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                                        ABSTRACT 
 

One of the main goals of Smart grid is to achieve Demand Response by increasing the end 

users’ parti ipatio  i  de isio -making and increasing the awareness that will help 

consumers to efficiently manage their energy consumption. However the existing demand 

response (DR) mechanism reduces power consumption based on predetermined policies of 

load priority (direct load control and pricing techniques) during the peak times without 

considering consumer comfort and environmental issues. Demand response has been 

a hie ed  for efull  shutdo  the o su ers’ loads during peak hours which violate 

users’ comfort life style. This is due to lacking of intelligent energy management system and 

smart automation tools at home level.  

The main objective of this thesis paper is to develop a model based intelligent decision 

supporting Energy Management system which will understand the customer consumption 

behaviours while simultaneously reduce the energy consumptions. To achieve these, a Fuzzy 

Multi Criteria Decision Making (MCDM) based load controller has been developed to 

prioritize the o su ers’ preferences and to take decision on behalf of the consumers in 

order to best manage the use of their appliances. The Fuzzy Multi Criteria Decision Making 

(MCDM) methodology has been used because it can solve decision and planning problems 

involving multiple criteria. 

Furthermore a comparative analysis for the power consumption and cost saving 

performance is carried out to show the benefit of using renewable energy sources along 

with the proposed fuzzy MCDM based load controller. Simulation results show that the 

proposed load controller successfully limits the power consumption during the peak hours 

and concurrently maximizes the savings of energy consumption cost without violating 

consumer comfort level. 

 

 

Index Terms – Smart meter, Direct Load control, Mathlab – Simulink, Smart Grid, Energy savings, 

Fuzzy logic techniques. 
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                          CHAPTER   
                                                     INTRODUCTION 

 

A power grid has four segments: generation, transmission, distribution and demand. 

Demand side management systems are receiving a growing attention in the development of 

the future smart grid. Line losses are proportional to the current squared, so it is easily 

understandable that a grid is more energy-efficient with low demand, and therefore load 

redu tio  is a  o ious a  of i pro i g a grid’s e erg  effi ie . Flatte i g the de a d 

curve is another way of making a grid more energy-efficient. To understand this, consider a 

load that draws a current of 2i for half of the day, but no current for the rest of the day, and 

thereby incurring a line loss that is proportional to (2i)2 ×.5  day. Considering another load 

that draws a current of i throughout the day, and thereby incurring a line loss that is 

proportional to i2 × 1 day, the latter load which represents a flat demand incurs half line 

loss. Therefore, a flat demand curve is better for energy efficiency, and also better for 

infrastructure utilization.  

 

1.1 The structure of the report 

This research report has divided into six chapters. Chapter 1 describes about the existing 

Demand side management (DSM) techniques and classifications. The Demand side 

management (DSM) communication techniques using Advance meter infrastructure has also 

described in here. Chapter 2 contains main Research problems finding, Research 

Methodologies and Research objectives. In this chapter some key points of solving the 

current research problems have been proposed. Chapter 3 contains literature reviews. In 

chapter 4 describes the developed intelligent residential energy management model with 

the maximum and minimum energy cost functions. The AC modelling, Battery and Water 

heater modelling for the residential building has also included in this chapter. Chapter 5 

contains simulations and case study. The development of Fuzzy Multi Criteria Decision 

Making (MCDM) load controller using Mathlab simulation software has described in this 
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chapter. Also a case study has been carried out to compare different load management 

techniques’ e erg  redu tio  a d ost savings performances.  Chapter 6 contains discussion 

and conclusion.  

 

 

1.2 Definition of Demand side Management 

  

The concept of Demand Side Management (DSM) in power systems [1] is to bring both 

supplier and consumer around a common platform to discuss for effective utilization of 

available electrical energy with minimum inconvenience and maximum profit. For effective 

use of DSM at consumer level the home electrical appliances need to inquire the 

instantaneous price and decide the efficient consumption of power without violating the 

consumer comfort. The power consumption in buildings represent a 30-40% of the final 

energy usage, which is mostly caused by: HVAC (Heating, ventilation and air conditioning), 

lighting and appliances with any connection to the power grid. Recent research shows that 

20%–30% of building energy consumption can be saved through optimized operation and 

management without changing the structure and hardware configuration of the building 

energy supply system [2]. Smart appliances and pricing or a direct reduction of energy for a 

particular type of appliance can shave local area peaks and play a significant role in reducing 

utility costs [3]. 

 

 

 

 

 

 

 

             Figure 1.1 Approximate power consumption in a typical house [4]. 

 



 

 4 

45% of total energy is consumed by the HAVC systems (figure 1.1).  Therefore it is very 

important to control the AC and heating system energy consumptions. 

 

 

1.3Classification of Demand Response 

Demand Side Management (DSM) is Called Demand Response (DR) in the deregulated 

power markets. Demand response programs can be roughly classified into two groups 

according to the party that initiates the demand reduction action: 

 Price-based DR programs: These are the programs where the tariff fluctuates 

according to the real-time cost of electricity. Examples are critical peak pricing and 

time-of-use pricing. In critical peak pricing (dynamic peak pricing), customers are 

notified in advance of critical peak times – limited to several days per year – during 

which the tariffs will be much higher than average. In time-of-use pricing, the tariff 

varies with different time blocks of the day. 

 Incentive-based DR programs: These are the programs where a utility rewards its 

customers for their participation. Examples include peak-time rebate and direct load 

control. A peak-time rebate program offers a credit or rebate to customers who 

reduce usage during critical peak hours. Direct load control is a program by which 

the progra  operator re otel  shuts do  or les its usto ers’ applia es e.g., 

electric water heaters) on short notice.  

 

Price-based programs (TBP) can be divided into three categories: 

1. Time-of-use program (TOU) 

In TOU program, the price of electricity is calculated at least in peak, off-peak and base load, 

based on the energy cost in each period [5]. These tariffs could change in hours of a day, 

days of a week or in different seasons of a year (Figure 1.2). 
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                                  Figure 1.2 An illustration of TOU program [5]. 

 

2. Critical Peak Pricing program (CPP) 

CPP is a combination of TOU and flat rate pricing programs (Figure 1.3). This program is 

based on the real time cost of energy in peak price periods, and has various methods in 

implementation. 

 

                  Figure 1.3 An illustration of critical peak pricing (CPP) program [5]. 

 

3. Real Time Pricing program (RTP) 

In RTP program, electricity price is calculated based on hourly energy cost. RTP links hourly 

prices to hourly changes in the day-of (real-time) or Day-Ahead cost of power. RTP is 

implemented by two methods: one-part RTP and two-part RTP. The price is calculated in an 

hour or a fraction of an hour basis in the one-part RTP (Figure 1.4). In the two-part RTP a cap 
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consumption is defined for the customers, in which the electricity price is different 

whenever the consumption is below or above the mentioned cap. 

 

                            Figure 1.4   Real Time Pricing Program [5]. 

 

1.4 Demand side management using Advance meter infrastructure (AMI) 

Advanced metering infrastructure (AMI) is an important component of Demand Side 

Management (DSM) which helps in realizing the interaction of consumers and power 

systems [6]. AMI is not a single technology, but rather an integration of many technologies 

(such as smart metering, home area networks, integrated communications, data 

management applications, and standardized software interfaces). The two-way 

communications, advanced sensors, and distributed computing make AMI possible to 

provide both consumers and system operators the information and means to make decision 

or choice leading to the improvement of the efficiency, reliability and safety of power 

delivery, and usage [7].  
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   Figure 1.6 Demand side management using Advance meter infrastructure (AMI)[8] 

This infrastructure includes home network systems (including communicating thermostats 

and other in-home controls), smart meters, and communication networks from the meters 

to local data concentrators. 

 

1.5 Demand side Management technique 

The DSM techniques are more useful and most effective in real time pricing environment. A 

large number of DSM techniques are available. The most popular are [9]: 

a) Load priority techniques 

b) End use equipment control 

c) Peak Clipping Valley Filling 

d) Differential Tariff 

a) Load Priority Technique [LPT]. 
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The loads are classified into interruptible and non-interruptible loads [10]. Non-interruptible 

loads are important loads and interruptible loads are non-vital loads. The success of LPT is 

totally dependent on the development of various load priorities for operation which will not 

disturb the production schedule and gives enough scope of reduction of load demand [11]. 

                                                              
                                                            Figure 1.7 Load shifting [10]  

 

 

b) End Use Equipment Control: 

It deals with the control operation of various end use appliances for better utilization of 

available resources without effecting the production and supply [12]. This is one of the most 

active areas of DSM Technology development. 

                                                                
                                                               Figure 1.8 Conservation [10] 

 

c) Peak Clipping and Valley Filling: 

The consumers demand curve consists of peaks and valleys. Reduction of peak demand 

reduces the demand charges of the consumer. Peak clipping is achieved by direct control of 

equipment’s which are responsible for the peaks. It helps in matching the available power 

with the demand without going for additional generation, thereby reducing capital charges, 

fuel charges and operation charges. 

                                                              
                                                          Figure 1.9 Peak Clipping [10] 
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The principle involved in valley filling is to build up load or consume power during light load 

periods of supply system [12]. This results in high efficiency and lower cost of operation 

because of improved load factor or energy efficiency of the system. This flattens the load 

curve more. In this way this technique helps in reducing the peaks and improving load 

factor. 

                                                              
                                                             Figure 1.10 Valley Filling [10] 

 

d) Differential Tariff: 

Different tariffs are employed in order to flatten the load curve. As the variable load has 

some peaks and valleys, the supplier must install his equipment which will be capable of 

supplying the peak load of consumptions. However during valley period, the equipment will 

be underutilized thereby decreasing the energy efficiency of equipment [12]. Hence, the 

supplier will insist or will try by all their possible means to utilize the equipment to its rated 

capacity for the entire duration whenever it is in the commissioned state [13]. With this 

type of tariff, the consumer will try to consume more energy during valley periods by 

avoiding energy consumption during peak hours.  
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                                                    CHAPTER  

                        IDENTIFICATION OF CURRENT PROBLEM 

 

2.1 Problem formulation 

 

The recent growing attention is focused on the luxurious means of comfort, the trend going 

on with electronic goods for maximum applications giving rise to heavy growth in the 

demand. The production of the energy is being same, giving rise to problems like heavy 

power cut in the peak hours. One of the options left is to utilize the available electrical 

power very effectively at customer side, i.e, at home level where each user is able to play his 

own active part in order to achieve Demand Response.  

In this case home users can participate in demand response by reducing their energy 

consumption during the peak hours by assigning the priorities to the loads in the respective 

time. However lacking of intelligence in home energy management and smart automation 

tools have made more complex to schedule of multiple devices and manual device control is 

inefficient and unattractive to residents [14]. As an example during peak hour if a consumer 

wants to turn on AC while other electrical appliances are running, i.e. washing machine, 

dishwasher etc. The consumer has to pay more bills in order to carry on his/her preferred 

consumptions. To save energy bills and participate in demand response program the user 

has to turn off either AC or other appliances which actually violating the consumer 

preferences and comfort. In this scenario the user needs an intelligent decision supporting 

energy management s ste  that aptures the user’s prefere e a d eha iour a d the  

assist them to reduce energy consumptions. Therefore, implementing of the intelligent 

residential energy management system can play important role in demand side 

management. 

According to the Smart grid context the requirements of implementing DSM the design 

principles should be carried out as follows [11]: 
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1) Interacting between the grid and users should be involved in the system design, that 

is, the users can actively adjust their electricity consumption in response to the real-

time price according to their own characteristic. 

2) Design of the system should aim to change the way of using electricity and improve 

the energy efficiency so as to optimize the management of Demand Side. 

3) The system should provide user comprehensive information on historical and time of 

use electricity in order to interact actively with user and then make decision 

rationally. 

4) Intelligent DSM system should be helpful to solve a series of resource and 

environmental problems so as to realize the energy conservation and emission 

reduction, that is, to ease the pressure of increasing peak-valley difference, coal 

consumption, generation cost, generating hours and reliability, etc. 

5) The system should be designed to meet various demands and respond to several 

factors. 

 

2.2 Research Problems and proposed solutions: 

The major challenge is to minimize the power consumption and cost of energy by optimizing 

the operatio  of se eral loads ithout iolati g usto er’s o fort. The uncertainty in the 

householders’ prefere es i reases the u ertai t  of applia e prioritization and the 

difficulty of determining consistency of preferences.  

Existing demand response (DR) mechanism (i.e. direct load control and pricing technique) 

reduces power consumption according to predetermined policies of load priority during the 

peak times but does not consider consumer comfort, economic condition and 

environmental situation. Pricing techniques significantly reduce high power consumption 

during peak hours. However, a significant proportion of residential customers are non-

responsive to price [15], and higher prices discriminate against lower income households. 

Also the household’s de a d respo se to pri e de reases as household i o e i reases 

[16].  

Most of the research has been done to achieve demand response with price efficiency and 

less progress has been made to achieve demand response (DR) effectiveness on the 

customer-side. However none of them has proposed any solution for following questions:  
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a) An Intelligent decision supporting energy management system which works on 

behalf of the customers when consumers are not well trained and too passive to 

change their consumptions behaviour during peak to off peak hours.  

b) Direct load control is nowadays popular in controlling the demand response which 

utilities use to force the consumer to switch off the appliances or postpone their 

energy consumption during peak hours. However no alternative solutions have been 

made to understand the consumer comfort level while simultaneously reduce the 

consumptions of energy. 

c) Most of researches have proved the benefit of renewable energy sources in 

controlling the demand response. However no approach has been proposed to 

encourage the customers increase the use of renewable sources and simultaneously 

shift their dependence on them. 

 

To overcome this, home energy management system need to design such way that 

consumer can decide whether their energy consumption is cost effective or comfort life 

style. For the dynamic pricing system it is difficult for the customer to know if their 

consumptions decisions are effective and efficient and more often customers are too 

passive to participate in the DR program [17]. In this case the system needs to be more 

intelligent to make a decision on behalf of the customers to increase the reliability of the 

service. The home intelligent system need to capture the outside variables like price signals, 

environmental conditions, control signals such as direct load control, demand reduction 

from the DMS and available Renewable Energy Sources through Smart meter. 
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2.3 Research Objectives 

The main objective is to develop an intelligent decision supporting home energy 

management model where three optimization parameters – comfort, cost and demand 

response will be satisfied.  

Steps: 

 Develop a Fuzzy Multi Criteria Decision Making (MCDM) load controller to optimize 

the operation of different home electrical appliances without violating the consumer 

comfort while minimizing the energy consumption.   

 

 Develop mathematical models to optimize energy cost and saving according to the 

consumer consumption behaviours.  

 

 Use Mathlab-Simulink to build Fuzzy Multi Criteria Decision Making (MCDM) load 

controller. 

 

2.4 Research Methodology  

The research methodology that was followed is concentrated in following steps: 

 Performed fundamental studies to familiarize about the research area. 

 Performed literature reviews to identify the current research problems. 

 Proposed model based intelligent residential energy management system to 

overcome existing issues. 

 Implement Mathlab-Simulink to develop Fuzzy Multi Criteria Decision Making 

(MCDM) load controller.  
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                                                           CHAPTER  

                            LITERATURE REVIEW 
 

 

Many researchers have done research on achieving demand response. Most of the 

researches have been done to achieve demand response by using smart pricing techniques 

and direct load control. Less progress has been made to achieve demand response (DR) 

considering consumer comfort life style.   

Among different techniques considered for DSM (e.g., voluntary load management 

programs or direct load control), smart pricing is one of the most effective tools that can 

encourage users to consume wisely and more efficiently. Several pricing methods have 

already been proposed (e.g., flat pricing, peak load pricing, adaptive pricing.  

Based o  ea h user’s prefere es a d e erg  o sumption patterns a novel Vickrey Clarke 

Groves (VCG) mechanism has been used [18] each user is equipped with an energy 

consumption controller (ECC) as part of his smart meter. This proposed VCG mechanism 

improves the performance of the system by encouraging users to reduce their power 

consumption and shift their loads to off-peak hours. However, in this proposed VCG 

mechanism for DSM programs to encourage efficient energy consumption among users by 

load shifting and Pick load reducing however this e ha is  has ’t described the possibility 

of the customers to join in energy biding program. This mechanism assumed customers as a 

price taker which means customers are only considered as a energy consumer not as a 

provider. 

Hongming Yang and  Yeping Zhang [6] proposed model indicates the importance of 

electricity price and the great impact of use-of-time price on the total quantity of power 

demand and curve shape of power load in demand side management. It showed that by 

increasing the capacity or energy price the total power demand, output value and power 

consumption of unit output value will decrease.  If the electricity price increases 2.25 times, 

the maximum load reduces from the peak load to the valley load. This proposed model only 

described how the total consumption of the electricity will decrease by implementing higher 
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electricity consumption prices but it did ’t o sider the consumer satisfaction as well as the 

efficient use of energy. 

The paper presented in [19] utilizes system dynamics theory to establish the dynamic model 

of demand side management, which consists of internal and external structure among the 

power demand, the two-part electricity price, the output value of customers, technology 

development and economic situation based on computer simulation of many differential 

equations with feedback and time delays. By using this model, the policies of electricity 

price, such as the ratio of capacity and energy fees in the two-part electricity price, the r By 

using model, it can been seen that increasing the capacity or energy price, the total power 

demand, output value and power consumption of unit output value decrease, which 

indicates the importance of electricity price and the great impact of use-of-time price on the 

total quantity of power demand and curve shape of power load in demand side 

management. Ratio of peak and valley time price in the time-of-use electricity price are 

analysed and proposed. This analysis method can be extended to the demand management 

for the hyper-power industry and residential customer, etc. 

Load controlling at customer side is very important for DSM. Many solutions have been 

investigated for the management and control of distributed loads [20]; however, two 

classes of approaches seem to be particularly suitable in the DSM context: the hierarchical 

and the clustered system architectures. In order to gather all the information needed to 

apply dynamic tariffs, final users have to be organized in a proper Measurement and control 

structures. The best system that matches the DSM requirement is a multilevel cluster 

structure. The proposed solution in [21] for demand side management and distributed load 

control is a multilevel cluster structure which is a multilevel system in where each level is 

formed by groups of homogeneous entities. The highest levels deploy the most important 

decisional infrastructure with software both for load control and energy metering, the 

lowest levels host measuring units, sensors and devices that send feedback to high level 

nodes. The advantage of such a structure is that it allows execution of multiple operations in 

parallel; hence it alleviates the workload of each node. However this proposed model has 

only considered the low voltage customer load shifting using with time-of-use tariffs. 

Shuai Lu [22] has described a model with details household loads control technique using 

voltage and frequency deep.  This paper discusses these two control philosophies and 

compares their response performances in terms of delay time and predictability. Only AC 
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system and water heater participate in Demand Response program and other house hold 

loads will not consider for this model.   

Scheduling home appliances according to the peak and off peak hours can save electricity 

consumptions cost and protect grid network from voltage and frequency deep during peak 

hours.  Quanyan Zhu and Zhu Han [23] have used the framework of dynamic games to 

model the distribution demand side management. At the lower level, for each player (such 

as one household), different appliances are scheduled for energy consumption. At the upper 

level, the dynamic game is used to capture the interaction among different players in their 

demand responses through the market price. Direct load control and demand management 

in response to market price has been considered. The decisions of household appliances by 

solving distributed optimization problems for each user or household. Here demand side 

management is controlled by market price while usto ers’ satisfa tio  ha e ’t o sidered. 

When users in a neighbourhood collaborate to determine the optimal energy allocation for 

ea h ti e slot, the s ste ’s de a d ur e a  e flattened more effectively. This kind of 

scheme group load shifting (GLS). Kishore and Snyder [24] propose a distributed 

neighbourhood-level load scheduling protocol, where users in a neighbourhood contend for 

energy from a finite energy resource for every time slot. The protocol is heuristic and 

assu es the e erg  a age e t o trollers  i  a eigh ourhood are o e step away from 

each other, which is a severe limitation. Other issues include: packet collisions are not 

handled; no countermeasures against selfish controllers (e.g., controllers that do not wait 

for a random delay before requesting for energy). Distributed group load shifting (GLS) 

schemes have the advantage that users do not need to surrender control of their appliances 

to their utilities, but do expose the users to security and privacy risks. 

Not only individual or group load controls and load consumption scheduling can help 

consumers to achieve Demand Response. Renewable energy generation integration at 

customer side plays a vital role in saving energy cost and manage grid efficiency. Custo er’s 

behaviour based home energy management system [25] model has presented by El Hassan. 

The proposed solution allows large number renewable energy resource integration and 

leads to global efficiency and demand side management optimization in smart grids. A new 

graphic user interface (GUI) based platform for developing, testing, and investigating the 

consumer-based DSM was presented. The functional algorithm helps to improve the 

efficiency of energy utilization by a factor of 16.4% resulting in significant annual savings for 
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the consumer. But did ’t des ri e if usto ers were unwilling to participate in direct load 

control. 

Based on the presented work, it is demonstrated that the load profile, the load shifting and 

s heduli g a d po er o su ptio  are ai l  depe de t o  the o su er’s prefere es 

and lifestyle behaviour. Current imposition of Demand Response program (direct load 

control) leads to the possibility of a comfort level violation or a high load compensation. 

Therefore a decision supporting system is needed which will allow user to consume 

electricity in cost effective and efficient way while participating in Demand Side 

Management (DSM). A Fuzzy logic controller is designed by Ravibabu [9] to reduce the gap 

between the demand and the supply of electrical energy loads in both peak hours and off 

peak hours aiming to properly utilize the available power for the vital loads and power 

wastage can be restricted. The combined application of DSM techniques and fuzzy logic 

gives rise to an intelligent system which acts as a demand limiter, which is more user 

friendly. The intelligent system helps in avoiding the non-vital loads during the peak hours. 

But how customer comfort level will affect in participating in Demand Reponses program 

has ’t learl  ide tified. 

Xiandong Tan [26] proposed a general frame, software architecture, hardware platform and 

main function modules of DSM decision supporting system, and constructed a DSM decision 

supporting system of B/S structure according with J2EE architecture. In this proposed model 

Demand Side Management - decision supporting system consists of two layers, one is 

supporting layer and the application layer. 

The paper showed in [27], an application of Artificial Neural Network techniques is done and 

Demand Side Management to industrial costumer. The results obtained provided a better 

load factor and reduction cost, due to peak clipping. Load Priority Technique is used. 

Furthermore, Tariff differential is proposed, encouraging to consume less during peaks 

hours and punishing those customers with more consumption in valley hours. Power 

o su ptio  sa i g a hie ed ithout i pa t the usto er’s o fort. 
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                                                                   CHAPTER  

             PROPOSED RESEARCH TECHNIQUES 
  

 

Development of Intelligent decision supporting home energy management 

system 

The developed system is referred as Intelligent Decision support system (IDSS) because it 

will use consumers’ comfort or preferences to control their energy consumptions and take 

intelligent decision on behalf of the consumers to meet various demands and respond to 

several factors. A Fuzzy Multi Criteria Decision Making (MCDM) tool has been used to 

quantify and evaluate consu ers’ comfort level according to peak and off hours in order to 

best manage the use of the appliances. The purpose of using Fuzzy Multi Criteria Decision 

Making (MCDM) system is because it can solve decision and planning problems involving 

multiple criteria.  As an example, if someone wants to purchase a car, cost, comfort, safety, 

and fuel economy may be the main criteria to consider. The Fuzzy MCDM will consider 

different variables as inputs and calculate the outputs in according to the inputs change. In 

this proposed work the inputs for the Fuzzy MCDM load controller are Time (peak and off 

peak hours), consumer comfort level temperature, temperature deviation, forecast load and 

consumption time. The outputs from the Fuzzy MCDM load controller include: Allow load 

scheduling and Run loads. 

 

4.1 Home appliances connection with IDSS 

The Intelligent decision supporting system (IDSS) for home energy management connects 

with the utility system through Smart meter (Figure 4.1). All energy consumption devices 

(HVAC, lights etc.) links with smart appliances that are combining with embedded 

computing, sensing and communication technologies to enable energy consumption devices 

connect with IDSS. Intelligent decision support system (IDSS) could be combination of four 

technologies such as a web portal, an in-home display (IHD), a programmable 
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communicating thermostat (PCT) which can automatically monitor and control the 

operation of all the connected smart appliances and notify residents about energy  

o su ptio  a d a  lear  a d rea t ith the usto ers’ prefere es. Command from 

Intelligent decision support system (IDSS) to smart appliances are simple on/off signals, or a 

demand response command to operate in energy saving mode. All the renewable energy 

sources like wind generator, PV system, CHP etc. Including batteries and total load 

consumptions information deliver to the IDSS. In-home display (IHD) will display the total 

consumptions, total production from renewable sources, Dynamic prices, device priority, 

current household power utilization, and a maximum power threshold for the home user. 

IDSS grasps the energy amount used in the electric appliances and calculates the amount of 

electricity consumed by customer on real time basis. 

 

                 Figure 4.1 Overall data flow for IDSS in Smart Grid system 

 

4.2 Data collection in IDSS 

The Intelligent Decision Supporting System (IDSS) as shown in figure.4.2 will the collect 

information about an environment and resident's situations such as a temperature, 

hu idit , i te sit  of illu i atio , a reside t’s o e e t a d the po er o su ptio  ia a 

wireless network or a wired network (PLC or RS485) as shown in figure(4.3) . Zigbee is the 

best low-cost wireless technology for the home appliances communication with IDSS). 
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Utility company will display variable price including real time pricing (RTP), time of use 

pricing (TOU), day ahead pricing (DAP) and critical peak pricing (CPP) and electricity 

utilization information on home display (IHD). User can control their smart appliances 

remotely through HAN when they are out home (can use mobile phone to control smart 

appliances, configure home security system, adjust intelligent thermostat or edit a home 

entertainment program). 

 

                   Figure 4.2 Structure of Home Energy Management System 

           

                          Figure 4.3 Home appliances connection with IDSS 
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4.3 Developed IDSS operation 

The whole processes are divided into two main phases: 

1. Data processing or collection model 

2. Decision making model (Fuzzy Multi Criteria Decision Making tool) 

 

 

 

                                        Figure 4.4 Proposed IDSS operation 

 

1. Data processing or collection model 

In data processing model IDSS will identify the different types of variables that need to be 

aptured for stud i g the o su er’s prefere es such as price signals from the grid, 

environmental conditions, room temperature and available renewable sources and 

consumer consumption profile. IDSS will have a learning module which will learn the 

o su er’s prefere es a d o su ptio  profile based on the preliminary data and store 

these data for future use. Data processing system will collect all the information through 

smart meter and smart appliances. Electrical Equipment Statistics Amount and power of the 

electrical equipment are counted so as to update the information timely with in a time 

frame 15 minutes.  
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2. Decision making model  

In this paper only decision making model has been developed which is Fuzzy Multi Criteria 

Decision Making methodology in according to the consumer comfort and cost saving 

objective. The Decision supporting system mainly follows two objectives: 

a) Cost reduction and 

b) Comfort life style.  

 

The Data processing model will provide the all collected information including customer 

preferences, environmental condition, room temperature, grid prices and available 

renewable energy to the Decision making system. Then the Decision making system will 

evaluate the total consumptions according to the Cost reduction objective and Comfort life 

style. An example is when the system will receive any signals from Smart meter about load 

shedding or Direct Load control, and it will match with customer requirements. If customer 

chooses the cost reduction option and there are no priority loads then the Decision making 

system will participate in Direct Load Control (DLC) program to shift their demands through 

changing on and off circle based on the real time prices for saving energy cost. Here 

customers can adjust their consumption through setting the operating time of some of the 

home appliances as an example Washing machine, dishwasher etc. The home electricity 

applicants can be categorized into three types:    

 Re-schedulable usage loads. 

 Re-schedulable usage and service loads and,  

 Non-reschedule usage and service loads. 

 

If consumer chooses Comfort life style setting during the Peak hours the customers will be 

given the flexibility to set their own preferences by configuring various user-defined 

parameters.  For example, when consumers prepare to use the A/C, variables such as the 

inside and outside temperatures or the level of humidity will influence their preferred A/C 

settings. The IDSS will show user the dynamic price for that current price and will calculate 
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the total consumption for the AC. Figure 4.5 shows the operation techniques of IDSS for 

home energy management.   

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 4.5: Intelligent decision support system (IDSS) model for home energy management. 
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Model description:  

Step 1: The house will always consume the available renewable energy generator (such as 

wind turbine, PV, batteries etc.) first. If there is any surplus energy from the renewable 

resources, the batteries will be charged and the remaining energy will be sold back to the 

utility grid. 

Step 2: If the total preferred consumption is higher than renewable energy generation and 

consumer has no priority loads, the IDSS system will shed few loads to level down the 

consumption with the generation. 

Step 3: If the total preferred consumption is higher than renewable energy generation and 

consumer has priority loads, (such as AC, water heater, room heater etc.), the IDSS system 

will schedule the non-priority loads (such as washing machine, dishwasher, clothes dryer 

etc.) to off peak hours to reduce the energy consumptions, and if there is no deficiency of 

energy from renewable energy generators the IDSS system will run these priority loads. 

Step 4: If the renewable energy generation is not enough to run the priority loads, the IHEM 

system calculates extra energy that need to be purchased from the grid and the total price 

for these consumptions. It will then inform the consumer whether to accept the 

consumption price or not. If the utility electricity rate is acceptable, utility power will be 

purchased to fulfil the total load demands of the house. If not the IDSS will shed few loads 

or schedule it according to the consumer settings. 

 

4.4 Developed Model mathematical equations and explanation 

4.4.1 Scheduling loads elements 

One of the most severe issues is that voltage magnitude at the proximity of distributor 

generator (DG) may rise above the statutory limits during maximum power output of DG 

and minimum power demands on the distribution networks. Once the voltage exceeds the 

statutory limit, then the distribution networks may not operate effectively and safely. The 

statutory limit for the voltage at busbars is ±6% of the nominal value. 
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This voltage rise effect can be explained by the following equation [1]: 

                        ∆V =  + XV                                           (1) 

where, 

 ∆V = Magnitude of voltage rise, 

 p = Active power output of DG, 

Q = Reactive power output of DG, 

X = Reactance of the line connecting to DG, 

R = Resistance of the line connecting to DG, and 

V = Nominal voltage at the terminal of DG. 

This equation shows that if the X/R ratio of an electrical network is relatively low, then any 

significant amount of power injected by DG will raise the voltage magnitude at proximity of 

DG. Since the typical X/R ratio of a distribution network is relatively low, therefore any 

significant power output of DG will result in voltage rise on the distribution network. 

The proposed IDSS system will use this logic to schedule the electrical appliances to run. As 

an example when there is a voltage deviation (here voltage rise) at the bus where a 

household is connected, the IDSS will receive this information from Smart meter and then it 

will command the queued electrical appliances to start running (dish washer, water heater 

etc.). When the voltage magnitude drops below a threshold, V (i.e., 0.9 p.u.), the IDSS will 

provide a turn off signal.  

 

4.4.2 Individual Load Modelling 

In order to control each device autonomously, need an actuator for each device. An 

intelligent component is a power monitoring and controlling system that use a power 

socket. Power consumption by the AC is measured by units installed in the AC compressor. 

This monitors present power consumption, predicts future power consumption based on 

the monitored data and senses risk situations in each device plugged into the power socket. 
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Lighting Control: 

Lighting is the second largest electricity consumer and can easily control by ZigBee-based 

wireless sensors, magnetic reed switches on doors, passive infrared motion sensors, and a 

Ambient light sensors can be used to check illumination is below 500 lux then activate 

additional lighting. 

A/C modelling: 

IDSS will control AC system automatically by the sending the turn on/off signal or change 

the AC temperature setting high/low according to the users, preference.  For this, IDSS will 

collect the inside temperature (from room sensors) and outside temperatures (from smart 

meter) or the level of humidity which influence users for their preferred A/C settings. 

A/C modelling is a critical task to accurately simulate the behaviour of a distribution system 

and evaluate the design of DR because:  

(i) A/C unit consumes a large portion of reactive power in a single household, 

especially during starting period and 

(ii)  The switching action of an A/C usually has a significant impact on system 

transients in terms of frequency and voltage deviations. Such impact becomes 

even larger when subsystem has a large number of A/Cs. The A/C model includes 

house temperature dynamics and a motor load. 

The heat transfer of a house can be modelled as [8]: 

QA - UA (TA- TO) - HM (TA- TM) - CA 
�����  = 0                           (2) 

QM - HM (TM - TA) - CM 
�����  = 0                                               (3) 

where, 

QA is the heating/cooling capacity of the air conditioner,  

UA is a conductance of the equivalent thermal envelope of the household through which 

heat is transferred from outside environment to the household,  

TA is the room air temperature and  
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TO is the outdoor air temperature; 

TM is the temperature of the solid mass inside the household,  

HM is the interior mass surface conductance,  

CM represents the majority solid mass in the home,  

Whereas, CA is the mass of the air (much smaller than CM). 

TA will be collected in real time and user can set his desired room temperature setting. IDSS 

learning model will store this setting for the future use.  

Let, User choose TA_set for the desired room temperature with a dead-band of TA_deadband, for 

an A/C to cool down the house, the control logic is: 

(a) If TA>= TA_set + TA_deadband, then turn on the A/C. 

(b) If TA<= TA_set - TA_deadband, then turn off the A/C. 

The A/C temperature setting ranges from 72 to 80 °F, the dead-band is set to5 °F. 

 

Water heater model 

 

The physical heat transfer balance is modelled as a first order differential equation [8]: 

Qelec – mCp (Tw - Tinlet) + UAwh (TA - Tw) = Cw 
�����                              (4) 

 

where, 

Qelec is the heating capacity of the resistor in the water heater in BTU/min,  

m is the hot water flow rate in lb/min, 

Cp is the thermal capacitance in BTU/(lb*°F), 

Tw is the water temperature, in degree F, 

Tinlet is the temperature of inlet water, in degree F, 

UAwh represents the thermal conductance of the tank shell,  
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TA represents the room temperature, in °F,  

Cw is thermal capacitance, in BTU/°F.  

This model equation can calculate the actual water temperature at any given time, which is 

used to control the switching action of the water heater.  

For a desired temperature, Tset, a controller similar to the one for A/C unit can be designed 

as follows: 

(a) If Tw>=Tw set+Tw deadband, then turn off the water heater. 

(b) If Tw<=Tw set-Tw deadband, then turn on the water heater. 

Typically, the temperature setting ranges from 110 to 130 °F. In this study, the dead-band of 

the water heater controller is set to 5 °F.  

 

Modelling of the battery system:  

The maximum energy storage capacity of the battery (Eb) is given by [10]: 

E b = Ab * V b                                                       (5) 

Where, 

Ab is the current-hour (given by A-H) rating of the battery, 

Vb (in Volts) is the maximum voltage of the battery at 100% State of Charge (SOC). 

To maximize the life of battery, the State of Charge (SOC) should not drop below a specified 

discharge point. The energy available in the battery at the discharge point is defined as the 

battery energy discharge capacity (EDC). 

EDC = SOCmin * Eb                                                         (6) 

Where,  SOCmin is the discharge point percentage value. 

It is assumed that during the highest cost rate time period of the day, the complete energy 

available from the renewable sources of energy and the energy storage battery is utilized by 

the appliances. After the utilization of the battery during high cost periods, the battery has 

to be recharged during the course of the day. 
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At any instance, the amount of energy that will be used to recharge the battery is given by 

x*(PVE + WTGE). 

Where, 

 PVE is Photovoltaic power, 

WTGE is Wind power energy.  

 

Battery charging limit: 

Eb  ≥ Eba +x*(PVE + WTGE )                                                   (7)         

After using the all the available renewable Energy (PVE + WTGE), If there is any surplus 

energy IDSS will charge the battery according to the above equation. When the sum of total 

energy used to recharge the battery x*(PVE + WTGE) and the prior energy available Eba in 

the battery is equal to the battery maximum capacity  Eb, it will stop charging the battery 

and sell the rest of the energy to the Grid.        

 

4.5 Total Energy generation and cost for consumptions 

Total energy of the system and generation consumption: 

At a given time, total energy production from Renewable source is given by: 

PR = PVE + WTG E                                           (8) 

where,  

PVE is is the total solar energy; 

WTGE is the total wind energy at the time of calculation. 

The total energy consumption for all the appliances in a household is given by: 

F (x ) = E – {  − x ) * ( PVE + WTG E )} 

          = E + x * (PV E + W T G E) - (PVE + WTG E)                            (9)  
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where, 

E is the total energy consumption by all the appliances, 

The value of x is a percentage value 

x*(PVE + WTGE) is  battery charging at the time of calculation. 

 

Total Energy cost functions: 

Total Energy consumptions optimization cost followed by: 

 

Minimum cost 

 F = ∑ {�� � . �� � − �� � . �� ���=1                             (10) 

                             If,  �� �  ≥ �� �  

Maximum cost 

F = ∑ {�� � . �� � − �� � . �� ���=1                           (11) 

 If,  �� � > �� �  

here, 

F is the total cost function,    �� �  is the grid price, �� �  is power consumption from grid, �� �  is power delivered to grid price from renewable source, �� �  is power produce from Renewable Energy and  

T is the total time. 
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                                                         CHAPTER  

                           SIMULATION AND CASE STUDY 
 

 

 

5.1 Building Fuzzy Multi Criteria Decision Making (MCDM) Load controller 

 

In recent years, fuzzy set theory has been regarded as a useful and systematic theory that is 

more applicable when dealing with uncertainty and vagueness in human originated 

information. Fuzzy Multi Criteria Decision Making (MCDM) Load controller is designed in 

such a way that, when the consumers increase their consumptions during peak hours, it 

identifies the nonpriority loads to switch off and shifts the consumptions to the off-peak 

hours. The power consumption during peak hours is limited by cutting some loads off and 

hence there will be proper utilization of supplied power to the high priority loads. 

The controller also keeps load consumptions within a certain limit (in this example 2.5kW 

maximum) which means the load consumptions will not exceed the limit during the high 

peak hours. However, it will allow the consumer to exceed the limit only if the load 

consumption time is small (2 to 15 minutes). As an example if a consumer turns on coffee 

maker or toaster during the peak hours and consumption time is between 2 to 15 minutes, 

the fuzzy MCDM load controller will not take any action and will allow the load to operate in 

that period of time. 

In this experiment household appliances are divided into four categories which are: Base 

loads, Priority loads, Schedulable loads or Non-priority loads and Short-time loads. Table I 

presents each category of load and their power consumption.   
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                TABLE I.               LOAD CATAGORIES AND POWER CONSUMPTION 

1. Base loads Consumptions (kW) 3.Schedulable  loads Consumptions (kW) 

Lights 3*0.04 = 0.12 Washing machine 0.5 

Fans 2*.08 = 0.16 Dishwasher 1 

TV 0.15 Clothes dryer 2 

Computer 0.17 Water heater 4.5 

Fridge 0.5 4. Short-time loads Consumptions (kW) 

2. Priority loads Consumptions (kW) Coffee maker 1 

AC 1.5 Toaster 1 

Room heater 1.5 Vacuum cleaner 1 

- - Micro oven 1 

 

 

To design the fuzzy MCDM load controller the steps followed are:  

1) Define input and output of the Fuzzy MCDM load controller. 

2) Create Fuzzy membership functions. 

3) Define Fuzzy rules.  

4) Simulate in Fuzzy logic system. 
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1) Define input and output of the Fuzzy MCDM load controller 

The load controller will have five inputs: Time, Comfort Level, Temperature Deviation, 

Forecast Loads and Consumption Time and two outputs: Allow Load Scheduling and Run 

Loads. Figure 5.1 shows the block diagram of the proposed fuzzy load controller which has 

25 rules, five inputs and two output signal. Some of the fuzzy rules are given later in the 

paper. 

 

 

                                  Figure 5.1: Input and Output of Fuzzy load controller. 

 

The inputs and outputs of the above model shown in figure 5.1 are as follows: 

Input1- Time: Data was sampled for a period of 24 hours. Peak-on, off-peak (moderate) and 

peak-off are included in membership function trapezoidal type. 

Input2- Comfort level: The desired temperature level set by the consumers at which they 

feel comfort. 

Input3- Temperature deviation: Room temperature deviation from consumer comfort level 

temperature.  

Input4 - Forecast load: The total predicted loads consumption includes: existing running 

loads and new selected loads. For an example if existing running loads consumption is 2 kW 

and consumer decided to run Air conditioner (1.5 kW), the forecast load would be 3.5 kW.   
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Input5 – Consumption time: The power consumption duration (minutes) of individual load. 

Output1 – Allow load scheduling: The amount of load in kW that will be shifted to off-peak 

hours. 

Output2 – Run load: The total amount of load in kW that controller will allow operating in a 

particular period of time. 

The controller takes the crisp or real input values, fuzzifies them and assigns a fuzzified 

control signal to provide control over the loads based on the rules assigned and 

membership functions. The control signal is then converted to two crisp signals through 

defuzzification process.  

 

2) Create Fuzzy Membership Functions 

Fuzzy membership functions are needed for all input and output variables in order to define 

linguistic rules that govern the relationships between them. The membership functions 

were found to be more suitable for the fuzzy load controller inputs time  (trapezoidal). On 

the other hand, sharp membership functions were chosen for the output variables , allow 

load scheduling  and run load  because of the sharp constraints on those variables. All the 

input and output membership functions are shown in figures 5.2 to 5.8. 

Figure 5.2 shows the membership functions for input variable Time  which are divided into 

Offpeak (am), Peak (am), Offpeak (Moderate), Peak (pm) and Offpeak (pm) for a period of 

one day. 

              

                                Figure 5.2   Fuzzy membership function of Time (input)   
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The input variable Comfort level  is shown in figure 5.3 is divided into three membership 

functions: Cool and Average and Warm. Consumer can choose any three options as per their 

preference life style. The comfort ranges for the room temperature during occupied periods 

is 20 to 24 degree of Celsius.   

     

                          Figure 5.3 Fuzzy membership function of Comfort level (input). 

The Temperature deviation membership function is shown in figure 5.4 will be used for 

controlling AC and Room heater according to the consumer comfort level temperature 

setting. Temperature deviation functions defines the deviation of the room temperature 

from the consumer preferred setting.  

 

                  Figure 5.4 Fuzzy membership function of Temperature deviation (input). 

Figure 5.5 shows the Fuzzy membership functions for i put aria le For astLoads . Fuzz  

MCDM load controller turns on/off the appliances according to the kW demand of the 

forecast loads.  The forecast is combined with current running loads and new selected loads. 

For an example if current running loads consumption is 2 kW and consumer decided to run 

Air conditioner (1.5 kW), the forecast load would be 3.5 kW.   
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                  Figure 5.5   Fuzzy membership function of Forecast loads (input) 

The Fuzzy load controller controls the appliances according to their defined consumption 

time settings. The load controller has a maximum 2.5 kW consumption limit during peak 

hours. It will not allow operating any appliance beyond 2.5 kW unless the duration of 

consumption is less than 16 minutes. For an example if a 1 kW coffee maker and a 1 kW of 

micro-oven operation time settings are less than 16 minutes and the current running load is 

2 kW, the total forecast load will be 4 kW in that particular period of time.  The fuzzy MCDM 

load controllers will allow consumer to operate the loads if the load consumptions time is 

less than 16 minutes.  Figure 5.6 shows the membership function for the input variable 

Co su ptio  Ti e  i  i utes.  

 

              Figure 5.6 Fuzzy membership function for Consumption time (input). 

Figure .  sho s the e ership fu tio s for the output aria le Allo  Load 

Scheduling . The fuzz  load o troller ill s hedule the loads to offpeak hours a ordi g to 

the forecast loads during peak hours. Here maximum 4.5 kW of loads can be scheduled to 

offpeak hours.  
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             Figure 5.7 Fuzzy membership function of Allow load scheduling (output) 

According to the forecast load consumption (kW), consumption duration (minutes), 

preferred room temperate setting (degree Celsius) and consumption time (peak/offpeak), 

the fuzzy MCDM load controller take decision which loads need to operate. The maximum 

consumption is allowed up to 5.5 KW with this load controller.  Figure 5.8 shows the 

membership functions for the output aria le Ru  Loads  in kW. 

 

                 Figure 5.8 Fuzzy membership function of Run Load (output). 

 

3) Define Fuzzy Rules for the MCDM load controller 

Fuzzy rules form the vital part of the entire fuzzy MCDM load controller system. The number 

of rules framed depends on the number of membership functions considered in the input 

and output blocks. The more the rules the more precise is the load controller output. 
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Co sideri g o su ers’ prefere es a d energy saving, constraints demand profile was 

obtained using 25 rules, 6 of them are listed below (rest of the rules can be found in 

Appendix). 

Rules: 

1) If (Time is peak (pm)) and (comfortLevel is Cool, 14 to 18 degree) and 

(TemparatureDeviation is Large+) and (ForcastLoads is ExtremlyHigh, 4.5 kW>) and 

(ConsumptionTime is 16> minutes) then (AllowLoadSchedulling is 3 to 4 kW) (RunLoads is 1.5 

to 2.5 kW). 

2) If (Time is peak(am)) and (comfortLevel is Cool, 14 to 18 degree) and 

(TemparatureDeviation is Small) and (ForcastLoads is VeryHigh, 2.5 to 4.5 kW) and 

(ConsumptionTime is 16> minutes) then (AllowLoadSchedulling is 2.5 to 3.5 kW)(RunLoads is 

0 to 1 kW). 

3) If (Time is peak(am)) and (comfortLevel is Cool, 14 to 18 degree) and 

(TemparatureDeviation is Small) and (ForcastLoads is Avarage, 0.6 to 2 kW) and 

(ConsumptionTime is 16> minutes) then (AllowLoadSchedulling is 0 to 1 kW)(RunLoads is 0 to 

1 kW). 

4) If (Time is peak(pm)) and (comfortLevel is Avarage) and (TemparatureDeviation is 

Large-) and (ForcastLoads is VeryHigh, 2.5 to 4.5 kW) and (ConsumptionTime is 16> minutes) 

then (AllowLoadSchedulling is 1.5 to 2.5 kW)(RunLoads is 1.5 to 2.5 kW). 

5) If (Time is offpeak(Moderate)) and (comfortLevel is Avarage) and 

(TemparatureDeviation is Large-) and (ForcastLoads is VeryHigh, 2.5 to 4.5 kW) and 

(ConsumptionTime is 16> minutes) then (AllowLoadSchedulling is 1 to 2 kW)(RunLoads is 1.5 

to 2.5 kW). 

6) If (Time is peak(am)) and (comfortLevel is Cool, 14 to 18 degree) and 

(TemparatureDeviation is Medium+) and (ForcastLoads is ExtremlyHigh, 4.5 kW>) and 

(ConsumptionTime is >10 minutes) then (AllowLoadSchedulling is 3to 4 kW)(RunLoads is 

4to5 kW). 
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4) Simulate in Fuzzy logic system 

According to the fuzzy defined rules and the inputs specified by the consumers, the fuzzy 

MCDM load controller output results are shown in Table II. The load controller optimizes the 

loads that need to operate during peak hours in order to achieve consumer comfort level 

temperature and energy savings and shifts the nonpriority loads to off-peaks hours. In 

Figure 5.9 each column at the input side represents all the input variables with their 

selected values and other side shows the simulation results of the out variables. There are 6 

rows which represented the 6 Fuzzy MCDM rules.   

                                                    Input variables                                                        Output variables 

 

Figure 5.9 shows the simulation of fuzzy defined rules with input and output variables.  

                           

                                  TABLE II             FUZZY LOAD CONTROLLER RESULTS  

Rule no Time Comfort Level © Temp deviation © Forecast loads (KW) Consumption time (mints) AllowLoadScheduling (KW) Run Loads (KW)

1 peak(am) 16 13 5.5 16> 3.5 2.1

2 peak(pm) 15 3 3.5 16> 3 0.6

3 peak(pm) 17 -2 1.1 16> 0.5 0.6

4 peak(am) 22 -12 3.6 16> 2 2.1

5 offpeak(am) 21 -10 3.5 16> 1.5 2.1

6 peak(pm) 15 7 7.6 >10 3.5 4.6
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5.2 Simulation results analysis: 

1) If (Time is peak (pm)) and (comfortLevel is Cool, 14 to 18 degree) and 

(TemparatureDeviation is Large+ ) and (ForcastLoads is ExtremlyHigh, 4.5 kW> ) and 

(ConsumptionTime is 16>  minutes) then (AllowLoadSchedulling is 3 to 4 kW) (RunLoads is 

1.5 to 2.5 kW). 

 

 
 

According to the first rule and the inputs specified by the consumer, the fuzzy MCDM load 

controller operated only 2.1 kW of loads during peak hours and scheduled 3.5 kW of loads 

to offpeak hours while the forecast load was more than 5.5 kW (including fixed loads). The 

fuzzy load controller operation according to the first rule is shown in Table III. It is observed 

that rule 1 imposed in fuzzy load controller, has achieved the consumer comfort 

temperature by allowing the AC to operate during peak hours and simultaneously reduced 

the load consumptions. 

                            TABLE III           LOAD OPTIMIZATION BY FUZZY RULE (1st) 

        

Time  

Forecast load (kW)    Fixed load     (kW) Loads run by 

Fuzzy controller 

(kW) 

Scheduled loads 

(kW) to offpeak 

hours 

 

 

Peak 

(pm) 

AC (1) 1.5 Refrigerator(1) 0.5 AC (1) 1.5 Washing  

machine 

     0.5 

 

Washing 

machine 

0.5 Others (light, 

fan, doorbell) 

0.1 Fixed 

loads 

0.6 Cloth dryer 2.0 

Cloth dryer 2.0   - - Dishwasher 1.0 

Dishwasher 1.0 - - - -   

Total 5.0 Total 0.60 Total 2.1 Total 3.5 

 

2) If (Time is peak(am)) and (comfortLevel is Cool, 14 to 18 degree) and 

(TemparatureDeviation is Small) and (ForcastLoads is VeryHigh, 2.5 to 4.5 kW) and 

(ConsumptionTime is 16> minutes) then (AllowLoadSchedulling is 2.5 to 3.5 kW)(RunLoads is 

0 to 1 kW). 
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According to the second rule, when the load forecast was more than 3.5 kW (including fixed 

loads) during peak hours, the fuzzy controller operated only 0.6 kW of loads and scheduled 

3.0 kW of loads to offpeak hours. Table IV shows the load operation by fuzzy load controller 

with rule 2.  

 

                            TABLE IV            LOAD OPTIMIZATION BY FUZZY RULE (2nd) 

        

Time  

Forecast load (kW)       Fixed load     

(kW) 

Loads run by 

Fuzzy controller 

(kW) 

Scheduled loads 

(kW) 

to offpeak hours 

 

Peak 

(am) 

Cloth dryer 2.0 Refrigerator 

(1) 

0.5 Fixed 

loads 

0.60 Cloth dryer 2.0 

Dishwasher 1.0 Others (light, 

fan, doorbell) 

0.1 - - Dishwasher 1.0 

Total 3.0 Total 0.60 Total 0.60 Total 3.5 

 

 

3) If (Time is peak(am)) and (comfortLevel is Cool, 14 to 18 degree) and 

(TemparatureDeviation is Small) and (ForcastLoads is Avarage, 0.6 to 2 kW) and 

(ConsumptionTime is 16> minutes) then (AllowLoadSchedulling is 0 to 1 kW)(RunLoads is 0 to 

1 kW). 

 

 
 

 

Table V shows the load operation by fuzzy controller according to the third rule. The 

forecast load was 1.1 kW including the fixed loads (0.6 kW) and load operated by the 

controller was 0.6 kW and scheduled 0.5 kW of washing machine to offpeak consumption. 

 

                               TABLE V          LOAD OPTIMIZATION BY FUZZY RULE (3rd) 

        

Time  

Forecast load (kW)      Fixed load     (kW) Loads run by 

Fuzzy controller 

(kW) 

Scheduled loads 

(kW) 

to offpeak hours 

 

Peak 

(am) 

Washing 

machine 

0.5 Refrigerator 

(1) 

0.5 Fixed 

loads 

0.60 Washing 

machine 

0.5 

- - Others (light, 

fan, doorbell) 

0.1 - - - - 

Total 0.5 Total 0.60 Total 0.60 Total 0.5 
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4) If (Time is peak(pm)) and (comfortLevel is Avarage) and (TemparatureDeviation is 

Large-) and (ForcastLoads is VeryHigh, 2.5 to 4.5 kW) and (ConsumptionTime is 16> minutes) 

then (AllowLoadSchedulling is 1.5 to 2.5 kW)(RunLoads is 1.5 to 2.5 kW). 

 

 
 

 

Table VI shows the load operation according to the forth fuzzy rule. Here forecast load 

demand is 3.6 kW including the fixed loads. 

 

                           TABLE VI            LOAD OPTIMIZATION BY FUZZY RULE (4
th

) 

        

Time  

Forecast load (kW)      Fixed load     (kW) Loads run by 

Fuzzy controller 

(kW) 

Scheduled loads 

(kW) 

to offpeak hours 

 

Peak 

(am) 

Washing 

machine 

0.5 Refrigerator 

(1) 

0.5 Fixed 

loads 

0.6 Washing 

machine 

0.5 

Room 

heater 

1.5 Others (light, 

fan, doorbell) 

0.1 Room 

heater 

1.5 Dishwasher 1.0 

Dishwasher 1.0 - - - - - - 

Total 3.0 Total 0.60 Total 2.1 Total 1.5 

 

 

 

5) If (Time is offpeak(Moderate)) and (comfortLevel is Avarage) and 

(TemparatureDeviation is Large-) and (ForcastLoads is VeryHigh, 2.5 to 4.5 kW) and 

(ConsumptionTime is 16> minutes) then (AllowLoadSchedulling is 1 to 2 kW)(RunLoads is 1.5 

to 2.5 kW). 

 

 
 

Table VII shows the load operation optimization by fuzzy load controller according to fifth 

fuzzy rule.  Forecast load demand was 3.6 kW including the fixed loads. Fuzzy load controller 

operated the room heater during offpeak moderate hours in order to satisfy the consumer 

comfort temperature and shifted washing machine and dishwasher to offpeak hours.   
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                       TABLE VII            LOAD OPTIMIZATION BY FUZZY RULE (5th) 

        Time  Forecast load 

(kW) 

  Fixed load     (kW) Loads run by 

Fuzzy 

controller 

(kW) 

Scheduled loads 

(kW) 

to offpeak hours 

 

Offpeak 

(Moderate) 

Room 

heater 

1.5 Refrigerator 

(1) 

0.5 Fixed 

loads 

0.6 Washing 

machine 

0.5 

Washing 

machine 

0.5 Others (light, 

fan,doorbell) 

0.1 Room 

heater 

1.5 Dishwasher 1.0 

Dishwasher 1.0 - - - - - - 

Total 3.0 Total 0.60 Total 2.1 Total 1.5 

 

6) If (Time is peak(am)) and (comfortLevel is Cool, 14 to 18 degree) and 

(TemparatureDeviation is Medium+) and (ForcastLoads is ExtremlyHigh, 4.5 kW>) and 

(ConsumptionTime is >10 minutes) then (AllowLoadSchedulling is 3to 4 kW)(RunLoads is 

4to5 kW).  

 

 
 

Table VIII shows the load operation by fuzzy load controller according to the sixth fuzzy rule. 

The forecast load was more than 5 kW (7.6 kW) including the fixed loads. The fuzzy load 

controller operated 4.1 kW of loads which actually exceeded the fuzzy load controller load 

operation limitation (2.5 kW). This is because of the load consumption duration was less 

than 8 minutes. According to the fuzzy sixth rule, fuzzy load controller will allow to operate 

more than 2.5 kW of loads if the load consumption time setting is less than 10 minutes. 
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                            TABLE VIII        LOAD OPTIMIZATION BY FUZZY RULE (6th) 

        

Time  

Forecast load (kW)    Fixed load     (kW) Loads run by 

Fuzzy controller 

(kW) 

Scheduled loads 

(kW) to offpeak 

hours 

 

 

Peak 

(am) 

AC (1) 1.5 Refrigerator(1) 0.5 AC (1) 1.5 Washing  

machine 

     0.5 

 

Oven 1.0 Others (light, 

fan, doorbell) 

0.1 Oven 1.0 Cloth dryer 2.0 

Coffee 

maker 

1.0 - - Coffee 

maker 

1.0 Dishwasher 1.0 

Washing 

machine 

0.5 - - Fixed 

loads 

0.6 - - 

Cloth dryer 2.0 - - - - - - 

Dishwasher 1.0 - - - - - - 

Total 7.0 Total 0.60 Total 4.1 Total 3.5 

 

From the defined fuzzy rules and simulation results, it is observed that the intelligent fuzzy 

load controller achieved the consumer comfort (by turning on the AC or room heater) 

during peak hours and reduced the excessive load consumptions. It shifted the nonpriority 

loads (i.e. washing machine, dishwasher, clothe dryer, etc.) to the offpeak consumption and 

saved the high energy cost during peak hours. While maintaining the consumer comfort, the 

load controller always kept the load consumption below 2.5 kW during peak hours. Another 

intelligent approached of the fuzzy MCDM load controller: it allowed the consumer to 

exceed the predefined 2.5 kW demand limitation during peak hours when the load 

consumption duration setting was less than 10 minutes (showed in table VIII). This means, 

the fuzzy load controller only allows the consumer to operate oven, toaster, coffee makers 

and vacuum cleaner during peak hours if the consumption duration is less than 16 minutes. 

Therefore, the proposed fuzzy load controller not only prioritized the consumer preferences 

but also capable to take decision on behalf of the consumers in order to best manage the 

use of their appliances and met the main objective parameters- comfort, cost and demand 

response. 
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                                      CASE STUDY 
 

A typical -two bed room house power consumption data in a summer time have been used 

for this experiment. Basic households appliances  considered in this typical house are 

described in Table I. The house is fitted with photovoltaic (PV) panels and a battery system. 

The battery system will be charged by the photovoltaic (PV) power during the course of the 

day. It will be discharged during high cost periods when there is no photovoltaic power 

available. The specifications for the renewable sources of energy were set as follows: 

 Two lithium-ion 100 A-H, 12 V batteries. The batteries have 80% deep discharge 

capacity and provide 2 discharge cycles per 24 hours and one bulk charge. There is a 

power loss of 20% through the battery charger/rectifier. Each battery provides 0.96 

kW of power during 5 hours of discharge and charges by 0.288 kW of power during 5 

hours of charge.  

 1.5 kW of PV system. This 1.5 kW system only produces just a touch over 1 kW of 

power at its peak. The PV system first charges the 2 batteries and rest of the energy 

contribute to the household appliances. 

A daily consumption curve in typical summer day, battery charging/discharging and PV 

power generation curves are shown in figure 5.10.  It shows that the two batteries are 

discharging from 1am to 5 am and 6 pm to 10 pm at 0.192 kW/hour of each, and both of 

them are charging from 11 am to 3 pm at 0.576 kW/hour. There are two critical peak 

demands that occurred during peak hours from 9 am to 11 am and 6 pm to 9 pm. The PV 

output was maximum during the midday. 

           
                                                 Figure 5.10    Daily consumptions curve 
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The load curves before and after the contribution of PV and battery storage systems are 

shown in figure 5.11. Load priority was performed with the fuzzy MCDM load controller and 

results are shown in Fig. 12. The load controller took advantage of the hours of the day 

when there were peak hours; it reduced the high consumption by predefined fuzzy rules 

and scheduled the nonpriority loads to their respective time. It is clear from figure 5.12 that 

the peaks of the load profile of the household was reduced significantly and shifted to low 

demand periods (see Table X in appendix for details information). 

             
                                   Figure 5.11     Load reduction using renewable energy 

 

             
                                     Figure 5.12    Results obtained with fuzzy load controller 

 

Table IX and figure 5.13 present the comparative analysis of integration of different load 

control techniques to evaluate the power consumption performance. In this experiment 

direct load control (DLC) was used to switch off the air conditioner (1.5kW) when it 
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operated during peak hours. Figure 5.13, shows that combined operation of renewable 

energy sources with fuzzy MCDM load controller presented better performance compared 

to direct load control (DLC), it provided adequate energy savings without compromising 

consumers comfort level. The different tariffs [28] for consumption of energy were used to 

analyse the total cost of energy consumption for the different load management criteria and 

results are summarized in Table IX (see Table XI in appendix for details information). 

               

                                       Figure 5.13      Comparison between different load controllers 

            

                  TABLE I X       Energy Consumption and Cost Comparison Analysis 

NML = non managed loads (kWh), DLC = direct load control (kWh), LMR = load management with renewable (kWh), LMF = 

load management with fuzzy (KWh), LMFR = load management with fuzzy logic and renewable (kWh). 

 

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Summer Loads Fuzzy control loads Fuzzy with Renewable DLC

 Energy 

Cost($/kWh) 

NML 

(kWh) 

NML 

Cost ($) 

DLC 

(kWh) 

DLC 

Cost($) 

LMR 

(kWh) 

LMR 

Cost($) 

LMF 

(kWh) 

LMF 

Cost($) 

LMFR 

(kWh) 

LMFR 

Cost($) 

Off-peak 

time  

0.1514 4.4 0.67 4.4 0.67 3.248 0.49 9.4 1.42 8.248 1.25 

Moderate 

time 

0.2652 6.2 1.64 6.2 1.64 3.704 0.98 6.2 1.64 3.704 0.98 

Peak time 0.4981 19.1 9.51 10.1 5.03 16.19 8.06 13.7 6.82 10.79 5.37 

Total  - 29.7 11.82 20.7 7.34 23.1 9.53 29.3 9.89 22.74 7.60 

% of 

energy 

saving/day 

- - - 30.3 - 22.2 - 1.34 - 23.4 - 

Cost 

saved/day 

- - - - 4.483 - 2.29 - 1.93 - 4.22 
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The results presented in Table IX, shows the total load consumptions and cost of Energy 

during different time periods (peak, offpeak-moderate and offpeak hours) in a particular day 

obtained from different load management techniques (NML, DLC, LMR, LMF and LMFR). 

With NML (Non Managed Load) the total energy consumption and cost of consumption 

were 29.7 kWh and $11.82 per day. Whereas the cheapest consumption price ($ 7.34) was 

obtained with direct load control with minimum consumptions of 20.7 kWh. With the 

proposed fuzzy MCDM load controller (LMF) the energy consumption during the day was 

29.3 kWh and energy cost was $9.89.   

Direct load control (DLC) performed significant energy and cost reduction. The proposed 

fuzzy load controller (LMF) contributed small amount of energy reduction 1.34%, compare 

to direct load control which was 35.3%. The energy reduction was less compare to DLC 

because of the fuzzy load controller allowed the consumers to operate the air conditioner 

during peak hours to achieve their comfort and it shifted the nonpriority loads to offpeak 

consumptions. However with DLC the consumer comfort level and preferences were 

violated due to switch off of the air conditioner during peaks hours.  

The results obtained with combined operation of Fuzzy load controller and Renewable 

sources (LMFR) shows the better management of load reductions (23.4%) with adequate 

cost savings ($4.22/day) compared to the load management with renewable sources (LMR) 

which were 22.1 kWh and $2.28 per day. Figure 5.14 shows the comparison of the energy 

cost per hour during the day between Non Management Load controller (NML), Load 

management with Fuzzy load controller and Renewable source (LMRF) and Direct Load 

Control (DLC). It shows that non-management load has highest energy cost per hour.  
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Figure 5.14 Energy cost comparison between Non-management Load (NML), Load 

management with Renewable and Fuzzy (LMRF) and Direct Load control (DLC). 
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                           CHAPTER  

 

                    DISCUSSION AND CONCLUSION 
 

The main aim of this thesis is to present a methodology to achieve Demand Side 

Management by using intelligent decision supporting residential energy management 

system.  The developed fuzzy Multi Criteria Decision Making (MCDM) load controller for 

home energy management satisfied three optimization strategies – comfort, cost, and 

demand response. The load controller mitigates the excessive consumptions when the 

e erg  o su ptio s pri es are er  high ithout a  ad erse i pa t o  o su ers’ 

comfort level. From the simulation results it can be seen that load management with 

intelligent fuzzy MCDM load controller 1.34% of energy reduction and $2 of energy cost 

saving is possible per day without affecting consumer comfort.  

Energy reduction and cost saving are more intensive with the load management with fuzzy 

MCDM load control and renewable sources (LMFR) which reduced almost 18 times higher 

energy  compared to load management with fuzzy MCDM load controller (LMF) alone. If the 

costs are compared, the fuzzy MCDM load control and renewable sources (LMFR) saved 

more than twice of the energy cost saved by the fuzzy MCDM load controller (LMF). 

Therefore, it can be concluded that load management with the fuzzy MCDM load control 

and renewable sources is the best choice. 
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                                               APPENDIX 

Fuzzy Rules: 

1. If (Time is peak(am)) and (comfortLevel is Cool) and (TemparatureDeviation is Large+) and 

(ForcastLoads is ExtremlyHigh) and (ConsumptionTime is 16>) then (AllowLoadSchedulling is 

3-4)(RunLoads is 1.5-2.5). 

2. If (Time is peak(pm)) and (comfortLevel is Cool) and (TemparatureDeviation is Large+) and 

(ForcastLoads is ExtremlyHigh) and (ConsumptionTime is 16>) then (AllowLoadSchedulling is 

3-4)(RunLoads is 1.5-2.5). 

3. If (Time is peak(am)) and (comfortLevel is Cool) and (TemparatureDeviation is Large+) and 

(ForcastLoads is VeryHigh) and (ConsumptionTime is 16>) then (AllowLoadSchedulling is 1-

2)(RunLoads is 1.5-2.5). 

4. If (Time is peak(pm)) and (comfortLevel is Cool) and (TemparatureDeviation is Large+) and 

(ForcastLoads is VeryHigh) and (ConsumptionTime is 16>) then (AllowLoadSchedulling is 1-

2)(RunLoads is 1.5-2.5).                    

5. If (Time is peak(am)) and (comfortLevel is Cool) and (TemparatureDeviation is Large+) and 

(ForcastLoads is High) and (ConsumptionTime is 16>) then (AllowLoadSchedulling is 0-

1)(RunLoads is 1.5-2.5).                         

6. If (Time is peak(pm)) and (comfortLevel is Cool) and (TemparatureDeviation is Large+) and 

(ForcastLoads is High) and (ConsumptionTime is 16>) then (AllowLoadSchedulling is 0-

1)(RunLoads is 1.5-2.5).                        

7. If (Time is peak(am)) and (comfortLevel is Cool) and (TemparatureDeviation is Small) and 

(ForcastLoads is VeryHigh) and (ConsumptionTime is 16>) then (AllowLoadSchedulling is 2.5-

3.5)(RunLoads is 0-1).                       

8. If (Time is peak(pm)) and (comfortLevel is Cool) and (TemparatureDeviation is Small) and 

(ForcastLoads is VeryHigh) and (ConsumptionTime is 16>) then (AllowLoadSchedulling is 2.5-

3.5)(RunLoads is .5-1.5).                   

9. If (Time is peak(am)) and (comfortLevel is Cool) and (TemparatureDeviation is Small) and 

(ForcastLoads is Avarage) and (ConsumptionTime is 16>) then (AllowLoadSchedulling is 0-

1)(RunLoads is 0-1).                            

10. If (Time is peak(pm)) and (comfortLevel is Cool) and (TemparatureDeviation is Small) and 

(ForcastLoads is Avarage) and (ConsumptionTime is 16>) then (AllowLoadSchedulling is 0-

1)(RunLoads is 0-1).   
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  11. If (Time is peak(am)) and (comfortLevel is Cool) and (TemparatureDeviation is Small) 

and (ForcastLoads is Low) and (ConsumptionTime is 16>) then (RunLoads is 0-1).                                                      

12. If (Time is offpeak(am)) and (comfortLevel is Cool) and (TemparatureDeviation is Large+) 

and (ForcastLoads is Avarage) and (ConsumptionTime is 16>) then (RunLoads is 3-4).                                               

13. If (Time is offpeak(am)) and (comfortLevel is Cool) and (TemparatureDeviation is Small) 

and (ForcastLoads is Low) and (ConsumptionTime is 16>) then (RunLoads is 4-5).                                                      

14. If (Time is offpeak(Moderate)) and (comfortLevel is Cool) and (TemparatureDeviation is 

Large+) and (ForcastLoads is ExtremlyHigh) and (ConsumptionTime is 16>) then 

(AllowLoadSchedulling is 3-4)(RunLoads is 1.5-2.5).       

15. If (Time is offpeak(Moderate)) and (comfortLevel is Cool) and (TemparatureDeviation is 

Large+) and (ForcastLoads is Avarage) and (ConsumptionTime is 16>) then  

(AllowLoadSchedulling is 1-2)(RunLoads is 1.5-2.5).            

16. If (Time is offpeak(Moderate)) and (comfortLevel is Cool) and (TemparatureDeviation is 

Small) and (ForcastLoads is Low) and (ConsumptionTime is 16>) then (RunLoads is .5-1.5).                                     

17. If (Time is peak(pm)) and (comfortLevel is Avarage) and (TemparatureDeviation is Large-) 

and (ForcastLoads is VeryHigh) and (ConsumptionTime is 16>) then (AllowLoadSchedulling is 

1-2)(RunLoads is 1.5-2.5).                 

18. If (Time is peak(pm)) and (comfortLevel is Avarage) and (TemparatureDeviation is Large-) 

and (ForcastLoads is High) and (ConsumptionTime is 16>) then (RunLoads is 1.5-2.5).                                              

19. If (Time is peak(pm)) and (comfortLevel is Avarage) and (TemparatureDeviation is Small) 

and (ForcastLoads is Low) and (ConsumptionTime is 16>) then (RunLoads is .5-1.5).                                                 

20. If (Time is offpeak(Moderate)) and (comfortLevel is Avarage) and (TemparatureDeviation 

is Large-) and (ForcastLoads is ExtremlyHigh) and (ConsumptionTime is 16>) then 

(AllowLoadSchedulling is 3.5-4.5)(RunLoads is 1.5-2.5). 

21. If (Time is offpeak(Moderate)) and (comfortLevel is Avarage) and (TemparatureDeviation 

is Large-) and (ForcastLoads is VeryHigh) and (ConsumptionTime is 16>) then 

(AllowLoadSchedulling is 1-2)(RunLoads is 1.5-2.5).       

22. If (Time is offpeak(Moderate)) and (comfortLevel is Avarage) and (TemparatureDeviation 

is Small) and (ForcastLoads is Low) and (ConsumptionTime is 16>) then (RunLoads is .5-1.5).                                  

23. If (Time is peak(am)) and (comfortLevel is Warm) and (TemparatureDeviation is 

Medium-) and (ForcastLoads is ExtremlyHigh) and (ConsumptionTime is >5) then 

(AllowLoadSchedulling is 3-4)(RunLoads is 4.5-5.5).     
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 24. If (Time is peak(am)) and (comfortLevel is Cool) and (TemparatureDeviation is 

Medium+) and (ForcastLoads is ExtremlyHigh) and (ConsumptionTime is >10) then 

(AllowLoadSchedulling is 3-4)(RunLoads is 3.5-4.5).                          

25. If (Time is peak(pm)) and (comfortLevel is Cool) and (TemparatureDeviation is Large+) 

and (ForcastLoads is ExtremlyHigh) and (ConsumptionTime is >16) then 

(AllowLoadSchedulling is 3-4)(RunLoads is 2.5-3.5).                 

 

 

 

                                  Figure 6.1        Fuzzy rules simulation with Mathlab 
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Day-hr Summer Loads PV in Summer Battery-chg/dis PV and Battery Load reduction with Renewable Fuzzy control loads Fuzzy with Renewable Load shifting using Fuzzy+R DLC

0 0.5 0 0 0 0.5 0.5 0.5 0 0.5

1 0.4 0 0.192 0.192 0.208 0.4 0.208 0.192 0.4

2 0.4 0 0.192 0.192 0.208 0.4 0.208 0.192 0.4

3 0.3 0 0.192 0.192 0.108 0.3 0.108 0.192 0.3

4 0.3 0 0.192 0.192 0.108 0.3 0.108 0.192 0.3

5 0.4 0 0.192 0.192 0.208 1.9 1.708 -1.308 0.4

6 0.5 0 0 0 0.5 1 1 -0.5 0.5

7 1 0.1 0 0.1 0.9 1 0.9 0.1 1

8 2 0.2 0 0.2 1.8 2 1.8 0.2 1.5

9 2 0.3 0 0.3 1.7 0.5 0.2 1.8 0.5

10 3 0.4 0 0.4 2.6 0.5 0.1 2.9 0.5

11 2 0.8 0.576 0.224 1.776 2 1.776 0.224 0.5

12 2 0.9 0.576 0.324 1.676 2 1.676 0.324 2

13 2 1 0.576 0.424 1.576 2 1.576 0.424 2

14 0.7 1.1 0.576 0.524 0.176 0.7 0.176 0.524 0.7

15 0.7 1 0.576 0.424 0.276 0.7 0.276 0.424 0.7

16 0.8 0.8 0 0.8 0 0.8 0 0.8 0.8

17 0.6 0.6 0 0.6 0 0.6 0 0.6 0.6

18 2 0.2 0.192 0.392 1.608 2 1.608 0.392 0.5

19 2.5 0.12 0.192 0.312 2.188 2.1 1.788 0.712 1.5

20 3 0 0.192 0.192 2.808 2 1.808 1.192 2.5

21 1 0 0.192 0.192 0.808 1 0.808 0.192 1

22 1 0 0.192 0.192 0.808 2 1.808 -0.808 1

23 0.6 0 0 0 0.6 2.6 2.6 -2 0.6

Total 29.7 7.52 -0.96 6.56 23.14 29.3 22.74 6.96 20.7

                                TABLE X    24 HOURS ENERGY CONSUMPTION AND GENERATION 

 

From the Table X,  

1st column represents the hours of the day, 

2nd column shows the load consumption in a typical summer day (kW), 

3rd column shows 1.5 kW PV system output during the day (kW), 

4th column shows two 12 V, 100 AH batteries charging and discharging cycles (kW), 

5th column shows combined generation of PV and batteries (kW), 

6th column shows load reduction with renewable source = (summer load –combined output 

of PV and batteries) kW, 

7th column shows Fuzzy load control loads = the fuzzy load controller shifted the high peak 

hours loadings to offpeak hours, 

8th column shows load reduction with Fuzzy load controller and renewable sources = 

(summer load - fuzzy control load - PV and battery production) kW, 
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Day-hr Summer Loads Cost(Cents/KW) Cost(Cents/KW) Fuzzy control loads Cost(Cents/KW) Fuzzy with Renewable Cost(Cents/KW) Load with Renewable Cost(Cents/KW) DLC Cost(Cents/KW)

0 0.5 15.1415 7.57075 0.5 7.57075 0.5 7.57075 0.5 7.57075 0.5 7.57075

1 0.4 15.1415 6.0566 0.4 6.0566 0.208 3.149432 0.208 3.149432 0.4 6.0566

2 0.4 15.1415 6.0566 0.4 6.0566 0.208 3.149432 0.208 3.149432 0.4 6.0566

3 0.3 15.1415 4.54245 0.3 4.54245 0.108 1.635282 0.108 1.635282 0.3 4.54245

4 0.3 15.1415 4.54245 0.3 4.54245 0.108 1.635282 0.108 1.635282 0.3 4.54245

5 0.4 15.1415 6.0566 1.9 28.76885 1.708 25.861682 0.208 3.149432 0.4 6.0566

6 0.5 15.1415 7.57075 1 15.1415 1 15.1415 0.5 7.57075 0.5 7.57075

7 1 49.8154 49.8154 1 49.8154 0.9 44.83386 0.9 44.83386 1 49.8154

8 2 49.8154 99.6308 2 99.6308 1.8 89.66772 1.8 89.66772 1.5 74.7231

9 2 49.8154 99.6308 0.5 24.9077 0.2 9.96308 1.7 84.68618 0.5 24.9077

10 3 49.8154 149.4462 0.5 24.9077 0.1 4.98154 2.6 129.52004 0.5 24.9077

11 2 49.8154 99.6308 2 99.6308 1.776 88.4721504 1.776 88.4721504 0.5 24.9077

12 2 26.525 53.05 2 53.05 1.676 44.4559 1.676 44.4559 2 53.05

13 2 26.525 53.05 2 53.05 1.576 41.8034 1.576 41.8034 2 53.05

14 0.8 26.525 21.22 0.7 18.5675 0.176 4.6684 0.176 4.6684 0.7 18.5675

15 0.7 26.525 18.5675 0.7 18.5675 0.276 7.3209 0.276 7.3209 0.7 18.5675

16 0.5 26.525 13.2625 0.8 21.22 0 0 0 0 0.8 21.22

17 0.6 49.8154 29.88924 0.6 29.88924 0 0 0 0 0.6 29.88924

18 2 49.8154 99.6308 2 99.6308 1.608 80.1031632 1.608 80.1031632 0.5 24.9077

19 2.5 49.8154 124.5385 2.1 104.61234 1.788 89.0699352 2.188 108.9960952 1.5 74.7231

20 3 49.8154 149.4462 2 99.6308 1.808 90.0662432 2.808 139.8816432 2.5 124.5385

21 1 49.8154 49.8154 1 49.8154 0.808 40.2508432 0.808 40.2508432 1 49.8154

22 1 15.1415 15.1415 2 30.283 1.808 27.375832 0.808 12.234332 1 15.1415

23 0.6 15.1415 9.0849 2.6 39.3679 2.6 39.3679 0.6 9.0849 0.6 9.0849

       Total 29.5 1177.24674 29.3 989.25608 22.74 760.5442272 23.14 953.8398872 20.7 734.21314

9th column shows load shifting with fuzzy load control and renewable sources which means 

the total amount of loads (kW) that are reduced with fuzzy load controller, PV and batteries, 

10th column shows the remaining loads after Direct Load control. Here DLC used to switch 

off the 1.5 kW of air conditioner during peak hours. 

 

       TABLE XI      ENERGY COST ANALYSIS WITH DIFFERENT LOAD CONTROLLERS 

 

From the Table XI,  

1
st

 column represents the hours of the day, 

2nd column shows the load consumption in a typical summer day (kW), 

3rd column shows the peak and offpeak hours energy cost (cents/kW) determined by 

Synergy energy company in Australia, 

4th column shows the hourly cost for the summer loads consumption (cents/kW), 
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5th column shows Fuzzy load control loads = the fuzzy load controller shifted the high peak 

hours loadings to offpeak hours , 

6th column shows the hourly cost for the loads consumption with fuzzy load controller, 

7th column shows load reduction with Fuzzy load controller and renewable sources = 

(summer load - fuzzy control load - PV and battery production) kW, 

8th column shows the hourly cost for the load consumptions with Fuzzy load controller and 

renewable sources (cents/kW), 

9th column shows load reduction with renewable source = (summer load –combined output 

of PV and batteries) kW, 

10th column shows the hourly cost for the load consumptions with renewable source 

s(cents/kW), 

11th column shows the remaining loads after Direct Load control (kW). 

12th column shows the hourly cost for the load consumptions with Direct Load control 

(cents/kW). 
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