault location in the circuit, three of 
these participants tried to fix the fault through extraneous 
program code. 

We also noticed that four participants chose too high a 
value of resistor to use with the LEDs. For three 
participants this meant that the LEDs lit up but were dim, 
while one participant wired a single resistor of such a high 
value to all of their LEDs that two did not light up and the 
third only blinked intermittently. To address this they 
disconnected the resistor from two of the LEDs, causing the 
same insidious sensor readings problem mentioned in the 
previous paragraph—a problem they never resolved. 

Testing 

Testing a physical computing artifact is more complex than 
testing a program. In two instances, participants who had 
constructed their prototype correctly, touched their 
temperature sensor and the LEDs did not light up. In fact, 
they had cold fingers, that is, their test 'input' was bad. In 
one instance, this led a participant to believe there was a 
fault when there was not. In software, a more appropriate 
test strategy would be to use a variety of test inputs 
including edge cases, something that is sometimes difficult 
to do in physical computing prototype development. 

Debugging 

Professional software development environments usually 
provide a debugger, which helps programmers to locate and 
fix faults, and end-user programming environments have 
started to do the same [8]. Unfortunately, physical 
computing does not have analogous support tools and thus 
it was sometimes difficult for participants in our study to 
identify what the problem was.  

 

Figure 7. Total number of resolved obstacles (blue), resolved bugs (green) and unresolved obstacles and bugs (red) by task 
success. 
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One particular miswiring fault that four participants were 
able to identify and fix was when they erroneously reversed 
the power and ground connections of the temperature 
sensor. This meant that the component overheated, and as a 
result they burnt themselves momentarily when they 
touched it: although slightly uncomfortable, this helped 
them localize the fault to a particular part of the circuit.  

We have already highlighted the insidious problem 
resulting from missing and extraneous resistors. The only 
way that participants were able to spot this problem was by 
noticing that the sensor readings were incorrect when 
viewing them in Arduino IDE. However, perhaps because 
their focus was on the programming environment at this 
point, they usually tried to debug this issue by making 
changes to their program code.  

Summary 

Why did it go so wrong for many of the participants? The 
study showed that problems in physical computing are to be 
expected, even for users who are eventually successful, but 
we also showed that problems resulting from faults in 
circuits were particularly hard to identify and remedy. Five 
participants did not even realize that a circuit-related error 
was preventing their prototype from working, and 
attempted to fix the perceived fault by changing their code. 
Obviously, that proved in vain, and also caused four of 
them to introduce more bugs into their program. This might 
also explain why we observed so many program-related 
obstacles, breakdown and bugs, and the high proportion of 
problems that were associated with the interaction of circuit 
and program; once participants started to incorrectly believe 
that the issue was in the program instead of the circuit, they 
often created further problems in this location. A major 
contributory factor here might be that testing and debugging 
physical computing prototypes are both very challenging 
and appropriate support tools are not currently available. 

DISCUSSION 

We believe that our findings can generalize beyond our 
simple task in an Arduino environment. The most common 
breakdown in our study—miswiring—can in fact occur 
during any activity that is part of constructing a physical 
component, even when setting up and configuring off-the-
shelf devices, for example, setting up a home router and 
Wi-Fi network. Hence, our study holds important lessons 
for interactions between end users and other physical 
devices that possibly require less electronics and 
programming expertise. 

How might we better support end users' physical computing 
activities? While software engineering has been brought to 
end-user programming [8], a similar approach is still 
lacking for end-user physical computing development. 
Thus, we propose tackling this in two ways: 1) providing 
tools that offer in-context support to improve the practice of 
creating, testing and debugging physical computing 
artifacts; and 2) better educating the physical computing 
end-user developer. 

Tools for Good Physical Computing Practice 

Currently, there are no development environments for 
physical computing that are as comprehensive as the 
professional ones available for writing software. What 
would such a development environment look like? There 
are already some encouraging approaches for end-user 
programmers that we could leverage for this domain. For 
example, the Idea Garden is a plug-in to existing 
development environments that offers novice programmers 
hints and strategies to try out, based on background analysis 
of what they are doing [9]. We can distinguish two areas 
where this kind of help would be useful for developing 
physical computing artifacts: first, supporting the 
construction of circuits; and secondly, helping to 
systematically test and debug them if needed.  

Construction 

Good software engineering practice is to decompose the 
program into modules and unit test these to incrementally 
build a working solution. In our study, we had one 
participant who, although less experienced, encountered 
fewer problems through such a careful, systematic approach 
and was successful in completing the task. She quickly 
broke the task down into simpler parts, then built and tested 
them individually. For example, she first wired up the 
temperature sensor and wrote the code to read its values, to 
ensure that they were understandable. She then wired up a 
single LED, added code for it and tested that it worked, 
before building the circuit for the other two LEDs and 
testing them. Finally, she combined the LED code and 
sensor code. We could imagine providing strategies and 
heuristics in a physical computing environment that 
encourage people to follow systematic development 
approaches, including encouraging users to develop unit 
tests or offering design patterns that might be appropriate. 

Such a development environment for physical computing 
could also include a run-time simulator, such as the 123D 
Circuits Electronics Lab [48] described earlier. Once the 
virtual circuit and program work as desired, they could be 
reproduced with actual components and the code uploaded 
to a physical microcontroller. The virtual aspect would 
allow more targeted support to be made available during 
construction of a circuit, which would otherwise be very 
difficult to provide. 

Testing and Debugging 

Software engineering also deals to a great extent with 
finding and fixing bugs: "the realization came over me with 
full force that a good part of the remainder of my life was 
going to be spent in finding errors in my own programs" 
[47]. Unlike software, there are no compilers or debuggers 
to help localize bugs in circuits. Where a bug manifests is 
often far from the actual cause of the problem. For example, 
in our task, the sensor readings were displayed in the 
Arduino IDE but they could be incorrect because of 
miswiring bugs in the sensor or LED connections. Fault 
localization strategies could also be communicated in such 
a development environment, possibly drawing from 



existing troubleshooting checklists (such as [12,42]). 
Additional features could help end users test their circuits, 
by creatively considering possible input values, edge cases 
and testing strategies, akin to WYSIWYT and 
WYSIWYT/ML [8,19]. Approaches in formally verifying 
physical circuits [13] could also be useful in this respect. 

Educating the Physical Computing End-User Developer 

Physical computing is increasingly used within education to 
engage students in STEM subjects. In our study, 
participants' programming expertise was higher than their 
electronics expertise and they seemed to struggle more with 
circuit-related problems. Therefore, we suggest more focus 
on teaching concepts useful to circuit construction, testing 
and debugging. Given the prevalence of miswiring 
problems, end users should be encouraged to follow good 
electronic engineering practice, such as correct color coding 
conventions for wiring their circuits (for example, power is 
always red, ground black, and signals should have different 
colors for different components, as in Figure 2), and not 
crossing wires, if possible, as it makes it harder to debug a 
circuit. It would also be helpful to teach people how to use 
a multimeter, for example, to check for continuity or 
measure current. We provided one in our study sessions but 
only four participants used it.  

Finally, it is still an open question how best to teach 
electronics subjects to end-user developers. Recent work 
has looked at how DIY practices can be supported by online 
tutorials [46]; the careful design of information to help end 
users understand components and tools used in these 
activities seems especially crucial. 

Future Work 

Our study has pointed to a number of open research 
questions that warrant further investigation. First, we did 
not look into how people managed to overcome their 
problems. We noticed that frequently participants simply 
looked up information, copied code from external sources 
or fixed bugs through trial-and-error, and future work could 
specifically focus on the problem-solving strategies of end-
user physical computing developers. We have begun 
analyzing data from the study reported in this paper, to 
identify the strategies employed by the participants, and we 
look forward to sharing our findings. 

Second, we would like to look deeper into what caused the 
problems for participants in terms of shortcomings in their 
knowledge or skills. Recent work [31] has looked into the 
problems that novice programmers face with a view to 
addressing specific aspects that prove particularly 
troublesome and a similar approach might be useful for 
physical computing. Similarly, a key skill in programming 
is abstraction, which might also affect physical computing 
tasks [44]. 

Finally, we hope to implement some of the support 
mechanisms we suggested in a suitable development 

environment for physical computing and assess, in further 
studies with end-user developers, the benefits of doing so.  

CONCLUSION 

This paper reports the results of an empirical study 
exploring the problems encountered by end-user developers 
undertaking a physical computing task that involves both 
circuit construction and programming. We learned that: 

 All participants encountered problems, some more than 
others, however background factors such as self-efficacy 
and self-rated expertise did not predict whether they 
would complete the task, or the number and type of 
problems they experienced. 

 Most problems occurred in programming, however, the 
majority of task failures were due to circuit-related 
problems. Participants did not always realize there was a 
fault or error in their circuit and often incorrectly tried to 
fix the perceived problem through their program. 

 Miswiring and missing electronic components accounted 
for 80% of circuit-related task failures but participants 
had serious difficulties localizing these faults.  

Our study showed that end-user developers would benefit 
from increased support and we suggested two main areas 
where they require help: constructing circuits correctly, and 
diagnosing errors and implementing appropriate fixes.  This 
support can be provided by creating development 
environments that offer in-context advice during the 
construction process, and also by educating end-user 
developers in good practice.  

Physical computing affords new possibilities to create 
artifacts that interact with the world in novel, useful and 
meaningful ways. Understanding how best to provide 
effective support will be an important step towards the 
democratization of physical computing, in which users will 
finally become developers.   

ACKNOWLEDGEMENTS 

We thank our study participants. 

REFERENCES 

1. Swamy Ananthanarayan, Nathan Lapinski, Katie Siek, 
and Michael Eisenberg. 2014. Towards the crafting of 
personal health technologies. In Proceedings of the 
2014 conference on Designing interactive systems 
(DIS '14). ACM, New York, NY, USA, 587-596. 
http://dx.doi.org/10.1145/2598510.2598581  

2. Rafael Ballagas, Meredith Ringel, Maureen Stone, and 
Jan Borchers. 2003. iStuff: a physical user interface 
toolkit for ubiquitous computing environments. In 
Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems (CHI '03). ACM, New 
York, NY, USA, 537-544. 
http://dx.doi.org/10.1145/642611.642705  

3. Massimo Banzi. 2009. Getting Started with Arduino. 
Make: Books, O’Reilly Media, Inc., Sebastopol, CA, 
USA. 



4. Jon Bird, Paul Marshall, and Yvonne Rogers. 2009. 
Low-fi skin vision: a case study in rapid prototyping a 
sensory substitution system. In Proceedings of the 23rd 
British HCI Group Annual Conference on People and 
Computers: Celebrating People and Technology (BCS-
HCI '09). British Computer Society, Swinton, UK, UK, 
55-64.  

5. Tracey Booth and Simone Stumpf. 2013. End-user 
experiences of visual and textual programming 
environments for Arduino. In End-User Development, 
Yvonne Dittrich, Margaret Burnett, Anders Mørch and 
David Redmiles (eds.). Springer Berlin Heidelberg, 
25–39. http://dx.doi.org/10.1007/978-3-642-38706-7_4 

6. Leah Buechley, Mike Eisenberg, Jaime Catchen, and 
Ali Crockett. 2008. The LilyPad Arduino: using 
computational textiles to investigate engagement, 
aesthetics, and diversity in computer science education. 
In Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems (CHI '08). ACM, New 
York, NY, USA, 423-432. 
http://dx.doi.org/10.1145/1357054.1357123 

7. Margaret Burnett, Curtis Cook, Omkar Pendse, Gregg 
Rothermel, Jay Summet, and Chris Wallace. 2003. 
End-user software engineering with assertions in the 
spreadsheet paradigm. In Proceedings of the 25th 
International Conference on Software Engineering 
(ICSE '03). IEEE Computer Society, Washington, DC, 
USA, 93-103. 
http://doi.org/10.1109/ICSE.2003.1201191 

8. Margaret Burnett, Curtis Cook, and Gregg Rothermel. 
2004. End-user software engineering. Commun. ACM 
47, 9 (September 2004), 53-58. 
http://dx.doi.org/10.1145/1015864.1015889 

9. Jill Cao, Scott D. Fleming, Margaret Burnett, and 
Christopher Scaffidi. 2014. Idea Garden: Situated 
support for problem solving by end-user programmers. 
Interacting with Computers 27, 6 (November 2015): 
640–660. http://doi.org/10.1093/iwc/iwu022 

10. Jill Cao, Yann Riche, Susan Wiedenbeck, Margaret 
Burnett, and Valentina Grigoreanu. 2010. End-user 
mashup programming: through the design lens. In 
Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems (CHI '10). ACM, New 
York, NY, USA, 1009-1018. 
http://dx.doi.org/10.1145/1753326.1753477 

11. Deborah R. Compeau and Christopher A. Higgins. 
1995. Computer self-efficacy: development of a 
measure and initial test. MIS Quarterly 19, 2: 189–211. 
http://doi.org/10.2307/249688 

12. Brock Craft. 2013. Ten Troubleshooting Tips. In 
Arduino Projects for Dummies (1st edition). John 
Wiley & Sons, Ltd., Chichester, West Sussex, UK, 
359–367. 

13. Paul Curzon and Ian Leslie. 1996. Improving hardware 
designs whilst simplifying their proof. In Proceedings 
of the 3rd International Conference on Designing 
Correct Circuits (DCC '96), Mary Sheeran and Satnam 
Singh (Eds.). British Computer Society, Swinton, UK. 

14. Irena Pletikosa Cvijikj and Florian Michahelles. 2011. 
The toolkit approach for end-user participation in the 
Internet of Things. In Architecting the Internet of 
Things, Dieter Uckelmann, Mark Harrison and Florian 
Michahelles (eds.). Springer Berlin Heidelberg, 65–96. 
http://doi.org/10.1007/978-3-642-19157-2_4 

15. Allen Cypher, Mira Dontcheva, Tessa Lau, and Jeffrey 
Nichols. 2010. No Code Required: Giving Users Tools 
to Transform the Web. Morgan Kaufmann Publishers 
Inc., San Francisco, CA, USA. 

16. Sarah Gallacher, Jenny O'Connor, Jon Bird, Yvonne 
Rogers, Licia Capra, Daniel Harrison, and Paul 
Marshall. 2015. Mood Squeezer: lightening up the 
workplace through playful and lightweight interactions. 
In Proceedings of the 18th ACM Conference on 
Computer Supported Cooperative Work & Social 
Computing (CSCW '15). ACM, New York, NY, USA, 
891-902. http://dx.doi.org/10.1145/2675133.2675170 

17. Saul Greenberg and Chester Fitchett. 2001. Phidgets: 
easy development of physical interfaces through 
physical widgets. In Proceedings of the 14th Annual 
ACM Symposium on User Interface Software and 
Technology (UIST '01). ACM, New York, NY, USA, 
209-218. http://dx.doi.org/10.1145/502348.502388 

18. Valentina I. Grigoreanu, Margaret M. Burnett, and 
George G. Robertson. 2010. A strategy-centric 
approach to the design of end-user debugging tools. In 
Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems (CHI '10). ACM, New 
York, NY, USA, 713-722. 
http://dx.doi.org/10.1145/1753326.1753431 

19. Alex Groce, Todd Kulesza, Chaoqiang Zhang, Shalini 
Shamasunder, Margaret Burnett, Weng-Keen Wong, 
Simone Stumpf, Shubhomoy Das, Amber Shinsel, 
Forrest Bice, and Kevin McIntosh. 2014. You are the 
only possible oracle: effective test selection for end 
users of interactive machine learning systems. IEEE 
Trans. Softw. Eng. 40, 3 (March 2014), 307-323. 
http://dx.doi.org/10.1109/TSE.2013.59 

20. Björn Hartmann, Scott R. Klemmer, Michael 
Bernstein, Leith Abdulla, Brandon Burr, Avi 
Robinson-Mosher, and Jennifer Gee. 2006. Reflective 
physical prototyping through integrated design, test, 
and analysis. In Proceedings of the 19th Annual ACM 
Symposium on User Interface Software and 
Technology (UIST '06). ACM, New York, NY, USA, 
299-308. http://dx.doi.org/10.1145/1166253.1166300 

21. Dan O'Sullivan and Tom Igoe. 2004. Physical 
Computing: Sensing and Controlling the Physical 



World with Computers. Course Technology Press, 
Boston, MA, United States. 

22. Tom Jenkins and Ian Bogost. 2014. Designing for the 
Internet of Things: prototyping material interactions. In 
CHI '14 Extended Abstracts on Human Factors in 
Computing Systems (CHI EA '14). ACM, New York, 
NY, USA, 731-740. 
http://dx.doi.org/10.1145/2559206.2578879 

23. Vaiva Kalnikaite, Yvonne Rogers, Jon Bird, Nicolas 
Villar, Khaled Bachour, Stephen Payne, Peter M. 
Todd, Johannes Schöning, Antonio Krüger, and Stefan 
Kreitmayer. 2011. How to nudge in Situ: designing 
lambent devices to deliver salient information in 
supermarkets. In Proceedings of the 13th International 
Conference on Ubiquitous Computing (UbiComp '11). 
ACM, New York, NY, USA, 11-20. 
http://dx.doi.org/10.1145/2030112.2030115 

24. Cory Kissinger, Margaret Burnett, Simone Stumpf, 
Neeraja Subrahmaniyan, Laura Beckwith, Sherry 
Yang, and Mary Beth Rosson. 2006. Supporting end-
user debugging: what do users want to know?. In 
Proceedings of the Working Conference on Advanced 
Visual Interfaces (AVI '06). ACM, New York, NY, 
USA, 135-142. 
http://dx.doi.org/10.1145/1133265.1133293 

25. André Knörig, Reto Wettach, and Jonathan Cohen. 
2009. Fritzing: a tool for advancing electronic 
prototyping for designers. In Proceedings of the 3rd 
International Conference on Tangible and Embedded 
Interaction (TEI '09). ACM, New York, NY, USA, 
351-358. http://dx.doi.org/10.1145/1517664.1517735 

26. Andrew J. Ko and Brad A. Myers. 2005. A framework 
and methodology for studying the causes of software 
errors in programming systems. J. Vis. Lang. Comput. 
16, 1-2 (February 2005), 41-84. 
http://dx.doi.org/10.1016/j.jvlc.2004.08.003 

27. Andrew J. Ko, Brad A. Myers, and Htet Htet Aung. 
2004. Six Learning Barriers in End-User Programming 
Systems. In Proceedings of the 2004 IEEE Symposium 
on Visual Languages and Human-Centric Computing 
(VLHCC '04). IEEE Computer Society, Washington, 
DC, USA, 199-206. 
http://dx.doi.org/10.1109/VLHCC.2004.47 

28. Thomas Kubitza and Albrecht Schmidt. 2015. Towards 
a toolkit for the rapid creation of smart environments. 
In End-User Development, Paloma Díaz, Volkmar 
Pipek, Carmelo Ardito, Carlos Jensen, Ignacio Aedo 
and Alexander Boden (eds.). Springer International 
Publishing, 230–235. http://doi.org/10.1007/978-3-
319-18425-8_21 

29. Todd Kulesza, Simone Stumpf, Weng-Keen Wong, 
Margaret M. Burnett, Stephen Perona, Andrew Ko, and 
Ian Oberst. 2011. Why-oriented end-user debugging of 
naive Bayes text classification. ACM Trans. Interact. 

Intell. Syst. 1, 1 (October 2011), 2:1–2:31. 
http://doi.org/10.1145/2030365.2030367 

30. Sandeep Kaur Kuttal, Anita Sarma, and Gregg 
Rothermel. 2013. Debugging support for end user 
mashup programming. In Proceedings of the SIGCHI 
Conference on Human Factors in Computing Systems 
(CHI '13). ACM, New York, NY, USA, 1609-1618. 
http://dx.doi.org/10.1145/2470654.2466213 

31. Michael J. Lee, Faezeh Bahmani, Irwin Kwan, et al. 
2014. Principles of a debugging-first puzzle game for 
computing education. Proceedings of the 2014 IEEE 
Symposium on Visual Languages and Human-Centric 
Computing (VLHCC '14), IEEE Computer Society, 
57–64. http://doi.org/10.1109/VLHCC.2014.6883023 

32. Alan Lesgold, Susanne Lajoie, Marilyn Bunzo, and 
Gary Eggan. 1992. SHERLOCK: A coached practice 
environment for an electronics troubleshooting job. In 
Computer-Assisted Instruction and Intelligent Tutoring 
Systems: Shared Goals and Complementary 
Approaches, Jill H. Larkin and Ruth W. Chabay (eds.). 
Lawrence Erlbaum Associates, Hillsdale, NJ, 201–238. 

33. Henry Lieberman. 2001. Your Wish is My Command: 
Programming by Example. Morgan Kaufmann, San 
Francisco. 

34. Amon Millner and Edward Baafi. 2011. Modkit: 
blending and extending approachable platforms for 
creating computer programs and interactive objects. In 
Proceedings of the 10th International Conference on 
Interaction Design and Children (IDC '11). ACM, New 
York, NY, USA, 250-253. 
http://dx.doi.org/10.1145/1999030.1999074 

35. John F. Pane and Brad A. Myers. 1996. Usability 
Issues in the Design of Novice Programming Systems. 
Carnegie Mellon University, School of Computer 
Science Technical Report CMU-CS-96-132, 
Pittsburgh, PA. Retrieved from 
http://repository.cmu.edu/isr/820 

36. John F. Pane and Brad A. Myers. 2006. More natural 
programming languages and environments. In End 
User Development, Henry Lieberman, Fabio Paternò 
and Volker Wulf (eds.). Springer Netherlands, 31–50. 
http://doi.org/10.1007/1-4020-5386-X_3 

37. James Reason. 1990. Human Error. Cambridge 
University Press, Cambridge England ; New York. 

38. M. Resnick, F. Martin, R. Sargent, and B. Silverman. 
1996. Programmable Bricks: toys to think with. IBM 
Systems Journal 35, 3.4: 443–452. 
http://doi.org/10.1147/sj.353.0443 

39. Dries De Roeck, Karin Slegers, Johan Criel, Marc 
Godon, Laurence Claeys, Katriina Kilpi, and An 
Jacobs. 2012. I would DiYSE for it!: a manifesto for 
do-it-yourself internet-of-things creation. In 
Proceedings of the 7th Nordic Conference on Human-



Computer Interaction: Making Sense through Design 
(NordiCHI '12). ACM, New York, NY, USA, 170-179. 
http://dx.doi.org/10.1145/2399016.2399044 

40. Yvonne Rogers, Jeni Paay, Margot Brereton, Kate L. 
Vaisutis, Gary Marsden, and Frank Vetere. 2014. 
Never too old: engaging retired people inventing the 
future with MaKey MaKey. In Proceedings of the 
SIGCHI Conference on Human Factors in Computing 
Systems (CHI '14). ACM, New York, NY, USA, 3913-
3922. http://dx.doi.org/10.1145/2556288.2557184 

41. Joshua G. Tanenbaum, Amanda M. Williams, Audrey 
Desjardins, and Karen Tanenbaum. 2013. 
Democratizing technology: pleasure, utility and 
expressiveness in DIY and maker practice. In 
Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems (CHI '13). ACM, New 
York, NY, USA, 2603-2612. 
http://dx.doi.org/10.1145/2470654.2481360 

42. Chris Taylor. 2010. Beginner Troubleshooting - 
SparkFun Electronics. SparkFun. Retrieved September 
23, 2015 from https://www.sparkfun.com/tutorials/226 

43. Daniel Tetteroo, Iris Soute, and Panos Markopoulos. 
2013. Five key challenges in end-user development for 
tangible and embodied interaction. In Proceedings of 
the 15th ACM International Conference on Multimodal 
Interaction (ICMI '13). ACM, New York, NY, USA, 
247-254. http://dx.doi.org/10.1145/2522848.2522887 

44. Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and 
Michael L. Littman. 2014. Practical trigger-action 
programming in the smart home. In Proceedings of the 

SIGCHI Conference on Human Factors in Computing 
Systems (CHI '14). ACM, New York, NY, USA, 803-
812. http://dx.doi.org/10.1145/2556288.2557420 

45. Nicolas Villar, James Scott, and Steve Hodges. 2011. 
Prototyping with Microsoft .Net Gadgeteer. 
Proceedings of the Fifth International Conference on 
Tangible, Embedded, and Embodied Interaction (TEI 
'11), ACM, New York, NY, USA, 377-380. 
http://dx.doi.org/10.1145/1935701.1935790 

46. Ron Wakkary, Markus Lorenz Schilling, Matthew A. 
Dalton, Sabrina Hauser, Audrey Desjardins, Xiao 
Zhang, and Henry W.J. Lin. 2015. Tutorial authorship 
and hybrid Designers: The Joy (and Frustration) of 
DIY Tutorials. In Proceedings of the SIGCHI 
Conference on Human Factors in Computing Systems 
(CHI '15). ACM, New York, NY, USA, 609-618. 
http://dx.doi.org/10.1145/2702123.2702550 

47. Maurice V. Wilkes. 1985. Memoirs of a Computer 
Pioneer. The MIT Press, Cambridge, MA, USA. 

48. 123D Circuits Electronics Lab. Autodesk 123D 
Circuits. Retrieved July 12, 2015 from 
https://123d.circuits.io/lab 

49. TMP36 datasheet and product info | Voltage Output 
Temperature Sensors | Analog Devices. Retrieved 
September 21, 2015 from 
http://www.analog.com/en/products/analog-to-digital-
converters/integrated-special-purpose-
converters/integrated-temperature-sensors/tmp36.html 

50. Arduino Starter Kit. Retrieved July 21, 2015 from 
https://www.arduino.cc/en/Main/ArduinoStarterKit 


