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Abstract: In this survey, the authors examine the trade-off between the unbiased, optimal, and in-between solutions in

finite impulse response (FIR) filtering. Specifically, they refer to linear discrete real-time invariant state-space models

with zero mean noise sources having arbitrary covariances (not obligatorily delta shaped) and distributions (not

obligatorily Gaussian). They systematically analyse the following batch filtering algorithms: unbiased FIR (UFIR) subject

to the unbiasedness condition, optimal FIR (OFIR) which minimises the mean square error (MSE), OFIR with embedded

unbiasedness (EU) which minimises the MSE subject to the unbiasedness constraint, and optimal UFIR (OUFIR) which

minimises the MSE in the UFIR estimate. Based on extensive investigations of the polynomial and harmonic models,

the authors show that the OFIR-EU and OUFIR filters have higher immunity against errors in the noise statistics and

better robustness against temporary model uncertainties than the OFIR and Kalman filters.

1 Introduction

From the beginning works by Gauss [1], unbiasedness plays a role of
the necessary condition that is used to derive linear and non-linear
estimators [2]. In statistics, the ordinary least squares (OLS)
estimator proposed by Gauss in 1795 is an unbiased estimator. By
the Gauss–Markov theorem [3], this estimator is also the best
linear unbiased estimator [4] if noise is white and if it has the
same variance at each time step [5]. The unbiasedness is obeyed
by a condition E{x̂k} = E{xk} which means that the average of
the estimate x̂k is equal to that of the model xk . It leads to the
unbiased finite impulse response (UFIR) estimator [6, 7]. Of
practical importance is that neither OLS nor UFIR require the
noise statistics which are not always known to the engineer [8].
However, the unbiasedness condition does not guarantee ‘good
estimate’ [9]. Therefore, the sufficient condition – the minimum
noise variance – is often applied along to produce different kinds
of estimators which are optimal in the minimum mean square error
(MSE) sense or suboptimal: Bayesian, maximum likelihood,
minimum variance unbiased, and so on. In recent decades, a new
class of estimators having finite impulse response (FIR) (filters,
smoothers, and predictors) has been developed to have optimal or
suboptimal properties.

The FIR filter differs from the structures having the infinite
impulse response (IIR) such as the Kalman filter (KF) and other
recursive filters [10–13]: it utilises N discrete measurements over
the most recent time interval (horizon). Accordingly, FIR filter
exhibits some useful features such as the bounded input/bounded
output stability [14], robustness against mismodelling as well as
temporary model uncertainties and round-off errors [15], and
better immunity against errors in the noise statistics [16]. Early
results on optimal FIR (OFIR) theory can be found in [17–19]. At
that time, FIR filters were not ones commonly used for state
estimation due to large computation complexity. A tremendous
progress in computation technology has changed the things and
nowadays one can find efficient solutions on FIR filtering [20–24],
smoothing [25–28], and prediction [29–31]. Many practical
applications were also reported [32–35].

In state estimation, different models can be used. The prediction
state model xk+1 = Axk + Bwk is basic in control [36, 37]. Here,
xk is the state vector, wk is the system noise vector, and A and B
are some matrices. For this model, OFIR filtering has been
developed by W. H. Kwon and his followers that has resulted in
the theory of receding horizon control [21] and several key
solutions [19–21, 25, 28, 38].

The real-time state model xk = Axk−1 + Bwk serves better when
prediction is not required [39, 40]. Employing this model, the
OFIR filter was derived by Shmaliy in [16] for time-invariant
models. This filter was later extended to time-variant models in
[41]. The unbiased (UFIR) filter and smoother were proposed in
[27, 42] for polynomial systems. In [16], a p-shift UFIR
estimator was derived as a special case of the p-shift OFIR filter.
Soon after, the UFIR filter [16] was extended to time-variant
systems [22]. For non-linear models, an extended UFIR filter
was proposed in [43] and unified forms for FIR filtering and
smoothing were discussed in [44]. An important advantage of the
UFIR filter against OFIR filter is that the noise statistics are not
required and noise reduction is provided by averaging. Therefore,
if N ≫ 1, the UFIR filter becomes as successful in accuracy as
any optimal filter. Note that the FIR solutions derived from the
prediction and real-time state-space models are convertible only
if noise is white Gaussian and has the same variance at each
time step.

In this survey, we examine and develop in part the batch OFIR,
UFIR, OFIR with embedded unbiasedness (OFIR-EU), and
optimal UFIR (OUFIR) filters. The trade-off between these filters
is analysed systematically and we also learn their properties in a
comparison to the KF. The most noticeable properties are that the
OUFIR filter is equivalent to the OFIR-EU filter which occupies
an intermediate position between the UFIR and OFIR filters in
term of accuracy, and the MSEs of OFIR-EU and OFIR filters
decrease with the increasing of estimation horizon N. The
remaining parts of this paper are organised as follows. Section 2
describes the model and gives some preliminaries. Section 3
presents the UFIR filter. Section 4 presents the OFIR filter. The
OFIR-EU filter is discussed in Section 5. Here, we also consider a
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unified form for different kinds of OFIR filters. Section 6 presents
the OUFIR filter. The MSEs are provided and compared in
Section 7, and simulations are provided based on the polynomial
and harmonic models in Section 8. Finally, conclusions are made
in Section 9.

2 State-space model and preliminaries

A linear discrete time-invariant state-space model can be described
by

xk = Axk−1 + Bwk , (1)

yk = Cxk + Dvk , (2)

where k is the discrete time index, xk [ R
n is the state vector,

yk [ R
p is the measurement vector, and matrices A [ R

n×n,
B [ R

n×u, C [ R
p×n, and D [ R

p×v are time invariant and
known. We assume that the process noise wk [ R

u and the
measurement noise vk [ R

v are zero mean, E{wk} = 0 and
E{vk} = 0, mutually uncorrelated and have arbitrary distributions
and known covariances Q(i, j) = E{wiw

T
j }, R(i, j) = E{viv

T
j } for

all i and j, to mean that wk and vk are not obligatorily white Gaussian.
Following [16], the models (1) and (2) can be represented in a

batch form on a discrete time interval [l, k] with recursively
computed forward-in-time solutions as

X k,l = Ak−lxl + Bk−lW k,l , (3)

Y k,l = Ck−lxl +H k−lW k,l + Dk−lV k,l , (4)

where l = k–N + 1 is a start point of the averaging horizon. The
time-variant state vector X k,l [ R

Nn×1, observation vector
Y k,l [ R

Np×1, process noise vector W k,l [ R
Nu×1, and observation

noise vector V k,l [ R
Nv×1 are specified as, respectively

X k,l = x
T
k x

T
k−1 · · · x

T
l

[ ]T
, (5)

Y k,l = y
T
k y

T
k−1 · · · y

T
l

[ ]T
, (6)

W k,l = w
T
k w

T
k−1 · · ·w

T
l

[ ]T
, (7)

V k,l = v
T
k v

T
k−1 · · · v

T
l

[ ]T
. (8)

The expanded model matrix Ak−l [ R
Nn×n, process noise matrix

Bk−l [ R
Nn×Nu, observation matrix Ck−l [ R

Np×n, auxiliary
matrix H k−l [ R

Np×Nu, and measurement noise matrix
Dk−l [ R

Np×Nv are all time invariant and dependent on the
horizon length of N points. Models (1) and (2) suggest that these
matrices can be written as, respectively

Ai = (Ai)
T
(Ai−1)

T
· · ·A

T
I

[

]T, (9)

Bi =

B AB · · · A
i−1

B A
i
B

0 B · · · A
i−2

B A
i−1

B

.

.

.
.
.
.

.
.

.
.
.
.

.

.

.

0 0 · · · B AB

0 0 · · · 0 B

⎡

⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (10)

C i =
!C iAi, (11)

H i =
!C iBi, (12)

Di = diag(D D · · ·D
︸++++︷︷++++︸

i+1

), (13)

!C i = diag(C C · · ·C
︸++++︷︷++++︸

i+1

). (14)

At the initial point, we have xl = xl + Bwl , which means that the
initial state xl is known in advance.

On a horizon [l, k], the FIR filter using N past neighbouring
measurement points can be described by

x̂k|k = KkY k,l , (15)

where x̂k|k is the estimate (x̂k|k means the estimate at k via
measurements from the past to k), and Kk is the FIR filter gain
which is determined using a cost function. The operation
principles of the FIR and IIR (Kalman) filters are illustrated in
Fig. 1. One can easily notice that the recursive IIR (Kalman) filter
uses only one nearest past measurement to compute the estimate,
while the convolution-based batch FIR filter requires N most
recent measurements. Four basic FIR filters such as UFIR, OFIR,
and in-betweens (OFIR-EU and OUFIR) are considered in the
following sections.

3 UFIR filter

Intuitively, one wants to provide tracking, state estimation,
localisation, and so on very accurately – without bias in the
estimate. This leads to a concept of the unbiased estimate. In
optimal filtering, the estimate (15) is said to be unbiased if it
obeys the following unbiasedness condition [2]

E{xk} = E{x̂k|k}, (16)

which means that the average of the estimate x̂k|k is required to be
equal to that of the model xk .

To arrive at the UFIR estimate, one can combine (3) and (4) and
specify the model xk as

xk = A
N−1

xl +
!Bk−lW k,l , (17)

where !Bk−l is the first vector row in Bk−l . Then substituting (15) and
(17) into (16), replacing the term Y k,l with (4), and providing the
averaging, lead to the unbiasedness constraint [23]

A
N−1

= !KkCk−l (18)

which is also known as the deadbeat constraint [15]. Here, !Kk

represents the UFIR filter gain which can be derived similarly to
the OLS estimator. In fact, if we multiply A

N−1 in (18) from the
right-hand side with the identity matrix (CT

k−lCk−l)
−1
C

T
k−lCk−l and

neglect Ck−l in both sides, we get

!Kk = A
N−1(CT

k−lCk−l)
−1
C

T
k−l , (19)

where N should be chosen as N ⩾ n to guarantee the invertibility of
C

T
k−lCk−l .

Fig. 1 Operation time diagrams of the IIR (Kalman) and FIR filters
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The gain (19) set to (15) guarantees that x̂k|k obeys (16) and the
estimate is thus unbiased. The main advantage of (19) is that no
information about noise is required and the UFIR can thus be used
in any noise environment. Design and developments of UFIR
filters for diverse models can be found in [6, 7, 22, 42, 44, 45].

4 OFIR filter

By obeying only (16), the UFIR filter quarantines the best estimation
accuracy on a horizon of N points. However, the precision of its
estimate may not be sufficiently high. If so, then an optimisation
problem should be solved in order to increase the precision at
some expense in accuracy. The MSE sense is most common in
linear optimal filtering as providing the best trade-off between the
accuracy and precision. The minimisation of MSE leads to the
OFIR filter (Strictly speaking, optimality in filtering refers to linear
models with Gaussian noise. The OFIR filter considered in this
paper minimises the MSE assuming zero mean noise having
arbitrary distribution.).

To minimise MSE in the estimate x̂k|k , the instantaneous
estimation error can be defined at k as

ek = xk − x̂k|k . (20)

Then the optimal gain K̃k for the OFIR filter can be found by solving
the optimisation problem

K̃k = argmin
Kk

E{eke
T
k } (21)

which, if to substitute xk with (17) and x̂k with (15) into (20),
becomes

K̃k = argmin
Kk

E (AN−1
xl +

!Bk−lW k,l

{

−KkY k,l

)

( · · · )T
}

, (22)

where ( · · · ) denotes the term that is equal to the relevant preceding
term. There are many ways of solving (22). One of the most
straightforward approaches implies invoking the orthogonality
condition [2]. It has been shown in [41] that (22) in this case
transforms to

E{(AN−1
xl +

!Bk−lW k,l − K̃kY k,l)Y
T
k,l} = 0 (23)

and, by incorporating (4), it can be rewritten as

0 =E [(AN−1
− K̃kCk−l)xl + (!Bk−l

{

− K̃kH k−l)W k,l − K̃kDk−lV k,l]

× (Ck−lxl +H k−lW k,l + Dk−lV k,l)
T
}

. (24)

Under the assumption that the initial state and the system and
measurement noise sources are mutually uncorrelated and
independent process, the averaging and rearranging the terms bring
the solution to (24) into the form of [41]

K̃k = A
N−1

QxC
T
k−l +

!Bk−lQwH
T
k−l

( )

D
−1
x+w+v, (25)

where Qx = E{xlx
T
l }, Qw = E{W k,lW

T
k,l}, Qv = E{V k,lV

T
k,l},

Dx = Ck−lQxC
T
k−l , Dw = H k−lQwH

T
k−l , Dv = Dk−lQvD

T
k−l , and

Δx+w+v = Δx + Δw + Δv.
Further multiplying Θx in (25) from the left-hand side with the

identity matrix (CT
k−lCk−l)

−1
C

T
k−lC

−1
k−l , the OFIR filter gain becomes

K̃k =
!KkDx +

!Bk−lQwH
T
k−l

( )

D
−1
x+w+v, (26)

where !Kk is the UFIR filter gain given by (19). Note that matrix Δx

associated with the mean square initial state Θx can be computed by

solving the discrete algebraic Riccati equation (DARE) [41]

DxD
−1
w+vDx + 2Dx + Dw+v − Y k,lY

T
k,lD

−1
w+vDx = 0.

Detailed theory, developments, and some application of OFIR filters
can be found in [15, 16, 18, 19, 23, 30, 41, 46].

5 OFIR-EU filter

A significant advantage of the OFIR filter is that it minimises the
MSE. However, it requires the noise statistics and the initial error
statistics. Although the latter can be found by solving the DARE,
the solution which is not always available in real time implies
extra computational burden. An intermediate solution between the
OFIR filter and the UFIR filter which ignores the noise statistics
and the initial error statistics can be found if we subject (21) to the
unbiasedness constraint (18). The relevant OFIR-EU filter gain can
then be found by solving the following optimisation problem

K̂k = argmin
Kk

E{eke
T
k },

subject to (18).

(27)

A solution to (27) still has not been addressed in the literature. We
provide it below and derive the OFIR-EU filter gain. To this end,
the following lemma will be used.

Lemma 1: The trace optimisation problem is given by

argmin
K

tr (KF − G)H(KF − G)T
[

+ (KL−M)P(KL−M)T + KSK
T],

subject to L{KU=Z} u|

where H = H
T
. 0, P = P

T
. 0, S = S

T
. 0, tr M is the trace

of M, θ denotes the constraint indication parameter such that θ = 1
if the constraint exists and θ = 0 otherwise. Here, F, G, H, L, M,
P, S, U, and Z are constant matrices of appropriate dimensions.
The solution is

K =

Z

G

M

⎡

⎣

⎤

⎦

T
u U

T
J

−1
U

( )−1

U
T
J

−1

HF
T
J

−1
P

PL
T
J

−1
P

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦
,

where P = I − uU U
T
J

−1
U

( )−1

U
T
J

−1
and

J =

LPL
T
+ S, if F = U , G = Z, and u = 1

FHF
T
+ S, if L = U , M = Z, and u = 1

FHF
T
+ LPL

T
+ S, if u = 0

⎧

⎨

⎩
.

Proof: The proof can be obtained directly by following the line
presented in [15, 47]. Therefore, we omit it. □

5.1 OFIR-EU filter design

Using the trace operation, the optimisation problem (27) subject to
(18) can be reformulated via the cost function

K̂k = argmin
Kk

E tr eke
T
k

[ ]{ }

= argmin
Kk

E tr xk − x̂k k|

( )

· · ·( )
T

[ ]{ }

.
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By substituting xk with (17) and x̂k|k with (15), and using the
extended measurement (4), the above cost function becomes

K̂k = argmin
Kk

E tr A
N−1

xl +
!Bk−lW k,l

([{

− KkY k,l

)

( · · · )T
]}

= argmin
Kk

E tr (KkCk−l − A
N−1)xl

([{

+ (KkH k−l −
!Bk−l)W k,l + KkDk−lV k,l

)

( · · · )T
]}

. (28)

If we subject (28) to the constraint (18), provide the averaging, and
rearrange the terms, (28) can be transformed to

K̂k = argmin
Kk

tr KkH k−l −
!Bk−l

( )

Qw( · · · )
T

[

+KkDv( · · · )
T
]

(29)

referring to the fact that the system noise vector W k,l and the
measurement noise vector V k,l are pairwise independent.

By Lemma 1, case θ = 1, the solution to the optimisation problem
(29) can be found by neglecting L, M, and P and using the
replacements: F $ H k−l , G $ !Bk−l , H $ Qw, U $ Ck−l ,
Z $ A

N−1, and S $ Dv. We thus have

K̂k = Kk (a)+ Kk (b), (30)

where

Kk (a) = A
N−1(CT

k−lD
−1
w+vCk−l)

−1
C

T
k−lD

−1
w+v, (31)

Kk (b) =
!Bk−lQwH

T
k−lD

−1
w+v(I −Vk−l), (32)

in which

Vk−l = Ck−l C
T
k−lD

−1
w+vCk−l

( )−1
C

T
k−lD

−1
w+v. (33)

The OFIR-EU filter can now be summarised in the following
theorem.

Theorem 1: Given the state-space models (1) and (2) with zero mean
mutually independent and uncorrelated noise vectors wk and vk , then
OFIR-EU filter utilising measurements from l to k is stated by

x̂k|k = Kk (a)+ Kk (b)
[

]Y k,l , (34)

where Y k,l [ R
Np×1 is the measurement vector given by (6), and

Kk (a) and Kk (b) are given by (30) and (31) with Ck−l and
!Bk−l

specified by (11) and (10), respectively.

Proof: The proof is provided by (27)–(33). □

Note that the horizon length N for (30) should be chosen such that
the inverse in K̂k exists. Generally, one can set N ⩾ n, where n
is the number of the model states. Table 1 summarises the steps in
the OFIR-EU estimation algorithm, in which the noise statistics
are assumed to be known for measurements available from l to k.
Given N, compute Kk (a) and Kk (b) according to (31) and (32),
respectively, then the OFIR-EU estimate can be obtained at time
index k by (34).

5.2 Unified form for OFIR and OFIR-EU filters

To ascertain a correspondence between the OFIR filter and its
modifications associated with the unbiasedness constraint (18), the
optimisation problem (28) can be rewritten with respect to the

unified gain Ǩk as

K
^

k = argmin
Kk

tr KkH k−l −
!Bk−l

( )

Qw · · ·( )
T

[

+ KkCk−l − A
N−1

( )

Qx · · ·( )
T
+KkDv( · · · )

T
]

(35)

subject to the constraint L{KkCk−l=AN−1} u| . By Lemma 1, a solution to
(35) attains the form of

Ǩk = uAN−1
Lk−l

+ A
N−1

QxC
T
k−l

!D
−1

x+w+v I − uCk−lLk−l

( )

+ Bk−lQwH
T
k−l

!D
−1

x+w+v I − uCk−lLk−l

( )

, (36)

where

Lk−l = C
T
k−l

!D
−1

x+w+vCk−l

( )−1

C
T
k−l

!D
−1

x+w+v, (37)

in which

!Dx+w+v =
Dw+v, if u = 1

Dx+w+v, if u = 0

{

. (38)

In a special case of θ = 1, (36) reduces to

Ǩk = A
N−1

Lk−l + A
N−1

QxC
T
k−lD

−1
w+v I − Ck−lLk−l

( )

+ !Bk−lQwH
T
k−lD

−1
w+v I − Ck−lLk−l

( )

, (39)

where Λk−l is given by (37), in which !Dx+w+v is specified by (38)

with θ = 1. Referring to (31) and (32) and taking into

consideration that AN−1
QxC

T
k−lD

−1
w+v I − Ck−lLk−l

( )

= 0, we come

up with a conclusion that

Ǩk = K̂k . (40)

In the unconstrained case of θ = 0, (36) transforms to

Ǩk = A
N−1

QxC
T
k−lD

−1
x+w+v +

!Bk−lQwH
T
k−lD

−1
x+w+v. (41)

By multiplying Θx with identity (CT
k−lCk−l)

−1
C

T
k−lCk−l from the

left-hand side, (41) turns out to be

Ǩk = A
N−1(CT

k−lCk−l)
−1
C

T
k−lDx

(

+ !Bk−lQwH
T
k−l

)

D
−1
x+w+v

= (!KkDx +
!Bk−lQwH

T
k−l)D

−1
x+w+v

= K̃k , (42)

and we infer that this case corresponds to the OFIR filter which gain
was found in (26). At this point, we notice that (36) is a unified
generalised form for the OFIR filter gain which minimises the
MSE in the estimate of discrete time-invariant state-space model.
In this regard, the OFIR filter gain derived in [41] and OFIR-EU
filter gain specified by Theorem 1 can be considered as special
cases of (36).

Table 1 OFIR-EU filtering algorithm

Stage

Given N ⩾ n, l = k–N + 1
Find K k (a) by (31) and K k (b) by (32)
Compute x̂k |k = [K k (a)+ K k (b)]Y k ,l
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6 OUFIR filter

Another in-between solution can be found to minimise the MSE in
the UFIR filter. The relevant filter is called the OUFIR filter,
because it evolves as UFIR-to-OFIR filter by increasing N. The
OUFIR filter can be obtained by representing its gain Kk,ou as a
linear combination of !Kk given by (19) and an auxiliary unknown
term of the same class K

′

k , and then defining K
′

k by solving the
optimisation problem

K
′

k = argmin
Kk

E{eke
T
k }. (43)

Similar reasonings as for (27) bring (43) to

K
′

k = argmin
Kk

E tr (!Kk + K
′

k )Y k,l − A
N−1

xl
([{

− !Bk−lW k,l

)

( · · · )T
]}

.

= argmin
Kk

E tr (!Kk + K
′

k )(H k−lW k,l + Dk−lV k,l)
([{

+K
′

kCk−lxl −
!Bk−lW k,l

)

( · · · )T
]}

that, for noise sources which are mutually uncorrelated and
independent on the initial state xl , becomes

K
′

k = argmin
Kk

tr (!Kk + K
′

k )H k−l −
!Bk−l

( )

Qw( · · · )
T

{

+ (!Kk + K
′

k )Dv · · ·( )
T
+ K

′

kDx( · · · )
T
}

. (44)

A solution to (44) provided by using Lemma 1 is given by

K
′

k =
!Yk−l(I −

!Vk−l), (45)

where

!Yk−l = (!Bk−lQwH
T
k−l −

!KkDw+v)D
−1
x+w+v, (46)

!Vk−l = Ck−l(C
T
k−lD

−1
x+w+vCk−l)

−1
C

T
k−lD

−1
x+w+v. (47)

At this point, the OUFIR filter gain Kk,ou appears to be

Kk,ou =
!Kk + K

′

k . (48)

Lemma 1 suggests that Kk,ou does not depend on the initial state
matrix Δx, and Δx can thus be arbitrarily defined in (45), provided
that the inverse in (47) exists. Thus, the last term K

′

kDx( · · · )
T in

(44) can be omitted, by Δx = 0. This fundamental property was
postulated in many papers [15, 21, 27, 42] and, based upon, Kk,ou

can be rewritten equivalently as

Kk,ou =
!Kk + K

′′

k , (49)

where

K
′′

k = Yk−l I −Vk−l

( )

,

Yk−l = (!Bk−lQwH
T
k−l − K

U
k Dw+v)D

−1
w+v,

and Ωk−l is given by (33). Referring to (33) and making some

rearrangements, one infers that

Kk,ou =
!Kk −

!Kk (I −Vk−l)+
!Bk−lQwH

T
k−lD

−1
w+v(I −Vk−l)

= !KkCk−l(C
T
k−lD

−1
w+vCk−l)

−1
C

T
k−lD

−1
w+v + Kk (b)

= K̂k

which is formalised below with a theorem.

Theorem 2: The OUFIR filter gain specified by (48) is identical to
the OFIR-EU filter gain specified by Theorem 1

Kk,ou = K̂k .

Proof: The proof has been given above. □

It follows from Theorem 2 that the gain Kk,ou is not unique. One may
assume any initial state matrix Δx, compute it by solving the DARE
as in [16], or even neglect Δx as we have done above. Although each
of these cases require particular algorithms, Lemma 1 suggests that
the estimation accuracy will not be affected by Δx. We use this
property below while comparing different kinds of FIR filters.

6.1 Deterministic state-space model

Having no noise in (1) and (2), the cost function in (28) becomes

K̂k = argmin
Kk

E tr (AN−1
xl − KkCk−lxl) · · ·( )

T
[ ]{ }

. (50)

According to (18), the above equation becomes identically zero.
Hence, the solution to (50) is not unique and any gain Kk can be
considered as the solution. Then, we have a conclusion that the
UFIR filter is a deadbeat filter for deterministic systems.

If (18) is not used, the solution to (50) is found to be

K̃k = A
N−1

QxC
T
k−lD

−1
x . (51)

Multiplying Θx with (CT
k−lCk−l)

−1
C

T
k−lCk−l from the left-hand side

of (51) gives us

K̃k =
!Kk = A

N−1
C

T
k−lCk−l

( )−1
C

T
k−l

which can also be obtained by setting the terms Δw and Δv in (26) to
zero. Therefore, OFIR filter is also a deadbeat filter. Table 2
summarises the gains for the UFIR, OFIR-EU (OUFIR), and OFIR
filters. Developments and applications of different kinds of OUFIR
filters can be found in [15, 28, 48, 49].

Provided the developments and comparative analysis of the UFIR
and OFIR filters, and two possible in-betweens such as the OFIR-EU
and OUFIR filters, we analyse the estimation errors in the following
section.

7 Estimation errors

As long as the MSE is recognised to be the main characteristic of any
linear filter, we compare the MSEs of the above-observed filters and
outline their common properties and special features referring to
Table 2.

Most generally, the MSE J k at time k is specified as

J k = E xk − x̂k k|

( )

· · ·( )
T

{ }

(52)
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and further transformed to

J k = E E xk
{ }

− E x̂k k|

{ }( )

· · ·( )
T

{ }

+ E xk − E xk
{ }( )

· · ·( )
T

{ }

+ E E x̂k k|

{ }

− x̂k k|

( )

· · ·( )
T

{ }

− 2E xk x̂
T
k|k − xkE x̂k k|

{ }T
{ }

(53a)

=Bias2 x̂k|k
( )

+ Var xk
( )

+ Var x̂k|k
( )

− 2Cov xk , x̂k|k
( )

,
(53b)

where the terms in (53b) correspond to the relevant terms in (53a).
Here, Bias2(x̂k|k ) represents the squared bias in x̂k|k , Cov(xk , x̂k|k )
represents the covariance between xk and x̂k|k , and Var(xk ) and
Var(x̂k|k ) represents the variances of state xk and estimate x̂k|k ,
respectively. The state variance Var(xk ) is specified as

Var xk
( )

= !Bk−lQw
!B
T

k−l. (54)

For unbiased estimates, we get

Bias x̂k|k
( )

= 0. (55)

An analysis of MSEs for diverse FIR filters is given below.

7.1 MSE of the UFIR filter

In this case, Var(x̂k|k ) on the right-hand side of (53b) has the
following equalities

Var(x̂k|k ) = E !KkH k−lW k,l +
!KkDk−lV k,l

( )

· · ·( )
T

{ }

= !KkDw+v( · · · )
T
.

(56)

Since W k,l and V k,l are mutually independent, the covariance
Cov(xk , x̂k|k ) can be written as

Cov(xk , x̂k|k ) = E xk − E xk
{ }( )

x̂k|k − E x̂k|k
{ }( )T

{ }

= !Bk−lQwH
T
k−l

!Kk

( )T
, (57)

Finally, the MSE in the UFIR filter can be computed as

!J k =
!Bk−lQw( · · · )

T
+ !KkDw+v · · ·( )

T

− 2!Bk−lQwH
T
k−l

!Kk

( )T
, (58)

where !Kk is given by (19).

7.2 MSE of the OFIR-EU filter

Similarly, Var(x̂k|k ) and Cov(xk , x̂k|k ) for the OFIR-EU filter are,
respectively, given by

Var(x̂k|k ) = K̂kDw+v · · ·( )
T, (59)

Cov(xk , x̂k|k ) =
!Bk−lQwH

T
k−l(K̂k )

T
. (60)

With (49), we arrive at

Var(x̂k|k ) =
!KkDw+v · · ·( )

T
+ 2!KkDw+v K

′′

k

( )T

+ K
′′

kDw+v · · ·( )
T, (61)

Cov(xk , x̂k|k ) =
!Bk−lQwH

T
k−l

!Kk

( )T

+ !Bk−lQwH
T
k−l K

′′

k

( )T
. (62)

Substituting (55), (61), and (62) into (53b) and rearranging the terms
yields

Ĵ k =
!J k + K

′′

kDw+v · · ·( )
T

− 2 !Bk−lQwH
T
k−l −

!KkDw+v

( )

K
′′

k

( )T
.

(63)

Using Yk−l , (63) can be rewritten as

Ĵ k =
!J k + K

′′

kDw+v · · ·( )
T
−2Yk−lDw+v K

′′

k

( )T
. (64)

7.3 MSE of the OFIR filter

Before calculating estimation errors, the OFIR filter gain K̃k

represented by (26) can be equivalently given by

K̃k =
!Kk +

!Yk−l. (65)

Then, the bias-dependent term becomes Bias2 x̂k|k
( )

=
!Yk−lDx( · · · )

T. By combining (53b), (54), and (58), the MSE of
the OFIR filter can now be computed as

J̃ k =
!Yk−lDx( · · · )

T
+ !Bk−lQw( · · · )

T
+ K̃kDw+v · · ·( )

T

− 2!Bk−lQwH
T
k−l(K̃k )

T
.

(66)

If we further substitute K̃k with (65), refer to (58), and rearrange the
terms, we arrive at the final form of

J̃ k =
!J k −

!Yk−lDx+w+v( · · · )
T
. (67)

The above-provided relations allow us to analyse a correspondence
between the MSEs in different kinds of FIR filters that we do next.

7.4 Correspondence between the MSEs

Theorem 3: Given the MSEs !J k by (58), Ĵ k by (64), and J̃ k by (67).
We have

J̃ k4 Ĵ k4
!J k , (68)

where the equalities hold when the state-space model is
deterministic.

Proof: The proof of this theorem given in [48]. □

Fig. 2 sketches an algorithmic link between the FIR filtering
estimates. In turn, Table 3 summarises the properties of the UFIR,
OFIR-EU (or OUFIR), and OFIR filters and we notice again that
all these filters are deadbeat filters. In the UFIR filter, bias is
guaranteed to be zero, but the noise variance is not minimised and
reduced by averaging as ∝ (1/N). Therefore, the MSE in UFIR
filter generally exceeds those in two other filters. On the contrary,
the OFIR filter minimises MSE to obtain an optimal balance
between the bias and variance. The OFIR-EU filter occupies an

Table 2 Gains of UFIR, OFIR-EU (or OUFIR), and OFIR filters

Filter Gain

UFIR !K k = A
N−1(CT

k−lCk−l )
−1

C
T
k−l

OFIR-EU K̂ k = K k (a)+ K k (b)

OFIR K̃ k = (!K kDx + !Bk−lQwH
T
k−l )D

−1
x+w+v
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intermediate position between the UFIR and OFIR filters, as it
minimises MSE subject to the unbiasedness constraint.

8 Applications to basic systems and special
features

We have already pointed out several basic properties of UFIR, OFIR,
OFIR-EU, and OUFIR filters. Many others can be learned in
particular situations. To investigate the trade-off between these
filters in more detail, in this section we test them in a comparison
with the KF by the two-state polynomial and harmonic models in
different noise environments. The reader can also find some
comparisons of KF and FIR filters in [20, 22, 41, 50].

8.1 Two-state polynomial model

The two-state polynomial model serves well in many practical
situations associated with moving objects, timekeeping, and
navigation. We specify such a model given by (1) and (2) with
B = I, D = I, C = [1, 0], and

A =
1 t

0 1

[ ]

,

where t is a time step in second. Practical applications dictate that
this model may approximate a process under the errors in the
noise covariances and/or in the presence of uncertainties. Below,
we test the FIR filters in such environments. To evaluate limiting
capabilities of FIR filters, we start with an ideal case of exactly
known model and noise which fit the process exactly.

8.1.1 Accurate model – ideal case: Suppose that the model
represents a process exactly and the noise statistics are completely
known. As such a supposition is commonly not supported by
practice and rather reflects a desire to avoid mismodelling, we call
this case ideal. Specifically, we set t = 0.1 s, the noise variances
for the first and second states as s

2
w1 = 1 and s

2
w2 = 1/s2, the

measurement noise variance as s
2
v = 10, and the initial states as

x10 = 1 and x20 = 0.01/s. The process is simulated at 400
subsequent points and, by minimising the MSE in the UFIR filter
as suggested in [45], we find Nopt = 20.

The purpose of the first simulation is to learn the effect of N on the
estimates. With this aim, we first show in Fig. 3 the estimation errors
produced by the UFIR, OFIR, and OFIR-EU filters with N = 20
along with the KF errors. What can instantly be deduced by
observing this figure is that the OFIR and OFIR-EU estimates are
almost identical to the KF one. However, the UFIR filter stays a
bit away with its not fully consistent estimates and larger variance.

Admitting that the relation between the estimates found in the
ideal case (Fig. 3) may be violated if to vary N, we further
compute the root MSE (RMSE) by tr(J k ) as function of N.

Typical errors are sketched in Fig. 4a for s2
v = 10 and in Fig. 4b

for s2
v = 100. One notices that the MSE function of UFIR filter is

traditionally concave on N with a minimum at Nopt [45]: N < Nopt

makes noise reduction inefficient and N > Nopt the bias error
dominating. Noticing that the KF is N-invariant, we arrive at the
following generalisations:

† The embedded unbiasedness puts OFIR-EU filter in between the
UFIR and OFIR filters: the OFIR-EU filter becomes essentially the
UFIR filter when N <Nopt and it becomes the OFIR filter if N > Nopt.
† The OFIR and OFIR-EU estimates converge to the KF one by
increasing N. These estimates become practically indistinguishable
when N ≫ Nopt.
† Since the MSEs in the OFIR and OFIR-EU filters diminish with
N, these filters are full-horizon [22, 46]. As the full-horizon batch
FIR filters are computationally inefficient in view of large
dimensions of all the vectors and matrices, they can be exploited
on Nopt with no essential loss in accuracy.
† To implement all kinds of batch FIR filters, fast iterative
algorithms are required [46, 51].

8.1.2 Filtering with errors in the noise statistics: The noise
statistics required by the KF are commonly not completely known
to the engineer. To investigate the effect of the imprecisely defined
noise covariances in the worst case, we introduce a correction
coefficient p as p2Q and R/ p2, vary p from 0.1 to 10, and plot
the RMSE

=====

trJ k

√

as shown in Fig. 5. Here, p is used to introduce
uncertainties into the noise variances. With p ≫ 1 or p ≪ 1, large
uncertainties exist in the noise variances used in algorithms. When
p = 1, the noise variances are known accurately. Therefore, the
MSE functions of optimal filters are inherently concave on p with
a minimum at p = 1. On the contrary, the MSE of the UFIR filter
is p-invariant.

As expected, the KF is a bit more accurate than the UFIR filter
when p = 1. However, that is only within a narrow range of 0.7 <
p < 1.5 that KF slightly outperforms UFIR filter if p≠ 1.
Otherwise, the UFIR filter demonstrates smaller errors. Referring
to difficulties in practical determination of the noise statistics [8],
the latter can be considered as an important engineering advantage
against KF. Some other generalisations also emerge from Fig. 5:

† The embedded unbiasedness makes the OFIR-EU and OUFIR
filters p-invariant with p < 1 to possess the properties of the UFIR
filter.
† With p < 1, the KF is more sensitive to errors in the noise statistics
than the FIR filters.
† By p > 1, the KF, OFIR, OFIR-EU, and OUFIR estimates
converge and their MSEs increase.

Fig. 2 Link between the UFIR, OFIR-EU (or OUFIR), and OFIR filters

Table 3 Basic properties of UFIR, OFIR, and OFIR-EU (or OUFIR) filters

Performance UFIR OFIR-EU OFIR

noise statistics ignored required required
optimality unbiased unbiased/optimal optimal
initial conditions ignored ignored required
complexity middle high high

Fig. 3 Instantaneous estimation errors for an ideal case of exactly known

model

a First state

b Second state
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Overall, we conclude that the OFIR-EU and OUFIR filters have
better performance than the OFIR filter and KF in practical
situations when p≠ 1.

8.1.3 Filtering under the model temporary uncertainties:
System behaviours often imply sudden unpredictable jumps and
temporary departures from the normal mode. This causes
uncertainties in (1) and (2) which in some situations should be

tracked and in some others ignored by an estimator. To learn the
effect of the model temporary uncertainty on the estimates, in this
section we set t = 5 s when 160⩽ k⩽180 and t = 0.1 s otherwise.
The noise variances are allowed to be s2

w1= 10−2, s2
w2= 10−2

/s2,
and s

2
v = 25. The process was simulated at 400 subsequent points

and we found Nopt = 25 for the first state and Nopt = 30 for the
second state.

Typical estimates are sketched in Fig. 6. As can be seen in Fig. 6a,
the OFIR-EU (or OUFIR) filter (case p = 0.2) and the UFIR filter
produce similar errors. However, the KF demonstrates much worse
robustness for any p⩽1. Otherwise, with p > 1, no preference can
be granted to any of the filters (Fig. 6b). Note that the same
deduction flows from Fig. 5.

8.2 Harmonic model

Oscillating systems and processes corrupted by noise are well
modelled by a harmonic model in diverse environments. Referring
to the properties of FIR filters discussed in Section 8.1 based on a
polynomial model, one may wonder if they are saved in the
harmonic model. To ascertain this, we test the FIR filters by a
two-state harmonic model allowing B = [11]T, C = [10], D = 1, and

A =
cosw sinw

−sinw cosw

[ ]

with j = π/32. Traditionally, we investigate an ideal case of
completely known model which fits the process exactly and the
cases of imprecisely defined noise statistics and systems with
temporary uncertaainties.

8.2.1 Accurate model – ideal case: To learn the estimation
errors in the ideal case, we draw 400 samples for the initial states
x10 = 1 and x20 = 0.1 and noise variances s

2
w = 1 and s

2
v = 10.

Supposing that all these values are known exactly, we provide
state estimation and compute the RMSEs

=====

trJ k

√

as functions of N
(Fig. 7a). Referring to [22], we notice that the properties of FIR
filters learned based on the polynomial model have similarFig. 5 RMSEs

=====

trJ k

√

as functions of p for KF and FIR filters

Fig. 6 Effect of the model temporary uncertainty on the estimation errors

a First state for p ⩽ 1

b Second state for p > 1

Fig. 4 RMSEs as functions of N for KF and FIR filters with s
2
w = 1

a s2
v = 10

b s
2
v = 100
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appearances in the harmonic models. In fact, the OFIR-EU (or
OUFIR) estimate still evolves as UFIR-to-OFIR by changing N
around Nopt. The only specific can be noticed when N > Nopt: the
UFIR estimate grows with oscillations in the harmonic model and
it grows monotonously in the polynomial model.

8.2.2 Filtering with error in the noise statistics: The case of
imprecisely defined noise statistics does not reveal new features. In
fact, the RMSEs

=====

trJ k

√

computed as functions of the correction
coefficient p behave in Fig. 7b very similarly to those shown in
Fig. 5 for the polynomial model. Functions shown in this figure
basically confirm our early statements: with p < 1, the OFIR-EU
and OUFIR filters behave as the UFIR filter and, if p > 1, the KF,
OFIR, OFIR-EU, and OUFIR estimates converge and their MSEs
grow.

8.2.3 Filtering under the model temporary uncertainties:
We finally would like to learn the effect of a model temporary
uncertainty on the estimates. With this purpose in mind, we
augment the system matrix A as

A =
cosw sinw+ d

−sinw+ d cosw

[ ]

,

where we set δ = 0.4 if 160 ⩽ k ⩽ 180 and δ = 0 otherwise. The
process is generated with x10 = 1, x20 = 0.1, s2

w = 0.1, and
s
2
v = 100 at 400 subsequent points.
The instantaneous estimation errors produced by the KF and

OFIR-EU (or OUFIR) filter for p ⩽ 1 are shown in Fig. 8. It is
seen that all the filtering estimates have negligible errors in the
interval of first 160 points where the model is supposed to be
known exactly. Beyond this interval, the performance of all filters
is deteriorated by δk≠ 0. One also notices that after the model
returned back to normal mode of δ = 0, the filters demonstrate
transients with highly perceptible differences. Inherently, the
transients in OFIR-EU and OUFIR filters are limited by the
horizon length, which in our case was found to be Nopt = 19. Just

on the contrary, the transient in the KF which has IIR lasts much
longer as shown in Figs. 8 and 9. The case of p > 1 in Fig. 9
slightly corrects the above-made observations. Here, we see larger
excursions in the OFIR-EU (or OUFIR) and OFIR filters.
Nevertheless, the KF transient still lasts much longer.

Fig. 7 RMSEs
=====

trJ k

√

in the estimates of the two-state harmonic model

a As function of N

b As function of p for Nopt = 19

Fig. 8 Instantaneous estimation errors caused by the temporary model

uncertainties with p≤1

a First state

b Second state

Fig. 9 Instantaneous estimation errors caused by the temporary model

uncertainties with p > 1

a First state

b Second state
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9 Conclusions

A survey provided in this paper overviews the trade-off between the
UFIR, OFIR, OFIR-EU, and OUFIR filters. It shows that the filters
have diverse levels of computational complexities and produce
different estimation errors as functions of the horizon N,
mismodelling, and environmental conditions. Most appealing from
the engineering perspective is the UFIR filter that does not require
the noise statistics. it also has a simplest algorithm with lowest
computational burden and its MSE is minimised by Nopt.
However, the UFIR filter produces larger errors than in KF,
because it does not guarantee optimality. The output of the OFIR
filter is consistent to the KF output. The OFIR and KF estimates
become virtually equal when N >Nopt and exactly equal when
N→∞. The latter is due to the fact that N =∞ makes the OFIR
filter has optimal IIR and the KF has IIR as well.

The intermediate solutions such as the OFIR-EU and OUFIR
filters are equivalent to each other. In terms of accuracy, they stay
between the UFIR and OFIR filters and evolve from one to
another by changing the conditions. Of practical importance is that
the OFIR-EU and OUFIR filters adopt properties of both the UFIR
and OFIR filters. In fact, like the UFIR filter, the OFIR-EU (or
OUFIR) filter completely ignores the initial conditions. Unlike in
the UFIR filter which MSE is minimised by Nopt, the MSEs in the
OFIR-EU filter decrease with N and this filter is thus full-horizon,
as well as the OFIR filter. The performance of OFIR-EU filter is
developed by varying the horizon length around Nopt or ranging
the correction coefficient p around p = 1. Accordingly, the
OFIR-EU filter in general demonstrates higher immunity against
errors in the noise statistics and better robustness against
temporary model uncertainties than the OFIR filter and KF.
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