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Abstract—The application of high-voltage dc (HVDC) using 

voltage-source converters (VSC) has surged recently in electric 

power transmission and distribution systems. An optimal vector 

control of a VSC-HVDC system which uses an artificial neural 

network to implement an approximate dynamic programming 

algorithm and is trained with Levenberg-Marquardt is introduced 

in this paper. The proposed neural network vector control 

algorithm is analyzed in comparison with standard vector control 

methods for various HVDC control requirements, including dc 

voltage, active and reactive power control, and ac system voltage 

support. Assessment of the resulting closed-loop control shows that 

the neural network vector control approach has superior 

performance and works efficiently within and beyond the 

constraints of the HVDC system, for instance, converter rated 

power and saturation of PWM modulation.  

 

Keywords—VSC-HVDC transmission and distribution; 

renewable energies; neural network; adaptive dynamic 

programming; Levenberg-Marquardt, voltage-source converter 

I.  INTRODUCTION 

VSC-HVDC relies on voltage source converters (VSCs) and 
insulated gate bipolar transistors (IGBT) [1] for the transmission 
and distribution of energy. VSC-HVDC shows distinct 
advantages, namely: low cost, small environmental footprint, 
easy integration of renewables to the transmission grid, and high 
transmission stability and power quality [2].  

Since HVDC transmission using VSC was first installed in 
1997 in Gotland (Sweden) [3], two main manufacturers refer to 
the technology of HVDC transmission using VSCs, namely, 
ABB under the name of HVDC Light [3], with a power rating 
from tenths of megawatts up to over 1000 MW, and Siemens 
under the name of HVDC Plus ("Plus" - Power Link Universal 
Systems) [4]. VSC-HVDC technology has been broadly applied 
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in microgrids and in integration of solar and offshore wind into 
the power transmission system [5, 6].  

Typically, a VSC-HVDC system is controlled via a nested-
loop control, which in turn is built on standard vector control 
methods [5-7]. However, recent studies show that a complete 
decoupled vector control cannot be achieved using conventional 
methods, which affects the performance of the standard vector 
control method, particularly if a converter works beyond the 
PWM (pulse-width-modulation) saturation bound [8].  

It has also been indicated that there are unresolved challenges 
which prevented effective integration of offshore wind to the 
grid using HVDC [9].  It has been shown, on the other hand, that 
an optimal vector control of a grid-connected converter can be 
approximated by using an artificial neural network [10].  

In this paper, a neural network control technique based on 
approximate dynamic programming principles which meets 
various HVDC control requirements is presented. The paper 
makes the following new contributions:  

1) a neural network control strategy for VSC-HVDC 
systems  

2) neural network design and training that can handle 
VSC-HVDC control requirements properly under 
physical system constraints, and  

3) comparison of standard and neural network control 
methods for power control and management of a 
HVDC transmission system.  

With this aim in mind, we first specify the configuration of a 
VSC-HVDC system in the next section. Section III shows both 
the standard and a novel neural network vector control 
topologies for HVDC inverter and rectifier stations. The training 
of the neural network vector controller is discussed in Section 
IV. Performance of a VSC-HVDC system by using the 
conventional and neural network vector control methods is 
discussed in Sections V for different HVDC operating 
conditions. We shall finish with conclusions. 
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Fig. 1. Configuration of a two-terminal VSC-HVDC transmission system

II.  CONTROL OF VSC-HVDC SYSTEM  

A.  VSC-HVDC Transmission  

Transmission in VSC-HVDC involves VSC-based 
converter stations and a high-voltage dc transmission system 
[5, 6].  

The stations need to efficiently regulate their reactive 
power or ac system voltage support control and their active 
power or dc system voltage control [11]. While each of the 
converter stations controls its reactive power independently, 
the active power entering the HVDC system must be equal to 
the resultant active power leaving it [12].  

In the HVDC system, one station is built to control the 
voltage of the dc system where as the other VSC stations 
control the active power.  

Figure 1 shows a schematic a VSC-HVDC system with 
two stations. The stations are connected to an ac system via a 
phase reactor and a transformer. An ac filter is used on each 
side of the ac system to reduce or eliminate the harmonics 
entering the ac systems. Regarding dc, the stations are 
connected to a capacitor bank. Stations work as a rectifier and 
an inverter respectively.  

 

 

Fig. 2. Design of a VSC station 

 

B.  VSC Station Model in d-q  

Figure 2 details how a VSC station is connected to an ac 
system, in which a capacitor is connected across the dc side of 
the VSC, the composition of a resistor R and an inductor L 

represents the phase reactor, and a three-phase voltage source 
stands for the voltage at the Point of Common Coupling 
(PCC). In the d-q reference frame [7, 8], the VSC-HVDC 
system is represented by  

1

1

1 1d d d ds

q q q qs

i i v vR Ld
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where ωs is the angular frequency of the ac system voltages 
and the rest of the symbols in Eq. (1) are consistent with those 
indicated in Fig. 2, e.g., va,vb,vc↔vd,vq; ia,ib,ic↔id,iq; and 
va1,vb1,vc1↔vd1,vq1. 

C.  Vector Control of VSC Stations  

The general VSC vector control method deploys a nested-
loop structure with inner and outer current loops, the former 
being faster than the latter, as shown in Fig. 3 [5, 13]. Active 
power or dc voltage is controlled through the d-axis loop, 
whereas, the q-axis loop controls the reactive power or PCC 
voltage. 

The power controllers generate d- and q-axis references to 
the inner current-loop controller where as the inner controller 
applies a three-phase sinusoidal voltage signal directly to the 
VSC converter [5].  

The overall strategy for the conversion of d-q signals into 
three-phase sinusoidal signals is illustrated in Fig. 3, in which 
vd1

* and vq1
* are d- and q-axis output voltages.  

The d- and q-axis voltages are transformed to the three-
phase sinusoidal voltage signals, va1

*, vb1
* and vc1

*, through 
Park transformation [8]. 

 

 

Fig. 3 Common vector control structure of HVDC VSC 
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III.  STANDARD AND NEURAL NETWORK CONTROL 

STRUCTURES 

A.  Conventional Standard Vector Controller 

Figure 4 shows the standard vector control structure as 
applied to a VSC [5, 13]. Since the absolute decoupling 
between d- and q-axis loops is impossible, the conventional 
vector control has a competing control nature [8], which may 
derogate the controller or system performance (see the 
evaluation shown in Section V). The design of the inner 
current-loop controller results from editing Eq. (1) as 

( )1d d d s q dv R i L di dt L i vω= ⋅ + ⋅ − ⋅ +       (2) 

( )1q q q s dv R i L di dt L iω= ⋅ + ⋅ + ⋅         (3) 

where the bracketed term of (2) and (3) represents the state 
equation between the voltage and current on d- and q-axis 
loops; the rest are compensation terms [14, 15].  

 

 
Fig. 4.  Conventional standard vector control structure 

There are a number of items that need to be analyzed in the 
conventional vector control design:  

1) To avoid that the VSC exceeds the PWM saturation 
limit, Eq. (4) is used [16], where vd1_new

* and vq1_new
* are the 

modified controller d- and q-axis voltages, and Vmax  is the 
maximum allowable dq voltage. 

( ) ( )* * * *

1_ max_ 1 1_ max_ 1cos sind new GSC dq q new GSC dqv V v v V v= ∠ = ∠ (4) 

2) To avoid that the VSC exceeds the rated current limit, Eq. 
(5) is used, i.e., a strategy to keep the d-axis current reference 
id

* constant to retain active power or dc-link voltage control 

effectiveness where as changing the q-axis current reference 
iq

* to meet the requirements of the support control [16]. 

( ) ( ) ( )
2 2

* * * * * *

_ _ _maxsignd new d q new q dq di i i i i i= = ⋅ −      (5) 

B.  Neural Network Vector Controller 

The neural-network vector control architecture of a VSC is 
shown by Fig. 5. The neural network implements the fast inner 
current loop control function.  

Unlike a conventional PI-based controller, the neural 
network is trained to approximate optimal control. The neural 
network, a.k.a. the action network, is applied to the VSC 
through a PWM mechanism to regulate the converter output 
voltage va1,b1,c1 in the three-phase ac system (Fig. 3). The ratio 
of the output voltage added by a VSC to the output of the 
action neural network is a boost of kPWM, Vdc/2 if the amplitude 
of the triangle voltage waveform is 1V [17].  

For digital control implementation using an artificial neural 
network, the system as given by Eq. (1) is converted to the 
discrete state-space model in Eq. (6) [18], where Ts represents 
the sampling period, k is a time step, and F and G are the 
system matrix and the control matrix respectively.  

The discrete system model in Eq. (6) can be rewritten in 
the vector way as shown by Eqs. (7) to (9). 
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Fig. 5. Neural network vector control architecture of a VSC-HVDC converter station 
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each time step k in Eq. (9), where
  

!
i
dq

represents actual dq 

current vector of ac system, and 
   
e

dq

! "!

 and s
dq

! "!

represent error 

current and integral of the error current as shown in Fig. 5. 
The integral term can help to remove the steady error and to 
maintain the stable operation of the converter when the 
converter has a potential to go over the PWM saturation limit. 
This is analyzed in Section V-B. 

IV.  DETERMINE CONTROLLER PARAMETERS 

A.  Tuning PI Parameters of Standard Vector Controller 

The tuning of the conventional current-loop PI controller is 
based on Fig. 6. Here, the PI block stands for a d- or q-axis 
loop current controller, and 1/(L⋅s+R) represents the plant 
transfer function for a d-or q-axis current loop (Eqs. (2) and 
(3)) [8, 19, 20].  kFB_I  is the gain of the feedback path, for 
example, then gain of a current sensor; and kPWM is the gain of 
the power electronic converter.  Based on Fig. 6, the best 
possible gain of the PI controller can be tuned conveniently 
with Matlab Simulink. However, there are only two 
parameters that can be tuned for each PI controller. 

 
Fig. 6.  A system block diagram for design of current-loop PI controller 

B.  Training Neural Network Vector Controller  

The neural-network vector controller was trained using 
dynamic programming (DP) principles, aiming to approximate 
optimal control. DP employs Bellman’s Principle of 
Optimality [21, 22, 23]. The typical structure of a discrete-
time DP problem includes a performance index, or cost 
function, and a discrete-time system mode [23]. The DP cost 
function which we used for this VSC vector-control problem 
was defined as: 
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where γ  is a constant referred to as the discount factor, and U 
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and where α is a constant. The function C(⋅) is referred to as 

the cost-to-go function from the given state 
   
i
dq
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( j)  and time 

step j of the DP problem. The objective of the neural network 
controller is to track a reference current trajectory in an 

optimal manner, i.e., to hold the actual state 
  

!
i
dq

near a target 

state
   

!
i
dq

*  so that the function C(⋅) in Eq. (10) is minimized. The 

neural network was trained by using Levenberg-Marquardt 
(LM) [24] to minimize the DP cost C(⋅). We chose the LM 
algorithm because it is particularly suited to situations in 
which the model functions are known and differentiable, and 
because it is the fastest neural network training algorithm for a 
moderate number of network parameters. The use of LM 
requires a modification of the cost function C(⋅) defined in Eq. 
(10), as follows: Consider the cost function 
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Then, the process of updating the weights using LM [24] 
for the neural network controller can be expressed as: 
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The parameter µ was adjusted dynamically during training, 
so as to ensure that cost function always decreased. In order to 
increase the speed of computation, the weights update in Eq. 
(15) was conducted using Cholesky factorization [25]. To train 
the action network, the system data associated with Eq. (1) 
such as R, L, vd, and vq were specified. Before training, the 
weights of the neural network were randomized with a 
Gaussian distribution of mean zero and variance 0.1. The 
training procedure for the current-loop action network 

involved: 1) randomly generating a sample initial state 
   
i
dq

!"!

(1);

2) unrolling the trajectory of the system from the initial state 
using (7) to (9); 3) randomly generating a changing sample 
reference dq current time sequence; 4) training the current-
loop neural network using Eq. (15) iteratively, to minimize the 
cost function given by Eq. (10); and 5) iterating over all of the 
sample initial states and reference sequences, until a stopping 
criterion associated with the DP cost was met. The training 
considered the physical system constraints, rated current and 



 

 

 
Fig. 7.  A VSC-HVDC system with feedback control built in MATLAB SimPowerSystems and RT-LAB

PWM saturation and the impact of variable phase reactor 
values. This training process resulted in a neural network 
capable of handling VSC control, under the distorted or 
imbalanced PCC voltage conditions and short circuits in ac or 
dc system, as described further in Section V-C. 

V.  RESULTS 

In order to assess the performance of the conventional and 
neural network methods, we developed a VSC-HVDC system 
in SimPowerSystems (Fig. 7) (parameters in Appendices). A 
three-level neutral-point-clamped VSC was adopted in order 
to guarantee power quality at the stations [26]. Each VSC 
station includes a phase reactor and ac filters on the ac system 
side and capacitors, filters and smoothing reactors on the dc 
system side as shown by Fig. 8. The parameters of a VSC 
station are given in Table 2. The PI gains of outer-loop 
controllers and inner current-loop controllers of the 
conventional method are given in Table 3. Major 
measurements include voltages, currents, and active and 
reactive powers at PCC1 and PCC2, and dc capacitor voltages.  

 
Fig. 8. Components of a VSC station 

A.  Control of Power Transmission between VSC Stations 

Figures 9 and 10 compare the performance of the HVDC 
system utilizing both control approaches. At the beginning, the 
two breakers are in open position and the dc transmission lines 
are charged to 168kV by ac system 1 through the resistor in 
parallel with Breaker 1 and the inherent diodes in parallel with 
the IGBT switches of VSC station 1. After Breaker 1 is closed 
at t=2s, the dc voltage is regulated quickly to 200kV, the 
reference value, using the neural network vector controller 
(Fig. 9c) without a high over current (Fig. 9d). At t=4s, 
Breaker 2 is closed and a 20MW is delivered to ac system 1 
from ac system 2, which causes the dc system voltage to 
increase. With the neural network controller, the dc system 
voltage is quickly stabilized at 200kV. At t=8s, the power 
demand at the VSC-station 2 changes requiring 20MW from 
ac system 1, resulting in a high dc voltage drop. But, the 
neural network controller rapidly stabilizes the dc voltage. For 

all the other conditions, the neural network controller shows a 
fast response speed with low current and voltage oscillations. 
The standard vector controller shows similar performance for 
power transmission control between the two VSC stations 
(Fig. 10). Compared to the neural network vector controller, 
the standard vector controller shows higher oscillations (Figs. 
9c and 10c, Figs. 9d and 10d). This is due to the fact that the 
control action generated by the standard PI controller is 
determined by the error between the control parameter and the 
corresponding reference value. Hence, there must be 
overshoot and settling time issues associated with a PI-based 
controller. However, the neural network controller is designed 
and trained based on the DP-based optimal control principle. 
For an ideal optimal controller, a reference command can be 
reached immediately without any delay and overshoot. But, 
this cannot be achieved practically because of physical system 
constraints. The neural network controller tries to approximate 
an ideal optimal controller within the physical system 
constraints. Therefore, the neural network controller has the 
advantages for fast power transmission control between VSC 
stations with small oscillations as shown by Figs. 9 and 10. 

B.  Power Transmission and PCC Voltage Control  

Now the d-axis loop is employed for active power control 
while the q-axis loop for PCC voltage control. Figs. 11 and 12 
show how the neural network and conventional standard 
vector controllers perform under normal operating condition; 
Fig. 13, on the other hand, contrasts the activity of the neural 
network and conventional controllers under a fault in ac 
system 1 that appears between 3sec and 7sec. The active 
power condition is the same as that used in Figs. 9 and 10. For 
normal operating condition, the neural network and standard 
controllers perform similarly. However, under the faulted 
condition, a high reactive power is necessary to rise the PCC 
voltage, which may cause the converter exceed its PWM 
saturation limit.  

Under the faulted condition, the standard vector controller 
enters into a malfunction state (Fig. 13d). This is because 
standard control methods are inherently competing (Section II-
A). As a result, when the PWM saturation limit is surpassed, 
the competing control balance is affected and the control 
stability of d- and/or q-axis loop could lose. A typical 
approach to prevent the malfunction of the standard controller 
is to set a limit on the highest generating reactive power that is 
allowed. However, the actual real-time reactive power limit is 
affected by system conditions such as PCC



 

 

 
a) Active and reactive power at PCC1 

 
a) Active and reactive power at PCC1 

 
b) Active and reactive power at PCC2 

 
b) Active and reactive power at PCC2 

 
c) dc voltages at VSC1 and VSC2  

 
d) Current waveform at PCC1 
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Fig. 9. Neural network control performance Fig. 10. Conventional control performance 

 
a) Active and reactive power at PCC1 

 
a) Active and reactive power at PCC1 

 
b) Bus voltage at PCC1 

Fig. 11. Neural network control performance 

 
b) Bus voltage at PCC2 

Fig. 12. Conventional control performance 

voltage etc, which causes a challenge to the conventional 
standard vector controller. 

For the neural network controller, the sigmoid function of 
the network automatically turns the d-axis voltage of the 
controller into saturation when the PWM saturation appears 
due to the need of large reactive power. Thus, such power is 
locked at the maximum generating reactive power according 
to real-time condition for the highest possible PCC voltage 

support control (Fig. 13a) while the control of the active 
power or dc voltage still keeps the normal control mode (Fig. 
13c), which overcomes the challenge of the standard controller 
and improves VSC-HVDC reliability and stability.  

C.  Control under Unbalanced Fault 

An unbalanced fault is caused by either one-phase or two-
phase short circuit in an ac power system. Fig. 14 compares 
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a) Neural network: active and reactive power at PCC1 

 

b) Conventional: active and reactive power at PCC1 

 

c) Neural network: dc voltages at VSC1 and VSC2 stations 

 

d) Conventional: dc voltages at VSC1 and VSC2 stations 

 

e) Voltage at PCC1 

 
a) Unbalance voltage at PCC1during a fault 

 

b) Neural network: three-phase current at PCC1 

 

c) Conventional: three-phase current at PCC1  

 

d) Neural network: dc voltages at VSC1 and VSC2 stations 

 

e) Conventional: dc voltages at VSC1 and VSC2 stations 

Fig. 13. Performance evaluation under a balanced fault in ac system Fig. 14. Performance evaluation under an imbalanced fault in ac system 

the performance of the neural network and standard 
controllers under a one-phase fault appeared at PCC1 between 
3sec and 7se. All the other conditions remain the same as 
those used in Fig. 13. The unbalanced fault made the control 
of VSC-HVDC more challenging. Both neural network and 
conventional controllers show oscillation during the fault 
period. Similar to Fig. 13, the standard controller could lose 
stability while the neural network controller is stable during 
the unbalanced fault conditions, demonstrating a good 
adaptive capability 

VI.  CONCLUSIONS 

In this paper, a neural network vector control mechanism is 
presented and compared with the standard vector control 

method for VSC-HVDC control. The neural network 
controller is trained based on dynamic programming to 
approximate the optimal control while the standard controller 
is based on the PI control principle. The neural network 
controller shows a smaller overshoot and responds faster 
compared to the conventional controller.  

In the PCC voltage support control mode, the conventional 
standard controller may enter into a malfunction state 
especially under a high voltage drop at the PCC bus, which 
may affect the stable operation of the HVDC system. The 
neural network controller can overcome this limitation by 
achieving the highest possible PCC voltage support control 
while the control of the active power or dc voltage is not 
affected.  
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For an unbalanced fault in the ac system, both neural 
network and conventional controllers show oscillation during 
the fault period. The standard controller may lose stability 
while the neural network controller is stable even under the 
unbalanced fault conditions, demonstrating an excellent 
adaptive capability of the neural network controller. 

APPENDICES 

Table 1. Network data (Fig. 7) 
Component Parameter Value 

AC system 
1 & 2 

Line voltage 100kV 
Frequency 60Hz 

Equivalent resistance 7.6mΩ 
Equivalent inductance 0.154mH 

DC system 

Voltage +/- 100kV 
Frequency for Pi 
line specification 

60Hz 

Pi line R, L, C 
0.0139Ω/km, 
159µH/km, 
0.231µF/km 

Pi line length 75km 
 

Table 2. VSC components, parameters (Fig. 8) 
Component Parameter Value 

Power converter Switching frequency 6000Hz 

Grid-filter 
Resistance 0.75Ω 
Inductance 0.24H 

DC Capacitor Capacitance Cp, Cn 70 µF 

DC filter 
(3rd harmonic) 

Capacitance Cp, Cn 12 µF 

Inductor (R, L) 
0.1474Ω, 
32.6mH 

Smoothing reactor Inductor (R, L) 
0.0251Ω, 

8mH 

Table 3. VSC controllers, parameters 
(kp – proportional gain, ki – integral gain) 

Approach Controller Gain (kp / ki) 

Conventional 

Current loop 6.7 / 151.6 
dc voltage 0.0136 / 0.445 

AC bus voltage 
Variable depending on 

voltage error signal 

Neural  
network 

Current loop Neural network 
dc voltage 0.0136 / 0.445 

AC bus voltage Same as the conventional 
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