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Abstract

In cointegrating regressions, estimators and test statistics are nuisance parameter de-
pendent. This paper addresses this problem from an identi�cation-robust perspective.
Con�dence sets for the long-run coe¢ cient (denoted �) are proposed that invert LR-tests
against an unrestricted or a cointegration-restricted alternative. For empirically relevant
special cases, we provide analytical solutions to the inversion problem. A simulation
study, imposing and relaxing strong exogeneity, analyzes our methods relative to standard
Maximum Likelihood, Fully Modi�ed and Dynamic OLS, and a stationarity-test based
counterpart. In contrast with all the above, proposed methods have good size regardless
of the identi�cation status, and good power when � is identi�ed.

J.E.L. Classi�cation Numbers: C32, C12.
Keywords: Cointegration, Weak Identi�cation, Bound Test, Simulation-Based Infer-

ence.
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1 Introduction

Cointegration models - de�ned as stationary linear combinations between non-stationary

variables - have wide applicability in econometrics. However, it is becoming increasingly

clear from the literature that inference on cointegrating vectors is a challenging problem.

In a recent survey, Johansen (2009) discusses, among others, two important reasons for

the above. First, cointegrating equations have traditionally been interpreted as long-term

relations, yet time series that can be modelled as such are short. Therefore, it becomes a

natural part of the methodology to develop �nite sample motivated methods. Second, �nite

sample methods have nevertheless been notably lacking. Available estimators and test

statistics heavily rely on asymptotic theory, and more importantly, are nuisance parameter

dependent which may cause severe �nite sample distortions.

To set focus, consider the vector autoregressive framework of Johansen (1995) which,

given a p-dimensional vector Xt, relies on the regression of �Xt on Xt�1, and e.g. a

constant and further lags of �Xt. Let � refer to the coe¢ cient of Xt�1 in the latter

regression. The cointegrating relation and associated long-run coe¢ cient, denoted as the

(p� r) matrix �, are de�ned in this context via a reduced rank restriction of the form

� = �0, where r refers to the cointegration rank. This paper focuses on estimating and

testing long-run parameters without assuming that they are identi�ed.

Identi�cation failure typically occurs when the statistical objective function does not

respond to some parameters, which is inherent to the above structure. This is because

� cannot be recovered from the restriction � = �0 when  is close to zero or is rank

de�cient, so within and close to this region, the likelihood function will inevitably be

ill-behaved. Dufour (1997) is perhaps the �rst to formalize this issue via an illustrative

bivariate process.

In traditional discussions of cointegration, related issues with  are acknowledged al-

though not widely recognized. Johansen (1988, 2000, 2002) show that standard likelihood

ratio (LR) criteria are asymptotically �2 and Bartlett adjustable as along as  6= 0 yet

perform poorly otherwise.1 Phillips (1994) argues that �nite sample inference on � is

1In fact Johansen (2000, p. 741) de�nes the problematic parameter subspace as "the boundary where
the order of integration or the number of cointegrating relations change".
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possible in triangular systems setting  = �(Ir; 0)
0
which amounts to imposing weak ex-

ogeneity and ruling out dynamics and feedback.2 Johansen (1995, Chapter 8) formally

links weak exogeneity to zero restrictions on components of . Further insights on less

restrictive parametrizations of  and their relevance and implications on inference may be

traced back to the simulation design of Gonzalo (1994). One aim of the present paper is

to provide an identi�cation basis for understanding and solving such problems.

More generally, identi�cation problems have previously been addressed in a variety

of settings including the enduring weak-instruments case.3 However, to our knowledge,

cointegration has not been directly addressed. It may be worth remarking that Dufour

(1997) raises yet does not solve the cointegration case. The contribution of the present

paper is a formal solution for inference on � placing no prior restrictions on . In line with

the above cited identi�cation-robust literature, the main principles we follow and show can

be summarized as follows. (1) Standard asymptotics provide poor approximations to the

distributions of estimators and test statistics. (2) Wald-type con�dence intervals of the

form {estimate � (asymptotic standard error) � (asymptotic critical point)} will severely

understate estimation uncertainty. (3) In contrast, likelihood-ratio type methods admit

identi�cation robust bounds which provides a �rst step towards a useful solution. (4) It is

important to consider methods that allow for unbounded and possibly empty outcomes.

A few other papers have considered di¤erent although related problems in cointegrating

regressions. In particular, Wright (2000) and Müller and Watson (2013) consider models in

which regressors have roots local to unity while some linear combination of the regressand

and regressors is stationary.4 Tanaka (1993) and Jansson and Haldrup (2002) de�ne set-

ups in which regressors have unit roots yet some linear combination of the regressand

and regressors is nearly stationary. Alternatively, Ioannidis and Chronis (2005) assume

that nearly integrated series are nearly cointegrated when a linear combination exists

2Ir refers to an r-dimensional identity matrix.
3See e.g. Dufour (2003), Staiger and Stock (1997), Wang and Zivot (1998), Zivot, Startz and Nelson

(1998), Dufour and Jasiak (2001), Kleibergen (2002, 2005), Stock, Wright and Yogo (2002), Moreira
(2003), Dufour and Taamouti (2005, 2007), Andrews, Moreira and Stock (2006), Guggenberger and Smith
(2008), Antoine and Lavergne (2012), Guggenberger, Kleibergen, Mavroeidis and Chen (2012), Andrews
and Cheng (2013).

4The near unit root issue may be traced back to Stock (1997) and Eliott (1998). See also Zivot (2000),
Lanne (2000), Caner and Kilian (2001), Hjalmarsson and Österholm (2010) and the references therein; on
bootstraps with near-unit roots, see e.g. Andrews (2000) and Park (2006).
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with a near integration order that is smaller than the order of near integration of the

considered series. With the exception of Wright (2000) and more recently Müller and

Watson (2013), this literature does not address inference. Wright (2000) tests a speci�ed

value of � by assessing the stationarity of resulting residuals for a single cointegrating

vector. Müller and Watson (2013) relax the latter restriction yet work within a common

trend de�nition of cointegration that introduces further complexities via high-dimensional

nuisance parameters. Our approach in this papers remains within the tractable and by

now well understood reduced rank regression likelihood framework.

Formally, we propose to invert LR-type statistics that test a speci�ed value for �

against (i) an unrestricted, or (ii) a cointegration-restricted alternative. Tests on � in

implicit form as also considered as in Phillips (1994). We underscore - as in Wright (2000)

- the merits of a con�dence set that can be empty, and characterize unbounded outcomes

as well. Our results link unbounded and empty con�dence sets to departures from the

cointegration hypothesis, the consequences of which are of obvious concern. Formally, we

show that unbounded con�dence sets which suggest that available data is uninformative

on � may result from overestimating the rank of �. In contrast, empty sets may result

from underestimating the rank of � which also re�ects departures from the exact unit root

assumption on the components of Xt.

Allowing for possible weak identi�cation, we propose three methods to adequately size

the above de�ned statistics. The �rst method involves a bounds-based critical value; for

general insights on the usefulness of bounds when nuisance parameters yield identi�cation

problems, see Dufour (1989, 1997), Dufour and Khalaf (2002) and Beaulieu, Dufour and

Khalaf (2013a,b). The latter may be viewed as a least favorable (LF) critical value in

the sense of Andrews and Cheng (2013). Second, we introduce a data-dependent critical

value based on the "Type 2 Robust" approach from Andrews and Cheng (2013). The

latter checks whether available data suggests weak identi�cation and if so, adjusts the

cut-o¤ towards the bound via a smooth transition function. Said di¤erently, the Type

2 robust procedure involves a data-based continuous transition from the standard to the

bounds-based LF critical value that improves size-corrected power. Third, we examine a

simulation-based method based on Dufour (2006) that may be interpreted, because of its

4



parametric basis, as an often unattainable full-information �rst best (FB).

For the special cases r = 1 and r = p � 1, we provide analytical solutions to the

inversion problem. These solutions use the mathematics of quadrics as in Dufour and

Taamouti (2005). The proposed LF and Type 2 critical values do not vary with the tested

value of � and thus preserve the quadrics form of the test inversion solution for these

special cases.

Finally, we conduct a simulation study to assess the properties of our proposed inference

methods. In addition, we also check whether and to what degree available competing

methods, speci�cally the Maximum Likelihood of Johansen (1995), the Fully Modi�ed

OLS (FMOLS) of Phillips and Hansen (1990) and Phillips (1991, 1995), the Dynamic OLS

(DOLS) of Stock and Watson (1993), and the stationarity-test based method from Wright

(2000), su¤er from identi�cation problems. Our simulation design goes beyond triangular

representations that facilitate �nite sample analysis; see Gonzalo (1994) or Boswijk (1995)

for early references in this regard. We thus follow Gonzalo�s simulation design which allows

us to control persistence as well as exogeneity. Results can be summarized as follows.

Although high persistence causes size distortions for the considered LR statistics, these

are easily corrected as proposed above, imposing and relaxing weak exogeneity. The size

of DOLS and FMOLS based t-tests exceeds 90% at the boundary. Furthermore, failure of

weak exogeneity causes very severe distortions for DOLS (size ' 88% even with T = 300)

as well as for FMOLS, albeit to a lesser extent (size nevertheless remains around 37% with

T = 300), even when � is identi�ed. The test from Wright (2000) is also oversized at the

boundary. In contrast, even when weak exogeneity fails, our proposed methods have good

size regardless of the identi�cation status, and good power when � is identi�ed. With

regards to power, our proposed Type 2 robust method is as powerful as the FB bootstrap.

This is noteworthy since the Type 2 method does not require full information, while the

FB (here by construction) utilizes the often unavailable information on the dependence

structure of residuals in the cointegrating equation.

The remainder of the paper is organized as follows. In Section 2, we set-up the frame-

work and introduce the hypotheses associated with the test we propose to invert. The

statistics underlying these tests are de�ned and analyzed in Section 3, and robust cut-o¤
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points are introduced in Section 4. In Section 5, we present the test inversion strategy for

the general case. Section 6 discusses the r = 1 and r = p � 1 special cases. The simula-

tion study is discussed in Section 7, while Section 8 concludes the paper. The technical

Appendix A.1 summarizes the general projection methods applied, while Appendix A.2

reports the proofs of Theorems and Lemmas.

2 Framework and methodological overview

Consider (see Johansen, 1995) the p-dimensional process Xt de�ned by

�Xt = �Xt�1 +
k�1P
i=1

�i�Xt�i + �Dt + et; t = 1; : : : ; T ; (1)

� = �0 (2)

where et are i.i.d. Np(0;
), initial values X�k; : : : ; X0 are �xed and  and � are

unknown p� r matrices with rank r, r is the cointegration rank, Dt is the m-dimensional

deterministic term. We use this framework as a basis to derive a con�dence set for �

that is robust to the identi�cation problem arising from its de�nition via the non-linear

restriction (2).

To introduce the considered test statistics, we adopt the notation from Johansen (1995)

that will facilitate our presentation. De�ne Z0t = �Xt, Z1t = Xt�1 and stack the vari-

ables �Xt�1; : : : ; �Xt�k+1 and Dt into the p(k � 1) +m vector Z2t and introduce the

conformable p� p(k � 1) +m coe¢ cient matrix 	 comprising �1 ; : : : ; �k�1; �, leading

to

Z0t = �Z1t +	Z2t + �t; t = 1; : : : ; T :

To concentrate the latter model into the standard reduced rank regression framework "in

residuals" (Johansen, 1995, Chapter 6), we further de�ne

R0t = �R1t + �t; t = 1; : : : ; T (3)

R0 = R1�
0 + �; (4)

where R0 and R1 are the T � p matrices with rows R00t and R01t, � is the T � p matrix with
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rows �0t,

R0t = Z0t �M02M
�1
22 Z2t; R1t = Z1t �M12M

�1
22 Z2t (5)

Mij =M
0
ji = T

�1
TP
t=1

ZitZ
0
jt; i; j = 0; 1; 2: (6)

For further reference and in line with our notation in the Introduction, let Is refer to an

s-dimensional identity matrix.

Our set estimates rely on the standard normalizations

� = (Ir;b
0
)
0

(7)

where b is the (p� r)�r unknown matrix of interest. This normalization is convenient for

various purposes as discussed in Johansen (1995, Chapter 13, Section 13.2). It implies that

the p observables need to be classi�ed in two groups, of dimension r and p�r, respectively,

so that a set of p�r variables do not cointegrate. In contrast to traditional methods, our set

estimates allow one to validate the considered classi�cation. An empty outcome suggests

the choice in question is incompatible with data and can be safely refuted. An unbounded

outcome suggests the chosen observables do not lack �t yet contain sparse information on

associated long-run parameters. Such checks are built into set estimates, so pre-tests are

not needed.

In this context, when  = 0, that is, when the components of Xt are not cointegrated,

� is not identi�ed. Identi�cation problems would also occur if  is rank de�cient, which

re�ects mispecifying the number of cointegrating relations. Our objective is to provide

a con�dence set for � which is valid whether the rank condition on  holds or not. We

proceed by inverting test statistics for the hypothesis that �xes � to a known value

H0 (�0) : � = �
0
0; �0 known, (8)

which subject to (7) gives

H0 (b0) : � = �
0
0; �0 = (Ir;b

0

0)
0
; b0 known,

Inverting a test of H0 (b0) at a given level � consists in collecting, numerically or

analytically, the b0 values that are not rejected using the considered test at the considered
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level. For example, given a right-tailed test statistic T (b0) with �-level cut-o¤ point Tc,

test inversion involves solving, over b0, the inequality T (b0) < Tc. The solution of this

inequality is a parameter space subset, denoted CS (b;�), that satis�es

P
�
b 2 CS (b;�)

�
� 1� �: (9)

Identi�cation robustness requires a convenient choice of Tc so that (9) regardless of the

rank of .

A complete description of our methodology thus requires: (i) de�ning the test statistics

we propose to invert, (ii) obtaining identi�cation-robust cut-o¤ points for these statistics,

and (iii) characterizing the inversion solution. Steps (i) - (iii) are discussed, in turn, in the

following sections.

3 Test statistics

We consider LR type statistics that are well known in multivariate regression; see Dufour

and Khalaf (2002) and the references therein. Speci�cally, we use the following three

statistics. The �rst is the standard LR statistic associated with the null hypothesis (8):

LR(b0) = T ln

�
jS0j
jSj

�
; (10)

S0 = R
0
0

�
I �R1�0 (�00R01R1�0)

�1
�00R

0
1

�
R0; (11)

S = R00

�
I �R1 (R01R1)

�1
R01

�
R0 (12)

with �0 = (Ir;b
0
0)

0
. In this context, if � = �0 then the multivariate regression

R0 = R1�0
0 + � (13)

is linear in parameters, so assessing � = �0 against the unrestricted counterpart involves a

linear restriction. The numerator in (10) is the sum-of-squared residuals of (13) while its

denominator is the fully unrestricted sum-of-squared residuals from (3).

The second statistic assesses (8) against a restricted alternative, by replacing the unre-

stricted estimate in the denominator of (10) with a cointegration restricted one, as follows.

Given

S =
�
R0 �R1�̂0

�0 �
R0 �R1�̂0

�
; �̂0 = (R01R1)

�1
R01R0 (14)
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replace �̂ by ~� = ~ ~�0where ~� is the MLE estimator of � and ~ is obtained by inserting ~�

into (13) and then applying OLS. Note that ~ =
�
~�0R01R1

~�
��1

~�0R01R0 so

R0 �R1 ~�0 =
�
I �R1 ~�

�
~�0R01R1

~�
��1

~�0R01

�
R0

and the cointegration-restricted statistic obtains as

LRC(b0) = T ln

24 jS0j��� ~S���
35 ; ~S = R00

�
I �R1 ~�

�
~�0R01R1

~�
��1

~�0R01

�
R0: (15)

Finally, we consider the counterpart of LR(b0) which assesses H0 (b0) in the implicit

form

H0? (b0) : ��?0= 0; �?0 = (�b00; Ip�r)0: (16)

Observe that the p � (p � r) matrix �?0 satis�es the orthogonality condition �0?0�0 = 0.

The statistic is the LR criterion

LRP (b0) = T ln

�
jS?0j
jSj

�
; (17)

S?0 = S + �̂�?0[�
0
?0(R

0
1R1)

�1�?0]
�1�0?0�̂

0:

This statistic and the underlying approach consisting in direct tests on � relates to the

Wald tests considered by Phillips (1994).

A well known result on determinants5 leading to

jS?0j=jSj =
���Ip + S�1�̂�?0[�0?0(R01R1)�1�?0]�1�0?0�̂0���

=
���Ip�r + [�0?0(R01R1)�1�?0]�1�0?0�̂0S�1�̂�?0���

serves to write LRP (b0) in the following form which will be used below

LRP (b0) = T ln
����Ip�r + [�0?0(R01R1)�1�?0]�1�0?0�̂0S�1�̂�?0���� : (18)

5For any n �m matrix S and any m � n matrix U , jIn + SU j = jIm + USj; see e.g. Harville(1997,
Section 18.1, p. 416).
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The same result also yields the following useful decomposition for LR(b0).

LR(b0) = T ln

" �� 1
T
R00R0

���� 1
T
R00
�
IT �R1 (R01R1)

�1R01
�
R0
��
#

+ T ln

"�� 1
T
R00
�
IT �R1�0 (�00R01R1�0)

�1 �00R
0
1

�
R0
���� 1

T
R00R0

��
#

= �T ln
����Ip � (R00R0)�1R00R1 (R01R1)�1R01R0����

+ T ln
����Ip � (R00R0)�1R00R1�0 (�00R01R1�0)�1 �00R01R0���� :

So rewriting the determinant of the second term gives

LR(b0) = �T ln
����Ip � (R00R0)�1R00R1 (R01R1)�1R01R0���� (19)

+ T ln
����Ir � �00R01R0 (R00R0)�1R00R1�0 (�00R01R1�0)�1���� :

Applying similar decompositions to LRC(b0) we get

LRC(b0) = T ln

2664
�� 1
T
R00R0

������ 1TR00�I �R1 ~� �~�0R01R1 ~���1 ~�0R01�R0����
3775

+ T ln

"�� 1
T
R00
�
IT �R1�0 (�00R01R1�0)

�1 �00R
0
1

�
R0
���� 1

T
R00R0

��
#

= �T ln
�����Ip � (R00R0)�1R00R1 ~� �~�0R01R1 ~���1 ~�0R01R0�����

+ T ln
����Ip � (R00R0)�1R00R1�0 (�00R01R1�0)�1 �00R01R0����

which again yields

LRC(b0) = �T ln
�����Ir � ~�0R01R0 (R

0
0R0)

�1
R00R1

~�
�
~�0R01R1

~�
��1����� (20)

+ T ln
����Ir � �00R01R0 (R00R0)�1R00R1�0 (�00R01R1�0)�1���� :

4 Identi�cation robust critical points

The asymptotic null distribution of LRC(b0), for any �0 value under test provided  is

not rank de�cient (see e.g. Chapter 7 from Johansen, 1995) is �2 (lc) with

lc = [p
2 � (p� r)2]� pr = r(p� r); (21)

p2 � (p� r)2 = number of parameters imposing cointegration, (22)

pr = number of parameters in : (23)
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The same asymptotics, provided  is not rank de�cient, suggest that the null distribution

of LR(b0) can be approximated as �2 (lu) with

lu = p
2 � pr = p(p� r) (24)

p2 = number of parameters in � (25)

pr = number of parameters in : (26)

Given the duality between the implicit and explicit tests, the null distribution of LRP (b0)

can also be approximated as �2 (lu). These approximations will perform poorly when 

may be rank de�cient and also possibly when weak exogeneity fails. We thus propose

alternative cut-o¤ points that will control size for both statistics.

Using an argument similar to the one in Dufour (1989), for a univariate regression, and

Dufour and Khalaf (2002), for multivariate regression, we show that the above de�ned LR

statistics have null distributions which admit an identi�cation-robust bound that can be

described as follows. We introduce a hypothesis (denoted H�
0 ) that �xes both  and �,

which is a special case of the restrictions to be tested. Then we argue that the LR criterion

(denoted LR�) associated with H�
0 provides the desired bound. The result follows from

two considerations. First, by construction, it is evident that LR� is larger than the LR test

statistics of interest, and thus its null distribution yields an upper bound (and conservative

critical points) applicable to both LR(b0) and LRC(b0). Second, the null distribution of

LR� can be approximated using a standard �2 cut-o¤point regardless of the speci�c values

of  and � in H�
0 . It is worth noting that the bound implicit in Dufour (1997, Theorem

5.1) may be obtained using the same rationale as the bounds presented here.

Theorem 1 In the context of (1)-(2) with 1 < r < p � 1 and the null hypothesis (8),

consider the LR statistic, denoted LR�, for testing, against an unrestricted alternative,

H�
0 : � = 0�

0
0 (27)

such that �0 satis�es (8) and 0 6= 0 is known. Then

P [LR(b0) � ��(�)] � � (28)

for all 0 � � � 1 ; where ��(�) is determined such that P [LR� � ��(�)] = �:

11



The asymptotic null distribution of LR�, with reference e.g. to Chapter 7 from Jo-

hansen (1995), is �2(p2). The �nite-sample dominance result in (28) suggests the �2(p2)

as a LF bound for the null distribution of both LR(b0) and LRC(b0). Indeed, it is also

easy to see that LRC(b0) � LR(b0) � LR� which suggests that although valid for both

statistics, our proposed bound is tighter in the case of LR(b0).

If � is identi�ed, the above de�ned bound may prove to be conservative. We thus

introduce an alternative critical value adapted from the Type 2 approach of Andrews and

Cheng (2013). The idea is to de�ne an �-level critical value that provides a continuous

transition from a weak-identi�cation to a strong-identi�cation cut-o¤ point, using a data

depend function which would assess the extent of weak-identi�cation. For this purpose,

we use the smooth transition function

s(x) = exp(�x=2)

recommended by Andrews and Cheng (2013) applied to the discrepancy between Jo-

hansen�s cointegration test statistic and its �-level cut-o¤ point. Based on the magnitude

of this discrepancy, we de�ne a cut-o¤ point denoted ĉ which transitions between the LF

�2(p2) critical point and its strong-identi�cation counterparts (�2with degrees-of-freedom

as in (24) or (24)). Formally, for an �-level test, we propose:

ĉ =

�
cB if An � �

cs + [cB � cs]s(An � �) if An > �

�
(29)

An = �T ln
�Pp

i=1(1� �̂i
�

(30)

where cB is the �-level �2(p2) cut-o¤ point, cs is the �-level �2 (p2 � pr) for LR(b0) and

or the �-level �2(r(p� r)) for LRC(b0), �̂i are the eigen values of �̂ so An is Johansen�s

statistic associated with rank(�) = 0 and � is its �-level tabulated cut-o¤point as reported

e.g. in Chapter 15 in Johansen (1995). We use (An � �) in the sense of Andrews and Cheng

(2013) as a transition metric to gauge rather than pre-test the strength of identi�cation.

To conclude, observe that LRP (b0) admits the same LF bound and Type 2 cut-

o¤ points, given the equivalence of the underlying testing procedures; see, for example,

Gourieroux, Monfort and Renault (1995).
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5 Test inversion, the general case

Inverting the above de�ned test statistics involves solving the inequations

LR(b0) < �c; (31)

LRC(b0) < ~c; (32)

LRP (b0) < �c; (33)

where �c refers to the cut-o¤ point associated with both LR(b0) and LRP (b0) at a desired

level (say 5%), and ~c to the critical point associated with LRC(b0) and the same test

level. These critical points may be sets to either cB, or ĉ as de�ned in (29).6 When r is

either 1 or p � 1, we can �nd an analytical solution to the inversion problem, which will

be discussed in section 6.

When 1 < r < p�1, a numerical solution is required in which case inverting LR(b0) is

equivalent to inverting LRP (b0). This involves collecting, for example, by grid search, the

b0 values that are not rejected using the considered test at the considered level. The output

of such a search is a joint con�dence region, which we denoted above as CS (b;�). Yet

the object of interest may consist in deriving con�dence intervals for e.g. the individual

components of b, or more generally, for a given scalar function g (b). To do this, we

proceed by projecting CS (b;�), that is, by minimizing and maximizing g (b) over the b

values in CS (b;�). Con�dence intervals so obtained are simultaneous, in the following

sense: for any set of m continuous real valued functions of b, gi (b) 2 R, i = 1; :::;m, let

gi
�
CS (b;�)

�
denote the image of CS (b;�) by the function gi. Then

P
�
gi (b) 2 gi

�
CS (b;�)

�
; i = 1; : : : ; m

�
� 1� �: (34)

If Tc is de�ned so that (9) holds regardless of the rank of , then (34) would also hold

whether the rank of  is full or not.

Our MC experiments (reported in Section 7) show that cB or ĉ provide robust approxi-

mations for Tc. Alternatively, a simulation-based approach can be applied at every step of

the above described inversion method. This would correspond to collecting the b0 values

6The mechanics of test inversion will also work with cs in the sense that solutions to the considered
inequalities can be found using �c = cs or ~c = cs, yet adequate coverage will not be warranted which beats
the purpose of inverting the considered tests. This is further illustrated in section 7.
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such that a bootstrap-type p-value imposing b0 exceeds the considered level. Bootstrap

methods have long been available for cointegrating regressions (see e.g. Li 1994, Li and

Maddala 1997, Psaradakis 2001, Chang, Park and Song 2006, Palm, Smeekes and Urbain

2010). However, as argued by Palm, Smeekes and Urbain (2010), the properties of these

bootstraps are not fully understood. Whether available bootstraps work well in nearly

cointegrated systems is so far an open question.7 As a matter of fact, many bootstraps are

known to fail because of identi�cation or boundary issues (Dufour 1997, Andrews 2000,

2001). We thus next propose a Monte Carlo (MC) method to approximate assess (8),

treating  as a nuisance parameter as in Dufour (2006), which allows us to control the

level exactly.

5.1 Simulation-based procedure

A baseline algorithm is provided drawing from the VECM (3), which assumes: (i) pa-

rameters other than , b and the variance covariance of errors are partialled-out, (ii)

conditioning on initial values of the process, and (iii) imposing normality. Most impor-

tantly, the null hypothesis (8) is maintained throughout, so b is set to b0. For clarity,

the algorithm is presented for the LR statistic, yet it can be applied in exactly the same

way to LRC; again, we emphasize that LR and LRP will produce numerically identical

results. Let 
 refer to the Cholesky factor of the error covariance matrix and LR(0) refer

to the observed value of the test statistic.

A1 For given values of  and 
 and setting b to b0, draw N realizations of R0 from the

Gaussian model (3) each of size T . Calculating the LR statistic (10) from each draw

yields LR (b0; ;
)
(j), j = 1; :::; N which we summarize as the vector

LN(;
) =
�
LR (b0; ;
)

(1) ; : : : ; LR (b0; ;
)
(N)
�
0: (35)

Our notation emphasizes dependence on (;
), which will become clear as we pro-

ceed.
7We note that available simulation studies that assess the properties of available bootstraps often

impose weak exogeneity, an assumption that may be too restrictive and may undercut their reliability.
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A2 De�ne the MC p-value function

pN [LR
(0)jLN(;
)] =

NGN
�
LR(0) ; LN(;
)

�
+ 1

N + 1
; (36)

GN
�
LR(0) ; LN(;
)

�
=
1

N

PN
j=1I[0;1)

�
LN(;
)� LR(0)

�
; (37)

where IA[x] = 1; if x 2 A ; and IA[x] = 0; if x =2 A . If  and 
 are given then a

decision rule based on comparing

p̂N(LR; ;
) = pN [LR
(0)jLN(;
)] (38)

to an � cut-o¤ where �(N + 1) is an integer yields a test with size �.

A3 Typically,  and 
 are not set by the null hypothesis. In this case, maximize

pN [LR
(0)jLN(;
)] over all the (;
) values compatible with the null hypothesis

maintaining the rank restriction on , leading to

p̂�N(LR) = sup
;

fp̂N(LR; ;
)g

and reject the null hypothesis latter if p̂�N(LR) is less than or equal to �. Then

the probability of rejection under the null hypothesis is itself not larger than �; see

Dufour (2006).

It is possible to partial (;
), provided the null hypothesis is imposed. The simulation

study we report below supports this suggestion. The following modi�cation of A1-A3

would achieve this purpose.

A1* With b set to b0 estimate  and 
 from the observed data by running the regression

of R0 on R1�0, and denote these estimates ̂(b0) and 
̂(b0). Proceed as in A1,

replacing  and 
 by ̂(�0) and 
̂(�0):

A2* Apply A2, substituting  and 
 by ̂(b0) and 
̂(b0) leading to the empirical p-value

p̂N(LR; ̂(b0); 
̂(b0)) = pN [LR
(0)jLN

�
̂(b0); 
̂(b0)

�
]: (39)

A3* Reject the null hypothesis latter if p̂N(LR; ̂(b0); 
̂(b0)) is less than or equal to �.
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Because  a¤ects identi�cation, this does not guarantee that the associated limiting

(for T !1 and �nite N) null rejection probability will not exceed �, so the maximization,

that is step A3 above, is thus recommended for exactness. Nevertheless, our simulation

study suggests that maximization does not seem necessary. We recommend to initiate step

A3 using ̂(b0) and 
̂(b0), and to stop maximization as soon as a p-value that exceeds �

is obtained, which speeds the process up substantially.

Test inversion requires e.g. running this MC test over a set of economically relevant

value of b0. It is also worth noting that the p-value will vary with each b0; said di¤erently,

in contrast with cB or ĉ, the corresponding simulated cut-o¤ point will vary with b0.

Projection con�dence sets at level � for any linear function of b0 require minimizing and

maximizing this function imposing that the p-value associated with each b0 is greater

than �. Recall that components of b0 can be seen as linear function of this matrix of the

selection form (zeros and ones). Such restricted optimization problem are not prohibitive,

yet in view of our simulation results, using cB or ĉ are worthy less expensive alternatives.

This discussion also reinforces the usefulness of the analytical special cases we discuss

below.

5.2 Empty and unbounded con�dence sets, discussion

The resulting con�dence sets can take several forms: (a) a closed interval; (b) unbounded

intervals; (c) the entire real line; (d) an empty set. Case (a) corresponds to a situation

where � is well identi�ed, while (b) and (c) correspond to unbounded con�dence sets

and indicate (partial or complete) non-identi�cation. The possibility of getting an empty

con�dence set may appear surprising. But, on hindsight, this is quite natural: it may

suggest that no value of �0 does allow � = �00 to be acceptable for any .

In this section, we discuss empty and unbounded sets more formally. Speci�cally, we

relate such outcomes to inference on two commonly assessed hypotheses:

Hr : rank(�) = r; Hn : � = 0:

The statistic

LRmin = min
�0
LR(�0)
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coincides (see also Gourieroux, Monfort and Renault 1995) with the LR criterion associated

within (3) against the assumption of full rank. Furthermore, the statistic

LRn = �T �L (40)

where

�L = ln
����Ip � (R00R0)�1R00R1 (R01R1)�1R01R0���� (41)

provides the LR criterion associated with Hn which corresponds to the no-cointegration

null hypothesis (see for example equation (3.13) in Gourieroux, Monfort and Renault

1995). Denote the �-level cut-o¤ point of LRmin, which is associated with Hr, as cr.

The following necessary, although not su¢ cient) conditions relate empty and un-

bounded con�dence sets to these commonly assessed hypotheses.

Lemma 1 If LRmin > cB where cB is the bound cut-o¤ point de�ned in (29), which

implies that the con�dence set based on inverting LR(b0) at the �-level is empty, then Hr

is rejected at this level using the traditional LR test.

Note that Lemma 1 provides a necessary but not su¢ cient condition: the (standard)

reduced rank test may be signi�cant yet we cannot be sure that the con�dence set is empty,

unless the bound cut-o¤ point is used to assess Hr. Furthermore, Lemma 1 holds if cB is

replaced by cs because cr � cs � cB since H�
0 � H0 � Hr. By construction cs � ĉ � cB,

so Lemma 1 also holds for the Type 2 cut-o¤ de�ned above.

Lemma 2 If LRn � cB where cB is the bound cut-o¤ point de�ned in (29), which implies

that the con�dence set based on inverting LR(b0) at the �-level is the real line, then Hn

is not rejected at this level using the traditional LR test for no-cointegration.

Note that again Lemma 2 provides a necessary but not su¢ cient condition. Thus we

cannot rule out the case where some information may be still available in the data on �0

even when Johansen�s test fails to reject the no-cointegration null. Here again, Lemma 2

is also veri�ed if cB is replaced by cs because cs � cB which also implies that Lemma 2 is

veri�ed for the Type 2 cut-o¤ ĉ. Conditions similar to both Lemma 1 and 2 can also be

derived for the LRC (�0) statistic.
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To sum up, Lemmas 1 and 2 con�rm that our proposed con�dence sets provide relevant

information on whether cointegration is supported by the data, a property not shared by

standard con�dence intervals. Our con�dence sets may turn out to be empty, which occurs

when all possible values of � are rejected suggesting that its de�nition over-estimates the

rank of � in Johansen�s framework. If the latter is underestimated, and in particular

because the unknown  may be close to zero or rank-de�cient, then our con�dence sets

will be unbounded. We next proceed to discussing the special cases r = 1 and r = p� 1,

for which test inversion admits a useful and tractable analytical solution.

6 Analytical solutions for special cases

When r is either 1 or p� 1, we can �nd an analytical solution for (31)-(33). In both cases,

we rewrite the inequalities in the quadric form

�0A22� + 2A12� + A11 � 0 (42)

where � is the a� 1 vector of unknown parameters in �0 and A22, A12 and A11 depend on

the data and the considered cut-o¤ point. To do this, we proceed as follows.

For r = 1, we �rst cast the inequalities under consideration in the

(1; �0)Q(1; �0)0 � 0 (43)

and Q is an (a+ 1)� (a+ 1) data dependent matrix. We next partition Q as follows (see

also Bolduc, Khalaf and Yelou 2010)

Q =

�
Q11 Q12
Q21 Q22

�
(44)

where Q11 is a scalar, Q22 is a�a and Q12 = Q021 is 1�a so that (43) may be re-expressed

as (42) where

A22 = Q22; A12 = Q12; A11 = Q11:

For r = p� 1, we reduce the inequality to the form

(��0; 1)J(��0; 1)0 � 0 (45)
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then partition J as follows

J =

�
J11 J12
J21 J22

�
(46)

where J22 is a scalar, J11 is a� a and J21 = J 012 is 1� a so that (45) may be re-expressed

as (42) with

A22 = J11; A12 = �J21; A11 = J22:

A general solution to inequations of the form (42) was introduced by Dufour and

Taamouti (2005, 2007). We summarize this solution in the Appendix and describe the

resulting projection con�dence sets pertaining to each component of � and any linear

transformation of latter of the form !0� where ! is a non-zero a�1 vector. These sets can

take several forms depending on the eigenvalues of A22: (a) a closed interval; (b) the union

of two unbounded intervals; (c) the entire real line; (d) an empty set. We thus proceed to

show how (31) - (33) can be rewritten in the proposed quadric forms.

6.1 Inverting the LR criteria: the r = 1 case

Decomposition (19) when r = 1 gives

LR(b0) = �T ln
����Ip � (R00R0)�1R00R1 (R01R1)�1R01R0����

+ T ln

 
1� �

0
0R

0
1R0 (R

0
0R0)

�1R00R1�0
�00R

0
1R1�0

!

which allows us to write inequality (31) as a quadratic inequations in b0, which is sum-

marized in the following Theorem.

Theorem 2 In the context of (1)-(2) with r = 1, � = (1;b0)0 and the null hypothesis (8)

inverting the statistic LR(b0) de�ned in (10) at the �-level corresponds to the following

inequality, in b0,

(1;b00)
h
R01

�
�dIT �R0 (R00R0)

�1
R00

�
R1

i
(1;b00)

0 < 0 (47)

where

�d = 1� exp
h
�c=T + ln

����Ip � (R00R0)�1R00R1 (R01R1)�1R01R0����i (48)

and �c is the statistic�s �-level critical point.
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Inequation (47) thus coincides with (43) for � = b0 andQ = R
0
1

�
�dIT �R0 (R00R0)

�1R00
�
R1.

The same reasoning holds with LRC(b0) since decomposition (20) with r = 1 gives

LRC(b0) = �T ln
 
1�

~�0R01R0 (R
0
0R0)

�1R00R1
~�

~�0R01R1
~�

!

+ T ln

 
1� �

0
0R

0
1R0 (R

0
0R0)

�1R00R1�0
�00R

0
1R1�0

!
:

We are thus back to a quadratic inequation, as shown in the following Theorem.

Theorem 3 In the context of (1)-(2) with r = 1, � = (1; b0)0 and the null hypothesis (8)

inverting the statistic LRC(b0) de�ned in (15) at the �-level corresponds to the following

inequality, in b0,

(1;b00)
h
R01

�
~dIT �R0 (R00R0)

�1
R00

�
R1

i
(1;b00)

0 < 0 (49)

where

~d = 1� exp
"
~c=T + ln

 
1�

~�0R01R0 (R
0
0R0)

�1R00R1
~�

~�0R01R1
~�

!#
(50)

and ~c is the statistic�s �-level critical point.

6.2 Inverting the implicit form statistic: the r = p� 1 case

When r = p� 1, (18) gives

LRP (b0) = T ln

 
1 +

�0?0�̂
0S�1�̂�?0

�0?0(R
0
1R1)

�1�?0

!
; �?0 = (�b00; 1)0:

Theorem 4 In the context of (1)-(2) with r = p � 1 and �?0 = (�b00; 1)0 and the null

hypothesis (16) inverting the statistic LRP (b0) de�ned in (17) at the �-level corresponds

to the following inequality, in b0,

(�b00; 1)
h
�̂0S�1�̂� (R01R1)�1 (exp (�c=T )� 1)

i
(�b00; 1)0 � 0: (51)

where �c is the statistic�s �-level critical point.

Inequation (51) thus coincides with (45), for � = b0and J = �̂
0S�1�̂�(R01R1)�1 (exp (�c=T )� 1).
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7 Simulation study

The above considered example from Dufour (1997) may serve as a base case since b is

a scalar and perhaps easier to interpret. One should check the size of the inverted test,

and then obtain a con�dence interval for b using one or more available usual methods.

Checking whether this set covers the hypothesized value provides the size of the Wald-type

test associated with the con�dence interval. It matters to assess size given various choices

for , as  approaches the non-identi�cation boundary, here 0.

7.1 Monte Carlo design

A simulation design which �ts the objectives of this paper must provide a basis for un-

derstanding the parametrization of . We thus consider the model by Gonzalo (1994)

which allows  to embed near unit roots and persistence as well as departures from weak

exogeneity. The model in structural form is the following:

yt � bxt = zt; zt = �zt�1 + ezt

a1yt � a2xt = wt; wt = wt�1 + ewt

with �
ezt
ewt

�
� iid N

��
0
0

�
;

�
1 ��
�� �2

��
:

Gonzalo derives its reduced rank regression representation which yields

 = �
�
(�� 1) a2

a1b�a2
; (�� 1) a1

a1b�a2

�0
:

We thus see that  may approach zero if � approaches 1, while weak exogeneity can be

imposed by setting a1 = 0.

An alternative expression of this model is useful to shed further light on the a1 6= 0

case. To write this model in a triangular form, substitute zt + bxt for yt in the second

equation then solve for xt which yields

a1 (zt + bxt)� a2xt = wt

(a1b� a2)xt = wt � a1zt

(a1b� a2) [xt � xt�1] = wt � wt�1 � a1 (zt � zt�1) :
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and from there on to

yt � bxt = zt; (52)

zt = �zt�1 + ezt , zt � zt�1 = (�� 1) zt�1 + ezt ; (53)

xt � xt�1 = � (zt � zt�1) + evt (54)

evt = �ewt (55)

� =
1

a1b� a2
; � =

�a1
a1b� a2

(56)

�
ezt
evt

�
� iid N

��
0
0

�
;

�
1 ���
��� �2�2

��
:

When a1 6= 0, then as argued by Gonzalo (1994), "the error correction term (zt�1) can

be present in both equations of the ECM. In this case xt, is no longer weakly exogenous.

Our expression (54) illustrates that indeed, feedback caused by a non-zero coe¢ cient on

(zt � zt�1), violates weak exogeneity in this context. This model is empirically relevant

and its formulation that sets the feedback coe¢ cient [here �] forth helps disentangle two

di¤erent although related sources of identi�cation concerns: the unit root boundary, and

departure from weak exogeneity.

Under the null hypothesis, b0 = 1. We set, as in Gonzalo (1994), a2 = �1, � = �0:5,

� = :25, for both size and power study. We compare two choices for a1, a1 = 0 and a1 = 1,

to assess deviations from weak-exogeneity, and two choices for �, � = 0:8 and � = 0:99 to

check weak-identi�cation, with two sample sizes T = 100; 300.8

7.2 Monte Carlo p-values

The nuisance parameters associated with testing b = b0 can be narrowed down, in this

context, to the following: � and �, both of which control identi�cation and the vari-

ance/covariance matrix of ezt and evt, so all in all, �ve free parameters.

If b = b0 with b0 known, then � is estimable consistently by e.g. the OLS regression

of (yt � b0xt) on its �rst lag [using (53)]. Similarly, � is estimable consistently by e.g.

the OLS regression of (xt � xt�1) on (yt � yt�1 � b0 (xt � xt�1)) [using (54)]. These two

regressions also yield consistent estimates of the variance/covariance matrix of ezt and

8Results for � = :96 [available upon request] are qualitatively similar to the weak-identi�cation case.
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evt. So whether � is imposed to be zero or not [that is whether a1 is imposed to zero

or not], the variance/covariance parameters can be partialled-out so that a maximization

over � and � may be su¢ cient in practice to control the size of the test. Simulation results

available so far support this suggestion. For presentation clarity, we denote the MC test

implemented in this way as the RPLMC test, which stands for Restricted Partialled-out

local MC test. Restricted formally means that b is �xed to b0. Partialled-out implies that

nuisance parameters are narrowed down to � and �, while the remaining parameters that

de�ne the DGP are inferred �xing � and �. Local implies that an estimate of nuisance

parameters [here � and �] that is consistent under the null hypothesis [here b = b0] is

used; refer to (39) in the above de�ned algorithm.

7.3 Results

We analyze size and power of LR(�0) and LRC(�0), relative to available procedures. These

include DOLS, FMOLS, Wright�s (2000) test and the Bartlett corrected LRC(�0) from

Johansen (2002), derived with the true parameters to illustrate the best case scenario

even if infeasible. 1000 replications are applied in all trials and the MC methods are

implemented with 99 simulated samples. We report the results in Tables 1-3. The results

for DOLS, FMOLS and the Wright (2000) test use the Newey-West HAC with the Andrews

(1991) automatic bandwidth. Rejection probabilities reported under the alternative are

not size corrected, yet we study power for the procedures with empirical size not exceeding

7%. The nominal size is 5% for all procedures. Results can be summarized as follows.

In the considered bivariate system, although high persistence causes size distortions for

the considered LR statistics, these are easily corrected via our proposed simulation method,

imposing and relaxing weak exogeneity. The Bartlett correction does not work when it is

mostly needed. This is not surprising in view of the discussion in Johansen (2000, 2002),

yet is worth documenting. Recall that we have implemented the infeasible correction here,

with known parameter values. In contrast, the bound and Type 2 corrections work well

even with T = 100 and a1 6= 0. One useful result further emerges from our experiments:

in this design, the RPLMC method su¢ ces to control the size of LR(�0). There seems

to be no need for the maximized MC procedure in this design, so results reported below
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under the MC heading use the RPLMC method as described above.

[Insert somewhere here Tables 1 and 2]

The size of DOLS and FMOLS based t-tests exceeds 90% at the boundary. Further-

more, failure of weak-exogeneity causes very severe distortions for DOLS (size ' 88% even

with T = 300) as well as for FMOLS (size remains around 37% with T = 300), even when

� is identi�ed. The test from Wright (2000) is also oversized at the boundary, with dis-

tortions worsening as T increases. This underscores the fact that identi�cation problems

are not just small sample concerns. All tests behave much worse than the uncorrected

LR-based statistics. These results are noteworthy, particularly because the LR framework

is not popular when weak exogeneity is in doubt.

Power of our LR tests is good even when relying on the LF bound. Recall that the MC

method treats the dependence structure as known: nuisance parameters are estimated but

the AR(1) structure as in the true model is imposed. Similarly, exogeneity, in the form

of � = 0 is also imposed when a1 = 0. As implemented, this method may be viewed as a

often unattainable �rst best bootstrap. The fact that the Type 2 correction meets and in

some cases beats this �rst best is noteworthy. Indeed, because the Type 2 critical value

does not vary with the tested value of � and thus preserves the quadrics form of the test

inversion solution, this correction emerges as a very promising and very useful practical

solution. Power results for � = :99 re�ect the extent of weak identi�cation given available

data and the considered alternative space. Despite the serious power problems we still �nd

with T = 300 in our design, results are not meant to suggest the test has no power. Since

� remains identi�ed, information on b would eventually mount up and power would pick

up, possibly mildly, as T grows and b departs further from the null.

[Insert somewhere here Table 3]

8 Conclusion

This paper was concerned with identi�cation problems in the context of cointegrating

regression. We proposed con�dence sets for long-run parameters that do not require iden-

ti�cation by inverting simulation or bound-based LR tests.
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In contrast to standard Wald-type intervals, our proposed con�dence sets provide,

in addition to correct coverage, built-in speci�cation checks. In particular, unbounded

con�dence sets may occur when, in the underlying reduced rank regression, the rank is

over-estimated. Unbounded sets result from underestimating the rank in question, which

signals - among other issues - slow adjustment to the long-run equilibrium.

We showed, via a Monte Carlo study, that even within a small-scale bivariate system,

commonly used procedures for inference on long-run coe¢ cients can be severely oversized

at the model boundary, that is when the parameter that controls cointegration approaches

the unit-root boundary. Of the four methods we compared (DOLS, FMOLS, the method

of Wright (2000) and LR) to address the nuisance parameter dependency problem arising

form weak identi�cation, only the LR achieved size control via the simulation or bound-

based corrections we introduced, even when weak exogeneity fails. Our results suggest that

further research should proceed in this direction, in line with the general weak-identi�cation

literature, with emphasis on larger dimensions or on models with potential breaks.
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Appendix

A.1 Eigenvalue Based Inequations

From Dufour and Taamouti (2005, 2007) so projections based con�dence sets (CSs) based

on (42), for any linear transformation of � of the form !0� can be obtained as follows. Let

~A = �A�122 A012; ~D = A12A
�1
22 A12 � A11. If all the eigenvalues of A22 [as de�ned in (44)]

are positive so A22 is positive de�nite then:

CS�(!
0�) =

�
!0 ~A�

q
~D
�
!0A�122 !

�
; !0 ~A+

q
~D
�
!0A�122 !

��
; if ~D � 0 (57)

CS�(!
0�) = ?; if ~D < 0: (58)

If A22 is non-singular and has one negative eigenvalue then: (i) if !0A�122 ! < 0 and ~D < 0:

CS�(!
0�) =

�
�1; !0 ~A�

q
~D
�
!0A�122 !

��
[
�
!0 ~A+

q
~D
�
!0A�122 !

�
;+1

�
; (59)

(ii) if !0A�122 ! > 0 or if !
0A�122 ! � 0 and ~D � 0 then:

CS�(!
0�) = R; (60)

(iii) if !0A�122 ! = 0 and ~D < 0 then:

CS�(!
0�) = Rn

n
!0 ~A

o
: (61)

The projection is given by (60) if A22 is non-singular and has at least two negative eigen-

values.

A.2 Proof of Theorems and Lemmas

Proof of Theorem 1

In the context of (3), consider testing the null hypothesis

H�
0 : � = 0�

0
0

where �0 conforms withH0 in (8) and 0 is known and has full rank. Let LR� denote the LR

statistic associated with testing H�
0 against an unrestricted alternative. By construction,
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H�
0 � H0, or in other words, H�

0 is more restricted than H0 and consequently

LR(�0) � LR�:

It follows that P [LR(�0) � x] � P [LR� � x]; 8x, with yields (28).�

Proof of Lemma 1

First recall that H�
0 � H0 � Hr. To see this, recall that Hr corresponds to � = �0 for

some  and � both of rank r. H0 is more restricted than Hr since it sets � to the �0 value

which is known. In turn, H�
0 sets both  and � to known values. It follows that cr �

cs � cB. So

LRmin > cB ) LRmin > cr

which proves the lemma.�

Proof of Lemma 2

The statistic LR(b0) may be expressed as

LR(b0) = LRn + T ln
����Ir � �00R01R0 (R00R0)�1R00R1�0 (�00R01R1�0)�1���� ;

so the inequality under consideration is

T ln
����Ir � �00R01R0 (R00R0)�1R00R1�0 (�00R01R1�0)�1���� < (cB � LRn): (62)

Observe that

T ln
����Ir � �00R01R0 (R00R0)�1R00R1�0 (�00R01R1�0)�1���� < 0

since it is equal to

T ln

"�� 1
T
R00
�
IT �R1�0 (�00R01R1�0)

�1 �00R
0
1

�
R0
���� 1

T
R00R0

��
#

= �T ln
" �� 1

T
R00R0

���� 1
T
R00
�
IT �R1�0 (�00R01R1�0)

�1 �00R
0
1

�
R0
��
#

which corresponds to the likelihood ratio associated with testing � = 0 against � = ��00

(the former is more restrictive than the latter). When LRn < cB then cB � LRn > 0 so
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inequality (62) will be satis�ed for any �0 since its right-hand-side which is negative for

any �0 will always be less than a positive (cB � LRn). It follows that con�dence set will

be the real line. Lemma 2 thus follows on recalling that the cut-o¤ points associated with

no-cointegration null [here � = 0] are larger than their their �2 counterpart.�

Proof of Theorem 2

The problem consists in solving the inequality

�T �L+ T ln
 
1� �

0
0R

0
1R0 (R

0
0R0)

�1R00R1�0
�00R

0
1R1�0

!
< �c

or alternatively

ln

 
1� �

0
0R

0
1R0 (R

0
0R0)

�1R00R1�0
�00R

0
1R1�0

!
<
�
�c=T + �L

�
: (63)

Taking exponential on both sides leads to

��
0
0R

0
1R0 (R

0
0R0)

�1R00R1�0
�00R

0
1R1�0

< � �d

with as �d as in (48). Assuming � = (1;b0)0 leads to

�(1;b00)R01R0 (R00R0)
�1
R00R1(1;b

0
0)
0 + �d(1;b00)R

0
1R1(1;b

0
0)
0 < 0

which gives (47).�

Proof of Theorem 3

The problem consists in solving the inequality

�TLC + T ln
 
1� �

0
0R

0
1R0 (R

0
0R0)

�1R00R1�0
�00R

0
1R1�0

!
< ~c

where

LC = ln

 
1�

~�0R01R0 (R
0
0R0)

�1R00R1
~�

~�0R01R1
~�

!
or alternatively

ln

 
1� �

0
0R

0
1R0 (R

0
0R0)

�1R00R1�0
�00R

0
1R1�0

!
<
�
~c=T + LC

�
:
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Taking exponential on both sides leads to

��
0
0R

0
1R0 (R

0
0R0)

�1R00R1�0
�00R

0
1R1�0

< � ~d

with ~d as in (50). Assuming � = (1;b0)0 leads to

�(1;b00)R01R0 (R00R0)
�1
R00R1(1;b

0
0)
0 + ~d(1;b00)R

0
1R1(1;b

0
0)
0 < 0

which gives (49).�

Proof of Theorem 4

The problem consists in solving the inequality

ln

 
1 +

�0?0�̂
0S�1�̂�?0

�0?0(R
0
1R1)

�1�?0

!
� �c

T
:

Taking exponential on both sides leads to

�0?0�̂
0S�1�̂�?0

�0?0(R
0
1R1)

�1�?0
<
�
exp

� �c
T

�
� 1
�

which gives (51).�
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Table 1. Size of non-LR based tests for b = b0
Test � T = 100 T = 300

a1 = 0 a1 6= 0 a1 = 0 a1 6= 0
Wright (2002) .80 .222 .224 .154 .154

.99 .722 .788 .843 .864
DOLS .80 .282 .878 .194 .883

.99 .748 .992 .764 .995
FMOLS .80 .160 .689 .096 .375

.99 .512 .962 .419 .925

Notes: Numbers reported are empirical rejections. The underlying model is described by (52)-
(54), with b = b0 = 1. The a1 6= 0 case corresponds to the design for which weak exogeneity
fails; � = :99 suggests that b is weakly identi�ed.
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Table 2. Size of LR-based tests for b = b0
LR(�0) LRC(�0)

Test � T = 100 T = 300 T = 100 T = 300
a1 = 0 a1 6= 0 a1 = 0 a1 6= 0 a1 = 0 a1 6= 0 a1 = 0 a1 6= 0

�2 standard .80 .073 .073 .063 .063 .078 .078 .061 .061
.99 .190 .184 .138 .139 .302 .302 .188 .188

�2, Bartlett .80 - - - - .057 .057 .050 .050
.99 - - - - .150 .150 .087 .087

MC: .80 .052 .055 .048 .047 .072 .062 .060 .056
.99 .056 .060 .064 .060 .076 .068 .051 .050

�2 Bound .80 .017 .017 .010 .010 .002 .002 .002 .002
.99 .050 .052 .030 .030 .043 .043 .018 .018

Type 2 .80 .068 .068 .071 .071 .062 .062 .061 .061
.99 .061 .061 .045 .045 .055 .055 .032 .032

Notes: The underlying model is described by (52)-(54), with b = b0. Numbers reported are
empirical rejections under the null hypothesis. The a1 6= 0 case corresponds to the design for
which weak exogeneity fails; � = :99 suggests that bis weakly identi�ed. MC refers to the above
de�ned parametric bootstrap-type Restricted Partialled-out local Monte Carlo test. Restricted
formally means that bis �xed to b0. Partialled-out implies that nuisance parameters are narrowed
down to � and �, while the remaining parameters that de�ne the DGP are inferred given � and
�. Local implies that an estimate of � and � that is consistent under the null hypothesis [here
b = b0] is used. � is the feedback coe¢ cient which allows to impose and relax exoegneity in the
bootstrap samples. Reported results impose � = 0 for the a1 = 0 case. The Bartlett correction
from Johansen (2002) is derived with the true parameter values.
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Table 3. Power of tests based on LR(�0)
MC Bound LR(�0) Type 2 LRC(�0) Type2

� b a1 = 0 a1 6= 0 a1 = 0 a1 6= 0 a1 = 0 a1 6= 0 a1 = 0 a1 6= 0
T = 100

.8 1.10 .092 .070 .023 .018 .081 .070 .080 .067
1.20 .128 .082 .045 .023 .119 .081 .130 .080
1.50 .346 .144 .229 .059 .357 .150 .375 .169
1.60 .414 .184 .304 .085 .436 .185 .440 .214
2.00 .666 .338 .550 .230 .675 .357 .648 .375

.99 1.10 .063 .060 .051 .052 .059 .061 .053 .053
1.20 .064 .058 .049 .052 .059 .059 .049 .053
1.50 .068 .066 .050 .049 .057 .058 .049 .049
1.60 .072 .066 .050 .049 .059 .057 .047 .049
2.00 .072 .062 .049 .051 .056 .057 .046 .049

T = 300
.8 1.10 .152 .058 .067 .018 .190 .091 .255 .090

1.20 .412 .148 .293 .067 .497 .190 .570 .255
1.50 .920 .542 .818 .427 .932 .629 .920 .679
1.60 .966 .658 .906 .530 .967 .719 .954 .751
2.00 1.00 .914 .996 .818 1.00 .932 .998 .920

.99 1.10 .062 .056 .029 .030 .043 .044 .030 .030
1.20 .060 .054 .030 .029 .045 .043 .031 .030
1.50 .054 .050 .029 .028 .041 .043 .031 .030
1.60 .058 .048 .031 .028 .044 .043 .031 .030
2.00 .066 .046 .038 .029 .053 .041 .040 .031

Notes: Numbers reported are empirical rejections. For the de�nition of the model and test
methods, see notes to Table 2. Under the null hypothesis b = b0 = 1.
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