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Compressible simulations of bubble dynamics with central-upwind 

schemes 

This paper discusses the implementation of an explicit density-based solver, that 
utilizes the central-upwind schemes  for the simulation of cavitating bubble 
dynamic flows. It is highlighted that, in conjunction with the MUSCL scheme 
they are of second order in spatial accuracy; essentially they are high-order 
extensions of the Lax-Friedrichs method and are linked to the HLL solver family. 
Basic comparison with the predicted wave pattern of the central-upwind schemes 
is performed with the exact solution of the Riemann problem, for an equation of 
state used in cavitating flows, showing excellent agreement. Next, the solver is 
used to predict a fundamental bubble dynamics case, the Rayleigh collapse, in 
which results are in accordance to theory. Then several different bubble 
configurations were tested. The methodology is able to handle the large pressure 
and density ratios appearing in cavitating flows, giving similar predictions in the 
evolution of the bubble shape, as the reference.  

 Keywords: Explicit, compressible, density-based, central-upwind schemes, 
cavitation, bubble dynamics 

1. Introduction 

Cavitation is a multiscale phenomenon, involving the extreme growth of initial seeds, voids 
or cavities within the bulk of a liquid due to the static pressure drop below the saturation 
pressure (Franc and Michel 2005). The seeds can be of micrometric size, or even lower 
depending on the quality of the liquid under consideration.  The  formed cavities are filled with 
vapour and incondensable, contaminant gases (e.g. atmospheric air) which were dissolved in the 
liquid. The cavities may exist as long as a low pressure is maintained, forming agglomerations, 
merging or splitting due to the local flow field, but they collapse soon after pressure recovers.  

Traditionally, for the study of cavitation dynamics the Rayleigh-Plesset equation is used 
(Brennen 1995; Franc and Michel 2005). While the original Rayleigh-Plesset equation was 
developed with liquid incompressibility as a main assumption (Franc and Michel 2005), 
extensions exist that allow the incorporation of compressibility and thermal effects, e.g. the 
Keller variant or the Plesset and Zwick variant, see Brennen 1995. However, either the original 
Rayleigh-Plesset equation or its more complex variants assume that the bubble shape is 
perfectly spherical. In practice this is not the case, since many works, experimental (see 
Obreschkow et al. 2006; Obreschkow et al. 2013) or numerical, (see Hawker and Ventikos 
2009; Lauer et al. 2012; Plesset and Chapman 1970; Zhang et al. 2009) suggest that the bubble 
shape may be strongly deformed in the presence of pressure fields (e.g. due to gravity, due to 
passing sound waves), or due to the presence of boundaries (walls, free surfaces, etc.). This is 
especially important in the case of studying cavitation erosion, since the influence of the wall at 
the bubble development will cause a well-known asymmetric collapse, eventually leading to the 
microjet effect (Lauer et al. 2012; Plesset and Chapman 1970; Zhang et al. 2009), which is 
believed to play a fundamental role in erosion, due to the very high pressures that are generated. 

Unfortunately, if one wishes to predict the asymmetric bubble collapse, then, due to the 
aforementioned reasons, it is necessary to do so by properly integrating the Navier-Stokes 
equations in 2D axis-symmetric or 3D perspective, depending on the exact case and 
configuration. The complexity of the involved flow pattern is significant, since the flow is 
multiphase, involving a strongly deforming free surface, very high velocities, due to the 
microjet, giving rise to very high pressures at the impact site, caused by the well known water 
hammer effect. Moreover, the flow involves large density ratios of the order of one thousand, 
making the problem difficult to tackle with standard CFD methods.  



Generally, there have been efforts to perform such simulations in the past; one of the first 
was the pioneering work of Plesset and Chapman 1970 who employed the Marker-and-Cell 
method for tracking the bubble surface, in order to simulate the collapse of a bubble near a wall. 
More recent works on the subject of bubble collapse involve the Boundary Element Method 
(BEM), see the work of Zhang et al. 2009, or the front tracking method of Hawker and Ventikos 
2012; while these methodologies provide high fidelity results on the bubble shape, they become 
problematic when the topology of the bubble surface changes, e.g. when the bubble is 
transformed to a torus, due to the microjet piercing the bubble.  

An alternative to such methodologies is the interface capturing method, where the interface 
is captured either though the density field itself or by using a phase field or Level Set field. 
Examples of such works are: 

-  the work of Adams and Schmidt 2013 or Pohl et al. 2014, where a homogenous 
equilibrium model is employed for simulating the collapse of cavitation bubbles. Moreover, 
they employed specialized schemes that ensure consistency at low Mach numbers.  

- the work of Lauer et al. 2012, where a non-equilibrium mass transfer model is employed, 
based on the solution of an additional Level Set field, defining the two compressible states, 
liquid and vapour.  

- the work of Nagrath et al. 2006 where the Level Set approach is used for tracking the 
bubble interface.   

In this work, a method similar to the one used by Adams and Schmidt 2013 and Pohl et al. 
2014 will be used; the cavitation bubble will be described as a density difference of a single 
fluid, governed by a complex equation of state which represents the isentropic phase change due 
to cavitation. However, in this work the central-upwind schemes shall be used for the flux 
estimation which, as will be explained later, show a good performance. The aim is to predict the 
outcome of several different arrangements of bubble collapse near wall configurations, in order 
to determine the performance of the scheme employed.  

2. Numerical methodology 

The Euler equations are resolved, considering the influence of cylindrical symmetry, to 
reduce computational cost. The equations can be written in vector form as:  
 
 )()()( USUGUFU =++ yxt  (1) 

 
where U is the vector of conservative variables, F and G the flux function and S the source 
term, used to account for cylindrical symmetry around the y-axis or spherical symmetry in case 
of 1D. The formulation of these terms is, see Toro 2009 or LeVeque 2002: 
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In the above equations ρ is the density, u, v are the x and y direction velocities respectively, p 

is the pressure given by the equation of state and r is the radial distance from the axis of 
symmetry. Indexes t, x and y denote differentiation in respect to time t, x-direction and y-
direction respectively. The parameter s in the source term is 2 for spherical symmetry and 1 for 
cylindrical symmetry. Here, a piecewise barotropic equation of state is used under the 
Homogenous Equilibrium assumption, which is a combination of the Tait equation of state 
above saturation and a formula resembling the isentrope within the saturation dome, see Egerer 
et al. 2014:  
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In the aforementioned equation B is the liquid bulk modulus, psat is the saturation pressure, C 

is a parameter and ρsat the liquid density at saturation. The values used for the equation of state 
are summarized in Table 1; values for the pure liquid phase are based on literature, Ivings et al. 
1998.  

 
Table 1. Thermodynamic properties for the fluid used in the present study. 

 

Fluid properties 
B 293.5.106 Pa 
n 7.15 (-) 
ρsat,L 998.2 kg/m3 

C 1450 Pa.kg/m3 
psat 2339 Pa 

 
 

In order to evaluate the flux at the interface of the finite volumes, the central-upwind scheme 
of Kurganov et al. 2001 is used, shown here only for the F flux function in 1D:  
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and for the local wave speed at the cell interface +
+ 2/1ia  and −

+ 2/1ia : 
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where the plus/minus signs indicate the direction of interpolation to the cell face; assuming a 
structured cell arrangement, where cell i-1, i, i+1 are placed in direction of increasing x, plus 
indicates interpolation towards a positive direction from the i cell towards the cell face i+1/2 
located between i, i+1. On the other hand, minus indicates negative direction from the i+1 cell 
towards the cell face i+1/2 located between i, i+1. Note that the aforementioned formulation is 
related to the HLL solver, see Brandner et al. 2012. Calculation of the fluxes in 2D is a bit more 
complicated, since it involves application of Simpson's integration rule at the cell interface, 
leading to the following relations, see also Figure 1 for the naming convention of the cell 
interface locations: 
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and  
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Figure 1. (a) Naming convention of the interface locations used for the cell i, j (b) the stencil used for the F and G 

flux calculation. 

 
Linear interpolations are used, handled with the MUSCL scheme with a SuperBee limiter, 

see Toro 2009, though higher-order interpolations could be used for higher accuracy. This 
scheme has the advantage of being universal, in the sense that it does not need the tuning of the 
AUSM+up scheme coefficients (see Liou 2006), while it does not require an entropy fix, as e.g. 
Roe solvers do (Toro 2009). On the other hand, the 2nd (or higher) order extension ensures low 
numerical diffusion. Boundaries are handled either as transmissive or as rigid slip walls, 
depending on the configuration (Toro 2009). Viscous and surface tension effects have been 
omitted. This is justified by the fact that during the bubble collapse velocities of even ~500m/s 
or more may develop; this leads to Reynolds numbers of ~105 or more and Weber numbers of 
~106. Thus it is safe to assume that viscous and surface tension effects play a minor role in the 
flow pattern development, which is mainly inertia dominated.     

Time integration is performed in an explicit manner, with a splitting scheme Toro 2009, i.e. 
initially for the homogenous part of eq. 1 and then for the source term. In this work, 1st order 
Euler integration is used, with a CFL of 0.5, whereas in the future higher order Runge Kutta 
integration will be implemented.   
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5. Bubble collapse near wall 

 
The case of interest is the collapse of a water vapour bubble in the vicinity of a wall, in the 

same arrangement as the one used in the work of Lauer et al. 2012, using the framework 
analyzed in section 2. The bubble has a radius of 400µm and its center is placed at distance dw = 
416, 140 and -140 µm from a wall. The surrounding fluid has a pressure of 100bar, whereas the 
pressure within the bubble is approximately the saturation pressure i.e. ~2340Pa. The 
configuration is shown in Figure 5; note that in all further cases the y-axis is the axis of 
symmetry and the x-axis is the wall. In all cases the computational domain extends 50 times the 
bubble radius and the bubble is initially described by ~160cells at its radius. 

 

 
Figure 5. Vapour bubble collapse near a wall configuration 

In all the cases to follow, the left image shows the pressure field and the right the velocity 
magnitude field. The thick black line denotes the vapour/liquid interface at a density of 
500kg/m3, the dashed line the pressure wave location indicated by the pressure gradient 
magnitude value of ~1012Pa/m and the dashed-dotted line at x=0 is the axis of symmetry. Units 
are in SI, that is velocity in m/s and pressure in Pa. 

In Figure 6 indicative instances of the bubble deformation during the collapse are shown for 
the dw=416µm collapse case. At the very early stages of collapse the bubble starts to deform and 
obtain a non-spherical shape. This is due to the interference of the wall, which prevents the 
liquid to move towards the bubble. Eventually the collapse is more pronounced at the top of the 
bubble (see Figure 6b), where momentum focusing occurs and a microjet starts to form, giving 
the bubble a heart-like shape. At the last stages of collapse the pressure wave emitted from the 
microjet impact on the wall is evident (see Figure 6c).   

In Figure 7, instances during the collapse of the vapour bubble near the wall are shown. As 
before, the bubble deforms in a non-symmetric manner, due to the microjet effect formed at the 
axis of symmetry and with a direction towards the wall. Indeed, at later stages the bubble 
deforms in such a way that a torus attached to the wall is formed, see Figure 7b. At the centre of 
the torus a high velocity jet impacts the wall, with velocities exceeding 500m/s. Later on, the 
torus collapses causing high pressures in the vicinity of the microjet impact site as well. 

In Figure 8, instances of the bubble collapse for dw= -140µm; the minus sign means that the 
bubble centre is below the solid surface. Contrary to the two previous cases, where collapse was 
biased at the axis of symmetry towards the wall, causing the formation of a microjet effect, here 
the opposite happens. As it is visible in Figure 8b, in this configuration the collapse is biased on 
the tangential to the wall direction, giving the bubble a pin-like shape.    
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From a numerical point of view, the employed scheme performed well, in the sense that it is 

able to handle pressure ratios of almost 500000 and density ratios of 1000, without serious 
problems. High accuracy enabled a clear capturing of the interface within 1-2 cells, without 
oscillations, thanks to the Total Variation Diminishing properties of the MUSCL scheme. The 
explicit nature of the scheme allows for fast time marching, with the only restriction being the 
CFL stability criterion.     

 

7. Conclusion 

This paper outlines the development of an explicit density based solver for cavitating flows, 
based on the central-upwind schemes of Kurganov et al. and the Homogenous Equilibrium 
assumption, with application on bubble collapse using 2D axis-symmetric conditions; to the 
authors knowledge central-upwind schemes have not been used in the past in such 
configurations. The schemes have been tested in comparison with the exact solution of the 
Riemann problem, showing good accuracy and robustness. Moreover, it is shown that it is 
possible to predict the inertial collapse effects as has been found with the comparison with the 
Rayleigh collapse of a vapour bubble.  Application of the schemes on the bubble collapse cases 
showed a similar collapse pattern with the one that has been reported by Lauer et al. and similar 
pressure levels on the wall, even though a Homogenous Equilibrium assumption is used for the 
thermodynamic model. One of the main targets in the future is the implementation of higher 
accuracy in the time marching, specialized low diffusion schemes, and possibly inclusion of 
thermal effects, with a potential application the simulation of bubble clusters. 
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Nomenclature 
 
U Conservative variable set vector 
F x-flux vector 
G y-flux vector 
S Source term vector 
ρ Density (kg/m3) 
p Pressure (Pa) 
u Velocity at x-direction (m/s) 
v Velocity at y-direction (m/s) 
s Geometric source term, unity for cylindrical symmetry and two for spherical symmetry 

(-) 
r Radial distance from axis of symmetry (m) 
B Bulk modulus of the liquid (Pa) 
c Speed of sound (m/s) 
a Local wave speed (m/s) 
R Bubble radius (m) 
dw Standoff distance (m) 
τ Rayleigh collapse time (s) 
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Appendix. Derivation of the exact Riemann Problem solution for an arbitrary equation of state 
of the form p=f(ρ).  



 
In this section, the methodology for finding the exact solution to the Riemann problem for 

the Euler equations, for an arbitrary equation of state of the form p=f(ρ) will be outlined, 
provided that both p, ρ are positive, real numbers. The equation of state could be provided in 
tabular form. The form of the Riemann problem solved is: 
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where U(x,t) is the vector of conservative variables and F(U) is the flux vector, as shown below: 
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It becomes apparent from the initial conditions that the 1D space has initially a discontinuity at 
x=0, which separates the domain in two states, the Left (L) and Right (R).  
The Jacobian matrix is:  
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where 
ρ∂

∂p is equal to the speed of sound c(ρ). 

For positive real, non-zero speed of sound the solution of the Euler equations has two 
genuinely non-linear waves that can be either shock waves or rarefaction waves. Thus, the 
solution is self-similar in time and space and is characterized by the velocities of these waves 
that separate the solution in three states: the Left state, the Right state and the Star state (denoted 
with '* ' from now on) which is unknown. To find it one needs to solve a non-linear algebraic 
equation for density: 
 ( ) ( ) ( ) 0*** =−++= LRRL uuggg ρρρ  (A.2) 

 
Functions gL and gR depend on the type of non-linear wave. For shock wave the Rankine-

Hugoniot  
conditions are employed, eventually leading to:  
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for K=L or R state. 
For the rarefaction wave the Riemann invariants are used, i.e. for left rarefaction wave: 
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and for right rarefaction wave 

 0=− ρ
ρ

d
c

du  (A.5) 

 
Integration of these relations is not convenient to be done analytically for a general equation 

of state, which might be expressed in tabular form. It is rather convenient to perform the 
integration numerically across the rarefaction wave, as follows for e.g. the left rarefaction wave: 
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One can split the integral as follows: 
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where ref is a reference state at e.g. the minimum allowable density of the equation of state. In a 
similar manner one may derive the relation for the right rarefaction wave: 
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 and eventually, the function  
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Hereafter the integral ∫
K

ref
d

c ρ
ρ

will be referred to as I(ρΚ). 

Switching between rarefaction and shock wave is done based on pressure: 
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For the solution of the Riemann problem, one has to input the equation of state in tabular 

form, providing pressure p, speed of sound c and the integral I as functions of density. Linear 
interpolation can be performed to find p, c, I for the calculated density ρ. Care must be taken to 
have sufficient resolution of the tabular data in areas of steep slope changes, as in the transitions 
between the piecewise function components of eq. 3, else the interpolation for the speed of 
sound c, or the integral I could be very inaccurate.    

The solution for the star region can be achieved with the Newton-Raphson method: 
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where n is the number of the iteration, urf is an under-relaxation factor to enhance stability in 
case of highly non-linear EOS, as in eq. 3, and g' is the derivative of eq. A.2. Note that for such 
equations it is preferable to resort to a numerically approximated value of the derivative, as: 

 ( ) ( ) ( )
ε
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where ε is a small positive number. 
For highly non-linear EOS, it might be preferable also to bound the maximum change of 

density from iteration to iteration, in order to prevent overshoots/undershoots and enhance 
stability, i.e.: 

)),,max(min( minmax ρρρρ nn =  

 
where ρmax, ρmin can be a percentage of density during the previous iteration, e.g. 110% and 90% 
of ρn-1 respectively. After determining ρ* within sufficient tolerance, determining velocity u* is 
trivial, though the following equation: 
 ( ) ( )[ ]*** 5.0)(5.0 ρρ LRRL gguuu −++=  (A.13) 
 

Identification of the type of waves is done depending on pressure at the star region 
comparing to the left and right states: if p*>pK then the wave between the star and K region is a 
shock wave, else it is a rarefaction wave. The type of wave determines the wave speed and the 
transition between the two states. For a shock wave the transition is sharp and the wave speed is 
given by: 
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Rarefactions, contrary to shocks, are gradual changes in density, pressure and velocity. Thus, 
they are associated with two speeds, one for the head of the rarefaction and one for the tail: 
 
 Left rarefaction, head: LLLH cuS −=  tail: ** cuSLT −=  (A.16) 
 Right rarefaction, head: RRRH cuS +=  tail: ** cuSRT +=  (A.17) 
 
In order to find the conditions inside the rarefaction wave, the Riemann invariants shall be used. 
For a left rarefaction, one has to solve the following equation for the point i inside the 
rarefaction: 
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t
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Similarly, for the right rarefaction 
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Solution of eq. A.18 and A.19 can be done numerically, solving for density, using Newton-
Raphson method, applying under-relaxation and taking care during the updating of the density 
values. Experience has shown that it is better to apply a low under-relaxation factor of even 
0.02.  
Assuming the values from Table I for the EOS (see eq. 1) and assuming an initial discontinuity 
of the form ρL=1002.89g/m3 for x<0, ρR=9.99kg/m3 for x≥0 (which corresponds to pL=100bar 
and pR=2195Pa), one obtains that the solution of the Riemann problem at the star region: 
 

ρ*=998.200155kg/m3, p*=2666.7173Pa 
u*=6.84509m/s 

 
With rarefaction wave to the left STL=-1084.66m/s, SHL=-1471.04m/s and shock wave to right 
SR=6.91m/s. 

 

 


