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Abstract— THz is an emerging technology with many important 

applications in imaging and sensing, but due to lack of suitable 

low-loss waveguides future progress can be limited. A rigorous 

full-vectorial modal solution approach based on the 

computationally efficient finite element method is used to find 

the propagation properties of THz waveguides. Design 

approaches are presented to reduce the modal loss of such 

waveguides. Designs of several THz devices, including quantum 

cascade lasers, power splitters and narrow-band filters are also 

presented. 

Index Terms— Finite Element Method, Terahertz Waveguides, 

THz Devices. 

I. INTRODUCTION 

The emerging terahertz (THz) region occupies a large 

portion of the electromagnetic spectrum, located between the 

microwave and optical frequencies and normally is defined as 

the band ranging from 0.1 to 10.0 THz. In recent years, this 

intermediate THz radiation band has attracted considerable 

interest, because it offers significant scientific and 

technological potential for applications in many fields, such as 

sensing [1], imaging [2] and spectroscopy [3]. However, 

waveguiding in this intermediate spectral region is a major 

challenge and strong dielectric and conductive losses in the 

terahertz frequency range have been a major problem for the 

development of practical low-loss waveguides. Due to the 

lack of suitable low-loss waveguides most of the present day 

THz systems uses free-spaces transmission. The availability of 

low-loss waveguides and followed up by THz guided-wave 

devices can improve the functionality and reliability of future 

THz systems. The conventional guiding structures 

exemplified by microstrips, coplanar striplines and coplanar 

waveguides are highly lossy and dispersive. However, so far 

the most promising dielectric waveguides have been the use of 

photonic crystal fibers at terahertz frequencies [4, 5] and metal 

coated guides [6] at terahertz frequencies. In this paper, 

various types of practical dielectric and metal coated 

waveguides are evaluated and design optimization of 

Quantum Cascade Lasers, MMI-based power splitters and 

narrow-band filters are presented, by using full-vectorial finite 

element method [7]. 

II. PAGE LAYOUT

Dielectric waveguides in silica, silicon, polymer, and other 

semiconductors materials have been widely used at optical 

frequencies due to their low-loss values: however most of 

these materials are very lossy at the lower terahertz frequency 

range and not so suitable to fabricate THz waveguides. 

Particularly, silica has been extensively used to fabricate a 

new class of optical fibre, the photonic crystal fibres (PCF), 

however, as its material loss is prohibitively high at THz 

frequencies, only recently, Han et al. [4] have fabricated a 

PCF for THz using alternative high-density polyethylene 

(HDPE) with modal loss values of 0.2 cm
-1

 and Goto et al. [5] 

have reported a PCF-like waveguide using Teflon tubes and 

filaments with loss values of 0.5 cm
-1

, showing their potential. 

A typical PCF cross section with a triangular array of holes is 

shown in Fig. 1.  The structure predominantly consists of such 

periodic air-holes with diameter, d, and the pitch length 

between the two nearest holes is Λ. In this work, a refractive 

index value ng = 1.444 is considered, at the operating 

frequency 1.2 THz (wavelength 0.25 mm). Variations of the 

effective indices for both the fundamental H
x
11 and the second 

H
x

21 modes for d/Λ = 0.9 are shown in Fig.2.  It can be noted 

that for both the modes, the effective indices reduce 

monotonically as the pitch length is reduced. The variation of 

the nfsm value with the pitch length is also shown by a chained 

line for d/Λ = 0.9 at 1.0 THz. The nfsm represents a frequency 

dependent equivalent index of the perforated cladding region 

and this was calculated by solving a unit cell problem with 

periodic boundary conditions implemented around all the four 

sides. It can be observed that the effective index curve for the 

H
x

21 mode crosses the nfsm line at a pitch length, Λc = 0.24 mm, 

so when the pitch length is reduced below 0.24 mm, the 

second mode cannot be guided anymore. On the other hand, 

the effective index for the fundamental, H
x
11 mode also 

crosses the nfsm line, but at Λc = 0.11 mm. So, a PCF with d/Λ 

= 0.9 and pitch length between 0.11 mm to 0.24 mm would be 

strictly single moded.  By controlling the d/Λ ratio and the 

pitch length the modal properties of such low-loss PCFs at 

THz operating frequency can easily be controlled. It is 

possible to broaden the single mode operating region or even 

design an endlessly single mode PCF by reducing the d/Λ 

value.  

Fig. 1. Cross section of a Photonic Crystal Fiber 
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The modal loss of a guided mode in a PCF is due to the 

combination of the material loss and the leakage loss.  The 

leakage loss arises due to the modal index being lower than 

the surrounding high index cladding regions. For this study a 

PCF with parameter d/Λ=0.5 is used. To consider the effect of 

the loss tangent, three different values of the ni, (the imaginary 

part) have been considered. Additionally, Perfectly Matched 

Layers (PML) were added around the conventional waveguide 

boundaries to calculate the leakage losses. Figure 3 shows the 

loss mechanism in a PCF. In the absence of any material loss, 

for ni = 0, the leakage loss is shown by a solid line. It can be 

observed that as the pitch length is reduced, the leakage loss 

increases almost linearly from a very low loss value. It should 

be noted that Perfectly matched Layers (PML) region around 

orthodox computational boundary should be introduced to 

obtain leakage loss of any waveguide. In the case of ni = 

0.00119, the total loss included both the leakage loss and the 

material loss, which is shown by a dashed line. At a higher 

pitch value, when the leakage loss is negligible, the total loss 

is mainly attributable to the material loss. However, it can be 

observed that modal loss is more than 100 dB/m, this is only 

because lack of suitable dielectric material in this frequency 

range.  
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f=1.0 THz

Λ mm

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

e
ff

e
c
ti

v
e
 i
n

d
e
x

1.0

1.1

1.2

1.3

1.4

1.5

Hx
11

Hx
21

nfsm

Fig. 2. Variation of the effective indices with the pitch length, Λ. 
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Fig. 3. Material and leakage losses of PCF 

Since at present the available dielectric materials at THz 
frequencies are considerable lossy, a novel design approach is 
considered next, where besides the porous cladding with air-
holes, additionally a porous core PCF is considered. As the 
waveguides dimensions for THz frequency are considerable 
bigger than that for the optical wavelength, it would be 
relatively easy to fabricate such microstructured core. Two 

different d/Λ values are used for core (d/Λi) and cladding 

(d/Λo), and for cladding this value has to be smaller to have 
higher equivalent index in the core for wave guidance. 

Variation of the power fraction in the air-region of the porous 
core is shown in Fig.4. As shown in this figure, the power 
confinement can be increased to 35% in the low-loss air-holes 
of the cores, and additionally another 25% in the cladding air-
holes [8], but this is not shown here. So, in this design, the 
overall modal loss mainly arises due to the material loss of the 
polystyrene, and this can be reduced by 60% but using such 
perforated core besides air-holes in the cladding region. The 
overall reduction is significant, but still need more work to be 
done to make the more suitable for practical applications.  

Amongst the various THz waveguides that have been 

suggested, the metal-clad waveguides supporting surface 

plasmon modes show the greatest promise as low-loss 

waveguides for use both in active components and as passive 

waveguides. Several waveguide structures incorporating 

metallic layers have been reported, such as low-loss and 

flexible hollow polycarbonate waveguide with copper and 

dielectric inner coatings, deposited by using a liquid chemistry 

approach [9]. 
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Fig. 4. Variation of power confinement in the porous air-holes in the core 

region with the pitch length, Λ 

Fig. 5. Metal-coated hollow glass waveguide 

A metal-coated hollow glass waveguide (HGW) [10] with 

an inner silver/polystyrene-coating, as shown in Fig.5, is 

considered for the better understanding of the various loss 

mechanisms and subsequently design optimization of a low-

loss THz waveguide. For this waveguide the thickness of the 

silica tube (s) is taken as 0.5 mm and the bore diameter (D) of 

the HGW as 4 mm. Inside the hollow-core first metal and then 

polystyrene are coated. The thickness of the silver cladding (t) 

and polystyrene layer (p) are taken as t µm and p µm, 

respectively. The complex refractive index of the polystyrene, 



the silver metal cladding layers and the silica ring are taken as 

np=1.58 –j0.0036, nm=308-j532 and ns=1.96 –j0.0061, 

respectively at an operating frequency of 2.5 THz. At this 

frequency, as the air is also not absolutely loss-free, to 

represent this loss factor its complex refractive index is taken 

as 1.0 - j 1.1x10
-6

.  

Fig. 6. Attenuation constant with the polystyrene  thickness, p, for t=0.4µm 

There are two metal/dielectric interfaces, which can support 

surface plasmon modes (SPM), one the outer silver/silica 

boundary and the other at the inner silver/polystyrene (or air, 

when p = 0 µm) boundary. This waveguide supports two 

SPMs along these two metal/dielectric interfaces. The 

refractive indices of the inner and outer cladding materials 

being very different, the two SPMs have widely different 

propagation constants and they do not interact with each other. 

However, at the right and left hand sides of the 

metal/dielectric interfaces, when the same electric-wall 

boundary condition is imposed, the Hx field is forced to be 

zero at the metal boundary and no SPM exists. Another mode 

with the dominant Hy field, would form a similar SPM; 

however, at the left and the right interfaces. The Hy field 

profile of this mode is similar to the Hx field profile, but 

rotated by 90 degrees. These two modes have identical 

propagation constants and being degenerate, they can be 

superimposed to form radially polarized RP-like modes. 

Fig. 7. Effective index and loss with Teflon thickness  

for the Hx
10 mode 

The loss values of the fundamental plasmonic mode 

increases with the PS thickness and not shown here, as this 

mode was more lossy. The attenuation characteristics of the 

RP
02

 mode, with the variation of the polystyrene thickness, for 

a silver thickness t = 0.4 µm, is shown in Fig. 6, where the 

loss contribution of the polystyrene and silver layers has also 

been examined. As can be seen from the above characteristics, 

the total attenuation shows a maximum and a minimum loss at 

a polystyrene thickness of about 1 µm and 13 µm, respectively. 

The attenuation curves due to the polystyrene and the silver 

layer exhibit similar trend with the total attenuation. 

Throughout the range of polystyrene thicknesses examined, 

the optical power confinement in the inner air-core is of the 

order of 99.9%, thus contributing a constant attenuation of 

about 0.25 dB/m. For a polystyrene thickness lower than 5 µm, 

the total attenuation is affected mainly due to the metal 

attenuation but as the polystyrene thickness increases above 5 

µm the total attenuation is mainly governed by the loss in the 

polystyrene layer. This mode shows a greater promise to 

achieve low-loss guidance through a metal clad dielectric 

waveguides. It would also be easier to couple this mode since 

the field profile is also very close to a Gaussian shape [10]. 

The modal loss of this waveguide, when design is optimized, 

is significantly lower than most of the THz waveguides 

reported so far, as most of the power is being guided in the 

central air-hole region. 

Fig. 8. Field profile of Ey mode in a THz Quantum Cascade Laser. The field 

inside the confinement layers is shown on the inset. 

Fig. 9. Gain threshold of several plasmonic modes.  

Next this novel approach of incorporating additional PS 

layer to draw away power from lossy metal layer  is 

considered to design and optimize a low-loss rectangular core 

metal waveguide. If we consider its height and widths are 

different then the two polarized modes will not be degenerate. 

In our more recent work [11], we have shown that similarly a 

polarization maintaining rectangular core air-core dielectric-



clad metal-coated waveguide can also be less lossy. A thin 

metal coating would support plasmonic modes, but these are 

relatively lossy. However, a Teflon coating on the gold layer 

can draws field away from the lossy conducting layer and loss 

may reduce considerably. Figure 7 shows the variation of the 

loss value with the Teflon thickness for the H
x
12 mode in an 

air-core 1 mm x 0.6 mm rectangular waveguide with 0.7 µm 

gold coating at 2.5 THz. It can be seen that at the optimum 21 

µm Teflon thickness, the loss value can be 3.5 dB/m, one of 

the lowest reported so far [11]. The evolution of third order 

mode for no Teflon coating to a near Gaussian profile for 18 

µm Teflon coating are shown as insets. In this guide also, the 

fundamental TE10 or TE01 mode was more lossy and its loss 

value rather increased with the polystyrene coating. Further 

improvement in the waveguide design to reduce loss and 

dispersion can encourage the development of THz guided-

wave systems.  

Fig. 10. Gain Threshold of the lower order modes for different waveguides 

We also need good sources for THz generations. There are 

some convergences for the development THz sources from 

microwave engineering to increase the frequency and from 

photonics to reduce the frequency. Quantum cascading lasers 

[12] are emerging as efficient high power THz source for 

many important applications, such as imaging and sensing. 

However, for the THz frequency, it is not possible to grow the 

semiconductor materials comparable to the operating 

wavelength. For this reason, for THz QCL often smaller 

height needs to be considered and plasmonic confinement is 

used in that direction. The plasmonic confinement in the 

vertical direction is shown in Fig.8, which clearly shows the 

mode formation at the metal-dielectric interfaces. However, it 

is easily possible to have a wider guide, so mostly dielectric 

confinement is used in horizontal direction. The gain 

threshold for such QCL is shown in Fig.9. Because of the 

wider guides, the gain threshold difference between the 

fundamental and higher order (lateral) modes are very small. 

This allows possibility of mode hopping for any external 

changes. A novel design approach is considered [13] using 

slotted upper metal clad, to enhance the gain threshold of the 

higher order modes. Figure 10 clearly shows that gain 

threshold of the higher order modes are increased for slotted-

electrode designs. This would reduce mode competition and 

the resulting output beam would be more stable with the 

environmental variations. Besides reducing waveguide loss of 

QCL, it may also be possible to increase the operating 

temperature of QCL, another critical issue in the further 

development of room-temperature QCLs.   

Fig. 11. FDTD Simulation of the MMI 3dB coupler 

For the future THz system, it is essential to design various 
integrated guided-wave components. In that spirit, it is shown 
here that a compact power splitter can be designed by using the 
MMI principle. In Fig. 11, it is shown here that an efficient 

power splitter can be designed by using a 35 µm long 
multimoded section [14]. A Finite Difference Time Domain 
(FDTD) approach is used here to simulate this structure.  

Next, a Terahertz frequency range band-stop filter for 
molecular sensing [15], where two 5 μm wide band-stop filter 
stubs with a length of 192 μm and 83 μm are placed at a 400 

µm apart along the direction of propagation, as shown in the 
right inset of Fig.12, has been considered. The structure of the 
microstrip is also shown as an inset on the lower left side. 
Initially the above device has been simulated without a 
polysterene film on top of the metal layer, using the FDTD 
approach and the variation of the insertion loss with the 
frequency is presented in Fig.12. As can be seen from the 
above frequency response, the device exhibits two resonant 
frequencies due to the stubs at about 600 and 800 GHz, with a 
minimum insertion loss of about -55 and -30 dB. These 
resonant peaks will shift due to presence of any external 
materials on the microstrip and measuring this frequency shift, 
a THz sensor can be developed.  

Fig. 12. Insertion Loss with frequency for the microstrip filter 



Fig. 13. Variation of the effective index and attenuation with BCB substrate 

height of the microstrip line.  

Finally, the BCB substrate height, h, has then been varied 

and the effective index and attenuation of the microstrip 

structure with no polysterene layer on top of the metal and 

that with a 0.1 µm film thickness of the above material have 

been examined and presented in Fig.13. As can be seen from 

the above characteristics, as the substrate height increases 

both the effective index and the attenuation decrease, with the 

corresponding values of the structure with the polysterene film 

being lower than those obtained for the device without it. At a 

substrate height of about 9 µm, the above corresponding 

values are about the same for both the structures examined. 

However, the device with the polysterene film exhibits 

minimum attenuation at the above substrate height and as the 

substrate height increases further the attenuation of the 

structure with the polysterene layer becomes higher than that 

obtained for the structure without the above material. 

III. CONCLUSIONS

A finite-element approach, based on a full-vectorial H-field 
formulation, has been used to study the detailed modal 
properties of dielectric and metal clad waveguides operating in 
the THz frequency range. It is also shown here that by using 
porous core the effect of material loss can be reduced 
significantly. It is also shown by using a thin but optimized 
dielectric over-layer plasmonic loss in a hollow-core 
waveguide can also be reduced. It is also shown here that by 
using a novel slot-type electrode, the differential loss of the 
higher order modes can be significantly increased to reduce 
mode hopping. Finally, simple guided-wave devices such as 
power splitters and band-pass filters are also presented here. 
The full-vectorial numerically efficient finite element based 
design approach used here can be extended to optimize not 
only THz waveguides but also more advanced guided-wave 
devices for future THz integrated circuits (TIC). 
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