
Kabir, S.M. Raiyan (2015). Finite element time domain method with a unique coupled mesh system

for electromagnatics and photonics. (Unpublished Doctoral thesis, City University London)

City Research Online

Original citation: Kabir, S.M. Raiyan (2015). Finite element time domain method with a unique

coupled mesh system for electromagnatics and photonics. (Unpublished Doctoral thesis, City

University London)

Permanent City Research Online URL: http://openaccess.city.ac.uk/14523/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Finite Element Time Domain Method

with a Unique Coupled Mesh System for

Electromagnatics and Photonics

S M Raiyan Kabir

School of Mathematics, Computer Science & Engineering

City University London

This dissertation is submitted for the degree of

Doctor of Philosophy

2015

I would like to dedicate this thesis to my loving wife Anita,

my parents and my lovely little boy Nihan

Declaration

I hereby declare that except where specific reference is made to the work of others, the

contents of this dissertation are original and have not been submitted in whole or in part

for consideration for any other degree or qualification in this, or any other University. This

dissertation is the result of my own work and includes nothing which is the outcome of

work done in collaboration, except where specifically indicated in the text. This dissertation

contains less than 65,000 words including appendices, bibliography, footnotes, tables and

equations and has less than 150 figures.

S M Raiyan Kabir

2015

Acknowledgements

First and foremost I would like to thank almighty Allah for giving me the courage and

patience to undertake and complete this work. I would like to dedicate this thesis to my

son, my wife and my patents for their love and support throughout my life and for con-

stantly encouraging me to pursue excellence. I am immensely indebted to Prof. B.M.A.

Rahman for being an excellent and patient supervisor and for providing continuous support

and encouragement over the years. I would also like to thank Prof. K.T.V. Grattan for his

valuable advice and support throughout this research. I would also like to sincerely thank all

my colleagues at the Photonics Research Group for maintaining a friendly and joyful work

atmosphere.

Abstract

The finite difference time domain (FDTD) method is a popular technique, being used suc-

cessfully to analyse the electromagnetic properties of many structures, including a range

of optical or photonic devices. This method offers several major advantages such as, a

minimum level of calculation is required for each of the cells into which the structure is

divided, as well as data parallelism and explicit and easy implementation. However, due to

the use of the Finite Difference grid, this method suffers from higher numerical dispersion

and inaccurate discretisation due to staircasing at slanted and curve edges. The rectangular

computational domain in 2D and cuboid computational domain in 3D sometimes makes the

method very resource intensive especially for large simulations.

Although the finite element (FE) approach is superior for the discretisation of both 2D

and 3D structures, most of the FE-based time domain approaches reported so far suffer from

limitations due to the implicit or iterative form or the mass matrix formulation, for example.

Therefore, the speed of the simulation is much slower than the FDTD method. Time domain

analysis of electromagnetic is a very resource intensive numerical technique. Due to the

slow performance the FE based techniques are not as popular as the FDTD method.

In this research work a new FE based time domain technique has been proposed for

both 2D and 3D problems which is similar to the FDTD method explicit and data parallel in

nature. The method proposed does not requires any matrix formulation or iteration. It uses

minimum possible CPU cycles among any FE-based techniques. The method also utilises a

unique meshing scheme to reduce the number of calculation to at least half for 2D and one

fifth for 3D compared to any full mesh FE based technique.

The method also shows very low numerical dispersion when used with equilateral ele-

ments in both 2D and 3D. Thus the proposed method effectively produces results with less

numerical dispersion error with lower density mesh compared to the FDTD method. When

the advantage in resolution is taken into consideration, calculation of each time-step using

the proposed method is significantly faster than the FDTD method.

Contents

Contents v

List of Figures ix

List of Tables xi

Nomenclature xvii

1 Introduction 1

1.1 Numerical Methods for Electromagnetics 1

1.2 Maxwell’s Equations . 2

1.2.1 Integral Form . 2

1.2.2 Differential Form . 3

1.2.3 The Wave Equation . 4

1.3 Numerical Analysis Techniques . 5

1.3.1 Modal Analysis . 5

1.3.2 Beam Propagation Method . 6

1.3.3 Frequency Domain Analysis . 7

1.3.4 Time Domain Analysis . 7

1.4 Motivation for the Research . 13

I Two-dimensional Formulation 15

2 Derivation of Governing Equations for Two-dimensions 16

2.1 Discretisation . 19

2.1.1 Space Discretisation . 19

2.1.2 Time Discretisation . 20

Contents vi

3 The Two-dimensional Mesh 23

3.1 The Space Mesh System . 25

3.1.1 Completeness of the Mesh . 27

3.2 The Time Mesh System . 28

4 Perfectly Matched Layer Boundary for Two-dimensions 30

4.1 Large Computational Domain . 30

4.2 Absorbing Boundary Condition . 31

4.2.1 Methods Based on Oneway Wave Equations 31

4.2.2 Perfectly Matched Layer Boundary 32

4.3 X Axis PML . 35

4.4 Y Axis PML . 36

4.5 Corner PML . 37

4.6 Placing the PML in the Computational Domain 39

5 Dispersive Materials 41

5.1 Maxwell’s Equations with Drude Model 43

5.2 Governing Equations for Metal . 44

5.3 Governing Equations for Metamaterial . 45

6 Results of Simulations in Two-dimensions 47

6.1 Free Space Propagation . 48

6.2 Planar Waveguide . 49

6.3 Metamaterial Flat Lens & Backward Propagation 52

II Three-dimensional Formulation 57

7 Governing Equations for Three-dimensions 58

7.1 Space-Time discretisation . 59

7.1.1 Space discretisation . 59

7.1.2 Time discretisation . 65

7.1.3 Discretised Governing Equations 65

8 The Three-dimensional Mesh 67

8.1 The Space Mesh . 67

8.2 The Time Mesh . 70

Contents vii

9 Perfectly Matched Layer Boundary for Three-dimensions 71

9.1 X PML . 72

9.2 Y PML . 73

9.3 Z PML . 74

9.4 XY PML . 75

9.5 YZ PML . 76

9.6 ZX PML . 77

9.7 XYZ PML . 78

10 Results of Simulations in Three-dimensions 80

10.1 Free Space Propagation . 80

10.2 Nanowires . 83

10.3 Nano Power Splitter . 85

10.4 Nano Directional Coupler . 89

10.4.1 Full Vectorial FEM Analysis . 90

10.4.2 Calculation of Coupling Length using the FETD 3D 91

III Performance Analysis 94

11 Numerical Dispersion 95

11.1 Numerical Dispersion for 2D Formulation 96

11.1.1 Calculation of Numerical Dispersion 99

11.1.2 Calculating Resolution Reduction Factor 101

11.1.3 Comparing Numerical Dispersion of Meshes by Simulation 103

11.1.4 Comparison with the FDTD Method 107

11.2 Numerical Dispersion for 3D Formulation 109

11.2.1 Calculation of Numerical Dispersion 113

11.2.2 Calculation of Resolution Reduction Factor 115

11.2.3 Comparison with the FDTD Method 117

12 Theoretical CPU Performance 121

12.1 CPU Performance for Two-dimensionals Formulation 123

12.1.1 CPU Optimised Formulation of the FDTD in 2D 123

12.1.2 CPU Optimised Formulation for Proposed FETD in 2D 126

12.1.3 Comparing Proposed FETD and FDTD considering RRF in 2D . . 130

12.2 CPU Performance for Three-dimensionals Formulation 134

Contents viii

12.2.1 CPU Optimised Formulation of the FDTD in 3D 134

12.2.2 CPU Optimised Formulation for Proposed FETD in 3D 137

12.2.3 Comparing Proposed FETD and FDTD considering RRF in 3D . . 141

IV Future Plan and Conclusions 144

13 Future Works 145

13.1 Unstructured Mesh . 145

13.2 Variable Time-stepping . 147

13.3 Partial Mesh Solution for Pulse Propagation 148

13.4 Higher Order Implementation . 148

14 Conclusion 149

References 151

List of Figures

1.1 Yee’s Lattice . 8

3.1 Space mesh system for 2D formulation . 26

3.2 Coupled Time mesh system . 29

4.1 Placement of PML in computational domain 40

6.1 Freespace propagation . 47

6.2 Computational domain shown with PML. Expansion of the Ez field with

time (a) after 1000 time steps, (b) 2000 time steps and (c) 3000 time steps . 49

6.3 Schematic diagram of the planner waveguide setup 50

6.4 Propagation and verification in a waveguide 51

6.5 Schematic setup and double focusing with a DNG flat lens 53

6.6 Start of EM wave propagation in metamaterial slab 54

6.7 EM wave propagation inside metamaterial slab 56

8.1 A basic tetrahedral element inside a 3D cubic cell 67

8.2 Tetrahedral Dual Mesh System . 68

10.1 Free-space propagation of E and H components from a point source 81

10.2 Line plot over all three axis for free space propagation 82

10.3 Propagation in a Si nanowire . 84

10.4 Propagation in a Si nano power splitter . 86

10.5 Hy field profile at the input and output of the Si nano power splitter 88

10.6 Schematic diagram of the nano directional coupler 89

10.7 Odd and Even mode associated with the nano directional coupler 90

10.8 Modelling the nano directional coupler using the proposed 3D FETD with

nanowire separation of s = 0.1µm after 2450 time-steps 91

List of Figures x

10.9 Comparison of coupling length obtained from FVFEM and the proposed 3D

FETD method . 92

11.1 Calculation of numerical dispersion in IRT and ET meshes 99

11.2 Comparison of phase velocity of the IRT and ET mesh 101

11.3 Comparison of the numerical dispersion of the ET and the IRT meshes . . . 102

11.4 Resolution Reduction Factor . 103

11.5 Simulation results of the 2D FETD with the IRT and the ET meshes 105

11.6 Ez field profile after 2000 time steps with the FDTD method (in 2D) 108

11.7 Element arrange meant for both the IRT3D and ET3D mesh systems 113

11.8 Comparison of normalised vp of the IRT3D and the ET3D meshes 114

11.9 Mean and Standard Deviation of the ET3D and the IRT3D meshes 116

11.10Resolution Relation of the ET3D and the IRT3D meshes 117

11.11Comparison of normalised vp of the 3D FDTD and the 3D FETD 118

11.12Mean and Standard Deviation of the 3D FDTD and the 3D FETD 120

12.1 CPU latency (non-SIMD) comparison between FDTD2D and FETD2D . . 131

12.2 CPU latency (SIMD) comparison between FDTD2D and FETD2D 132

12.3 CPU latency comparison between FDTD3D and FETD3D 142

List of Tables

12.1 Compute Operations and Latencies for 2D FDTD Method with General Pur-

pose Instructions . 125

12.2 Compute Operations and Latencies for 2D FDTD Method with General Pur-

pose and SIMD Instructions . 126

12.3 Compute Operations and Latencies for 2D FETD Method with General Pur-

pose Instructions . 127

12.4 Compute Operations and Latencies for 2D FETD Method with General Pur-

pose and SIMD Instructions . 129

12.5 Compute Operations and Latencies for 3D FDTD Method with General Pur-

pose Instructions . 136

12.6 Compute Operations and Latencies for 3D FDTD Method with General Pur-

pose and SIMD Instructions . 137

12.7 Compute Operations and Latencies for 3D FETD Method with General Pur-

pose Instructions . 138

12.8 Compute Operations and Latencies for 3D FETD Method with General Pur-

pose and SIMD Instructions . 140

Nomenclature

Roman Symbols

B Vector Magnetic Flux

c Speed of Light in free-space

D Vector Electric Flux

E Vector Electric Field

Ex[y] Auxiliary field generated for X PML, XY PML, ZX PML and XYZ PML

Ex[z] Auxiliary field generated for X PML, XY PML, ZX PML and XYZ PML

Ey[x] Auxiliary field generated for Y PML, XY PML, YZ PML and XYZ PML

Ey[z] Auxiliary field generated for Y PML, XY PML, YZ PML and XYZ PML

Ez[x] Auxiliary field generated for Z PML, YZ PML, ZX PML and XYZ PML

Ez[y] Auxiliary field generated for Z PML, YZ PML, ZX PML and XYZ PML

Ex x-directional component of the Electric Field

ex x-directional Electric Field component at a node point

Ey y-directional component of the Electric Field

ey y-directional Electric Field component at a node point

Ez z-directional component of the Electric Field

ez x-directional Electric Field component at a node point

H Vector Magnetic Field

Nomenclature xiii

Hx[y] Auxiliary field generated for X PML, XY PML, ZX PML and XYZ PML

Hx[z] Auxiliary field generated for X PML, XY PML, ZX PML and XYZ PML

Hy[x] Auxiliary field generated for Y PML, XY PML, YZ PML and XYZ PML

Hy[z] Auxiliary field generated for Y PML, XY PML, YZ PML and XYZ PML

Hz[x] Auxiliary field generated for Z PML, YZ PML, ZX PML and XYZ PML

Hz[y] Auxiliary field generated for Z PML, YZ PML, ZX PML and XYZ PML

Hx x-directional component of the Magnetic Field

hx x-directional Magnetic Field component at a node point

Hy y-directional component of the Magnetic Field

hy y-directional Magnetic Field component at a node point

Hz z-directional component of the Magnetic Field

hz z-directional Magnetic Field component at a node point

J Vector Current Density

k0 Wavenumber

Me Auxiliary Vector Field for Drude Dispersion Model

Mex
x-directional component of Me

Mey
y-directional component of Me

Mez
z-directional component of Me

Mm Auxiliary Vector Field for Drude Dispersion Model

Mmx
x-directional component of Mm

Mmy
y-directional component of Mm

Mmz
z-directional component of Mm

n Refractive index of the medium

Nomenclature xiv

ne f f Effective Refractive Index

Ni Shape function for spatial discretisation

Q j Shape function for time discretisation

Greek Symbols

β Propagation constant of an electromagnetic wave

∇× Curl Operator

∇· Divergence Operator

ε Permittivity of medium

ε0 Permittivity of free-space

εr Relative permittivity of the medium

γe Electric Collision Frequency

γm Magnetic Collision Frequency

µ Permeability of medium

µ0 Permeability of free-space

µr Relative permeability of the medium

∇ Gradient Operator

∇̃x Modified Gradient operator for X PML (for 3D)

∇̃xyz Modified Gradient operator for XYZ PML (for 3D)

∇̃yz Modified Gradient operator for YZ PML (for 3D)

∇̃zx Modified Gradient operator for ZX PML (for 3D)

∇̃(x) Modified Gradient operator for X PML (for 2D)

∇̃xy Modified Gradient operator for XY PML (for 3D)

∇̃y Modified Gradient operator for Y PML (for 3D)

Nomenclature xv

∇̃(y) Modified Gradient operator for Y PML (for 2D)

∇̃z Modified Gradient operator for Z PML (for 3D)

ω Angular frequency of Electromagnetic Radiation

ωpe Electric Plasma Frequency

ωpm Magnetic Plasma Frequency

Ωz[xy] Auxiliary field generated for Corner PML

Φx Auxiliary field generated for YZ PML and XYZ PML

Φy Auxiliary field generated for ZX PML and XYZ PML

Φz Auxiliary field generated for XY PML and XYZ PML

Φx[x] Auxiliary field generated for X PML and Corner PML

Ψy[y] Auxiliary field generated for Y PML and Corner PML

Ψx Auxiliary field generated for YZ PML and XYZ PML

Ψy Auxiliary field generated for ZX PML and XYZ PML

Ψz Auxiliary field generated for XY PML and XYZ PML

Ψx[x] Auxiliary field generated for X PML and Corner PML

Ψy[y] Auxiliary field generated for Y PML and Corner PML

σx Absorption coefficient function of PML in x direction

σy Absorption coefficient function of PML in y direction

Θz[xy] Auxiliary field generated for Corner PML

Acronyms / Abbreviations

1D One dimensions

2D Two dimensions

3D Three dimensions

Nomenclature xvi

Add Addition

BPM Beam Propagation Method

CPU Central Processing Unit

DNG Double Negative, meaning both ε and µ are negative

EM Electromagnetic

ET3D Equilateral Tetrahedral

ET Equilateral Triangle

FD Finite Difference

FDTD Finite Difference Time Domain

FE Finite Element

FEM Finite Element Method

FETD Finite Element Time Domain

FFT Fast Fourier Transformation

Ins. CPU Instructions

IRT3D Isosceles Right Angled Tetrahedron

IRT Isosceles Right-angled Triangle

Late. Latency or required CPU Cycles

Mult Multiplication

PEC Perfect Electric Conductor

PML Perfectly Matched Layer

RRF Resolution Reduction Factor

SIMD Single Instruction Multiple Data

Sub Subtraction

Nomenclature xvii

TE Transverse Electric

TM Transverse Magnetic

VFEM Full-vectorial Finite Element Method

VTK Visualisation Tool Kit

X PML PML Absorbing Radiation in x-direction (for 2D and 3D)

Corner PML PML Absorbing Radiation both in x and y-direction (for 2D)

XY PML PML Absorbing Radiation in x and y-directions (for 3D)

XYZ PML PML Absorbing Radiation in x, y and z-directions (for 3D)

Y PML PML Absorbing Radiation in y-direction (for 2D and 3D)

YZ PML PML Absorbing Radiation in y and z-directions (for 3D)

Z PML PML Absorbing Radiation in z-direction (for 3D)

ZX PML PML Absorbing Radiation in z and x-directions (for 3D)

Chapter 1

Introduction

Numerical analysis and modelling are used in many branches of engineering and physics.

Numerical techniques enable researchers, device designers and engineers to characterise a

theoretical representation of a physical device under specific condition without even man-

ufacturing it. This reduce both cost and time of development as numerical analysis of a

physical device only require a capable enough computer system to run the software for

sufficient time to produce the result which can be used for design and optimisation before

going to physical production [1]. Moreover, numerical techniques allow engineers and sys-

tem designers to make decision by simulation before purchasing any already manufactured

products.

1.1 Numerical Methods for Electromagnetics

For electromagnetics device design and development, numerical modelling plays a big role.

Many advanced and recently discovered phenomena are discovered numerically in con-

junction with physical experiments [2, 3]. Use of commercial software such as, COMSOL

Multi-Physics, HFSS, XFDTD, Lumerical, RSOFT, Photon Design etc. are widely used by

numerical and experimental research groups, device designers and device manufacturers.

Efficient and powerful numerical methods are a basic requirements for fast and low cost

development and production of electromagnetic and photonics devices and systems.

1.2 Maxwell’s Equations 2

With the advancement of the computer many numerical techniques have developed.

Most of this techniques use the Maxwell’s equations in different forms to solve the problem

domain. Some of the more widely used methods are Galerkin and moment method [4–7],

transfer matrix method [8], transmission line matrix method [9, 10], finite difference based

methods [11–14], finite element based methods [15, 16] and finite volume method [17]. All

these methods solve the Maxwell’s equations to which is the starting point of all form of

analytical or numerical analysis of electromagnetic structures.

1.2 Maxwell’s Equations

The set of equations named after James Clerk Maxwell. These equations describe the rela-

tion between electric and magnetic fields in an electromagnetic radiation. Maxwell’s equa-

tions can be presented in integral or differential form.

1.2.1 Integral Form

Integral or large scale form of Maxwell’s equations are used in some finite difference al-

gorithms [18, 19] and integral methods like finite integration method [20–22]. The in-

tegral form of Maxwell’s equations corresponding to the equations from Eqs. 1.1 are as

follows [23],

∮

S
D ·dS =

∫

V
ρ dV (1.1a)

∮

S
B ·dS =0 (1.1b)

∮

E ·dl =− ∂

∂ t

∫

S
B ·dS (1.1c)

∮

H ·dl =
∫

S
J ·dS+

∂

∂ t

∫

S
D ·dS (1.1d)

where, dS is a vector and denotes the differential surface element S. Similarly dl is a

vector denoting differential line element l.

1.2 Maxwell’s Equations 3

1.2.2 Differential Form

The differential form of Maxwell’s equations consist of four first order differential equations

as follow [23],

∇ ·D =ρ (1.2a)

∇ ·B =0 (1.2b)

∇×E =− ∂B

∂ t
(1.2c)

∇×H =
∂D

∂ t
+J (1.2d)

In these equations E is the vector electric field, H is the vector magnetic field, D is the

vector electric flux density, B is the vector magnetic flux density, J is the current density of

the medium and ρ is the charge density of the medium.

The relation between the electric and magnetic flux and the field intensity can be defined

as,

B =µH (1.3a)

D =εE (1.3b)

µ and ε are permeability and permittivity of the medium respectively. Both µ and

ε can be constant, tensor or functional for isotropic, anisotropic or dispersive materials

respectively.

This form of Maxwell’s equations are more widely used compared to the integral form.

Specially, the wave equation derived from the differential form of Maxwell’s equations are

more popular for different finite difference and finite element analysis [1, 4, 16, 17, 24, 25].

1.2 Maxwell’s Equations 4

1.2.3 The Wave Equation

For many problems, the solution of the coupled equations presented in Eqs. 1.2 and Eqs. 1.1

are not very easy [26]. Sometimes it becomes difficult to implement as a computer program.

Therefore, it is a common practice for many algorithms to decouple the Maxwell’s first order

partial differential equations presented in Eqs. 1.2 into a second order partial differential

equation consisting of only one field (either E or H) [1].

To obtain the second order equation, at first the B from Eq. 2.3a could be substituted

with the corresponding value in Eq. 1.3a.

1

µr
∇×E =−µ0

∂H

∂ t
(1.4)

where, µ0 and µr are the permeability of vacuum and relative permeability of the medium

respectively and µ = µ0µr.

After applying curl operator on both side of Eq. 1.4 the following equation is obtained,

∇×
(

1

µr
∇×E

)

=−µ0
∂ (∇×H)

∂ t
(1.5)

By substituting ∇×H in Eq. 1.5, with Eq. 2.3b and Eq.1.3b for charge free region (where

both ρ = 0 and J = 0) the wave equation with E field can be derived as,

∇×
(

1

µr
∇×E

)

=−
(εr

c2

) ∂ 2E

∂ t2
(1.6)

where, ε0 and εr are the permittivity of the vacuum and the relative permittivity of the

medium respectively and ε = ε0εr. The speed of light in vacuum c = 1/
√

µ0ε0. This is the

wave equation with the electric field components.

Similarly, the wave equation for the magnetic field components can be obtained as,

∇×
(

1

εr
∇×H

)

=−
(µr

c2

) ∂ 2H

∂ t2
(1.7)

The wave equations presented in Eq. 1.6 and Eq. 1.7 are very popular among many

numerical methods because the wave equation consist of only one field and it decouples

1.3 Numerical Analysis Techniques 5

the E from H or vice versa. The amount of storage for field components are half of the

coupled equations. As there are only one field associated with the equation, handling the

boundary and discretisation of the computational domain is easier compared to the coupled

equations [1].

1.3 Numerical Analysis Techniques

There are several techniques to evaluate different aspect of electromagnetic and photonic

devices. Following are some of the widely used numerical analysis technique for device

design, characterisation and discovery of new and novel photonic devices.

1.3.1 Modal Analysis

Modal analysis consists of a big part of numerical analysis of electromagnetic and pho-

tonic devices. This is a eigenvalue value problem. In modal analysis different shape of

guide are analysed. The cross section perpendicular to the direction of propagation is taken

into consideration. The structure is assumed to be uniform in the direction of propagation.

Therefore, only waveguide in 2D (cross section will be a line) or 3D (cross section will be a

plane surface) can be analysed using the mode solver. The method analyses one frequency

at a time.

The solver can be used with both scalar and full-vectorial formulation. The scalar equa-

tions for E and H field components are [27],

LΦ =
∫ ∫

Ω

[

(

∂Φ

∂x

)2

+

(

∂Φ

∂y

)2

− k2
0n2Φ2 +β 2Φ2

]

dΩ (1.8a)

LΨ =
∫ ∫

Ω

[

1

n2

(

∂Ψ

∂x

)2

+
1

n2

(

∂Ψ

∂y

)2

− k2
0Ψ2 +

1

n2
β 2Ψ2

]

dΩ (1.8b)

Here, Φ can be Ex, Ey or Ez and Ψ can be Hx, Hy or Hz, n is the refractive index of the

material, β is the propagation constant and k0 is the wavenumber.

1.3 Numerical Analysis Techniques 6

One of the equation for full-vectorial formulation for H field is as follows [28, 29],

ω2 =

∫

(∇×H)∗ · 1
ε · (∇×H)dΩ

∫

H∗ ·µ ·HdΩ
(1.9)

Here, ω is the angular frequency of the EM radiation.

When expanded in appropriate solution technique, the method produces an eigenvalue

problem which could be solved by an eigenvalue solver.

The results produced by the method are the effective refractive index of the guide and

the field distribution for different components of E and H fields. Although the outputs of

the analysis are simple, they can be used to calculate the dispersion, loss, bending loss,

coupling length of directional couplers. Also identify mode degeneration etc. Therefore,

the modal analysis is a very important tool for design and optimisation of electromagnetic

and photonic devices. Both the finite difference and finite element techniques are used to

solve this type of problems. [11, 15, 24, 28].

1.3.2 Beam Propagation Method

The beam propagation method (BPM) simulates a given beam of light evolving through a

device in the propagation direction. This is an initial value problem. The evolution of the

field will depend both on the input field and the allowable guiding modes of the structure.

The method allows variation in the propagation direction. Therefore, more devices can be

analysed. The BPM technique can be used for non-linear analysis of photonic devices. This

method considers one frequency at a time.

Initially in 80s the BPM was based on Fast Fourier Transformation (FFT). In 1996, Tsuji

and Koshiba [30] presented a Finite Element (FE) based BPM. Then in 2000, Obayya et al.

presented a full vectorial BPM for 3-D optical waveguides.

The wave equation presented in Eqs. 1.6 and 1.7 can be expressed as,

∂ 2

∂ z2
ΨΨΨ = ΘΨΨΨ (1.10)

Here, vector ΨΨΨ is either electric or magnetic field and Θ is the operator containing the

1.3 Numerical Analysis Techniques 7

transverse space derivative and the refractive index variation [1].

The BPM algorithms transforms the wave equation into a parabolic equation to approx-

imate the propagating wave. It using the first derivative to construct a marching algorithms

which takes the initial field provided at the input and march it through the device along

the initial direction of propagation of the input field and produce the expected field at the

output [31, 32].

Apart from the above mentioned method there are other methods to solve excitation-

response problem i.e. the Scattering approach.

1.3.3 Frequency Domain Analysis

The frequency domain analysis uses the wave equation presented in Eqs. 1.6 and 1.7 and

solved them to obtain the field distribution of a specific frequency in the computational

domain. This is a boundary value problem. Therefore, the distribution of field inside the de-

vice is dependent on the boundary condition imposed at the boundary of the computational

domain and the refractive index variation inside the domain [23]. This method is applicable

for both two-dimensional and three-dimensional structures.

1.3.4 Time Domain Analysis

All methods discussed up to now produce a steady state field distribution at one specific fre-

quency. Transient or time varying response of the photonic cannot be studied by the above

mentioned methods. Study of broadband characteristics of is also difficult with above meth-

ods. As any broadband signal will contain more than one frequency and the shape of the

signal may vary with time depending on the type of the signal used to excite the device. To

tackle such problems, time domain analysis methods are necessary. The time domain anal-

ysis of EM and photonics started with Yee’s algorithm [14] for Finite Difference analysis of

time domain problems. Followed by Finite Integration [20–22], Finite Volume [17, 33] and

Finite Element [27, 34–40] based method.

1.3 Numerical Analysis Techniques 8

Finite Difference Time Domain Method

In 1966 Yee [14] proposed a finite difference based technique to solve Maxwell’s equations

over time to analyse time domain properties of Electromagnetics. The method he proposed

is widely known as Finite Difference Time Domain or the FDTD method. The methods

solves the Maxwell’s equations (Eqs. 1.2) in their differential form on a rectangular gird

for 2D and cuboid grid for 3D. The method uses a special staggered distribution of field

components to solve the Maxwell’s coupled equations. Figure 1.1 shows the distribution of

field component in 3-dimensions in Yee’s lattice.

The method calculates E and H field components at different space nodes and E and H

fields at different time-steps.

(i, j, k) (i+1, j, k)

(i, j, k+1)

(i+1, j+1, k)

(i+1, j+1, k+1)

E
z

E
x

E
y

H
y

H
x

H
z

Fig. 1.1 Field component distribution in Yee’s lattice in 3D (image taken from Wikipedia)

The equations the method solves for 3D are as follows,

1.3 Numerical Analysis Techniques 9

Hx|n+1/2
i, j,k =− ∆t

µi, j,k

[

Ez|ni, j+1/2,k −Ez|ni, j−1/2,k

∆y
−

Ey|ni, j,k+1/2 −Ey|ni, j,k−1/2

∆z

]

(1.11a)

+Hx|n−1/2
i, j,k

Hy|n+1/2
i, j,k =

∆t

µi, j,k

[

Ez|ni+1/2, j,k −Ez|ni−1/2, j,k

∆x
−

Ex|ni, j,k+1/2 −Ex|ni, j,k−1/2

∆z

]

(1.11b)

+Hy|n−1/2
i, j,k

Hz|n+1/2
i, j,k =− ∆t

µi, j,k

[

Ey|ni+1/2, j,k −Ey|ni−1/2, j,k

∆x
−

Ex|ni, j+1/2,k −Ex|ni, j−1/2,k

∆y

]

(1.11c)

+Hz|n−1/2
i, j,k

Ex|n+1/2
i, j,k =

∆t

εi, j,k

[

Hz|ni, j+1/2,k −Hz|ni, j−1/2,k

∆y
−

Hy|ni, j,k+1/2 −Hy|ni, j,k−1/2

∆z

]

(1.11d)

+Ex|n−1/2
i, j,k

Ey|n+1/2
i, j,k =− ∆t

εi, j,k

[

Hz|ni+1/2, j,k −Hz|ni−1/2, j,k

∆x
−

Hx|ni, j,k+1/2 −Hx|ni, j,k−1/2

∆z

]

(1.11e)

+Ey|n−1/2
i, j,k

Ez|n+1/2
i, j,k =

∆t

εi, j,k

[

Hy|ni+1/2, j,k −Hy|ni−1/2, j,k

∆x
−

Hx|ni, j+1/2,k −Hx|ni, j−1/2,k

∆y

]

(1.11f)

+Ez|n−1/2
i, j,k

Here, ∆x, ∆y and ∆z are the space step size in x, y and z direction. ∆t is the time step

size. n− 1/2, n and n+ 1/2 are half time step past, current time step and half time step

future. i, j and k are the indexes used in Fig. 1.1.

1.3 Numerical Analysis Techniques 10

Advantages:

Local Solution: The FDTD method does not create any global matrix to find the next time

step. All calculations are done locally to each Yee’s lattice. Therefore, the only mem-

ory it occupies are the memories for E and H field components and the properties of

the material for each cell in the computational domain. Hence, the method’s memory

is requirement very low compared to methods forming global matrices.

Explicit Solution: Explicit methods computes the state of a system at a future time from

the state of the system at the current time, while implicit methods find a solution

by solving an equation involving both the current state of the system and the future

state. Mathematically, if S(t) is the current state of a system then an explicit method

will calculate the future state S(t +∆t) by solving a governing equation similar to the

following,

S(t +∆t) = F(S(t)) (1.12)

On the other hand a implicit method would solve an equation similar to the following,

G(S(t),S(t +∆t)) = 0 (1.13)

It can be easily understood that, the implicit solver has to iterate multiple times over

the system to find the solution as one of the input of the governing equation is un-

known. However, the explicit solver produces the future state with a single step.

But the quick solution advantage of the explicit method comes with a stability condi-

tion which limits the size of the discretisation steps of the method. Implicit methods

are unconditionally stable. Therefore, allows larger step sizes.

The FDTD equations are explicit in nature. As a result, the formulation can calculate

the field distribution for next time-step accurately within its stability limits only by

executing once. Therefore, the method is faster than iterative and implicit techniques

for many problems.

1.3 Numerical Analysis Techniques 11

Data Parallel: The FDTD method solves the evolution of field locally for each cell. The

method takes E field components and calculate the H components from them. Cal-

culation of H field components does not depend on any of the current H field values.

In fact, all current values used in this algorithm are E field component values. The

only H component necessary is the previous value of the same component. Calcula-

tion process of the E components are similar. Therefore, all governing equations are

independent of each other. Which makes the method massively parallel in nature and

suitable for any type of parallel computing. The method is also inherently domain

discretised as only the boundaries are shared among subdomains if the computational

domain is divided into several subdomain for distributed parallel computing on cluster

computers and complex super computers.

Minimum Calculation: With the FDTD method all the governing equations are solved on

a rectangular (2D) or cuboid (3D) grid. So the grid is known and does not change

anywhere in the computational domain. Yee’s lattice ensures minimum computa-

tion for every partial derivative by making them one dimensional by placing the field

components on the same direction on the lattice. Therefore, the total computation is

minimum for each cell.

Material Models: The formulation of the FDTD method allows easy addition of many

broadband dispersive material including dielectric, metal and semi-conduction mod-

els.

Disadvantages:

Staircasing: The FDTD requires an uniform Cartesian grid. Therefore, the structure needs

to be drawn with rectangles (2D) or cuboids (3D). Otherwise, the interfaces of the de-

vice are approximated with staircased interfaces which introduces error in the results.

One way to reduce the error is to increase the resolution of discretisation. Therefore,

a cuboid structure not aligned with the coordinate axes will require much higher res-

olution to have acceptable approximate representation compared to a cuboid aligned

1.3 Numerical Analysis Techniques 12

with the axes. The situation become worse when the interface is curved.

Single Grid Resolution: The FD grid used in the FDTD method requires only one res-

olution throughout the computational domain, Therefore, when a small part of the

structure requires higher resolution, the entire domain is needed to be discretised with

the highest resolution. Hence, the discretisation of the FDTD method might cause

high overall inefficiency, despite having most optimal and fastest performance for

each Yee’s cell. Recently techniques have been developed to produce finer grid in a

sub block of the computational domain [41]. But it requires the time step to satisfy

the smallest element due to stability condition.

Multiple Interface: The Yee’s lattice places different field components into different nodes

in space. Therefore, at the interface of two different materials there are 6 different

boundaries for each field component. For high resolution grid the difference between

these boundaries may be very small compared to the structure. But at low resolu-

tion the difference become more significant. Therefore, higher resolution become a

requirement for accurate simulation when using FDTD approach.

Numerical Dispersion: The Cartesian grid used in the method causes difference in speed

of light depending in the direction (angle) of the propagation. At 45◦ the speed of

propagation is the highest and it gradually decreases to the lowest at 0◦ and 90◦.

Thereby, causing artificial phase delay in propagation depending on the direction.

This numerical dispersion is higher for lower resolution. Therefore, higher resolu-

tion is required for phase matching of the wave. The resolution of the simulation

also needs to be increased with the increase in the length of the structure. The low

numerical dispersion is crucial for analysing phase matching devices.

Finite Element Based Techniques

As mentioned in the above section, the problems associated with the FDTD methods mostly

arise from the grid. Therefore, the general idea is, a better grid or meshing technique could

1.4 Motivation for the Research 13

improve the performance of the grid and improve overall performance of the time domain

analysis.

The Finite Element (FE)-based approaches are better alternatives for the effective rep-

resentation of an arbitrary shaped structure, such as one with slanted or curved interfaces

because it uses an unstructured polygonal mesh to represent the structure. The FEM was

introduced to the electromagnetic analysis during the 1970’s [42] to solve frequency do-

main problems [15, 28, 43]. To represent the structure more accurately, researchers have

considered the FEM for time domain analysis [34–36, 39, 44, 45]. Although these methods

are sometime more accurate in structural representation, however some of them may re-

quire an implicit solution of the computational domain for each time step [46], some require

the solution of large matrices [36] and some require higher order solutions of Maxwell’s

equations [34, 39, 45].

However, among all the FE methods reported, the point-matched method [34] has fea-

tures which may make it the more suitable. Firstly, it solves Maxwell’s equations directly

in the same manner as the FDTD. Secondly, it does not generate mass matrices and all cal-

culations are local to each element. Lastly, the formulation is data parallel and suitable for

parallel computing implementation. However, the downsides of this method presented in

the work of Cangellaris [34] are the use of the rectangular grid. So, there is no significant

advantage offered in the numerical dispersion.

1.4 Motivation for the Research

Although many attempts were made to develop an alternative to the FDTD proposed by Yee

in 1966, none of the method mentioned above are as popular as the FDTD.

A time domain simulation takes a long time as the entire domain has to be solved for

each time step. Increasing the computation for each time-step will cost a significant delay

in completing the simulation. Moreover, for time domain simulation in 2D and 3D space,

the computational domain has to be discretised using 2D and 3D mesh(s)/grid(s) and more

than one instance of the all component values of each field have to be stored in the computer

1.4 Motivation for the Research 14

memory to successfully model a propagating wave both in time and space. Therefore, any

time domain analysis requires significantly higher memory and CPU time compared to other

methods. Even a single addition operation could cause millions/billions (or even more) of

CPU cycles if the analysis runs for thousands of time steps.

The FE discretisation could solve the inefficiency and the inaccuracy of the FD grid but

in most cases adds too much calculation per element which is the main reason for its slow

adoption. In simple words, the alternative FE proposed before this research are too slow and

in many cases higher in memory requirement than the FDTD method.

Any successful alternative to the FDTD method should contain most of its advantages

and also solve some of the issues associated with the FDTD method. That is, the method

has to be explicit, data parallel, easily extendable and minimise computation at element

level. Also it has to discretise the computational domain efficiently, will have the flexibility

to change the shape of the mesh/grid to produce better approximation of the structure at

lower resolution. This should allow dense and coarse mesh in the same computational

domain depending on local necessity. It should have better numerical dispersion to allow

low resolution simulation for bigger computational domain. As discussed in the previous

section, all of these have never been put together in a single FE based method.

The goal of this research is to develop a method with most of the features mentioned

above.

Part I

Two-dimensional Formulation

Chapter 2

Derivation of Governing Equations for

Two-dimensions

Maxwell’s equations in differential form were chosen for the derivation of the governing

equations. Initially the method was developed for simpler two-dimensional simulation. In

this case the mesh will consists of triangles and Maxwell’s equations can be simplified

for 2D approximation. Later a three-dimensional implementation will be shown to simulate

real world devices. To simplify the derivation only non isotropic, lossless and non dispersive

material is considered at this stage in charge free region.

Let us consider a region of space Ω occupied by a medium with position dependent

parameters ε and µ , amenable to Maxwellś curl equations Eqs. 1.2c and 1.2d, All electro-

magnetic interactions inside Ω must fulfil the well-known boundary conditions n̂×E = 0

and n̂×H = 0 on perfect electric and magnetic surfaces ΛE and ΛH , respectively, with n̂ as

their normal unit vector. Moreover, in the case of an unbounded domain, outgoing waves

should satisfy an appropriate radiation or boundary condition, whereas for the accomplish-

ment of a unique solution, all fields in Ω at t = 0 have to be known. In this context, two

weak forms can be obtained through the Galerkin or weighted residual method [36, 47].

A set of vector functions u can be employed as the weight function, which are actually

square-integrable quantities with finite energy. Hence, for every u, one gets,

17

∫

Ω
u ·
(

∇×E+
∂B

∂ t

)

dΩ = 0 (2.1a)

∫

Ω
u ·
(

∇×H− ∂D

∂ t

)

dΩ = 0 (2.1b)

Now for point matched method the weight function in Eqs. 2.1a and 2.1b can be replace

by δ (t − ti) and δ (t − t j) respectively [48]. After performing the integration one can obtain,

∇×E+
∂B

∂ t
= 0 (2.2a)

∇×H− ∂D

∂ t
= 0 (2.2b)

Applying Eqs. 1.3a and 1.3b on Eqs. 2.2a and 2.2b respective yields,

∇×E =−µ
∂H

∂ t
(2.3a)

∇×H = ε
∂E

∂ t
(2.3b)

The partial differential operator ∇ is given by,

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂ z
(2.4)

For the 2D formulation propagation in x− y plane is considered. Therefore, wave can

propagate any any direction on x− y plane. z direction is considered to be uniform. As a

result, ∂/∂ z = 0 The materials involved are also assumed to be isotropic and non dispersive.

18

Therefore, Eq. 2.3a can be written as,

dH

dt
=− 1

µ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ

∂
∂x

∂
∂y

∂
∂ z

Ex Ey Ez

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=− 1

µ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ

∂
∂x

∂
∂y

0

Ex Ey Ez

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.5)

Eq. 2.3b can be written as,

dE

dt
=

1

ε

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ

∂
∂x

∂
∂y

0

Hx Hy Hz

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.6)

From Eqs. 2.5 and 2.6, six equations (Eqs. 2.7 and Eqs. 2.8) can be obtained by equating

the coefficients of the unit vectors x̂, ŷ and ẑ. These six equations can be divided into two

different sets for propagation of Transverse Electric (TE) and Transverse Magnetic (TM)

modes, respectively.

TE Propagation

dHx

dt
=− 1

µ

∂Ez

∂y
(2.7a)

dHy

dt
=

1

µ

∂Ez

∂x
(2.7b)

dEz

dt
=

1

ε

(

∂Hy

∂x
− ∂Hx

∂y

)

(2.7c)

2.1 Discretisation 19

TM Propagation

dEx

dt
=

1

ε

∂Hz

∂y
(2.8a)

dEy

dt
=−1

ε

∂Hz

∂x
(2.8b)

dHz

dt
=− 1

µ

(

∂Ey

∂x
− ∂Ex

∂y

)

(2.8c)

2.1 Discretisation

To solve the governing equations of Eqs. 2.7 and Eqs. 2.8, the computational domain has to

be discretised. All the field components in these equations are functions of both space (x,y)

and time (t). For all equations the left hand side of the equations calculate only the time

evolution of the field and the right hand side of the equations calculate evolution in space

separately. Therefore, the time evolution can be calculated with a time shape function (t is

the variable of the function) at a fixed space node and the space evolution can be calculated

at a fixed time node with a spatial shape function (x and y are the variable of the function) if

an explicit approach time stepping is used.

2.1.1 Space Discretisation

To discretise the computational domain both in space and time, nodal elements can be used.

Linear shape functions can be used to describe the variation of the field inside an element.

The spatial variation of all the field components can be written in terms of the shape function

as

Φ =
M

∑
i=1

Niφi (2.9)

where Φ can be any field component (any one of Hx, Hy, Hz, Ex, Ey, Ez) inside the

element, φi is the field component at the ith node of the element (any one of hx, hy, hz, ex, ey,

2.1 Discretisation 20

ez), M is the number of nodes in an element. For a linear element (i.e. three node triangular

elements) M = 3 and Ni is the shape function for the ith node. Linear shape functions can

be expressed as

Ni = ai +bix+ ciy (2.10)

where, ai, bi and ci are the coefficients of the equation of plane going through the nodes

of the element [1]. It should be mentioned here that, by using Eq. 2.9, shape function of any

order can be incorporated with the proposed method. However, to store each higher order

element more computer memory space would be required than a simpler linear element.

Each linear element also takes least computation time. So, linear elements were chosen for

the space discretisation.

2.1.2 Time Discretisation

Similarly, the field components along the time axis can be discretised as

Ψ =
P

∑
j=1

Q jψ
(j) (2.11)

where Ψ can be any field component (any one of the Hx, Hy, Hz, Ex, Ey, Ez) inside the

element, ψ(j) is the field component at jth time node, P is the number of the time node in

the time element and for linear elements, P = 2. Here, Q j is the shape function for the jth

time node and for the linear shape function it can be expressed as

Q j = p jt +q j (2.12)

where p j and q j are the coefficients of the line passing through the nodes of the time

element. Similar to the space discretisation, Eq. 2.11 allows higher order time elements, if

needed.

Both Eq. 2.9 and Eq. 2.11 can be applied to Eqs. 2.7 and Eqs. 2.8. For Example, Eq. 2.7a

can be written as

2.1 Discretisation 21

d

dt

2

∑
j=1

Q jh
(j)
x =− 1

µ

∂

∂y

3

∑
i=1

Niezi

⇒
2

∑
j=1

p jh
(j)
x =− 1

µ

3

∑
i=1

∂Ni

∂y
ezi, ∵

dQ j

dt
= p j

⇒h
(2)
x =

1

p2

[

− 1

µ

3

∑
i=1

∂Ni

∂y
ezi − p1h

(1)
x

]

Similarly, all the equations from Eqs. 2.7 and Eqs. 2.8 can be derived. Discretised

versions of Eqs. 2.7 and Eqs. 2.8 are given in Eqs. 2.13 and Eqs. 2.14, respectively.

For TE Propagation

h
(n+1)
x =

1

p2

[

− 1

µ

3

∑
i=1

∂Ni

∂y
e
(n)
zi − p1h

(n−1)
x

]

(2.13a)

h
(n+1)
y =

1

p2

[

1

µ

3

∑
i=1

∂Ni

∂x
e
(n)
zi − p1h

(n−1)
y

]

(2.13b)

e
(n+1)
z =

1

p2

[

1

ε

(

3

∑
i=1

∂Ni

∂x
h
(n)
yi −

3

∑
i=1

∂Ni

∂y
h
(n)
xi

)

− p1e
(n−1)
z

]

(2.13c)

For TM Propagation

e
(n+1)
x =

1

p2

[

1

ε

3

∑
i=1

∂Ni

∂y
h
(n)
zi − p1e

(n−1)
x

]

(2.14a)

e
(n+1)
y =

1

p2

[

−1

ε

3

∑
i=1

∂Ni

∂x
h
(n)
zi − p1e

(n−1)
y

]

(2.14b)

h
(n+1)
z =

1

p2

[

− 1

µ

(

3

∑
i=1

∂Ni

∂y
e
(n)
yi −

3

∑
i=1

∂Ni

∂y
e
(n)
xi

)

− p1h
(n−1)
z

]

(2.14c)

where the field components with the (n+1), (n) and (n−1) superscripts are the future,

current and the past values, respectively.

These two sets of equations are the main governing equations of the 2D FETD. It should

be noted that, although both Eqs. 2.13 and 2.14 are independent of each other, the equations

2.1 Discretisation 22

inside each set are not independent. Therefore, no single equations can produce time evolu-

tion of light without considering other equations in its set. Therefore, the equations in both

sets are coupled and should be solved in a coupled manner.

Chapter 3

The Two-dimensional Mesh

The mesh is the most important part of all the FE-based methods. It allows discretisation

of an irregular shaped structure in a more accurate and efficient manner. The speed of an

FE-based code largely depends on how efficiently the mesh discretises the computational

domain. Hence efficient meshing which reduces computational cells without sacrificing

accuracy of the solution, is one of the key factors used to make a fast and efficient FE-based

code.

The research on finite element mesh generation was formally started perhaps as early

as the beginning of the 1970s [49], and a comprehensive review of the finite element mesh

generation schemes developed before 1980 was presented by Thacker [50]. In line with the

advance of the finite element method, the irregular computational grid became increasingly

popular for two reasons:

1. they allow points to be situated on curved boundaries of irregularly shaped domains

2. they allow points to be distributed at the interior of the domain with variable nodal

spacing

Coordinate transformation was an early attempt to map a regular reference domain onto

a geometrically irregular computational physical domain with a possibility of smooth tran-

sition in element size [51].

24

Finite element interpolation as a means of mesh generation was presented in [52] in

which a curved domain is represented by a super-element, which could be further divided

into smaller elements following the element reference coordinates. The blending function

interpolation developed for local refinements to minimise the energy of the system is related

to the r-refinement procedure that we are using today.

Unstructured mesh generation thrived in the early 1980s mainly driven by the devel-

opment of the three popular unstructured mesh generation schemes, namely, the Delaunay

triangulation, AFT and Octree decomposition.

The theoretical basis of Delaunay triangulation was established a long time ago by

Dirichlet [53], Voronoi [54] and Delaunay [55], and an ef cient and robust construction

algorithm by point insertion was only developed in 1981 by Bowyer and Watson [56, 57].

Delaunay triangulation will only give the convex hull of the given point set, and for finite el-

ement mesh generation, geometrical and topological constraints on the boundary have to be

enforced. However, the technique was first employed formally for 2D and 3D finite element

mesh generation in 1970s [58, 59].

The AFT method divides the domain into two parts; meshed part and unmeshed part.

There is a moving boundary between these parts and the technique focuses on the unmeshed

part only and uses arbitrary shapes to generate elements to fill the unmeshed part. It was

introduced in 1980s [60].

Octree decomposition was introduced in 1980s [61, 62]. The method considers bound-

ary characteristics and nodal requirement first and generate mesh using “marching cube”

method by projecting points to boundary and proper connection of points to form hexahedral

and tetrahedral elements.

Although unstructured mesh generation became very advance and efficient, this thesis

will only use uniform meshes. Primarily because it is much simpler to quantify and compare

the performance of the method against its Finite Difference alternative, the FDTD.

3.1 The Space Mesh System 25

3.1 The Space Mesh System

To explain the meshing scheme in a simpler manner, a uniform square grid was chosen

to start with. This allows a simpler explanation of the meshing system. To use the linear

shape functions, triangles with three nodes were considered to discretise the computational

domain. This mesh can be termed the “Main Mesh”. For TE propagation, it maybe as-

sumed that, all current ez field components are stored at the nodes of the triangular mesh.

Both hx and hy field components can be calculated from ez using Eq. 2.13a and Eq. 2.13b.

Equation 2.13a calculates one future value of hx using the current values of the ez field com-

ponents at the nodes of the triangular element. As there is only one value for the whole

element, it cannot be stored in any specific node of the triangle, but instead it can be stored

at the centroid of the triangle, which is unique. As a result, no value of hx field component

will be available at the corner nodes of the elements of main mesh. Similarly, for Eq. 2.13b

the calculated future value of hy can be stored at the centroid. To obtain the next values of ez

from Eq. 2.13c, the current value of hx and hy are required which are placed at the centroids

of the elements of main mesh. Hence, another triangular mesh is required which will be

constructed using the centroids of the main mesh elements. This new mesh can be termed

the “Auxiliary Mesh”. It should be mentioned here that the Voronoi mesh could be used

as the auxiliary mesh. This is because the formulation supports higher order elements. But

as it has been mentioned before that linear elements require less computational resources

then higher order elements, the linear auxiliary mesh proposed in this section will be used

throughout this thesis. As the hx and hy field components are stored at the auxiliary mesh,

the elements of this mesh can be used to calculate the future ez values which can be stored

in the nodes of the main mesh, provided each element of the auxiliary mesh must surround

one of the nodes of the main mesh. Similar arrangements can be made for TM propagation

using Eqs. 2.14.

The method will allow any shape of elements. For simplicity and ease, a simple square

grid was considered to illustrate the meshing process. This grid can be converted into a

triangular mesh by dividing each cell with one diagonal line. Figure 3.1(a) shows a triangle

mesh generated from a 4×4 square grid. As can be seen the resultant mesh is a “Isosceles

3.1 The Space Mesh System 26

(a)
1

1a

2

2a

3

3a

4

4a
5

5a

6

6a

7

7a

8

8a
9

9a

10

10a

11

11a

12

12a
13

13a

14

14a

15

15a

16

16a

(b)

1 2 3

4 5 6

7 8 9

1b 2b 3b

4b 5b 6b

7b 8b 9b

(c)

Fig. 3.1 (a) The generating the linear mesh by dividing a square grid by diagonal line, (b)
Generating the auxiliary mesh by connecting the centroids of the main mesh, (c) Discarding
the unwanted elements from both meshes

Right-angled Triangle (IRT) Mesh”. The lower triangle of the square cell has been shaded

in pink and the upper triangle is in white. The lower triangle is numbered with the cell index

and the upper triangle is numbered with the cell index and additionally with a suffix “a”.

The black dot inside each triangle is the centroid of that triangle.

The auxiliary mesh has to be generated using the centroids of the main mesh. Each

element of the auxiliary mesh has to surround one of the nodes of main mesh. The Perfect

Electric Conductor (PEC) boundary condition will be applied at the boundaries of the

main mesh to truncate the computational domain into a finite one. Therefore, calculation

of field components of the boundary nodes of main mesh is not necessary. Centroids of

the elements 2, 5 and 6 of the main mesh (Fig. 3.1(a)) are taken as the three nodes of the

element number 1 of the auxiliary mesh (shaded in light blue) and the centroids of elements

1, 2 and 5 are taken for element 1b of the auxiliary mesh (white coloured). Similarly, all the

other elements were generated from the centroids of the main mesh. Figure 3.1(b) shows

the auxiliary mesh constructed from the centroids of the main mesh shown in Fig. 3.1(a).

The centroids of the auxiliary mesh are shown as black dots in Fig 3.1(b).

It can be seen that the centroids of elements 1, 2, 3, · · · , 9 of the auxiliary mesh

(Fig. 3.1(b)) coincide with the node points of the main mesh, whereas the centroids of 1b,

2b, 3b, · · · , 9b coincide with the centroids of 1a, 2a, 3a, · · · , 11a of the main mesh. As a

result, these elements cannot be used to calculate the field components at the nodes of the

other mesh. Therefore, the interpolation functions (shape functions) of the elements 1a, 2a,

3.1 The Space Mesh System 27

3a, · · · of the main mesh and 1b, 2b, 3b · · · of the auxiliary mesh will not be used in calcu-

lation of the governing equations. This is a requirement of the technique when used with a

triangle mesh. By not using the shape functions of the unwanted elements, the number of

elements in Fig. 3.1(c) will become half of Fig. 3.1(b). [63].

This is a unique mesh system introduced with the proposed method. This mesh system

has a big advantage. It reduces the number of computational elements to less than half

of the methods using all shape functions of the mesh. As a result, the method proposed

in this paper is twice faster than any other FEM method using full mesh with the same

computational need per element. The memory requirement for the method will be less than

an FEM approach using the full mesh discretisation.

3.1.1 Completeness of the Mesh

It should be noted that at the beginning the discretisation of the computational domain was

performed with two full meshes. Which covers the entire computational domain with piece-

wise interpolation functions called shape functions. Therefore, the mesh discretising the

space is fully described by the interpolation functions. As the shape functions considered

for the discretisation is not exactly the function of the field distribution, the approximation

of the computational domain produces some residual error which can be minimised by re-

ducing the size of the discretisation elements. Mathematically this can be expressed using

completeness theorem [64],

Rm =
∫

Ω

(

F(x,y)−
m

∑
k=1

Φk(x,y)

)2

A. (3.1)

Here, F(x,y) is the complete space and Φk(x,y) is the shape function (Eq. 2.9) and Rm

is the residual error which converges to 0 with sufficiently large m (number of elements).

Due to the requirement of the governing equations the method uses less than half of

the interpolation functions of one mesh to calculate the future field component in the other

mesh. Proposed method also updates all nodes of both meshes. Therefore, the computa-

tional space discretised by the 2 meshes can be full explained by the shape functions of

3.2 The Time Mesh System 28

elements used to describe the domain in the first step. Hence the method provide a complete

solution.

As seen in Fig. 3.1(c), the main mesh elements surround their associated nodes on the

auxiliary mesh and are used to update the value of the fields associated with the node and

vice versa. Although the alternative elements (elements with suffix ‘a’ and ‘b’) have been

removed from the mesh system, however, all of the three nodes associated with those trian-

gle are still updated during the calculation of every time step. Therefore, the magnitude of

the field components inside the skipped region can be calculated by using the space shape

functions of that triangle (Eq. 2.10). The affect of neighbouring elements are transferred

when calculating the field at a node on mesh ‘a’ using the element on mesh ‘b’. Also the

method does not rely on any mass matrix. As a result, the 2 staged solution presents a full

solution of the space even though calculations are done on 2 meshes.

As this meshing is a new concept, present day meshing libraries may not be optimised

for this type of coupled meshing.

3.2 The Time Mesh System

Along with the space domain, the time domain also needs to be discretised. This can be

achieved by using linear elements with two nodes. In Eq. 2.13a and Eq. 2.13b, the future

values of the hx and the hy field components may be calculated from the current ez field

components and the past hx and hy components respectively. Equation 2.13c calculates

the future values of the ez field components with the current hx, hy and the past ez field

components. Similar explanations can be given for Eqs. 2.14. For all the equations, the

current values of the E field components with the past values of the H field components are

needed to calculate the future values of H components and vice versa. Therefore, both the

E and H field components cannot be calculated at the same time node.

For the TE propagation example given in Section 3.1, the simulation started with the cal-

culation of the future hx and hy fields from the current ez field components in the main mesh

(with Eq. 2.13a and Eq. 2.13b). Therefore, the first time node belongs to the ez component

3.2 The Time Mesh System 29

node.

✲

0 t
2

t 3t
2

2t 5t
2

3t 7t
2

4t 9t
2

5t

M

❄ ❄ ❄ ❄ ❄ ❄

✲

N

❄ ❄ ❄ ❄ ❄

✲

Fig. 3.2 Arrangement of time mesh system for equal time spacing

associated with the main mesh. The future ez field was calculated from the hx and hy fields

in the auxiliary mesh. So, the second time node belongs to the hx and hy field components

associated with the auxiliary mesh. This way the time domain can be divided into two time

meshes M and N which are associated with the field components of the main mesh and the

auxiliary mesh respectively. Figure 3.2 shows the M and N meshes. In this example, the

time step size for the calculation of the future ez components from the previous ez compo-

nents is t. So, the ez field was calculated at t, 2t, 3t, 4t, · · · and hence these time nodes

belong to mesh M along with the initial ez at time 0. The time step size for the calculation

of the hx and hy field components have to be of the same duration, t. To calculate the ez

components, the current hx and hy components are required. Therefore, the hx and hy field

components were calculated at t/2, 3t/2, 5t/2, 7t/2, · · · . Thus, these time nodes belong to

mesh N. Similar examples can be shown for TM propagation with Eqs. 2.14.

Chapter 4

Perfectly Matched Layer Boundary for

Two-dimensions

As an EM wave approaches the boundary of the finite computational domain, a new type

of problem starts to emerge. The boundary condition of the computational domain can be a

perfect electric conductor (PEC) or a perfect magnetic conductor (PMC), depending on the

formulation used. In both cases, the field incident on the boundary will reflect back into the

computational domain, like open or short circuit termination and interference of the forward

propagating and reflected waves would corrupt the results.

To avoid unwanted reflection from the computational boundary, two approaches can be

under taken. Which are

1. Large computational domain

2. Absorbing boundary condition

4.1 Large Computational Domain

If a large enough computational domain is considered and the simulation is carried out for

a limited number of steps, such that the field does not reach the domain boundaries and the

4.2 Absorbing Boundary Condition 31

unphysical reflection can be avoided.

However, this would requires a large number of nodes to spread around the computa-

tional domain. As a result, the computational resource required would be huge compared to

the problem area with a smaller computational domain. Thus, this is not a practically viable

solution for the problem for most of the occasions.

4.2 Absorbing Boundary Condition

Another way to avoid reflections is to apply a suitable absorbing boundary condition/material

that may absorb the wave before it hits the computational boundary without any reflection.

To avoid reflection, the material should be impedance matched with the nearby medium.

There are different ways to absorb the outgoing wave. Among them only all different

ways followings two ways are prominent,

1. those based on one-way wave equations

2. those based on surrounding the domain with a layer of absorbing material

4.2.1 Methods Based on Oneway Wave Equations

The first category of ABCs relies on the fact that the solution of Maxwell?s two coupled

curl equations is equivalent to the solution of the second-order wave equation for any one of

the field components. Although the wave equation naturally supports waves propagating in

both forward and backward directions, it can be factored into two oneway wave equations,

each of which supports waves in only one direction. This property provides the basis for an

algorithmic method by which the fields can be “propagated out” of the domain minimising

reflections back into the numerical space. A first-order scheme of this type is first discussed

below, using the 1D wave equation, for simple one-way wave equations. This scheme is

known as the first-order Mur boundary condition, and is quite effective in the removal of the

4.2 Absorbing Boundary Condition 32

plane wave fields normally incident on an FDTD boundary, being particularly suitable for

1D problems.

First-order Mur boundary

The first-order Mur boundary condition is one of the simplest boundary conditions available,

but it can be very effective for 1D simulations, as it relies on normal incidence of the wave

on the boundary. This Mur ABC is based on the one-way wave equations [65].

∂Ez

∂ t
+ vp

∂Ez

∂x
= 0 →Ez(x, t) = f (x− vpt) (4.1a)

∂Ez

∂ t
− vp

∂Ez

∂x
= 0 →Ez(x, t) = f (x+ vpt) (4.1b)

The solutions of Equ. 4.1a and Equ. 4.1b are waves propagating respectively in the pos-

itive (+x) and negative (-x) directions. These equations can respectively be used to simulate

open-region boundaries at the right and left sides of the 1D domain.

As the method relies on the direction of propagation, it is more difficult to implement

and use in 2D and 3D as the wave can propagate in any direction [66].

Other mentionable ABC using oneway wave equation are Bayliss-Turkel operators [67]

and Higdon operators [68].

4.2.2 Perfectly Matched Layer Boundary

The other type of boundary conditions surrounds the computational domain with absorbing

medium and absorbs the outgoing wave it approaches boundary. The biggest advantage of

this technique is that it does not assume any angel of incident and thus support absorption

of wave from any direction.

Berenger, in 1994, where he proposed a boundary material for rectangular computa-

tional domain which would theoretically absorb all the incoming EM waves without reflec-

4.2 Absorbing Boundary Condition 33

tion [69].

The PML can be implemented in several ways. For example, by split field, convolu-

tional, uniaxial PML etc.

Split Field PML

In this type of PML the transverse fields are split into two directional components for 2D

implementation. i.e. Hz field can be split into two directional components Hzx and Hzy in

such a way that Hz = Hzx +Hzy. The 2D TM mode governing equations in Eqs. 2.8 for split

field PML can be written as,

dEx

dt
+σyEx =

1

ε

∂Hz

∂y
(4.2a)

dEy

dt
+σxEy =−1

ε

∂Hz

∂x
(4.2b)

dHzx

dt
+σm,xHzx =− 1

µ

(

∂Ey

∂x

)

(4.2c)

dHzy

dt
+σm,yHzy =

1

µ

(

∂Ex

∂y

)

(4.2d)

Here, σx, σy are the directional electric conductivity and σm,x, σm,y are the magnetic

conductivity.

Complex Frequency Shifted PML/Convolutional PML

This PML was introduced by Kuzuoglu and Mittra [70] to absorb the evanescent generated

near the radiating sources. This is done by replacing the term jωε with α + jωε . This

allows the PML to absorb the evanescent field.

The best implementation of this PML was proposoed by Roden and Gedney in 2000 [71]

using a recursive convolution technique. Their technique is commonly referred to as the

convolutional PML or CPML.

4.2 Absorbing Boundary Condition 34

For this PML a more general stretched coordinate is introduced:

si =

(

κi +
σi

αi + jωε0

)

(4.3)

Now Equ. 4.2 can be written as,

dEx

dt
= sy ∗

1

ε

∂Hz

∂y
(4.4a)

dEy

dt
=−sx ∗

1

ε

∂Hz

∂x
(4.4b)

dHz

dt
=− 1

µ

(

sx ∗
∂Ey

∂x
− sy ∗

∂Ex

∂y

)

(4.4c)

Uniaxial PML

This is an alternative way of implementing the PML which is simpler then the split field

PML or the convolutional PML. Because, it does not require any complex calculation or

splitting of field components. To perform some simulation with the proposed method ABC

is necessary. For this purpose the uniaxial PML implementation was chosen because it can

be implemented with only real numbers and it has wide band nature.

The implementation of various types of PML for Cartesian coordinate system can be

classified into three different types, i.e.

1. X axis PML

2. Y axis PML

3. Corner PML

To implement any kind of PML the partial differential operator ∇ (Eq. 2.4) has to be

modified [69].

4.3 X Axis PML 35

4.3 X Axis PML

The X axis PML absorbs any wave that moves in the X direction and towards the boundary.

The original partial differential operator is modified as follows [69],

∇̃(x) = x̂
(

1− j
σx

ω

)−1 ∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂ z
(4.5)

where σx is a function of x and ω is the angular frequency.

Thus the affected equations will be Eqs. 2.7b, 2.7c, 2.8b and 2.8c.

If ∇̃(x) is used instead of ∇ in Eqs. 2.3, then Eq. 2.7b,

∂H

∂ t
=− 1

µ

(

∇̃(x)×E
)

⇒ ∂H

∂ t
=− 1

µ

∣

∣

∣

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ

∂
∂x

(

1− j σx

ω

)−1 ∂
∂y

∂
∂ z

Hx Hy Hz

∣

∣

∣

∣

∣

∣

∣

∣

∣

⇒ ∂H

∂ t
=− 1

µ

∣

∣

∣

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ

∂
∂x

(

1− j σx

ω

)−1 ∂
∂y

0

Hx Hy Hz

∣

∣

∣

∣

∣

∣

∣

∣

∣

(for 2D, similar to Equ. 2.5) (4.6)

Now, by equating the coefficient of ŷ from Equ. 4.6,

∂Hy

∂ t
=

1

µ

∂Ez

∂x

(

1− j
σx

ω

)−1

⇒
(

1+
σx

jω

)

∂Hy

∂ t
=

1

µ

∂Ez

∂x

⇒∂Hy

∂ t
+σxHy =

1

µ

∂Ez

∂x
considering jω =

∂

∂ t

⇒∂Hy

∂ t
=

1

µ

∂Ez

∂x
−σxHy (4.7)

Therefore, Equ. 2.7b is replaced by Equ. 4.7.

4.4 Y Axis PML 36

The implementation of the 1/ω dependence in the time domain can be done using the

auxiliary differential equations approach (ADE) [66]. which introduces auxiliary fields.

Eq. 2.7c will be replaced by following three equations,

∂Ez

∂ t
=

1

ε

(

∂Hy

∂x
− ∂Hx

∂y
−Ψx[x]

)

−σxEz (4.8a)

∂Ψx[x]

∂ t
= σx

∂Hx

∂y
(4.8b)

Here, Ψx[x] is the auxiliary field generated due to the use of X PML.

Eq. 2.8b will be replaced by following equation,

∂Ey

∂ t
=−1

ε

∂Hz

∂x
−σxEy (4.9a)

And Eq. 2.8c will be replaced with,

∂Hz

∂ t
=− 1

µ

(

∂Ey

∂x
− ∂Ex

∂y
−Φx[x]

)

−σxHz (4.10a)

∂Φx[x]

∂ t
= σx

∂Ex

∂y
(4.10b)

Here, Φx[x] is the auxiliary field generated due to the use of X PML.

4.4 Y Axis PML

Similarly, for the Y axis PML, the differential operator is modified as follows,

∇̃(y) = x̂
∂

∂x
+ ŷ
(

1− j
σy

ω

)−1 ∂

∂y
+ ẑ

∂

∂ z
(4.11)

As a result, Eq. 2.7a will be replaced with,

4.5 Corner PML 37

∂Hx

∂ t
=− 1

µ

∂Ez

∂y
−σyHx (4.12a)

Eq. 2.7c will become,

∂Ez

∂ t
=

1

ε

(

∂Hy

∂x
− ∂Hx

∂y
+Ψy[y]

)

−σyEz (4.13a)

∂Ψy[y]

∂ t
= σy

∂Hy

∂x
(4.13b)

Here, Ψy[y] is the auxiliary field generated due to the use of Y PML.

Eq. 2.8a can be replaced with,

∂Ex

∂ t
=

1

ε

∂Hz

∂y
−σyEx (4.14a)

and finally Eq. 2.8c will become,

∂Hz

∂ t
=− 1

µ

(

∂Ey

∂x
− ∂Ex

∂y
+Φy[y]

)

−σyHz (4.15a)

∂Φy[y]

∂ t
= σy

∂Ey

∂x
(4.15b)

Here, Φy[y] is the auxiliary field generated due to the use of Y PML.

4.5 Corner PML

This type of PML is used only at the corners of the computational domain. The reason is

that it can absorb waves in both directions and due to the discrete implementation, the nu-

merical reflection (the reflection due to the discrete implementation) from the PML would

4.5 Corner PML 38

be much higher with the change in each step towards the boundaries.

As was mentioned above, this PML absorbs electromagnetic waves in both transverse di-

rections. The partial differential operator of Eq. 2.4 is replaced with the following modified

operator given in the following equation,

∇̃(xy) = x̂
(

1− j
σx

ω

)−1 ∂

∂x
+ ŷ
(

1− j
σy

ω

)−1 ∂

∂y
+ ẑ

∂

∂ z
(4.16)

So, Eq. 2.7a will be replaced with,

∂Hx

∂ t
=− 1

µ

∂Ez

∂y
−σyHx (4.17a)

Eq. 2.7b will be replaced with,

∂Hy

∂ t
=

1

µ

∂Ez

∂x
−σxHy (4.18a)

Eq. 2.7c will be replaced with,

∂Ez

∂ t
=

1

ε

(

∂Hy

∂x
− ∂Hx

∂y
+Ψy[y]−Ψx[x]

)

−σxEz −σyEz −Θz[xy] (4.19a)

∂Ψx[x]

∂ t
= σx

∂Hx

∂y
(4.19b)

∂Ψy[y]

∂ t
= σy

∂Hy

∂x
(4.19c)

∂Θz[xy]

∂ t
= σxσyEz (4.19d)

Here, Ψx[x], Ψy[y] and Θz[xy] are the auxiliary fields generated due to the use of Corner

PML.

Eq. 2.8a will be replaced with,

4.6 Placing the PML in the Computational Domain 39

∂Ex

∂ t
=

1

ε

∂Hz

∂y
−σyEx (4.20a)

Eq. 2.8b will be replaced with,

∂Ey

∂ t
=−1

ε

∂Hz

∂x
−σxEy (4.21a)

Eq. 2.8c will be replaced with,

∂Hz

∂ t
=− 1

µ

(

∂Ey

∂x
− ∂Ex

∂y
+Φy[y]−Φx[x]

)

−σxHz −σyHz −Ωz[xy] (4.22a)

∂Φx[x]

∂ t
= σx

∂Ex

∂y
(4.22b)

∂Φy[y]

∂ t
= σy

∂Ey

∂x
(4.22c)

∂Ωz[xy]

∂ t
= σxσyHz (4.22d)

Here, Φx[x], Φy[y] and Ωz[xy] are the auxiliary fields generated due to the use of Corner

PML.

4.6 Placing the PML in the Computational Domain

The PML is a non physical medium and as a result, improper placement in the computa-

tional domain can make the solution unstable. As reported in [69], the PML must be placed

around the boundary, as shown in Fig. 4.1.

As can be seen, the X Axis PMLs should be placed on the left and right hand sides of

the computational domain such that the value of σx increases with the increase in distance

from the boundary along the x axis inside the PML.

4.6 Placing the PML in the Computational Domain 40

Y Axis PML

Y Axis PML

X
 A

x
is

 P
M

L

X
 A

x
is

 P
M

L

Corner PML

Fig. 4.1 Placement of different type of PML in computational domain

Similarly, the Y PML should be placed at top and bottom of the computational domain

and σy follows the same profile as σx. However, this time the distance is measured along y

axis.

The corner PML has to be placed at the four corners of the computational domain. The

profile σx and σy is similar to the σx and σy used in the X PML and Y PML respectively.

Chapter 5

Dispersive Materials

Although the initial derivation of the proposed method in in Chapter 2 only considers

isotropic and non dispersive material, the capability of the method presented in Chapters 2

and 3 are far beyond it. The method is equally good at simulating dispersive materials such

as metals.

Metals: Metals are highly dispersive materials in the optical range. The dispersive char-

acteristics of the permittivity of a metal can be modelled by the Drude model [72].

Metamaterials: Metalmaterials are man made materials designed to produce characteris-

tics which are not found in natural materials. Metamaterials are often characterised in terms

of their effective material parameters, such as electric permittivity and magnetic permeabil-

ity. These constituent parameters can either be both negative, or only one of them may be

negative, while the other is positive. The former is often referred to as LHM, DNG, or neg-

ative refractive index material (NRIM) [73–76]. The latter is called single negative material

(SNG).

The concept of LHMs was first theorised by the Russian physicist Veselago in 1968 [73].

In this paper, Veselago speculated on the possible existence of LHMs and anticipated their

unique electromagnetic properties such as the reversal of Snell’s law, the Doppler effect, and

the Vavilov Cherenkov effect. Veselago showed that the electric field, magnetic field, and

42

wave vector of an electromagnetic wave in an LHM form an LH triad. As a result, LHMs

support electromagnetic waves with group velocity and phase velocities that are antiparallel,

known as backward waves. Consequently, while the energy still travels away from the

source, so as to satisfy causality, wavefronts travel backward toward the source in an LHM,

a phenomenon that is associated with negative refractive index of refraction.

Every material is a composite in some sense, even if the individual ingredients consist

of atoms and molecules. For periodic structures, defined by a unit cell whose characteristic

dimension is a, the following criterion must be satisfied in order for the structure to be

viewed as a homogeneous medium:

a ≪ λ =
2πc

ω
(5.1)

Here, λ is the wavelength, c is speed of light and ω is the angular frequency of the light.

Should the above condition be violated, the possibility would exist that the internal struc-

ture of the medium would diffract as well as refract radiation, and thus invalidate the homo-

geneous medium assumption [75].

Although Veselago presented the idea of DNG material in 1968, the research in this area

was largely discontinued due to the absence of naturally occurring materials with negative

µ . New discoveries of LH media was not made until recently, when a composite medium

was demonstrated in which, both the effective ε and µ were purportedly shown to be simul-

taneously less than zero [74], over a finite frequency band.

The composite medium used in [74] made use of an array of metallic posts to create a

frequency region with εe f f < 0, interspersed with an array of split-ring resonators (SRR) for

which µe f f < 0 was supposed in the frequency range of interest. The SRR and wire medium,

both revisited by Pendry [75], have been extensively studied by a number of researchers.

Due to the dispersive nature of the DNG metamaterial characteristics both the perme-

ability and the permittivity can be modelled using the Drude dispersion model [72].

One way to show the extensibility of the proposed method is by incorporating Drude

mode and perform some benchmark examples using the extended method to prove its effi-

cacy.

5.1 Maxwell’s Equations with Drude Model 43

To extend the capability of the method to highly dispersive material like metal and meta-

material the Drude dispersion model [72] can be incorporated with the governing equations

of the method.

5.1 Maxwell’s Equations with Drude Model

The Drude model for permeability and permittivity can be written as follows,

ε(ω) =ε0

(

1−
ω2

pe

ω (ω + jγe)

)

(5.2a)

µ(ω) =µ0

(

1−
ω2

pm

ω (ω + jγm)

)

(5.2b)

where, ωpe and ωpm are the electric and magnetic plasma frequencies and γe and γm are

the electric and magnetic collision frequencies respectively [72].

Replacing ε of Eq. 1.3b with the new dispersive equation from Eq. 5.2a,

D = ε(ω)E = ε0

(

1−
ω2

pe

ω (ω + jγe)

)

E (5.3)

By taking the time derivative of Eq. 5.3 can be divided into two partial differential equa-

tions as follows,

∂D

∂ t
= ε0

∂E

∂ t
+Me (5.4a)

∂Me

∂ t
= ε0ω2

peE− γeMe (5.4b)

where, − jω = ∂
∂ t

and Me =− ε0ω2
pe

jω−γe
E.

∂D
∂ t

of Eq. 2.3b can be replaced with the dispersive version from Eq. 5.4a and by taking

5.2 Governing Equations for Metal 44

J = 0 for source free region,

∂E

∂ t
=

1

ε0
(∇×H−Me) (5.5)

Eqs. 5.5 and 5.4b can be used to calculate time variation of the E field within metals

and DNG materials. Here, Me is an auxiliary field generated to incorporate the effect of the

Drude dispersion into the governing equation. The value of Me at a given time and space

can be calculated using Eq. 5.4b.

Similarly, a set of equations can be derived for the H field calculation by using Eq. 5.2b

as the dispersion model for µ(ω) in Eq. 2.3a.

∂H

∂ t
=− 1

µ0
(∇×E+Mm) (5.6a)

∂Mm

∂ t
= µ0ω2

pmH− γmMm (5.6b)

where, Mm is an auxiliary field.

5.2 Governing Equations for Metal

For metals, the Drude dispersion model only applies for the permittivity. Therefore, Eqs. 2.3a

and 5.5 along with Eq. 5.4b can be used to generate the governing equations for propagation

in metals.

TE Propagation

When the Ez ̸= 0 and the plane of propagation is x− y the Ex = Ey = 0. The governing

equations are,

5.3 Governing Equations for Metamaterial 45

∂Hx

∂ t
=− 1

µ

∂Ez

∂y
(5.7a)

∂Hy

∂ t
=

1

µ

∂Ez

∂x
(5.7b)

∂Ez

∂ t
=

1

ε0

((

∂Hy

∂x
− ∂Hx

∂y

)

−Mez

)

(5.7c)

∂Mez

∂ t
= ε0ω2

peEz − γeMez
(5.7d)

TM Propagation

When the Hz ̸= 0 and the plane of propagation is x− y the Hx = Hy = 0. The governing

equations are,

∂Ex

∂ t
=

1

ε0

(

∂Hz

∂y
−Mex

)

(5.8a)

∂Mex

∂ t
= ε0ω2

peEx − γeMex
(5.8b)

∂Ey

∂ t
=− 1

ε0

(

∂Hz

∂x
+Mey

)

(5.8c)

∂Mey

∂ t
= ε0ω2

peEy − γeMey
(5.8d)

∂Hz

∂ t
=− 1

µ

(

∂Ey

∂x
− ∂Ex

∂y

)

(5.8e)

5.3 Governing Equations for Metamaterial

For metal material Drude dispersion model applies on both Eqs. 2.3a and 2.3b. Therefore, to

derive the governing equations for metamaterials, Eqs. 5.5 and 5.6a should be utilised along

with Eqs. 5.4b and 5.6b. By equating the coefficients of x̂, ŷ and ẑ, two sets of coupled

equations for the TE and TM modes of propagation can be derived.

5.3 Governing Equations for Metamaterial 46

TE Propagation

∂Hx

∂ t
=− 1

µ0

(

∂Ez

∂y
+Mmx

)

(5.9a)

∂Mmx

∂ t
= µ0ω2

pmHx − γmMmx
(5.9b)

∂Hy

∂ t
=

1

µ0

(

∂Ez

∂x
−Mmy

)

(5.9c)

∂Mmy

∂ t
= µ0ω2

pmHy − γmMmy
(5.9d)

∂Ez

∂ t
=

1

ε0

((

∂Hy

∂x
− ∂Hx

∂y

)

−Mez

)

(5.9e)

∂Mez

∂ t
= ε0ω2

peEz − γeMez
(5.9f)

TM Propagation

∂Ex

∂ t
=

1

ε0

(

∂Hz

∂y
−Mex

)

(5.10a)

∂Mex

∂ t
= ε0ω2

peEx − γeMex
(5.10b)

∂Ey

∂ t
=− 1

ε0

(

∂Hz

∂x
+Mey

)

(5.10c)

∂Mey

∂ t
= ε0ω2

peEy − γeMey
(5.10d)

∂Hz

∂ t
=− 1

µ0

((

∂Ey

∂x
− ∂Ex

∂y

)

+Mmz

)

(5.10e)

∂Mmz

∂ t
= µ0ω2

pmHz − γmMmz
(5.10f)

Chapter 6

Results of Simulations in

Two-dimensions

A C++ code was developed to perform the numerical simulations. To make the code multi-

threaded OpenMP technology was used. The implementation was made dimensionless or

scale invariant [24] by taking the speed of light as c = 1. As a result permeability and

permittivity of vacuum µ0 = 1 and ε0 = 1, respectively. This made the implementation

dimensionless, scalable and for many problem reduces the effect of floating point errors.

The outputs of the program were stored in the VTK file format to visualize with Paraview

software.

(a) (b) (c)

Fig. 6.1 (a) Ez field in free space, (b) Hx field in free space, (c) Hy field in free space.

6.1 Free Space Propagation 48

6.1 Free Space Propagation

In this section, different components of the EM wave radiating from a point source in free

space will be observed. This will allow us to see the propagation and field distribution of

different components of EM wave.

Setup: The computational domain chosen for the simulation is square shaped. The length

of a side of the domain is 100. The resolution of the mesh is 10 per unit length (∆ =

0.1) The boundaries of the computational domain is surrounded with PML layers similar

Fig. 4.1. The source has been placed at the centre of the computational domain. The time

step considered was 0.05 (∆t = ∆/2c).

Material: The material chosen for the computational domain was free space (µ = 1 and

ε = 1). The system has been normalised with the speed of light. Therefore, c = 1 and

µ0 = 1 and ε0 = 1.

Source: Point source at the centre of the computational domain emits continuous sine

wave of Ez field component (Transverse Electric). The frequency of the source is

0.15 (normalised as the speed of light is c = 1.).

PML: The PML thickness was 10. The PML profile used can be defined using the follow-

ing equation

σx(r) = σy(r) =

0 r < r0

r2 r >= r0

(6.1)

Here, r is the distance from the centre of the computational domain in x or y direction.

r0 is the distance of the PML interface from in x or y direction.

Result: Figure 6.1(a) shows the Ez field expands uniformly with time in all directions

with successive positive (red) and negative (blue) peaks in the radial direction. This field is

radially symmetric and the amplitude of the field dropping with the distance from the point

6.2 Planar Waveguide 49

(c)(a) (b)

Fig. 6.2 Computational domain shown with PML. Expansion of the Ez field with time (a)
after 1000 time steps, (b) 2000 time steps and (c) 3000 time steps

source. The progressive expansion of the Hx and Hy fields are shown in Figs. 6.1(b) and

(c) respectively; however their extrema are in the y and x directions, respectively with zero

value along the x and y axes, respectively. In the figures, the red and blue colours correspond

to the positive and negative half cycles respectively and the green colour corresponds to zero

amplitude. The field components shown in Figs. 6.1 are taken after 800 time steps. At this

stage the wave is well within the free space area at the middle. In fact Figs. 6.1 exclude the

PML layers from the views.

Figures 6.2 show the expansion of Ez component with time. It also highlights the PML

layers and Figs. 6.2(b) and (c) show the affect of PML when propagate inside the PML

layer.

The wavelength calculated from the expansion of the Ez field matches the given wave-

length of the point source, which allows the validation of the effectiveness of the solver.

6.2 Planar Waveguide

The goal of this example is to simulate a planer waveguide and compare the field pro-

file obtained using the proposed method with the mode profile obtained using 1D FEM

method [15, 28].

6.2 Planar Waveguide 50

Corner

PML

Corner

PML

Corner

PML

Corner

PML

X PML X PML

Y PML

Y PMLx

y

2µm

SiO2 Core

Source

0.2µm

Fig. 6.3 Schematic diagram of the planner waveguide setup

Setup: The planer waveguide considered in this section is a planer waveguide with a

Silicon core. The cladding of the waveguide was air. The thickness of the waveguide was

0.2µm. As this is 2D both sides of the guide were surrounded by air. The width of the

computational domain was 6.2µm and the height was 10µm. The resolution chosen for

the simulation was ∆ = 50 per unit length. Time step size is like the previous example is

∆t = ∆/2c. Figure 6.3 shows the schematic setup for this section.

Source: In all occasions the wavelength of this example is 1.55µm. In the first case, a

point source was placed at the centre the guide was used. In the second case, a line

mode source which injected the field profile obtained using the FEM method into the

source location. In this case a line source with the mode profile was used to emit wave

into the guide.

Observer: An line observer is at the very end of the waveguide in the opposite direction

of the source. The observer was with the PML layer.

PML: The PML was chosen to be 2µm. The profile of the PML is the same as previous

example.

6.2 Planar Waveguide 51

(a) (b)

(c) (d)

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Width of the Computational Domain

N
o
rm

a
liz

e
d
 A

m
p
lit

u
d
e

Proposed FETD

1D FEM

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Width of the Computational Domain

N
o

rm
a
liz

e
d

 A
m

p
lit

u
d

e

Proposed FETD

1D FEM

Field disturbance due to propagation of licked

field from the point source outside the guide

Point Source

Mode Source

Observer

Observer

Fig. 6.4 (a) Ez field profile for a dielectric planar waveguide with a Ez point source (red and
blue parts are the positive and negative half cycles of the propagating wave), (b) Comparison
of Ez field profile from the proposed FETD with the point source at the observer point with
the mode profile, (c) Ez field profile for a dielectric planar waveguide excited with the Ez

mode profile, (d) Comparison of Ez field profile from the proposed FETD and the mode
profile

6.3 Metamaterial Flat Lens & Backward Propagation 52

Result: Figure 6.4(a) shows the Ez field profile after 5000 time steps. It can be observed,

the Ez field is mostly confined inside the Silicon core. Some of the field outside the guide

is radiating away from the guide. As in this case, a Ez point source was used to initiate the

propagation. So besides its evolution to a propagating mode other higher order modes were

also generated and radiated subsequently. As shown in Fig. 6.4(a), an observing line was

placed at the end of the guide before the PML boundary layer. The Ez field mode profile

along the line was observed during the simulation. This was carried out to extract Ez field

profile of the planar waveguide away from the point source. Figure 6.4(b) shows comparison

of the actual mode profile shown by red line and the observed field profile evolved from

the point source. The field profile from the proposed method perfectly matches the mode

profile in the core region, but shows some ripple in the air cladding. This ripple is due to the

radiating field as shown earlier in Fig 6.4(a).

Another simulation was performed by replacing the point source with a line source rep-

resenting the mode profile. The results are presented in Fig. 6.4(c) and Fig. 6.4(d). As can be

seen in Fig. 6.4(c), the structure is supporting the mode without any leakage and Fig. 6.4(d)

shows the exact match of the mode profiles obtained from both the proposed FETD and the

FEM mode solver. This also validates the accuracy of the newly developed approach using

proposed mesh system.

6.3 Metamaterial Flat Lens & Backward Propagation

The goal of this simulation was to show the flexibility and adaptability of the formulation.

Here a dispersive Double Negative (DNG) metamaterial slab was simulated to show back-

ward propagation of the wavefront inside and double focusing of the wave [73]. For this

simulation, the governing equations for Drude model [72] derived in Chapter 5 was in-

corporated into the code and used inside the DNG slab. Backward propagation is also a

property of the metamaterial that cannot be analysed without a time domain method. This

is because it is a time domain effect.

For the simulation, a rectangular computational domain surrounded with PML boundary

6.3 Metamaterial Flat Lens & Backward Propagation 53

DNG Slab

PML

Source

(a) Schematic setup of the DNG flat lens simu-
lation

(b) Double focusing of EM wave with a DNG
flat lens

Fig. 6.5 Schematic setup and double focusing with a DNG flat lens

layer was taken. The total dimension chosen was 30×30 (including PML layers). Resolu-

tion for the simulation was 10 per unit length. The width of the PML layer was 6. A rectan-

gular metamaterial slab was placed at the centre of the domain. The dimension of the DNG

slab was 8×17. The material model for both ε and µ chosen was Drude model described in

Chapter 5. For this simulation following parameter values were chosen. ωpe = ωpm = 5.732

and γe = γm = 0. An Ez line source with a length of 4 and a wavelength of 1.55 was placed

10 unit distance away from the top of the computational domain above the slab parallel to

its x-axis. The time step size chosen for the simulation was 0.05 sec (normalised assuming

c = 1). Figure 6.5a shows the schematic setup of the simulation.

Figure 6.5b shows the result of the simulation after 400 timestep or 20 secs. As shown,

the wave generated from the line source approaches the metamaterial slab perpendicularly.

Inside the slab the field becomes curved and focuses inside the slab. When the field comes

out of the slab, again it focuses outside. The wavefront inside the guide moves in opposite

direction to the direction of movement outside the guide. The wavelength used was 1.55

µm. The index of the metamaterial slab was taken as −1. Because, both the µr and εr are

negative at this frequency and the index could be calculated as n =−√
εrµr.

6.3 Metamaterial Flat Lens & Backward Propagation 54

t = 1.5 sec t = 2 sec

t = 10 sec t = 13.5 sec

(a) (b)

(c) (d)

Fig. 6.6 (a) Line source radiating Ez field before incident on the DNG slab, (b) interaction
of first half cycle with the DNG slab, (c) after a while when the wave start to propagation
inside the DNG slab, (d) when the wave start to come out of the DNG slab on the other side

Figure 6.6 (a) shows the evolution of field before incident on metamaterial slab. As

can be seen, the wave is progressively moving away from the line source. Figure 6.6 (b)

the first interaction of the wave with the DNG material. The wave is decaying inside the

metamaterial slab. Figure 6.6 (c) illustrates the initial forward propagation of wave through

the metamaterial slab. The speed of propagation is slower than the surrounding material.

Figure 6.6 (d) shows the backward wave inside the metamaterial slab and forward wave

coming out the other side of the slab.

Figure 6.7 compares three successive time steps to show the backward propagation. As

can be seen, the positive half cycle indicated inside the slab is moving towards the source

(upward). Whereas, negative half cycle indicated of the source side is moving away from

the source (downward). Positive half cycle indicated at the bottom is also moving away

6.3 Metamaterial Flat Lens & Backward Propagation 55

from the source. Due to the negative permittivity and permeability the wave inside the slab

is moving backward. This simulation takes a longer time to settle. So, the PML is required

for this type of simulations. This result also agrees with results presented in [72, 77, 78].

6
.3

M
etam

aterial
F

lat
L

en
s

&
B

ackw
ard

P
ropagation

5
6

t = 20 sec t = 20.5 sec t = 21 sec

forward propagation

of negative half cycle

backward propagation

of positive half cycle

forward propagation

of positive half cycle

Line Source

Metamaterial

slab

(c)(a) (b)

Fig. 6.7 Forward wave outside the DNG slab and backward wave inside the slab

Part II

Three-dimensional Formulation

Chapter 7

Governing Equations for

Three-dimensions

To analyse the total effect of EM propagation, the proposed method has to be developed

for three-dimensional geometry. The governing equations arise from Maxwell’s equations

(Eqs. 2.3). Both the equations in Eqs. 2.3 are intrinsically 3D in nature, as they are applied

on 3D E and H vector fields. The curl operator (∇×) is also 3D in nature. In Chapter 2 the

assumption ∂
∂ z

= 0, forces the Maxwell’s equations to generate two sets of two-dimensional

governing equations for TE (Eqs. 2.7) and TM (Eqs. 2.8) propagation respectively. If the as-

sumption is lifted and the x, y and z directional components from the Eqs. 2.3 are separated,

the following equations can be obtained.

dHx

dt
=− 1

µ

(

∂

∂y
Ez −

∂

∂ z
Ey

)

(7.1a)

dHy

dt
=

1

µ

(

∂

∂x
Ez −

∂

∂ z
Ex

)

(7.1b)

dHz

dt
=− 1

µ

(

∂

∂x
Ey −

∂

∂y
Ex

)

(7.1c)

dEx

dt
=

1

ε

(

∂

∂y
Hz −

∂

∂ z
Hy

)

(7.1d)

7.1 Space-Time discretisation 59

dEy

dt
=−1

ε

(

∂

∂x
Hz −

∂

∂ z
Hx

)

(7.1e)

dEz

dt
=

1

ε

(

∂

∂x
Hy −

∂

∂y
Hx

)

(7.1f)

Equations 7.1 are coupled equations and these six equations can be solved to calculate

the time evolution of the EM wave. As can be seen in all six equations, the E components

can always be calculated using only the H field components and vice versa.

7.1 Space-Time discretisation

To solve Eqs. 7.1 using the finite element technique, the space-time domain has to be dis-

cretised by using the finite elements. In Eqs. 7.1, all the time calculations are on the left

hand side and the space calculations are on the right hand side. This split in the calculation

enables avoiding the four dimensional form and makes the calculation easier by allowing

the discretisation of the domains separately using two 3D meshes for the spatial dimensions

and two one-dimensional (1D) meshes for the time.

7.1.1 Space discretisation

To discretise a 3D structure, linear tetrahedrons are chosen. This approach is implemented

to reduce both the computational load and the memory requirement of each element to a

minimum. The shape function for a tetrahedron is given by

Ni = aix+biy+ ciz+di (7.2)

where, N is the shape function, i is the index of local node for an element and a, b, c and

d are constants.

The parameters ai, bi, ci and di can be calculated in a similar manner to the parameters

calculated for Eq. 2.10.

As there are 4 nodes in every tetrahedral element, There will be 4 shape functions, N0,

7.1 Space-Time discretisation 60

N1, N2 and N3. Where, coordinate position for the nodes are,

node0 : (x0,y0)

node1 : (x1,y1)

node2 : (x2,y2)

node3 : (x3,y3)

(7.3)

For Ni following system of linear equations can be obtained,

1 x0 y0 z0

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

ai

bi

ci

di

=

ζ0

ζ1

ζ2

ζ3

⇒A
−1

A

ai

bi

ci

di

= A
−1

ζ0

ζ1

ζ2

ζ3

where, A =

1 x0 y0 z0

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

⇒I4

ai

bi

ci

di

= A
−1

ζ0

ζ1

ζ2

ζ3

where, I4 =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⇒

ai

bi

ci

di

= A
−1

ζ0

ζ1

ζ2

ζ3

⇒

ai

bi

ci

di

=

a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d0 d1 d2 d3

ζ0

ζ1

ζ2

ζ3

7.1 Space-Time discretisation 61

where, A
−1 =

a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d0 d1 d2 d3

(7.4a)

The elements of the matrix can be expressed as,

a0 =−x1y2z3 − x1y3z2 − x2y1z3 + x2y3z1 + x3y1z2 − x3y2z1

DD
=

A0

DD

a1 =
x0y2z3 − x0y3z2 − x2y0z3 + x2y3z0 + x3y0z2 − x3y2z0

DD
=

A1

DD

a2 =−x0y1z3 − x0y3z1 − x1y0z3 + x1y3z0 + x3y0z1 − x3y1z0

DD
=

A2

DD

a3 =
x0y1z2 − x0y2z1 − x1y0z2 + x1y2z0 + x2y0z1 − x2y1z0

DD
=

A3

DD

b0 =
y1z2 − y2z1 − y1z3 + y3z1 + y2z3 − y3z2

DD
=

B0

DD

b1 =−y0z2 − y2z0 − y0z3 + y3z0 + y2z3 − y3z2

DD
=

B1

DD

b2 =
y0z1 − y1z0 − y0z3 + y3z0 + y1z3 − y3z1

DD
=

B2

DD

b3 =−y0z1 − y1z0 − y0z2 + y2z0 + y1z2 − y2z1

DD
=

B3

DD

c0 =−x1z2 − x2z1 − x1z3 + x3z1 + x2z3 − x3z2

DD
=

C0

DD

7.1 Space-Time discretisation 62

c1 =
x0z2 − x2z0 − x0z3 + x3z0 + x2z3 − x3z2

DD
=

C1

DD

c2 =−x0z1 − x1z0 − x0z3 + x3z0 + x1z3 − x3z1

DD
=

C2

DD

c3 =
x0z1 − x1z0 − x0z2 + x2z0 + x1z2 − x2z1

DD
=

C3

DD

d0 =
x1y2 − x2y1 − x1y3 + x3y1 + x2y3 − x3y2

DD
=

D0

DD

d1 =−x0y2 − x2y0 − x0y3 + x3y0 + x2y3 − x3y2

DD
=

D1

DD

d2 =
x0y1 − x1y0 − x0y3 + x3y0 + x1y3 − x3y1

DD
=

D2

DD

d3 =−x0y1 − x1y0 − x0y2 + x2y0 + x1y2 − x2y1

DD
=

D3

DD

where,

A0 = − (x1y2z3 − x1y3z2 − x2y1z3 + x2y3z1 + x3y1z2 − x3y2z1)

A1 = x0y2z3 − x0y3z2 − x2y0z3 + x2y3z0 + x3y0z2 − x3y2z0

A2 = − (x0y1z3 − x0y3z1 − x1y0z3 + x1y3z0 + x3y0z1 − x3y1z0)

A3 = x0y1z2 − x0y2z1 − x1y0z2 + x1y2z0 + x2y0z1 − x2y1z0

B0 = y1z2 − y2z1 − y1z3 + y3z1 + y2z3 − y3z2

B1 = − (y0z2 − y2z0 − y0z3 + y3z0 + y2z3 − y3z2)

7.1 Space-Time discretisation 63

B2 = y0z1 − y1z0 − y0z3 + y3z0 + y1z3 − y3z1

B3 = − (y0z1 − y1z0 − y0z2 + y2z0 + y1z2 − y2z1)

C0 = − (x1z2 − x2z1 − x1z3 + x3z1 + x2z3 − x3z2)

C1 = x0z2 − x2z0 − x0z3 + x3z0 + x2z3 − x3z2

C2 = − (x0z1 − x1z0 − x0z3 + x3z0 + x1z3 − x3z1)

C3 = x0z1 − x1z0 − x0z2 + x2z0 + x1z2 − x2z1

D0 = x1y2 − x2y1 − x1y3 + x3y1 + x2y3 − x3y2

D1 = − (x0y2 − x2y0 − x0y3 + x3y0 + x2y3 − x3y2)

D2 = x0y1 − x1y0 − x0y3 + x3y0 + x1y3 − x3y1

D3 = − (x0y1 − x1y0 − x0y2 + x2y0 + x1y2 − x2y1)

DD = x0y1z2 − x0y2z1 − x1y0z2 + x1y2z0 + x2y0z1 − x2y1z0

− x0y1z3 + x0y3z1 + x1y0z3 − x1y3z0 − x3y0z1 + x3y1z0

+ x0y2z3 − x0y3z2 − x2y0z3 + x2y3z0 + x3y0z2 − x3y2z0

− x1y2z3 + x1y3z2 + x2y1z3 − x2y3z1 − x3y1z2 + x3y2z1

= A3 +A2 +A1 +A0

and for shape function Ni,

ζ j =

1 i = j

0 Otherwise

7.1 Space-Time discretisation 64

For shape function N0,

a0

b0

c0

d0

=

a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d0 d1 d2 d3

1

0

0

0

⇒

a0

b0

c0

d0

=

a0

b0

c0

d0

=

A0/DD

B0/DD

C0/DD

D0/DD

(7.5)

So, parameters of N0 are a0 =
A0
DD

, b0 =
B0
DD

, c0 =
C0
DD

and d0 =
D0
DD

.

Similarly, N1 parameters are a1 =
A1
DD

, b1 =
B1
DD

, c1 =
C1
DD

and d1 =
D1
DD

; N2 parameters

are a2 = A2
DD

, b2 = B2
DD

, c2 = C2
DD

and d2 = D2
DD

; N3 parameters are a3 = A3
DD

, b3 = B3
DD

,

c3 =
C3
DD

and d3 =
D3
DD

;

The variation of the field inside each element can be expressed by,

Φ(x,y,z) =
M

∑
i=1

Niφi (7.6)

where Φ can be any field component (any one of Hx, Hy, Hz, Ex, Ey and Ez components)

inside the element, φi is the field component at the ith node of the element (any one of hx,

hy, hz, ex, ey, ez) and M is total number of nodes associated with the element. For a linear

element (i.e. four node tetrahedral elements) M = 4.

7.1 Space-Time discretisation 65

7.1.2 Time discretisation

In a way similar to what was shown in the literature [63], the time axis can be discretised

with 1D finite elements. For a linear element the shape function can be written as shown,

Q j = p jt +q j (7.7)

where p j and q j are the coefficients of the line passing through the nodes of the time

element.

The variation of field between two time nodes can be expressed as,

Ψ(t) =
P

∑
j=1

Q jψ
(j) (7.8)

where Ψ can be any field component (any one of the Hx, Hy, Hz, Ex, Ey, Ez components)

inside the element, ψ(j) is the field component at jth time node, P is the number of the time

nodes in the time element and for linear elements, P = 2.

7.1.3 Discretised Governing Equations

Applying both the discretisations on Eqs. 7.1, the discretised form of the governing equa-

tions may be obtained as follows

h
(n+1)
x =− 1

p2

[

1

µ

(

4

∑
i=1

∂Ni

∂y
e
(n)
zi −

4

∑
i=1

∂Ni

∂ z
e
(n)
yi

)

+ p1h
(n−1)
x

]

(7.9a)

h
(n+1)
y =

1

p2

[

1

µ

(

4

∑
i=1

∂Ni

∂x
e
(n)
zi −

4

∑
i=1

∂Ni

∂ z
e
(n)
xi

)

− p1h
(n−1)
y

]

(7.9b)

h
(n+1)
z =− 1

p2

[

1

µ

(

4

∑
i=1

∂Ni

∂x
e
(n)
yi −

4

∑
i=1

∂Ni

∂y
e
(n)
xi

)

+ p1h
(n−1)
z

]

(7.9c)

e
(n+1)
x =

1

p2

[

1

ε

(

4

∑
i=1

∂Ni

∂y
h
(n)
zi −

4

∑
i=1

∂Ni

∂ z
h
(n)
yi

)

− p1e
(n−1)
x

]

(7.9d)

e
(n+1)
y =− 1

p2

[

1

ε

[(

4

∑
i=1

∂Ni

∂x
h
(n)
zi −

4

∑
i=1

∂Ni

∂ z
h
(n)
xi

)

+ p1e
(n−1)
y

]

(7.9e)

7.1 Space-Time discretisation 66

e
(n+1)
z =

1

p2

[

1

ε

[(

4

∑
i=1

∂Ni

∂x
h
(n)
yi −

4

∑
i=1

∂Ni

∂y
h
(n)
xi

)

− p1e
(n−1)
z

]

(7.9f)

where the field components with the (n+1), (n) and (n−1) superscripts are the future,

current and the past values, respectively. It can be noted that each of the equations, when

applied on one element, produces only one future value of the field. For this reason, this one

value of the field cannot be placed on any of the corner nodes of the element. Therefore,

the future field calculated will be stored at the centroid of each element, which is unique.

It can be observed from Eqs. 7.9 that the formulation is explicit and data parallel for the

calculation of the field components for each time step.

Chapter 8

The Three-dimensional Mesh

For the 3D implementation of the proposed FETD method the space and time can be dealt

with a 3D space mesh system and a 1D time mesh system similar to section 3.2.

A

B

C

D
a

a
a

E

F

G

H

Fig. 8.1 A basic tetrahedral element inside a 3D cubic cell

8.1 The Space Mesh

For 3D space discretisation, polyhedral elements can be used. Here linear elements take the

minimum memory and the minimum computation time and the 4-node tetrahedron is the

linear element in a 3D FE discretisation. Therefore, a tetrahedron can be chosen as the basic

8.1 The Space Mesh 68

element type for space discretisation. A basic cube, given by ABCGFHDE in Fig. 8.1 can

be taken as the initial building block and thus a tetrahedron can be obtained from this cube

by drawing a plane through the points A, B and C. The tetrahedron ABCD thus generated is

shaded (in red) in the figure while it should be note that the unshaded part of the cube will

be left unused in the calculation. It should be noted that this is an “Isosceles Right Angled

Tetrahedron (IRT3D)”.

(a) (b)

(c)

Fig. 8.2 (a) 4 × 4 × 4 main mesh generated by using the basic element of Fig. 8.1, (b)
the 3× 3× 3 auxiliary mesh generated using the centroid of the main mesh elements in
Fig. 8.2(a), (c) both meshes together

A mesh can then be generated using the basic tetrahedron by adding further tetrahedra

in all directions. Figure 8.2(a) shows a 4× 4× 4 mesh generated using the basic element

presented in Fig. 8.1. As can be seen, there are hollow spaces inside the mesh, giving an

overall mesh discretisation, in a way similar to the mesh presented in previous work [63]

presented in Section 3.1.

8.1 The Space Mesh 69

At this stage if all the E components are placed in the corner nodes of all the elements

of the mesh, Eqs. 7.9a, 7.9b and 7.9c will produce one value for all the H field components

at the centroid of each of the elements. To calculate the E field components from these

H field components stored at the centroid, an auxiliary mesh is required which contains

only the centroids of the main mesh as the corner nodes and the corner nodes of the main

mesh as centroids. Figure 8.2(b) shows the auxiliary mesh for the main mesh presented in

Fig. 8.2(a). It can be observed that the mesh in Fig. 8.2(b) is similar in nature and Fig. 8.2(c)

shows both the meshes together.

It should be noted that, unlike the situation in the FDTD method where the components

of both fields are all staggered in space at different points, the meshing system proposed

puts all components of the same field at the same node. This implies, if all components of

the E field are stored in the corner nodes of the main mesh, that all components of the H

field will be stored at the corner nodes of the auxiliary mesh.

This proposed meshing technique will allow a more accurate representation of structures

consisting of non-magnetic materials. The reason for this is that in the EM time domain

and non-magnetic materials, the device structure may be generated with the appropriate

permittivity and the interface between the materials. As all the E field components are at

the same point, only one material interface on the mesh exists to represent the physical

boundary of the device. By contrast, with the FDTD method all the field components are

staggered at different points in space, so for any 3D structure with non-magnetic materials,

there must be 3 different interfaces for each physical boundary. As a result, the FDTD

always makes a representation of the physical boundaries that is inaccurate.

Although the mesh presented in this section is uniform, a more accurate approxima-

tion of the structure can be obtained by moving the nodes on the interfaces. This can be

performed if necessary. To make better approximation this technique does not require in-

creased resolution. For greater efficiency and accuracy, an advance meshing scheme can

be developed. For the FDTD method, moving a node is more difficult as it is a grid based

method. Therefore, a finer grid is needed to increase the accuracy of the representation of

the structure, causing much higher memory requirement and increased CPU time.

8.2 The Time Mesh 70

Another major advantage of the proposed technique is the use of the unique mesh sys-

tem. To discretise a cube with tetrahedral elements, a minimum of 5 tetrahedra are required.

The method discussed considers only one tetrahedron and therefore, compared to a full

mesh finite element approach, this method could be up to 5 times faster. This makes the

method better suited to 3D calculations when compared to any other finite element time do-

main method so far reported. As the number of elements that needs to be calculated is very

large for 3D structures and for time domain analysis all the elements have to be calculated

for each time step, these advantages play a vital role in the adoption of the 3D FETD as a

more appropriate approach.

8.2 The Time Mesh

As for time discretisation there is no difference between Eqs. 2.13, 2.14 and Eqs. 7.9. There-

fore, the mesh system presented in section 3.2 can be used without any alteration for the 3D

implementation of the proposed method.

Chapter 9

Perfectly Matched Layer Boundary for

Three-dimensions

To eliminate unwanted reflection from the boundary of the cuboid computational domain,

the Perfectly Matched Layer (PML) boundary has to be derived and implemented of the pro-

posed 3D FETD implementation [79]. For three dimensional cuboid computational domain,

7 types of PML has to be derived to avoid any non-physical reflection from the boundary.

They are,

1. X PML

2. Y PML

3. Z PML

4. XY PML

5. YZ PML

6. ZX PML

7. XYZ PML

Similar to Chapter 4, the Auxiliary Differential Equation (ADE) approach was used for

the derivation of the governing equations for different PML layers. To derive different set

of governing equations for different PML layers modified form ∇ operators were used. The

modified ∇s are as follows,

∇̃x =x̂
(

1− j
σx

ω

)−1 ∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂ z
(9.1a)

9.1 X PML 72

∇̃y =x̂
∂

∂x
+ ŷ
(

1− j
σy

ω

)−1 ∂

∂y
+ ẑ

∂

∂ z
(9.1b)

∇̃z =x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ
(

1− j
σz

ω

)−1 ∂

∂ z
(9.1c)

∇̃xy =x̂
(

1− j
σx

ω

)−1 ∂

∂x
+ ŷ
(

1− j
σy

ω

)−1 ∂

∂y
+ ẑ

∂

∂ z
(9.1d)

∇̃yz =x̂
∂

∂x
+ ŷ
(

1− j
σy

ω

)−1 ∂

∂y
+ ẑ
(

1− j
σz

ω

)−1 ∂

∂ z
(9.1e)

∇̃zx =x̂
(

1− j
σx

ω

)−1 ∂

∂x
+ ŷ

∂

∂y
+ ẑ
(

1− j
σz

ω

)−1 ∂

∂ z
(9.1f)

∇̃xyz =x̂
(

1− j
σx

ω

)−1 ∂

∂x
+ ŷ
(

1− j
σy

ω

)−1 ∂

∂y
+ ẑ
(

1− j
σz

ω

)−1 ∂

∂ z
(9.1g)

9.1 X PML

The X PML is introduced to absorb any field component propagating along x-axis. To

derive governing equations for the X PML layer, the ordinary ∇s of Eqs. 2.3 were replace

with the modified ∇x from Eqs. 9.1a. The coefficients of x̂, ŷ and ẑ were separated to obtain

the governing equations of the X PML layer for 3D FETD. The governing equations are as

follows,

dHx

dt
=− 1

µ

(

∂

∂y
Ez −

∂

∂ z
Ey

)

(9.2a)

dHy

dt
=

1

µ

(

∂

∂x
Ez −

∂

∂ z
Ex −Ex[z]

)

−σxHy (9.2b)

dHz

dt
=− 1

µ

(

∂

∂x
Ey −

∂

∂y
Ex −Ex[y]

)

−σxHz (9.2c)

dEx

dt
=

1

ε

(

∂

∂y
Hz −

∂

∂ z
Hy

)

(9.2d)

dEy

dt
=−1

ε

(

∂

∂x
Hz −

∂

∂ z
Hx −Hx[z]

)

−σxEy (9.2e)

dEz

dt
=

1

ε

(

∂

∂x
Hy −

∂

∂y
Hx −Hx[y]

)

−σxEz (9.2f)

9.2 Y PML 73

dEx[z]

dt
= σx

∂

∂ z
Ex (9.2g)

dEx[y]

dt
= σx

∂

∂y
Ex (9.2h)

dHx[z]

dt
= σx

∂

∂ z
Hx (9.2i)

dHx[y]

dt
= σx

∂

∂y
Hx (9.2j)

Here, Ex[z], Ex[y], Hx[z] and Hx[y] are auxiliary field for the X PML layer which are

calculated using Eqs. 9.2g, 9.2h, 9.2i and 9.2j, respectively.

9.2 Y PML

Similarly, the governing equations for the Y PML can be derived using ∇y from Eq. 9.1b.

The governing equations for Y PML are,

dHx

dt
=− 1

µ

(

∂

∂y
Ez −

∂

∂ z
Ey −Ey[z]

)

−σyHx (9.3a)

dHy

dt
=

1

µ

(

∂

∂x
Ez −

∂

∂ z
Ex

)

(9.3b)

dHz

dt
=− 1

µ

(

∂

∂x
Ey +Ey[x]−

∂

∂y
Ex

)

−σyHz (9.3c)

dEx

dt
=

1

ε

(

∂

∂y
Hz −

∂

∂ z
Hy −Hy[z]

)

−σyEx (9.3d)

dEy

dt
=−1

ε

(

∂

∂x
Hz −

∂

∂ z
Hx

)

(9.3e)

dEz

dt
=

1

ε

(

∂

∂x
Hy +Hy[x]−

∂

∂y
Hx

)

−σyEz (9.3f)

dEy[z]

dt
= σy

∂

∂ z
Ey (9.3g)

9.3 Z PML 74

dEy[x]

dt
= σy

∂

∂x
Ey (9.3h)

dHy[z]

dt
= σy

∂

∂ z
Hy (9.3i)

dHy[x]

dt
= σy

∂

∂x
Hy (9.3j)

Here, Ey[z], Ey[x], Hy[z] and Hy[x] are the associated auxiliary fields.

9.3 Z PML

Governing equations for Z PML are,

dHx

dt
=− 1

µ

(

∂

∂y
Ez +Ez[y]−

∂

∂ z
Ey

)

−σzHx (9.4a)

dHy

dt
=

1

µ

(

∂

∂x
Ez +Ez[x]−

∂

∂ z
Ex

)

−σzHy (9.4b)

dHz

dt
=− 1

µ

(

∂

∂x
Ey −

∂

∂y
Ex

)

(9.4c)

dEx

dt
=

1

ε

(

∂

∂y
Hz +Hz[y]−

∂

∂ z
Hy

)

−σzEx (9.4d)

dEy

dt
=−1

ε

(

∂

∂x
Hz +Hz[x]−

∂

∂ z
Hx

)

−σzEy (9.4e)

dEz

dt
=

1

ε

(

∂

∂x
Hy −

∂

∂y
Hx

)

(9.4f)

dEz[y]

dt
= σz

∂

∂y
Ez (9.4g)

dEz[x]

dt
= σz

∂

∂x
Ez (9.4h)

dHz[y]

dt
= σz

∂

∂y
Hz (9.4i)

dHz[x]

dt
= σz

∂

∂x
Hz (9.4j)

Here, Ez[y], Ez[x], Hz[y] and Hz[x] are the associated auxiliary fields.

9.4 XY PML 75

9.4 XY PML

Governing equations for XY PML are,

dHx

dt
=− 1

µ

(

∂

∂y
Ez −

∂

∂ z
Ey −Ey[z]

)

−σyHx (9.5a)

dHy

dt
=

1

µ

(

∂

∂x
Ez −

∂

∂ z
Ex −Ex[z]

)

−σxHy (9.5b)

dHz

dt
=− 1

µ

(

∂

∂x
Ey +Ey[x]−

∂

∂y
Ex −Ex[y]

)

−σxHz −σyHz −Φz (9.5c)

dEx

dt
=

1

ε

(

∂

∂y
Hz −

∂

∂ z
Hy −Hy[z]

)

−σyEx (9.5d)

dEy

dt
=−1

ε

(

∂

∂x
Hz −

∂

∂ z
Hx −Hx[z]

)

−σxEy (9.5e)

dEz

dt
=

1

ε

(

∂

∂x
Hy +Hy[x]−

∂

∂y
Hx −Hx[y]

)

−σxEz −σyEz −Ψz (9.5f)

dEy[z]

dt
= σy

∂

∂ z
Ey (9.5g)

dEx[z]

dt
= σx

∂

∂ z
Ex (9.5h)

dEy[x]

dt
= σy

∂

∂x
Ey (9.5i)

dEx[y]

dt
= σx

∂

∂y
Ex (9.5j)

dHy[z]

dt
= σy

∂

∂ z
Hy (9.5k)

dHx[z]

dt
= σx

∂

∂ z
Hx (9.5l)

dHy[x]

dt
= σy

∂

∂x
Hy (9.5m)

dHx[y]

dt
= σx

∂

∂y
Hx (9.5n)

dΦz

dt
= σxσyHz (9.5o)

dΨz

dt
= σxσyEz (9.5p)

Here, Ey[z], Ex[z], Ey[x], Ex[y], Hy[z], Hx[z], Hy[x], Hx[y], Φz and Ψz are the associated

9.5 YZ PML 76

auxiliary fields.

9.5 YZ PML

Governing equations for YZ PML are,

dHx

dt
=− 1

µ

(

∂

∂y
Ez +Ez[y]−

∂

∂ z
Ey −Ey[z]

)

−σyHx −σzHx −Φx (9.6a)

dHy

dt
=

1

µ

(

∂

∂x
Ez +Ez[x]−

∂

∂ z
Ex

)

−σzHy (9.6b)

dHz

dt
=− 1

µ

(

∂

∂x
Ey +Ey[x]−

∂

∂y
Ex

)

−σyHz (9.6c)

dEx

dt
=

1

ε

(

∂

∂y
Hz +Hz[y]−

∂

∂ z
Hy −Hy[z]

)

−σyEx −σzEx −Ψx (9.6d)

dEy

dt
=−1

ε

(

∂

∂x
Hz +Hz[x]−

∂

∂ z
Hx

)

−σzEy (9.6e)

dEz

dt
=

1

ε

(

∂

∂x
Hy +Hy[x]−

∂

∂y
Hx

)

−σyEz (9.6f)

dEz[y]

dt
= σz

∂

∂y
Ez (9.6g)

dEy[z]

dt
= σy

∂

∂ z
Ey (9.6h)

dEz[x]

dt
= σz

∂

∂x
Ez (9.6i)

dEy[x]

dt
= σy

∂

∂x
Ey (9.6j)

dHz[y]

dt
= σz

∂

∂y
Hz (9.6k)

dHy[z]

dt
= σy

∂

∂ z
Hy (9.6l)

dHz[x]

dt
= σz

∂

∂x
Hz (9.6m)

dHy[x]

dt
= σy

∂

∂x
Hy (9.6n)

9.6 ZX PML 77

dΦx

dt
= σyσzHx (9.6o)

dΨx

dt
= σyσzEx (9.6p)

Here, Ez[y], Ey[z], Ez[x], Ey[x], Hz[y], Hy[z], Hz[x], Hy[x], Φx and Ψx are the auxiliary vari-

ables.

9.6 ZX PML

Governing equations for ZX PML are,

dHx

dt
=− 1

µ

(

∂

∂y
Ez +Ez[y]−

∂

∂ z
Ey

)

−σzHx (9.7a)

dHy

dt
=

1

µ

(

∂

∂x
Ez +Ez[x]−

∂

∂ z
Ex −Ex[z]

)

−σzHy −σxHy −Φy (9.7b)

dHz

dt
=− 1

µ

(

∂

∂x
Ey −

∂

∂y
Ex −Ex[y]

)

−σxHz (9.7c)

dEx

dt
=

1

ε

(

∂

∂y
Hz +Hz[y]−

∂

∂ z
Hy

)

−σzEx (9.7d)

dEy

dt
=−1

ε

(

∂

∂x
Hz +Hz[x]−

∂

∂ z
Hx −Hx[z]

)

−σzEy −σxEy −Ψy (9.7e)

dEz

dt
=

1

ε

(

∂

∂x
Hy −

∂

∂y
Hx −Hx[y]

)

−σxEz (9.7f)

dEz[x]

dt
= σz

∂

∂x
Ez (9.7g)

dEx[z]

dt
= σx

∂

∂ z
Ex (9.7h)

dEz[y]

dt
= σz

∂

∂y
Ez (9.7i)

dEx[y]

dt
= σx

∂

∂y
Ex (9.7j)

dHz[y]

dt
= σz

∂

∂y
Hz (9.7k)

dHz[x]

dt
= σz

∂

∂x
Hz (9.7l)

9.7 XYZ PML 78

dHx[z]

dt
= σx

∂

∂ z
Hx (9.7m)

dHx[y]

dt
= σx

∂

∂y
Hx (9.7n)

dΦy

dt
= σzσxHy (9.7o)

dΨy

dt
= σzσxEy (9.7p)

Here, Ez[x], Ex[z], Ez[y], Ex[y], Hz[y], Hz[x], Hx[z], Hx[y], Φy and Ψy are the auxiliary vari-

ables.

9.7 XYZ PML

Governing equations for XYZ PML are,

dHx

dt
=− 1

µ

(

∂

∂y
Ez +Ez[y]−

∂

∂ z
Ey −Ey[z]

)

−σyHx −σzHx −Φx (9.8a)

dHy

dt
=

1

µ

(

∂

∂x
Ez +Ez[x]−

∂

∂ z
Ex −Ex[z]

)

−σzHy −σxHy −Φy (9.8b)

dHz

dt
=− 1

µ

(

∂

∂x
Ey +Ey[x]−

∂

∂y
Ex −Ex[y]

)

−σxHz −σyHz −Φz (9.8c)

dEx

dt
=

1

ε

(

∂

∂y
Hz +Hz[y]−

∂

∂ z
Hy −Hy[z]

)

−σyEx −σzEx −Ψx (9.8d)

dEy

dt
=−1

ε

(

∂

∂x
Hz +Hz[x]−

∂

∂ z
Hx −Hx[z]

)

−σzEy −σxEy −Ψy (9.8e)

dEz

dt
=

1

ε

(

∂

∂x
Hy +Hy[x]−

∂

∂y
Hx −Hx[y]

)

−σxEz −σyEz −Ψz (9.8f)

dEz[y]

dt
= σz

∂

∂y
Ez (9.8g)

9.7 XYZ PML 79

dEy[z]

dt
= σy

∂

∂ z
Ey (9.8h)

dEz[x]

dt
= σz

∂

∂x
Ez (9.8i)

dEx[z]

dt
= σx

∂

∂ z
Ex (9.8j)

dEy[x]

dt
= σy

∂

∂x
Ey (9.8k)

dEx[y]

dt
= σx

∂

∂y
Ex (9.8l)

dHz[y]

dt
= σz

∂

∂y
Hz (9.8m)

dHy[z]

dt
= σy

∂

∂ z
Hy (9.8n)

dHz[x]

dt
= σz

∂

∂x
Hz (9.8o)

dHx[z]

dt
= σx

∂

∂ z
Hx (9.8p)

dHy[x]

dt
= σy

∂

∂x
Hy (9.8q)

dHx[y]

dt
= σx

∂

∂y
Hx (9.8r)

dΦx

dt
= σyσzHx (9.8s)

dΦy

dt
= σzσxHy (9.8t)

dΦz

dt
= σxσyHz (9.8u)

dΨx

dt
= σyσzEx (9.8v)

dΨy

dt
= σzσxEy (9.8w)

dΨz

dt
= σxσyEz (9.8x)

Here, Ez[y], Ey[z], Ez[x], Ex[z], Ey[x], Ex[y], Hz[y], Hy[z], Hz[x], Hx[z], Hy[x], Hx[y], Φx, Φy,

Φz, Ψx, Ψy and Ψz are the auxiliary variables.

Chapter 10

Results of Simulations in

Three-dimensions

A C++ code was developed to perform the numerical simulations. Using the threading

mechanism in C++11 the code was made multi-threaded. The overall implementation was

made dimensionless or scale invariant [24] by taking the speed of light as c = 1. Similar to

the 2D implementation described in Chapter 6, the permeability and permittivity of vacuum

are taken as µ0 = 1 and ε0 = 1, respectively. The output of the program is stored in the VTK

file format to visualize with Paraview software.

10.1 Free Space Propagation

The simplest possible test which can be performed using the code is the free space propa-

gation from a point source. To carry out this test, an Hz continuous sine wave point source

was placed at the centre of a cubic computational domain and the wavelength chosen was

1µm. The dimension of the cubic computational domain wss 10×10×10. The resolution

of the mesh was chosen to be 10 per unit length. The time step size chosen was 0.01 sec

(normalised considering light speed c = 1). The PML was placed around the computational

domain to truncate it and absorb all the reflections from the boundary of the computational

domain. The depth of the PML was 2 unit length. To illustrate the output of the simulation,

10.1 Free Space Propagation 81

(a) (b) Hz

(c) Hx (d) Hy (e) Ex

(f) Ey (g) Ez

Fig. 10.1 (a) Axes of all plots are shown in this figure, (b) Hz, (c) Hx, (d) Hy, (e) Ex, (f) Ey

and (g) Ez field distribution in space after 1000 time steps for a Hz point source at the middle
of the computational domain.

10.1 Free Space Propagation 82

(a) Propagation of H field components along x-axis

(b) Propagation of H field components along y-axis

(c) Propagation of H field components along z-axis

Fig. 10.2 Line plot over all three axes through the centre of the computational domain for
the free space propagation

10.2 Nanowires 83

three slices were taken from the volume after 1000 time steps where the centre of each slice

was placed at the centre of the computational domain. The ‘slicing planes’ considered were

parallel to the xy, yz and zx planes of the computational domain and Fig. 10.1 shows the

field distribution in these planes.

As can be seen, all the fields radiating from the centre of the computational domain

have been absorbed at the outer boundary and there is no sign of reflection visible inside

the domain. Figure 10.1 (b), shows the distribution of the Hz field and although the field

is inserted directly by the source at the centre, the field propagates uniformly in xy-plane.

The field intensity decreases gradually when the propagation direction changes from the

xy-plane towards the z axis and there is no propagation of the Hz field in the z direction.

The propagations of the Hx and the Hy fields are mostly confined in the zx and the yz-

planes, respectively. The propagation of the field It should be noted that these Hx and Hy

fields were evolved from the Hz point source. However, the Ex and the Ey fields do not

propagate in the zx and the yz, planes respectively. For this setup with the Hz source, the Ez

field does not develop and Fig. 10.1 (g) shows no presence of a Ez field in that domain.

It should also be noted that Hx and Hy fields do not evolve on any of the axises. They

expand in 45◦ with the axises of zx and zy planes respectively. Figure 10.2 shows the field

expansion on the three axis in space after 1000 time steps. It confirms that the Hx and Hy

fields do not evolve on any of the axises. But Hz field with a decaying sinusoidal variation

on x and y axis.

10.2 Nanowires

Next, to illustrate the guiding of an EM wave in a waveguide, a silicon nano-guide is sim-

ulated and the cross section of the nanowire can be seen in Fig. 10.3 (a). The Si core of

the waveguide was fabricated on a SiO2 buffer layer where the waveguide considered here

is 240nm in height and 500nm in width. An Hy sine wave point source at a wavelength of

1.55µm wavelength was placed at the centre of the guide cross section at z = 1.1µm. The

resolution for the simulation was 50 nodes/µm where the time-step size was taken as ∆/2c

10.2 Nanowires 84

!"#$%&!"'%&

()*+,-.

()/)01*(2345-15.

(a) (b)

(c) (d)

Fig. 10.3 (a) Cross section of the nanowire, (b) Propagation of Hy field inside the guide, (c)
Mode profile of the dominant Hy field, (d) Mode profile of the non-dominant Hx field.

10.3 Nano Power Splitter 85

and ∆ is the size of a cell in µm with c being the speed of light in µm/s.

As the radiation from the point source propagates along the guide, the mode profile of

the guide then develops. Figure 10.3 (b) shows the propagation of the Hy field injected inside

the waveguide after 5000 time steps. Figures 10.3 (c) and 10.3 (d) show the mode profiles

for the Hy and Hx fields, respectively. These mode profiles were captured at a distance of

3µm from the source on a plane parallel to xy-plane. It is encouraging that this result agrees

well with the mode profile of the same silicon nanowire, obtained by using a full-vectorial

finite element method (VFEM) [80]. The effective index of the guide was also calculated

by using Eq. 10.1 [81], as shown below

neff =
1

k0d
(φ |b −φ |a) (10.1)

where, k0 is the wave vector for free space propagation in a vacuum; φ |a and φ |b are the

phases of the wave at two different observation points a and b at the same time and d is the

distance between these two points.

To calculate the effective index, the field distribution along the central axis of the nanowire

was determined after 5000 time-steps. The phases were recorded at distances of 3µm and

4µm away from the source on the central axis and from these two fields the effective index

of the structure was calculated to be 2.4721.

To benchmark this result obtained for the effective index, the same nanowire design was

simulated using the VFEM [15, 28]. Similar Hx and Hy field patterns were obtained for the

fundamental mode from the VFEM and as a result, the effective index was calculated to

be equal to 2.4751. It is pleasing that the results obtained are very close, considering that

the proposed method uses discrete time and space axes, whereas for the VFEM method is a

steady state solver and the propagation axis considered to be continuous.

10.3 Nano Power Splitter

To evaluate further the code developed in this work, a structure which is non-uniform along

the axial direction was considered and its characteristics simulated. For this purpose, a

10.3 Nano Power Splitter 86

!"#$

%#$
"&'#$

(&)#$

(&)#$

"&'#$

"&'#$

"&*#$

+,-./01.234

5-62//47

8./-./01.2340(

8./-./01.2340*

5.9:/7;/4

(a)

(b)

!" !"#" !$!$#" !% !%#" !& !&#" !' !'#" ()
!)#)"

!)#)(

!)#)!

!)#)*

!)#)+

)

)#)+

)#)*

)#)!

)#)(

)#)"

,
-
.
/0
12
3
45
6
75
8
9
57
04
/3

:.;<45=<4>1?;/5@!5;A0BC

!

!

D21.215E20345+

D21.215E20345*

(c)

Fig. 10.4 (a) Schematic 3D diagram of the nano power splitter (sky blue part is the Si core
and orange coloured part is SiO2 substrate), (b) Hy field profile at the central zx-plane of the
power splitter after 9000 time-steps, (c) Comparison of the Hy field of the output waves in
output guide 1 and 2 at the central z-axis after 9000 time-steps

10.3 Nano Power Splitter 87

compact MMI-based power splitter was considered [82] where the core of the power splitter

was considered to be fabricated from Si and the buffer layer was SiO2. The structure consists

of three parts, as discussed below

1. The input guide

2. The splitter section

3. The two output guides

The height of the Si structure was taken as 200nm in all the sections. The widths of

the input and output guides were taken to be 400nm. The multimoded splitter section was

considered to be 6 µm in width and 30 µm in length. These type of power splitters are called

“multimode interference power splitter”. When the light enters the multimoded splitter

section, it spreads out into the larger core and wave reflected from the boundary of the

splitter section interfere and produce multiple modes. The design methodology for this type

of device was presented in [83]. The input power into the splitter section is coupled only to

the even modes due to the symmetrical design. These modes propagate with different phase

velocities, shaping different power profiles. The propagation constant of these even modes

can be approximated by,

βm =
2π

λ

√

N2 − (2m+1)2λ 2

4W 2
e f f

≃ β0 −
(m2 +m)λπ

W 2
e f f N

(10.2)

Here, N is the effective index of the guiding layer, λ the vacuum wavelength, m(0,1,2)

the even mode number, and We f f is the modified width of the multimode rectangular section,

assuming the mode is perfectly confined inside the section. This modified width is slightly

larger than the real width. It is defined as,

We f f =
λ

2
√

N2 −n2
f

(10.3)

Here, n f is the effective index of the fundamental mode of the multimode section. So, all

the even modes constructively interfere at a distance along the propagation direction defined

10.3 Nano Power Splitter 88

(a) (b)

Fig. 10.5 (a) Hy field profile propagating in the nano input wire, (b) Hy field profile after
splitting the input power into two at the output nanowires

by

d =
NW 2

e f f

λ
(10.4)

where, the input image is reproduced. At distances defined by d/n, where n is an arbi-

trary positive integer number, the modes interfere shaping a pattern with n images equally

spaced.

In the simulation an Hy field point source at a 1.55 µm wavelength was placed at the

center of the input guide where the length of the input guide was chosen to be 5 µm to

form a mode before entering the splitter section. These output waveguides were placed

1.5µm away from the center of the splitter and the resolution taken for the simulation was

20 nodes/µm, with the time-step size being ∆/2.5c. Figure 10.4 (a) shows a 3D schematic

diagram of the structure where Figure 10.4 (b), shows the Hy field distribution after 9000

time-steps (180 secs considering light speed c = 1). It can clearly be seen from Fig. 10.4

(c) that the output waves are both equal in amplitude and phase. Therefore, the structure

divides the input into two coherent and equal amplitude parts at the output waveguides and

the mode profiles of the Hy field both at the input and output of the nanowires are shown in

Figs. 10.5 (a) and 10.5 (b), respectively.

10.4 Nano Directional Coupler 89

10.4 Nano Directional Coupler

For a rigorous benchmark with the full-vectorial FEM mode solver [15, 28] a nano direc-

tional coupler was simulated with variable spacing between the two nanowires. A schematic

diagram is presented in Fig. 10.6. The orange part of the diagram is the buffer layer or sub-

strate. The two blue parts are the two nanowares of the directional coupler. The width

and height of the cross-section of the two nanowires are taken as 0.5 µm and 0.2 µm, re-

spectively. The distance between the two guides are taken as s which was varied between

0.1−0.5 µm. The core material of the nanowires is Si which is placed on top of SiO2 buffer

layer. The top of the guide is surrounded by air. The source of excitation was considered

to be a monochromatic source of wavelength 1.55 µm. Hence, the refractive indices of Si,

SiO2 and air are taken as 3.5, 1.455 and 1.0, respectively.

0.20µm

0.50µm

s

Fig. 10.6 Schematic diagram of the nano directional coupler

10.4 Nano Directional Coupler 90

(a) Even mode of the nano directional coupler

(b) Odd mode of the nano directional coupler

Fig. 10.7 Odd and Even mode associated with the nano directional coupler

10.4.1 Full Vectorial FEM Analysis

To obtain the coupling distance of the nano directional coupler the odd and even supermodes

of the structure was obtained and their corresponding propagation constant were taken. The

coupling distance was calculated using the following formula,

Lc =
π

|βeven −βodd|
(10.5)

Here, Lc is the coupling length of the directional coupler, βeven and βodd are the prop-

agation constants of even and odd supermodes respectively. The odd and even modes for

the guide presented in Fig. 10.6 when the separation of the nanowires is 0.1µm is shown in

Fig. 10.7.

10.4 Nano Directional Coupler 91

10.4.2 Calculation of Coupling Length using the FETD 3D

To obtain the the coupling length of a nano directional coupler, the 3D structure of Fig. 10.6

was created with 3D mesh system. The computational domain was surrounded with PML

layers and a continuous point source of 1.55µm was placed into left nanowire. As the

nanowire structure only support fundamental mode, the propagating light inside the guide

quickly form mode and started to couple from the left nanowire to the right nanowire and at

one point in the propagation direction the entire wave moves from the the left nanowire to

the right nanowire.

Point Source

Coupling Point

Right nanowire

Left nanowire

Fig. 10.8 Modelling the nano directional coupler using the proposed 3D FETD with

nanowire separation of s = 0.1µm after 2450 time-steps

The computational domain considered was 4× 3× 15µm3. The resolution chosen was

20 per unit length. The time step size chosen was 0.025sec (normalised). The depth of the

PML layer was 1µm. A Hz field point sine wave point source with 1.55µm wavelength was

placed at the point (1.65, 1.6, 1.1) at the centre of one waveguide.

Simulations were performed by the increasing the nanowire separation s from 0.1 µm

to 0.5 µm. A slice of the computational domain parallel to the z− x plain at y = 1.6 µm

10.4 Nano Directional Coupler 92

has been shown in Fig. 10.8. The Hx field profile shown in the figure was taken after 2450

time-steps. The structure taken into consideration has a separation of 0.1µm between the

guides. The field profile presented clearly shows the transfer of propagating wave from one

guide to the other.

To obtain the exact coupling length the minimum amplitude point on the propagation

axis has to be found in the left nanowire. To obtain that all the H field profiles of the

computational domain for all time-steps were saved and only the field distribution along the

central line of the left guide was extracted from all the field profile using a Python macro in

Paraview. Using the extracted data the magnitude profile of the H field at each times-step

can be obtained,

Hm =
√

Hx
2 +Hy

2 +Hz
2 (10.6)

C
o

u
p

lin
g

 L
e

n
g

th
 µ

m

1

10

100

Distance Between nanowires s µm

0.1 0.2 0.3 0.4 0.5

Coupling Length form FVFEM Coupling Length from FETD3D

Fig. 10.9 Comparison of coupling length obtained from FVFEM and the proposed 3D FETD
method

10.4 Nano Directional Coupler 93

If the source is stationary at the same point the maximum and minimum magnitude

point on the structure will appear at the same point along the guide. Therefore, the average

magnitude profile over time can show the maximum and minimum magnitude points on the

structure.

The average magnitude profile Hm(avg) at can be calculated using Eq. 10.7

Hm(avg) =
∑

N
i=0 Hm(i)

N
(10.7)

Here, N is the total number of time-steps calculated with the 3D FETD.

The coupling length can be obtained by finding the position of the minima and max-

ima in Hm(avg) and calculating the distance between these two successive maximum and

minimum points. To obtain the precise coupling length a MATLAB code was developed.

Figure 10.9 shows the comparison between calculation of coupling length using the Full-

vectorial FEM method and the proposed 3D FETD method. As can be seen the results

obtained from the 3D FETD are very close to the results obtained from the full-vectorial

FEM method.

Part III

Performance Analysis

Chapter 11

Numerical Dispersion

For the numerical simulation, the computational domain has to be discretised. However,

due to the discretisation, phase error can be introduced into the propagating plane wave.

The reason for the numerical dispersion can be both the shape function and and the position

of the nodes of an element. In most occasions a fixed shape function is determines the dis-

tribution of the field components inside an element. In most situations the shape function

do not represent the distribution function of the propagating wave and thus introduces error.

The position of the nodes of an element in space also can introduce error. This is because

the nodes directly effect the shape and behaviour of the shape function inside the domain.

i.e. A uniform triangle might introduce less error then a very narrow counterpart. The order

of the shape function also play a vital role in numerical dispersion. Because a higher order

function most of the time produces a better approximation then its lower order counterpart.

In this respect a mesh with more uniform and higher order elements might be better than a

mesh with lower order very narrow shaped elements. As a result of the numerical disper-

sion, the speed of propagation may be slower than the actual speed of the wave. The phase

lag with the actual wave increases with the length of its propagation in the computational

domain. The issue with the phase error gets worse when the error varies with the direction

of propagation. The result of this is different speeds of propagation in different directions,

which is equivalent to an artificial anisotropy imposed on the wave by the discretisation

even when the material is actually isotropic. This phenomenon is known as “Numerical

11.1 Numerical Dispersion for 2D Formulation 96

Dispersion” [36] or “Numeric Anisotropy” [84]. This dispersion can be minimised by in-

creasing the resolution of the discretisation [12], but to do this would require more memory

and more computations.

The method proposed here can be very efficient with the discretisation and can represent

the structure accurately with fewer elements. However, even if the structure was accurately

discretised with an efficient meshing algorithm, if the numerical dispersion of the output

mesh remains high, an erroneous solution can be obtained for a longer propagation dis-

tance. To reduce the error, the resolution of the mesh needs to be increased. As a result,

there will be little benefit in terms of memory usage and computational load. Therefore, to

achieve maximum memory and computational efficiency, a mesh with a minimal numerical

dispersion need to be considered.

11.1 Numerical Dispersion for Two-dimensional

Formulation

For convenience of calculation, the matrix form of the equations of Eqs. 2.13 and Eqs. 2.14

will be used. For TE propagation, equations Eqs. 2.13 can be written as,

{

h
(n)
x⟨l⟩

}

{

dQ(n)

dt

}T

=− 1

µ

{

e
[m]
zk

}

{

∂Nk

∂y

}T

(11.1a)

{

h
(n)
y⟨l⟩

}

{

dQ(n)

dt

}T

=
1

µ

{

e
[m]
zk

}

{

∂Nk

∂x

}T

(11.1b)

{

e
(m)
z⟨k⟩

}

{

dQ(m)

dt

}T

=
1

ε

(

{

h
[n]
yl

}

{

∂Nl

∂x

}T

−
{

h
[n]
xl

}

{

∂Nl

∂y

}T
)

(11.1c)

where, superscript T is the transpose operator to convert a row matrix into a column

matrix and vice versa.

Section 3.1 introduced one main and one auxiliary mesh to hold the E and H field com-

ponents. In Section 3.2, the time nodes were divided into sets M and N for the E and H

11.1 Numerical Dispersion for 2D Formulation 97

fields, respectively. In Eqs. 11.1, the field components for the space node of the main and the

auxiliary meshes are denoted with k and l subscripts, respectively. For the time nodes, the

field components for the members of M and N are denoted with (m) and (n) superscripts,

respectively. The angle brackets ⟨ ⟩ are used to denote the centroid of the current element

and the square brackets [] are used to denote the current time.

Following steps were previously been used to derive the numerical dispersion rela-

tion [25]. To calculate the numerical dispersion of the proposed method similar steps were

used.

To study the numerical dispersion relation, a monochromatic source was assumed for

the TE mode of propagation where Ez, Hx and Hy can be expressed as

h
(n)
xl = Hx0e j(ωt(n)−κ̃xxl−κ̃yyl) (11.2a)

h
(n)
yl = Hy0e j(ωt(n)−κ̃xxl−κ̃yyl) (11.2b)

e
(m)
zk = Ez0e j(ωt(m)−κ̃xxk−κ̃yyk) (11.2c)

where, κ̄ = x̂κ̃x+ ŷκ̃y is the numerical wave vector, ω is the frequency of the source and

Hx0, Hy0 and Ez0 are the amplitudes of the Hx, Hy and Ez field components, respectively.

Applying Eqs. 11.2 to Eq. 11.1a and Eq. 11.1b, the expressions for Hx0 and Hy0 (in terms

of Ez0) can be obtained.

Hx0 =−Ez0

µ
·

{

e− j(κ̃x∆xk+κ̃y∆yk)
}{

∂Nk

∂y

}T

{

e jω∆t(n)
}{

dQ(n)

dt

}T
(11.3a)

Hy0 =
Ez0

µ
·

{

e− j(κ̃x∆xk+κ̃y∆yk)
}{

∂Nk

∂x

}T

{

e jω∆t(n)
}{

dQ(n)

dt

}T
(11.3b)

where, ∆xk(i) = xk(i)−x⟨l⟩, ∆yk(i) = yk(i)−y⟨l⟩, ∆t
(n)
τ = t

(n)
τ − t [m], i is the local index of a

node in space element and τ is the local index of a node in time element.

11.1 Numerical Dispersion for 2D Formulation 98

Applying Eqs. 11.2 and Eqs. 11.3 on Eq. 11.1c and dividing both sides of the equation

by Ez0, the numerical dispersion relation can be obtained

{

e jω∆t(n)
}

{

dQ(n)

dt

}T

·
{

e jω∆t(m)
}

{

dQ(m)

dt

}T

=

v2
p ·
(

{

e− j(κ̃x∆xk+κ̃y∆yk)
}

{

∂Nk

∂x

}T

·
{

e− j(κ̃x∆xl+κ̃y∆yl)
}

{

∂Nl

∂x

}T

+
{

e− j(κ̃x∆xk+κ̃y∆yk)
}

{

∂Nk

∂y

}T

·
{

e− j(κ̃x∆xl+κ̃y∆yl)
}

{

∂Nl

∂y

}T
)

(11.4)

where, vp =
1√
µε , ∆xl(i) = xl(i)−x⟨k⟩, ∆yl(i) = yl(i)−y⟨k⟩, ∆t

(m)
τ = t

(m)
τ − t [n], i is the local

index of a node in space element and τ is the local index of a node in time element.

For omnidirectional propagation in an isotropic medium, Eq. 11.4 can be written as

{

e jω∆t(n)
}

{

dQ(n)

dt

}T

·
{

e jω∆t(m)
}

{

dQ(m)

dt

}T

=

v2
p ·
(

{

e− jκ̃(∆xk cosφ+∆yk sinφ)
}

{

∂Nk

∂x

}T

·
{

e− jκ̃(∆xl cosφ+∆yl sinφ)
}

{

∂Nl

∂x

}T

+
{

e− jκ̃(∆xk cosφ+∆yk sinφ)
}

{

∂Nk

∂y

}T

·
{

e− jκ̃(∆xl cosφ+∆yl sinφ)
}

{

∂Nl

∂y

}T
)

(11.5)

where, κ̃x = κ̃ cosφ , κ̃y = κ̃ sinφ and φ is the direction angle of propagation with respect

to the x-axis. Equation 11.5 does not assume any specific shape for the mesh. As a result,

this relationship holds for all types nodal meshes including all types of linear triangular

meshes. The following sections will only compare 2 types of linear triangle meshes. This is

because of the low resource usage for the linear triangle meshes.

Equation 11.5 can be used with Newton’s iterative method to obtain the numerical wave

vector κ̃ . Newton’s method, also called the “Newton-Raphson” method, is a root-finding

algorithm that uses the first few terms of the Taylor series of a function in the vicinity

of a suspected root. In the work of Taflove and Hagness [12] a similar technique was

11.1 Numerical Dispersion for 2D Formulation 99

Ak(a,0) Bk(2a,0)

Ck(a,a)

Al(
4a
3
, a

3
)

Bl(
a
3
, 4a

3
) Cl(

4a
3
, 4a

3
)

Ak(a,0) Bk(2a,0)

Ck(1.5a,0.866a)
Bl(a,1.155a) Cl(2a,1.155a)

Al(1.5a,0.289a)

(a)

(b) (c)

0 20 40 60 80

0.88

0.9

0.92

0.94

0.96

0.98

Propagation Angle !

N
o
rm

a
liz

e
d
 p

h
a
s
e
 v

e
lo

c
it
y
 v

p
/c

10/"

9/"

8/"

7/"

6/"

5/"

4/"

Fig. 11.1 Calculation of phase velocity using (a) IRT mesh and (b) ET mesh, (c) Comparison

of phase velocities in different directions for different resolutions in IRT and ET meshes.

Dashed and solid lines are normalised phase velocity curves for the IRT and the ET meshes,

respectively

used to calculate the wave vector in all directions. The normalized propagation velocity,

vp/c = 2π/κ̃final can be calculated using the final converged value for a specific angle of

propagation.

11.1.1 Calculation of Numerical Dispersion

To calculate the numerical dispersion of the mesh presented in Section 3.1, Newton’s itera-

tive method was implemented using Eq. 11.5 in MATLAB. This code was used to calculate

the phase velocity of the EM wave in different directions using two different meshes: first,

the IRT mesh used in Section 3.1 (shown in Fig. 11.1(a)) and the second, an “Equilateral

Triangle (ET) Mesh” shown in Fig. 11.1(b). The calculation of the numerical dispersion was

performed for different resolutions. For simplicity, the resolution of a mesh is expressed in

the form m/λ where, the resolution is m points per wavelength. This convention will be

followed throughout this thesis.

Figure 11.1(c) shows the phase velocity variation for resolutions from 4/λ to 10/λ ,

with the propagation angle φ in degrees. As it can be seen, the phase velocities of the IRT

11.1 Numerical Dispersion for 2D Formulation 100

mesh (dashed lines) show a high variation with the angle, φ . On the other hand, phase

velocities of the ET mesh (solid lines) are almost constant. A slight ripple can be seen for

more coarse resolutions of 4/λ and 5/λ . Resolutions higher than 5/λ show no variation in

phase velocity for the ET mesh. However, for the IRT mesh, a high phase velocity variation

is visible for all resolutions, as shown in Fig. 11.1(c).

A more precise measurement of the numerical dispersion can be obtained from the stan-

dard deviation of the phase velocities for different propagation angles. Figure 11.3 shows the

relationship between the standard deviation of the normalized phase velocity with the reso-

lution for both type of meshes. The horizontal green dashed line in Fig. 11.3a denotes the

standard deviation of the phase velocity of 30/λ resolution with the IRT mesh (3.25×10−4).

As can be seen, the numerical dispersion of 5/λ resolution for the ET mesh is below the

dashed line and the standard deviation of the phase velocity is lower (2.132× 10−4) than

that of the 30/λ IRT mesh. So, the numerical dispersion is less for the ET mesh with 5/λ

resolution than the IRT mesh with a much finer resolution of 30/λ . This allows a reduc-

tion of resolution by a factor of 6 which can be used for the ET mesh to obtain a similar

numerical dispersion. This factor can be called the “Resolution Reduction Factor (RRF)”.

When the resolution of the ET mesh is increased, the RRF also increases. Figure 11.3b

shows a comparison of the standard deviation of the phase velocity of the 200/λ IRT mesh

with that of the ET mesh. As can be seen, a slightly lower standard deviation can be obtained

using a resolution of only 11/λ in the ET mesh with the RRF value of more than 18. To

make a more precise measurement of the RRF, the following mathematical procedure is

used.

Although the standard deviation of the normalised velocity of the wave for the IRT

and the ET meshes behave in a different manner the mean of the velocity does not show

significant variation. Figure 11.2 shows the comparison. As can be seen there is little

difference between them.

11.1 Numerical Dispersion for 2D Formulation 101

4 5 6 7 8 9 10

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Resolution/λ

M
e
a
n
 o

f
n
o
rm

a
liz

e
d
 p

h
a
s
e
 v

e
lo

c
it
y
 v

p
/c

ET Mesh

IRT Mesh

Fig. 11.2 Comparison of phase velocity of the IRT and ET mesh

11.1.2 Calculating Resolution Reduction Factor

Since the calculations of normalised phase velocities for the ET and the IRT mesh have to

be carried out separately using procedure described in Section 11.1, two different sets of

resolutions RESET and RESIRT are taken for the ET and the IRT meshes respectively.

The standard deviation of the normalised phase velocity can be expressed as function of

resolution r can by any real number. For IRT and ET mesh the standard deviation function

can be STDIRT (r) and STDET (r) respectively.

To calculate the RRF calculated by finding the resolutions rIRT and rET for IRT and ET

meshes with produces almost the same value with STDIRT (r) and STDET (r) respectively.

Now the RRF can be calculated by dividing rIRT by rET ,

RRF(rIRT , rET) =
rIRT

rET
(11.6)

An inverse relation can be defined as follows between the RRF and the rET

11.1 Numerical Dispersion for 2D Formulation 102

! "# "! $# $! %#

"#
!&

"#
!!

"#
!'

"#
!%

"#
!$

(

(

)*(+,-.

/0*(+,-.

3.25× 10
−4

2.132× 10
−4

ET Mesh

IRT Mesh

10
-2

10
-3

10
-4

10
-5

10
-6

5 10 15 20 25 30

S
ta

n
d

a
rd

 D
e
v
ia

ti
o

n
 o

f
N

o
rm

a
li

z
e
d

P
h

a
s
e
 V

e
lo

c
it

y
 v

p
/c

Resolution / !

(a) Standard deviation of normalised phase velocity from 4/λ to 30/λ resolution

!" #" $" %" &"" &!" &#" &$" &%" !""

&"
!&"

&"
!'

&"
!%

&"
!(

&"
!$

&"
!)

&"
!#

&"
!*

&"
!!

+

+

,-+./01

23-+./01

S
ta

n
d

a
rd

 D
e
v
ia

ti
o

n
 o

f
N

o
rm

a
li

z
e
d

P
h

a
s
e
 V

e
lo

c
it

y
 v

p
/c

11/λ

6.953× 10−6

7.28× 10
−6

ET Mesh

IRT Mesh

10
-2

20

Resolution / !

10
-3

10
-4

10
-5

10
-6

10
-7

10
-8

10
-9

10
-10

40 60 80 100 120 140 160 180 200

(b) Standard deviation of normalised phase velocity from 4/λ to 200/λ resolution

Fig. 11.3 Comparison of the numerical dispersion performance of the ET mesh and the IRT

mesh.

11.1 Numerical Dispersion for 2D Formulation 103

rET (RRF) =
rIRT

RRF
(11.7)

This procedure was implemented in MATLAB to determine nature of the relationship

between the resolution for the ET mesh and the RRF. The relationship between the RRF and

the resolution of the ET mesh, rET (RRF) can be seen in Fig. 11.4 where rET (RRF) is nearly

a linear function. Hence, the RRF improves linearly when the resolution is prograsively

increased.

6 8 10 12 14 16 18 20 22 24

10

15

20

25

30

35

40

ET Mesh Resolution (Resolution/λ)

R
e

s
o

lu
ti

o
n

 R
e

d
u

c
ti

o
n

 F
a

c
to

r

Fig. 11.4 Resolution Reduction Factor vs resolution of the ET mesh, RET

11.1.3 Comparing Numerical Dispersion of Meshes by Simulation

The theoretical analysis of numerical dispersion shown in Sections 11.1, 11.1.1 and 11.1.2

can be verified by running simulations with both type of mesh using the C++ code. To com-

pare the numerical dispersion of both the meshes, a very simple setup was made. A point

source was placed at the centre of a square computational domain of free-space (µr = 1 and

11.1 Numerical Dispersion for 2D Formulation 104

εr = 1). The computational domain was also surrounded by appropriate PML boundaries,

as shown in Fig. 11.5a. The point source placed at the centre is an Ez field continuous

sine wave source with frequency 1 Hz (normalised). For all the simulations, c∆t/∆l = 0.1

(where, ∆t is the length of 1 time step and ∆l is the length of both the x and y sides of an

element in the IRT mesh and the length of any side of that of the ET mesh) was maintained.

Initially the simulations were performed at a resolution of 10/λ . Figures 11.5b and

11.5c show the Ez field profile after 2000 time steps. At this resolution, the standard de-

viation of the normalised phase velocity, vp/c, is 3.041× 10−3 for the IRT mesh and only

1.032×10−5 for the ET mesh (see Fig. 11.3a). Although the standard deviation of vp/c for

the ET mesh is much smaller than that of the IRT mesh, however in this case both the values

are small enough to make the Ez field profiles almost identical (to the naked eye) for small

computational domains, as shown in Fig. 11.5b and 11.5c.

However, at lower resolution, the effect of the numerical dispersion can be easily visu-

alised on the field profile, even in a small computational domain. Hence, simulations were

performed at a resolution of 4/λ . At this resolution, the standard deviation of vp/c for the

IRT mesh is 2.598×10−2 and that for the ET mesh is 6.611×10−4. The standard deviation

of vp/c for the ET mesh at this resolution is lower than that of the 10/λ IRT mesh. So the Ez

field profile of the 4/λ ET mesh and the 10/λ IRT mesh should be almost identical. As the

standard deviation of vp/c for the IRT mesh at this resolution is higher, the visible distortion

must be present in the Ez field profile.

Figures 11.5d and 11.5f show the Ez field profiles obtained after 2000 time steps for

the 4/λ IRT and the 4/λ ET meshes respectively. As has been discussed in the previous

paragraph, the impact of the lower resolution is clearly visible in the field profile presented

in Fig. 11.5d. At this resolution with the IRT mesh, the evolution of the Ez field is no longer

circular; rather it became somewhat square in profile. This is due to the speed variation in

different angle of propagation. As shown in Fig. 11.1(c), vp/c at 0◦, 45◦, 90◦ are 0.8707,

0.9443 and 0.8707, respectively. These data indicate that the speeds of propagation at 0◦ and

90◦ will be 7.36% slower than that of the propagation at 45◦. The variation in vp/c is also

a continuous function of the propagation angle. As a result, the Ez field profile presented in

11.1 Numerical Dispersion for 2D Formulation 105

Y PML

Y PML

X
 P

M
L

X
 P

M
L

X
Y
 P

M
L

X
Y
 P

M
L

X
Y
 P

M
L

X
Y
 P

M
L

Point

Source

(a) Computational domain with a

point source at the center and PML

boundaries near the boundary of the

domain

(b) Ez field profile after 2000 time

steps with 10/λ IRT mesh

(c) Ez field profile after 2000 time

steps with 10/λ ET mesh

(d) Ez field profile after 2000 time

steps with 4/λ IRT mesh

(e) Magnified view of the central

region with mesh overlay of the

field shown in Fig. 11.5d

(f) Ez field profile after 2000 time

steps with 4/λ ET mesh

(g) Magnified view of the central

region with mesh overlay of the

field shown in Fig. 11.5f

Fig. 11.5 Simulation results of the proposed 2D FETD with the IRT and the ET meshes

11.1 Numerical Dispersion for 2D Formulation 106

Fig. 11.5d became a rounded square shape instead of circle, as it should have been in the

ideal case.

For the ET mesh at 4/λ resolution, the highest point of vp/c in Fig. 11.1(c) is at the 60◦

angle and the lowest point is at the 30◦ angle with their values 0.9124 and 0.9105, respec-

tively, Showing a difference of only 0.019%. Again, the variation of vp/c is a continuous

function of the propagation angle. As the difference of speed is much smaller compared to

that of the IRT mesh of same resolution, the ET mesh at the 4/λ resolution retains the near

circular shape of propagation of the Ez field profile in Fig. 11.5f.

Results presented in Figs. 11.5d and 11.5f can be further explained by a closer examina-

tion of the evolution of field near the point source. Figures 11.5e and 11.5g show the field

close to the point source with an overlay of the mesh used during the simulation. It can be

seen from Fig. 11.5e that, the points surrounding the point source in the IRT mesh are not

equidistant. As a result, the calculated field at the direction of the farthest point moves faster

than that of the closest points. As the points closest to the source are at 0◦ and 90◦ and the

farthest point is at 45◦, the maximum vp/c is found at 45◦ and minima can be found along

angles of 0◦ and 90◦.

However, for the ET mesh, all six points surrounding the source are equidistant, as

shown in Fig. 11.5g. The closest point to the source is at 30◦ at the middle of an edge of the

element. The six equidistant points are located at 0◦, 60◦, 120◦, 180◦, 240◦ and 300◦ and

along these angles the maximum values of vp/c can be found. The minimum values of vp/c

can be interpolated at a point on the outer edge of surrounding elements at 30◦, 90◦, 150◦,

210◦, 270◦ and 330◦.

The above discussion highlights the accuracy of the method when used with the ET

mesh. Even a low resolution ET mesh of 4/λ produces an acceptable solution, where the

4/λ IRT mesh is numerically unusable, even in the smallest possible computational domain.

In a more practical situation use of only ET meshes may not be able to represent the

whole device to be analyzed. A small number of other irregular types of elements may have

to be introduced into the mesh system to represent arbitrary shape more conveniently. These

non ET elements can introduce some additional numerical dispersion into the simulation.

11.1 Numerical Dispersion for 2D Formulation 107

As long as most of the elements are close to equilateral, the overall numerical dispersion of

the entire computational domain will remain considerably small.

11.1.4 Comparison with the FDTD Method

To compare the proposed method with the IRT and the ET mesh with regular FDTD, first

the numerical dispersion relation for regular FDTD for 2D was considered from [12]. Equa-

tions derived for the IRT and ET meshes were compared with the regular FDTD dispersion

relation. Then the regular FDTD method was implemented in 2D and a comparison was

performed to confirm the derived theory.

To compare the numerical dispersion of the proposed method with that of the more

widely used FDTD method, Eq. 11.5 can be further simplified for both the IRT mesh of

Fig. 11.1(a) and the ET mesh of Fig. 11.1(b).

For the IRT mesh, the nodal data of Fig. 11.1(a) can be applied to Eq. 11.5 and the

equation can be simplified as

1

v2
pt2

(

e jω t
2 − e− jω t

2

)2

=
1

a2

[(

e− jκ̃ a
2 cosφ − e jκ̃ a

2 cosφ
)

·
(

e− jκ̃ a
2 cosφ − e jκ̃ a

2 cosφ
)

+
(

e− jκ̃ a
2 sinφ − e jκ̃ a

2 sinφ
)

·
(

e− jκ̃ a
2 sinφ − e jκ̃ a

2 sinφ
)]

⇒
[

a

vpt
sin
(ωt

2

)

]2

=
[

sin
(

κ̃acosφ
2

)]2

+
[

sin
(

κ̃asinφ
2

)]2

(11.8)

Similarly, the nodal data from Fig. 11.1(b) was applied on Eq. 11.5 and simplified as

[

a

vpt
sin
(ωt

2

)

]2

=
[

sin
(

κ̃acosφ
2

)]2

+[0.577 · sin(κ̃0.866asinφ)]2

+
[

0.577 ·
(

cos
(

κ̃acosφ
2

)

− cos(κ̃0.866asinφ)
)]2

(11.9)

Two parts of Eq. 11.8 are underlined in red and blue and similarly, three parts of Eq. 11.9

are underlined with red, blue and cyan colors respectively. As can be seen, the part under-

11.1 Numerical Dispersion for 2D Formulation 108

lined with red is common to both the equations. The constants of the blue underlined parts

are different in the two equations. The cyan underlined part in Eq. 11.9 is absent in Eq. 11.8.

Due to this extra element in Eq. 11.9, the proposed method with the ET mesh shows a more

stable solution for all possible angles, compared to Eq. 11.8.

Fig. 11.6 Ez field profile after 2000 time steps with the FDTD method (in 2D)

In the work of Hagness and Taflove [12], the numerical dispersion relation for the FDTD

method has been given, which is identical to that the proposed method when used with the

IRT mesh, as shown in Eq. 11.8. Therefore, the numerical dispersion characteristics of the

FDTD method will be similar to that of the proposed method when used with the IRT mesh.

To prove the similarity of the propagation with IRT mesh and the FDTD method, the

FDTD method was implemented and a simulation was performed with a resolution of 4/λ

(keeping all the other parameters same as shown in Section 11.1.3). Figure 11.6 shows the

Ez field profile after 2000 time steps. It can be observed that, both Figs. 11.5d and 11.6

show similar rounded square propagation for the FDTD and the proposed method with the

IRT mesh respectively. With the ET mesh with the same resolution, the proposed method

however, retains the near circular shape in Fig. 11.5f, confirming the superiority of the

method proposed here.

11.2 Numerical Dispersion for 3D Formulation 109

11.2 Numerical Dispersion for Three-dimensional

Formulation

For convenience of derivation of the numerical dispersion repletion for three-dimensional

formulation, Eqs. 7.9 can be rewritten as,

{

h
(m)
x⟨l⟩

}

{

dQ(m)

dt

}T

=− 1

µ

(

{

e
[n]
zk

}

{

∂Nk

∂y

}T

−
{

e
[n]
yk

}

{

∂Nk

∂ z

}T
)

(11.10a)

{

h
(m)
y⟨l⟩

}

{

dQ(m)

dt

}T

=
1

µ

(

{

e
[n]
zk

}

{

∂Nk

∂x

}T

−
{

e
[n]
xk

}

{

∂Nk

∂ z

}T
)

(11.10b)

{

h
(m)
z⟨l⟩

}

{

dQ(m)

dt

}T

=− 1

µ

(

{

e
[n]
yk

}

{

∂Nk

∂x

}T

−
{

e
[n]
xk

}

{

∂Nk

∂y

}T
)

(11.10c)

{

e
(n)
x⟨k⟩

}

{

dQ(n)

dt

}T

=
1

ε

(

{

h
[m]
zl

}

{

∂Nl

∂y

}T

−
{

h
[m]
yl

}

{

∂Nl

∂ z

}T
)

(11.10d)

{

e
(n)
y⟨k⟩

}

{

dQ(n)

dt

}T

=−1

ε

(

{

h
[m]
zl

}

{

∂Nl

∂x

}T

−
{

h
[m]
xl

}

{

∂Nl

∂ z

}T
)

(11.10e)

{

e
(n)
z⟨k⟩

}

{

dQ(n)

dt

}T

=
1

ε

(

{

h
[m]
yl

}

{

∂Nl

∂x

}T

−
{

h
[m]
xl

}

{

∂Nl

∂y

}T
)

(11.10f)

In a similar way to the 2D numerical dispersion calculation in Section 11.1 - Eqs. 11.1,

in Eqs. 11.10, the field components for the space node of the main and the auxiliary meshes

are denoted with k and l subscripts, respectively. The field components for the members of

M and N are denoted with (m) and (n) superscripts, respectively. The angle brackets ⟨ ⟩
are used to denote the centroid of the current element and the square brackets [] are used

to denote the current time.

A monochromatic source was assumed for the TE mode of propagation where E and H

field components can be expressed as

11.2 Numerical Dispersion for 3D Formulation 110

e
(n)
x⟨k⟩ = Ex0e j(ωt(n)−κ̃xxk−κ̃yyk−κ̃zzk) (11.11a)

e
(n)
y⟨k⟩ = Ey0e j(ωt(n)−κ̃xxk−κ̃yyk−κ̃zzk) (11.11b)

e
(n)
z⟨k⟩ = Ez0e j(ωt(n)−κ̃xxk−κ̃yyk−κ̃zzk) (11.11c)

h
(m)
x⟨l⟩ = Hx0e j(ωt(m)−κ̃xxl−κ̃yyl−κ̃zzl) (11.11d)

h
(m)
y⟨l⟩ = Hy0e j(ωt(m)−κ̃xxl−κ̃yyl−κ̃zzl) (11.11e)

h
(m)
z⟨l⟩ = Hz0e j(ωt(m)−κ̃xxl−κ̃yyl−κ̃zzl) (11.11f)

where, κ̃ = x̂κ̃x+ ŷκ̃y+ ẑκ̃z is the numerical wave vector, ω is the frequency of the source

and Ex0, Ey0, Ez0, Hx0, Hy0 and Hz0 are the amplitudes of the Ex, Ey, Ez, Hx, Hy and Hz field

components, respectively.

Applying Eqs. 11.11 on Eq. 11.10a and Eq. 11.10b the expression of Hx0, Hy0, Hx0, Ex0,

Ey0 and Ez0 can be obtained as,

Hx0 =− 1

µ
·

(

Ez0

{

e− jκ̃·∆rk
}

{

∂Nk

∂y

}T

−Ey0

{

e− jκ̃·∆rk
}

{

∂Nk

∂ z

}T
)

{

e jω∆t(m)
}{

dQ(m)

dt

}T
(11.12a)

Hy0 =
1

µ
·

(

Ez0

{

e− jκ̃·∆rk
}

{

∂Nk

∂x

}T

−Ex0

{

e− jκ̃·∆rk
}

{

∂Nk

∂ z

}T
)

{

e jω∆t(m)
}{

dQ(m)

dt

}T
(11.12b)

Hz0 =− 1

µ
·

(

Ey0

{

e− jκ̃·∆rk
}

{

∂Nk

∂x

}T

−Ex0

{

e− jκ̃·∆rk
}

{

∂Nk

∂y

}T
)

{

e jω∆t(m)
}{

dQ(m)

dt

}T
(11.12c)

Ex0 =
1

ε
·

(

Hz0

{

e− jκ̃·∆rl
}

{

∂Nl

∂y

}T

−Hy0

{

e− jκ̃·∆rl
}

{

∂Nl

∂ z

}T
)

{

e jω∆t(n)
}{

dQ(n)

dt

}T
(11.12d)

11.2 Numerical Dispersion for 3D Formulation 111

Ey0 =−1

ε
·

(

Hz0

{

e− jκ̃·∆rl
}

{

∂Nl

∂x

}T

−Hx0

{

e− jκ̃·∆rl
}

{

∂Nl

∂ z

}T
)

{

e jω∆t(n)
}{

dQ(n)

dt

}T
(11.12e)

Ez0 =
1

ε
·

(

Hy0

{

e− jκ̃·∆rl
}

{

∂Nl

∂x

}T

−Hx0

{

e− jκ̃·∆rl
}

{

∂Nl

∂y

}T
)

{

e jω∆t(n)
}{

dQ(n)

dt

}T
(11.12f)

Here, ∆xk(i) = xk(i)− x⟨l⟩, ∆yk(i) = yk(i)− y⟨l⟩, ∆zk(i) = zk(i)− z⟨l⟩, ∆rk = (∆xk,∆yk,∆zk),

∆xl(i) = xl(i)−x⟨k⟩, ∆yl(i) = yl(i)−y⟨k⟩, ∆zl(i) = zl(i)− z⟨k⟩, ∆rl = (∆xl,∆yl,∆zl), and ∆t
(m)
τ =

t
(m)
τ − t [n], ∆t

(n)
τ = t

(n)
τ − t [m] and κ̃ = (κ̃x, κ̃y, κ̃z).

Replacing the value of Hx0 and Hy0 from Eqs. 11.12a and 11.12b in Eq. 11.12f,

Ez0 ·
{

e jω∆t(n)
}

{

dQ(n)

dt

}T

·
{

e jω∆t(m)
}

{

dQ(m)

dt

}T

=

v2
p ·
[

Ez0

(

{

e− jκ̃·∆rk

}

{

∂Nk

∂x

}T

·
{

e− jκ̃·∆rl

}

{

∂Nl

∂x

}T

+

{

e− jκ̃·∆rk

}

{

∂Nk

∂y

}T

·
{

e− jκ̃·∆rl

}

{

∂Nl

∂y

}T
)

−
(

Ex0

{

e− jκ̃·∆rl

}

{

∂Nl

∂x

}T

+

Ey0

{

e− jκ̃·∆rl

}

{

∂Nl

∂y

}T
)

·
{

e− jκ̃·∆rk

}

{

∂Nk

∂ z

}T
]

(11.13)

Here, vp =
1√
µε .

Multiplying
{

e− jκ̃·∆rl
}

{

∂Nl

∂x

}T

with Eq. 11.12d and
{

e− jκ̃·∆rl
}

{

∂Nl

∂y

}T

with Eq. 11.12e

and then adding them the following expression can be obtained.

Ex0

{

e− jκ̃·∆rl

}

{

∂Nl

∂x

}T

+

Ey0

{

e− jκ̃·∆rl

}

{

∂Nl

∂y

}T

=−Ez0

{

e− jκ̃·∆rl

}

{

∂Nl

∂ z

}T

(11.14)

11.2 Numerical Dispersion for 3D Formulation 112

Applying Eq. 11.14 into Eq. 11.13 the numerical dispersion relation for the 3D formu-

lation of the proposed FETD can be obtained,

{

e jω∆t(n)
}

{

dQ(n)

dt

}T

·
{

e jω∆t(m)
}

{

dQ(m)

dt

}T

=

v2
p ·
[

{

e− jκ̃·∆rk

}

{

∂Nk

∂x

}T

·
{

e− jκ̃·∆rl

}

{

∂Nl

∂x

}T

+
{

e− jκ̃·∆rk

}

{

∂Nk

∂y

}T

·
{

e− jκ̃·∆rl

}

{

∂Nl

∂y

}T

+
{

e− jκ̃·∆rk

}

{

∂Nk

∂ z

}T

·
{

e− jκ̃·∆rl

}

{

∂Nl

∂ z

}T
]

(11.15)

Similar to Section 11.1 for omnidirectional propagation in an isotropic medium, Eq. 11.15

can be written as

{

e jω∆t(n)
}

{

dQ(n)

dt

}T

·
{

e jω∆t(m)
}

{

dQ(m)

dt

}T

=

v2
p ·
[

{

e− jκ̃·Θ·∆rk

}

{

∂Nk

∂x

}T

·
{

e− jκ̃·Θ·∆rl

}

{

∂Nl

∂x

}T

+
{

e− jκ̃·Θ·∆rk

}

{

∂Nk

∂y

}T

·
{

e− jκ̃·Θ·∆rl

}

{

∂Nl

∂y

}T

+
{

e− jκ̃·Θ·∆rk

}

{

∂Nk

∂ z

}T

·
{

e− jκ̃·Θ·∆rl

}

{

∂Nl

∂ z

}T
]

(11.16)

Here, κ̃ = (κ̃x, κ̃y, κ̃z) = (κ̃ cosθ sinφ , κ̃ sinθ sinφ , κ̃ cosφ) = κ̃ · (cosθ · sinφ , sinθ ·
sinφ , cosφ) = κ̃ ·Θ and Θ = (cosθ · sinφ , sinθ · sinφ , cosφ).

In a way similar to Section 11.1, Eq. 11.16 can be used with Newton’s iterative method to

obtain the numerical wave vector κ̃ . The normalised propagation velocity, vp/c = 2π/κ̃final

can be calculated using the final converged value for specific angles of propagation θ and

φ .

11.2 Numerical Dispersion for 3D Formulation 113

(a) Two elements of the coupled the IRT3D

mesh

(b) Two elements of the coupled the ET3D

mesh

Fig. 11.7 Two coupled element of the IRT3D and ET3D mesh systems, respectively. The

element from the main mesh is shown in red and the element from the auxiliary mesh is

shown in blue colours, respectively

11.2.1 Calculation of Numerical Dispersion

To measure the numerical dispersion for the 3D formulation of the proposed FETD method,

Newton’s iterative method was implemented in Python using Eq. 11.16. The code can be

used to measure the numerical dispersion for any type of tetrahedron. To investigate the nu-

merical dispersion performance, the isosceles right angled tetrahedral mesh (introduced in

Section 8.1) was used. To compare the performance of the IRT3D mesh with “Equilateral

Tetrahedral” (ET3D) mesh, the code was used to calculated the numerical dispersion per-

formance of the the ET3D mesh. Figure 11.7 shows the coupled mesh arrangement for the

IRT3D and the ET3D meshes, respectively. In both the Figs. 11.7a and 11.7b, the element

of the main mesh is shown in red while the element from the auxiliary mesh is shown in

blue colours, respectively.

Figure 11.8 presents a side by side comparison of normalised phase velocity vp dis-

tribution for the IRT3D and the ET3D meshes for 5/λ , 10/λ and 30/λ , respectively. It

can be noted that the Figs. 11.8a, 11.8c and 11.8e are showing the normalised vp(θ ,φ)

distributions of the IRT3D mesh for the resolutions 5/λ , 10/λ and 30/λ , respectively. Fig-

11.2 Numerical Dispersion for 3D Formulation 114

θ in Degree

0
90

180
270

360

φ
in
 D
eg
re
e

0

90

180

270

360

N
o
rm

a
ili
se
d
 v

p

0.90

0.92

0.94

0.96

0.98

1.00

0.944

0.952

0.960

0.968

0.976

0.984

0.992

1.000

(a) Normalised vp(θ ,φ) distribution for 5/λ
resolution for the IRT3D mesh

θ in Degree

0
90

180
270

360

φ
in
 D
eg
re
e

0

90

180

270

360

N
o
rm

a
ili
se
d
 v

p

0.90

0.92

0.94

0.96

0.98

1.00

0.944

0.952

0.960

0.968

0.976

0.984

0.992

1.000

(b) Normalised vp(θ ,φ) distribution for 5/λ
resolution for the ET3D mesh

θ in Degree

0
90

180
270

360

φ
in
 D
eg
re
e

0

90

180

270

360

N
o
rm

a
ili
se
d
 v

p

0.90

0.92

0.94

0.96

0.98

1.00

0.9800

0.9825

0.9850

0.9875

0.9900

0.9925

0.9950

0.9975

1.0000

(c) Normalised vp(θ ,φ) distribution for 10/λ
resolution for the IRT3D mesh

θ in Degree

0
90

180
270

360

φ
in
 D
eg
re
e

0

90

180

270

360

N
o
rm

a
ili
se
d
 v

p

0.90

0.92

0.94

0.96

0.98

1.00

0.9800

0.9825

0.9850

0.9875

0.9900

0.9925

0.9950

0.9975

1.0000

(d) Normalised vp(θ ,φ) distribution for 10/λ
resolution for the ET3D mesh

θ in Degree

0
90

180
270

360

φ
in
 D
eg
re
e

0

90

180

270

360

N
o
rm

a
ili
se
d
 v

p

0.90

0.92

0.94

0.96

0.98

1.00

0.9900

0.9915

0.9930

0.9945

0.9960

0.9975

0.9990

(e) Normalised vp(θ ,φ) distribution for 30/λ
resolution for the IRT3D mesh

θ in Degree

0
90

180
270

360

φ
in
 D
eg
re
e

0

90

180

270

360

N
o
rm

a
ili
se
d
 v

p

0.90

0.92

0.94

0.96

0.98

1.00

0.9900

0.9915

0.9930

0.9945

0.9960

0.9975

0.9990

(f) Normalised vp(θ ,φ) distribution for 30/λ
resolution for the ET3D mesh

Fig. 11.8 Side by side comparison of normalised vp of the IRT3D and the ET3D meshes for

resolution 5/λ , 10/λ and 30/λ , respectively

11.2 Numerical Dispersion for 3D Formulation 115

ures. 11.8b, 11.8d and 11.8f are showing the normalised vp(θ ,φ) distributions of the ET3D

mesh for the resolutions 5/λ , 10/λ and 30/λ , respectively.

It can also be seen from figure pairs (11.8a, 11.8b), (11.8c, 11.8d) and (11.8e, 11.8f)

that each of the pairs are plotted with the same scale in amplitude. Which also kept the

colour scheme of the surface plot to be the same. All the figure pairs presented in Fig. 11.8

shows that for all resolution the variation of normalised vp in ET3D mesh is lower than the

IRT3D mesh. Hence, the numerical dispersion of the ET3D mesh is lower that the IRT3D

mesh for all resolution. This result is consistent with the finding in Section 11.1.1 for the

2D formulation.

To measure the improvement of numerical dispersion with ET3D mesh over the nor-

malised vp distribution was calculated with the Python code for resolutions from 5/λ to

200/λ for both ET3D and IRT3D meshes. Mean and the standard deviation for each reso-

lution was calculated. Figure 11.9 shows the comparison between of the mean and Standard

deviation of ET3D and IRT3D meshes.

As it can be seen in Fig. 11.9a, the mean of the normalised vp is almost the same (for

ET3D mesh, the mean is slightly higher than the IRT3D mesh). But the standard deviation of

for the two meshes in Fig. 11.9b is quite different. The standard deviation of the normalised

vp for the ET3D mesh is significantly lower than the same for the IRT3D mesh. Which

suggest that although the average propagation speed on both the meshes will be almost the

same, the directional variation of the ET3D mesh is significantly less than the IRT3D mesh.

In other words, the numerical dispersion of the ET3D mesh is significantly lower than the

IRT3D mesh. This result also agrees with the analysis in Section 11.1.2 for 2D formulation.

As the numerical dispersion of the ET3D mesh is significantly lower than the IRT3D

mesh the resolution reduction factor introduced in Section 11.1.2 can be calculated for the

3D formulation in a similar manner.

11.2.2 Calculation of Resolution Reduction Factor

To calculate the resolution reduction factor for IRT3D and ET3D mesh, first the functional

relation between the resolutions of IRT3D and ET3D mesh should be evaluated. To find

11.2 Numerical Dispersion for 3D Formulation 116

145 0.9999681219571.5744559589800000E-05 0.999968121957 0.0000157445595898 0.999971305944 0.00000434518722077

150 0.9999702119521.4712260392100000E-05 0.999970211952 0.0000147122603921 0.999973187149 0.00000406029935529

155 0.9999721029451.3778259571200000E-05 0.999972102945 0.0000137782595712 0.999974889237 0.00000380253853529

160 0.9999738194211.2930461187800000E-05 0.999973819421 0.0000129304611878 0.999976434247 0.00000356856680033

165 0.9999753822131.2158574269600000E-05 0.999975382213 0.0000121585742696 0.999977840927 0.00000335554426432

170 0.9999768091351.1453798980900000E-05 0.999976809135 0.0000114537989809 0.999979125313 0.00000316104251874

175 0.9999781154941.0808574657900000E-05 0.999978115494 0.0000108085746579 0.999980301181 0.00000298297510622

180 0.9999793144981.0216376153500000E-05 0.999979314498 0.0000102163761535 0.99998138042 0.0000028195413236

185 0.9999804175979.67154818869000000E-06 0.999980417597 0.00000967154818869 0.999982373336 0.0000026691805124

190 0.9999814347539.16916981551000000E-06 0.999981434753 0.00000916916981551 0.999983288894 0.00000253053465783

195 0.9999823746678.70494289325000000E-06 0.999982374667 0.00000870494289326 0.999984134927 0.00000240241761419

A
v
e
ra

g
e

 o
f
N

o
m

a
lis

e
d

 P
h

a
s
e
 V

e
lo

c
it
y,

 m
e

a
n

(v
p

)

0.97

0.973

0.975

0.978

0.98

0.983

0.985

0.988

0.99

0.993

0.995

0.998

1

Reolution (Sample/λ)

0 25 50 75 100 125 150 175 200

FETD 3D with  

ET3D Mesh

FETD 3D with  

IRT3D Mesh

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

0 50 100 150 200

(v
p

)

0.97

0.973

0.975

0.978

0.98

0.983

0.985

0.988

0.99

0.993

0.995

0.998

1

0 25 50 75 100 125 150 175 200

(a) Comparison of the mean of normalised vp for ET3D and IRT3D meshes

S
ta

n
d

a
rd

 D
iv

ia
s
io

n
 o

f
N

o
m

a
lis

e
d

 P
h

a
s
e

 V
e

lo
c
it
y,

s
td

(v
p

)

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

Reolution (Sample/λ)

0 50 100 150 200

FETD 3D with  

ET3D Mesh

FETD 3D with  

IRT3D Mesh

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

0 50 100 150 200

(v
p

)

0.97

0.973

0.975

0.978

0.98

0.983

0.985

0.988

0.99

0.993

0.995

0.998

1

0 25 50 75 100 125 150 175 200

(b) Comparison of the standard deviation of normalised vp for ET3D and IRT3D

meshes

Fig. 11.9 Mean and Standard Deviation of the ET3D and the IRT3D meshes from 5/λ to

200/λ resolutions

11.2 Numerical Dispersion for 3D Formulation 117

the relation of the resolutions of the IRT3D mesh and the ET3D mesh, the resolutions of

each mesh time can be described as two sets RESIRT3D and RESET3D respectively, in a way

similar to Section 11.1.2, RRF relation for 3D can be derived.

Figure 11.10 shows the relation between the ET3D and IRT3D mesh for the 3D case.

As can be seen, the relation is a linear function.
0.00041 28.57 14.98 1.907

0.000229 38.08 20.02 1.902

0.000147 47.49 24.96 1.903

0.0001017 57.09 30 1.903

E-05 66.59 35.04 1.900

E-05 76.1 39.98 1.903

E-05 85.6 45.02 1.901

E-05 95.11 49.96 1.904

E-05 104.6 54.99 1.902

E-05 114.2 60.03 1.902

E-05 123.6 64.97 1.902

E-05 133.2 70.01 1.903

E-05 142.6 74.95 1.903

E-05 152.2 79.99 1.903

E-05 161.8 85.03 1.903

E-05 171.2 89.97 1.903

E-05 180.8 95.01 1.903

1.903

R
e

s
o

lu
ti
o

n
 o

f
E

T
3

D
 M

e
s
h

 (
S

a
m

p
le

/λ
)

0

20

40

60

80

100

Resolution of IRT3D Mesh (Sample/λ)

0 50 100 150 200

Fig. 11.10 Resolution Relation of the ET3D and the IRT3D meshes for resolution 5/λ to

500/λ

Therefore, “Resolution Reduction Factor (RRF)” introduced in Section 11.1.2, Eq. 11.6

is a constant for all resolutions when IRT3D and ET3D meshes are considered. From the

line in Fig 11.10 the RRF was calculated to be 1.903 for all the resolutions.

11.2.3 Comparison with the FDTD Method

To compare the numerical dispersion performance of the proposed FETD method with the

FDTD method, the numerical dispersion relation for the 3D FDTD method was considered.

Equation 11.17 [12, 25] shows the numerical dispersion relation for the FDTD method.

[

1

∆t
sin

(

ω∆t

2

)]2

=

[

1

∆x
sin

(

k̃x∆x

2

)]2

+

[

1

∆y
sin

(

k̃y∆y

2

)]2

+

[

1

∆z
sin

(

k̃z∆z

2

)]2

(11.17)

11.2 Numerical Dispersion for 3D Formulation 118

θ in Degree

0
90

180
270

360

φ
in
 D
eg
re
e

0

90

180

270

360

N
o
rm

a
ili
se
d
 v

p

0.90

0.92

0.94

0.96

0.98

1.00

0.9800

0.9825

0.9850

0.9875

0.9900

0.9925

0.9950

0.9975

1.0000

(a) Normalised vp(θ ,φ) distribution for the

3D FDTD Method

θ in Degree

0
90

180
270

360

φ
in
 D
eg
re
e

0

90

180

270

360

N
o
rm

a
ili
se
d
 v

p

0.90

0.92

0.94

0.96

0.98

1.00

0.9800

0.9825

0.9850

0.9875

0.9900

0.9925

0.9950

0.9975

1.0000

(b) Normalised vp(θ ,φ) distribution for the

proposed 3D FETD method with IRT3D mesh

θ in Degree

0
90

180
270

360

φ
in
 D
eg
re
e

0

90

180

270

360

N
o
rm

a
ili
se
d
 v

p

0.90

0.92

0.94

0.96

0.98

1.00

0.9800

0.9825

0.9850

0.9875

0.9900

0.9925

0.9950

0.9975

1.0000

(c) Normalised vp(θ ,φ) distribution for the

proposed 3D FETD method with ET3D mesh

Fig. 11.11 Side by side comparison of normalised vp of the 3D FDTD and the proposed 3D

FETD scheme with the IRT3D and the ET3D meshes at 10/λ resolution

Here, k̃ = x̂k̃x + ŷk̃y + ẑk̃z is the numerical wave vector, ∆x, ∆y and ∆z are the divisions

in x, y and z directions, respectively.

Similar to Sections 11.1, 11.2 and [12, 25], a iterative code was generated in Python to

calculate the normalised phase velocity for different resolution. The result obtained from

the Python code for the 3D FDTD method was compared with the result obtained in Sec-

tion 11.2.1 for the IRT3D mesh and the ET3D mesh.

Figure 11.11c presents the normalised phase velocity distribution at 10/λ for the 3D

FDTD method, the proposed FETD3D method with IRT3D mesh and the propose FETD3D

method with ET3D mesh, respectively.

It should be noted that the normalised vp distribution for the 3D FDTD (Fig. 11.11a)

11.2 Numerical Dispersion for 3D Formulation 119

and proposed method when used with the IRT3D mesh (Fig. 11.11b) are exactly the same.

But the normalised vp distribution for proposed 3D FETD with ET3D mesh is more stable

(Fig. 11.11c) than the previous two. Therefore, the numerical dispersion of the 3D FDTD

method and the proposed FETD method with IRT3D mesh is exactly the same and the

numerical dispersion of the proposed method with ET3D mesh is better than the previous

two.

To investigate it farther, the Python program for normalised vp calculation was used to

generate mean and standard divination of the normalised vp for resolutions from 5/λ to

200/λ to compare the results with the results presented in Fig. 11.9. The results of the

comparison is presented in Fig. 11.12.

In Fig. 11.12, the FDTD results for mean and standard deviation of the normalised vp are

plotted with “+” (Red Coloured Plus) symbols. It can be noted in Figs. 11.12a and 11.12b,

the mean and standard deviation of the 3D FDTD method and the proposed 3D FETD

with IRT3D mesh coincides with each other, although the mean of normalised vp of the

proposed method with ET3D mesh shows a slight improvement, but the standard deviation

of normalised vp of the proposed method with ET3D mesh shows significant improvement

compared to the 3D FDTD method.

As the standard deviation of the 3D FDTD and the proposed method with IRT3D mesh

are same for all resolution, the RRF for the proposed method with ET3D mesh when com-

pared with the 3D FDTD with cubic grid is 1.903 as it was found in Section 11.2.2.

11.2 Numerical Dispersion for 3D Formulation 120

A
v
e

ra
g
e
 o

f
N

o
m

a
lis

e
d
 P

h
a
s
e

 V
e
lo

c
it
y,

 m
e
a
n
(v

p
)

0.97

0.973

0.975

0.978

0.98

0.983

0.985

0.988

0.99

0.993

0.995

0.998

1

Reolution (Sample/λ)

0 25 50 75 100 125 150 175 200

3D FDTD FETD 3D with  

IRT3D Mesh

FETD 3D with  

ET3D Mesh

(a) Comparison of the mean of normalised vp for 3D FDTD method and proposed

FETD3D method with IRT3D and ET3D meshes

S
ta

n
d

a
rd

 D
iv

ia
s
io

n
 o

f
N

o
m

a
lis

e
d

 P
h

a
s
e

 V
e

lo
c
it
y,

s
td

(v
p

)

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

Reolution (Sample/λ)

0 50 100 150 200

3D FDTD FETD 3D with  

IRT3D Mesh

FETD 3D with  

ET3D Mesh

(v
p

)

0.973

0.975

0.978

0.983

0.985

0.988

0.993

0.995

0.998

(b) Comparison of the standard deviation of normalised vp for 3D FDTD method

and proposed FETD3D method with IRT3D and ET3D meshes

Fig. 11.12 Mean and Standard Deviation of the 3D FDTD method and the proposed 3D

FETD with the IRT3D and the ET3D meshes for 5/λ to 200/λ resolutions

Chapter 12

Theoretical CPU Performance

For any numerical method speed of execution is a crucial matter. The speed of design,

development and analysis using the method depends on the speed on execution. For a time

domain analysis tool like the FDTD [14], the proposed FETD method, the time domain

methods discussed in [17, 27, 33–40] and all other available theoretically and commercially,

CPU performance is one of the most important factor that directly relates to its success.

The reason the FDTD method introduced in 1966, for which it is still the most dominant

method for time domain electromagnetics, is the FDTD method is designed to be fastest in

execution time for each Yee’s Cell. No other method introduced after FDTD could outper-

form it. The time domain analysis is a time consuming task as for each time-step, the entire

computational domain has to be evaluated using the governing equations of the method in

use. Usually the time-step size is very small compared to the duration of evaluation. There-

fore, a method slower in calculating each time-step will slow down the entire simulation

significantly even if the speed difference is very small; i.e., if a method takes 1 min to cal-

culate 1 time-step and another method takes 1.1 mins and if both method needs to calculate

1000 time-steps, the first method will compete the entire simulation in 1000 mins and the

second method will require 1100 mins. The difference is 100 mins, which is a significant

issue.

As a result, a theoretical speed comparison with the FDTD method is required to demon-

strate the usefulness of the software as a design tool and also check the commercial prospect

122

of the proposed method.

In this chapter the CPU performance comparison is carried out considering Equilateral

mesh (both 2D and 3D) for the proposed method, square (for 2D) and cubic (for 3D) grid

for the FDTD method, resolution reduction factor (RRF) (Sections 11.1.2 and 11.2.2),

CPU optimised formulation and Intel Haswell CPU general purpose instructions and Single

Instruction Multiple Data (SIMD) instructions sets [85] for both two-dimensions and three-

dimensions.

The Equilateral meshes were considered because, it improves the numerical perfor-

mance of the mesh much better than the FDTD methods in both two and three-dimensions.

Therefore, the equivalent resolution for the proposed method with equilateral meshes are

much lower than that of the FDTD. Which means similar output can be obtained from a

much lower resolution. The equivalent resolution for the proposed method can be found by

dividing the FDTD resolution with the RRF of that resolution (discussed in Sections 11.1.2,

11.1.4, 11.2.2 and 11.2.3).

To compare the proposed FETD method with the FDTD in Sections 11.1.4 and 11.2.3,

the square and cubic grids, respectively were considered to compare the numerical disper-

sion performance. To maintain the continuity of the analysis and to consider the numerical

advantage shown in Chapter 11, the square (for 2D) and cubic (for 3D) are also used in this

chapter for the FDTD method. Besides, the continuity of the analysis the square and cubic

grid allows maximum CPU optimisation of the governing equations.

The CPU optimised formulation for both the FDTD and the proposed FETD method

were used to have a fair comparison of performance. For CPU optimisation all repeated

calculations were performed prior to the execution of the governing equations and stored in

memory. Thereby reducing the number of operation required to minimum for both methods.

The Intel instruction sets were used because the Intel CPU’s are the most widely used

CPUs in desktops, workstations and even in supercomputers (427 out of top 500 supercom-

puters used Intel CPUs) [86] these days.

12.1 CPU Performance for Two-dimensionals Formulation 123

12.1 CPU Performance for Two-dimensionals Formulation

To compare the CPU performance of the FDTD and the proposed FETD method in two-

dimensions the governing equations for the 2D formulation has to be optimised for the CPU

for both the 2D FDTD method and proposed 2D FETD method. In this section only the

governing equations in Eqs. 2.7 for TE wave will be taken for derivation and calculation of

the CPU optimised formulation because, the TE and TM (Eqs. 2.7 and 2.8, respectively)

governing equations are disjoint and similar steps are required to find the CPU optimised

formulation of the TM governing equations.

CPU optimised version of a governing equation will always try to reduce CPU time by

avoiding costly CPU operations i.e. division, multiplication etc. as much as possible. Costly

operations will only be considered when there is no other way to reduce the number of CPU

cycles (Latency).

This chapter also utilised the Single Instruction Multiple Data (SIMD) instructions pro-

vided in the Intel 64-bit x86 Haswell microprocessors. SMID instructions are special in-

structions developed by CPU Intel which performs the same operation on multiple sets of

data with the same latency of a general purpose instruction (applies it on only one set of

data). For example, general purpose ADD operation could add a pair of integers in 3 CPU

cycles. On the other hand the SIMD ADD operation could perform the same operation on

8 pairs of integers with the same 3 CPU cycles on a Haswell chip. This is advantageous for

a computationally heavy method like the proposed method as the SIMD instructions allow

further parallelisation of the method in sub equation level. SIMD instructions are widely

used for performance enhancement of computationally heavy algorithms [87–93].

12.1.1 CPU Optimised Formulation of the FDTD in Two-dimensions

The discretised form TE propagation governing equations for the FDTD method in 2D has

been presented in [12, 25] as,

12.1 CPU Performance for Two-dimensionals Formulation 124

Hx|n+1/2

i, j+1/2
=− ∆t

µi, j+1/2

[

Ez|ni, j+1 −Ez|ni, j
∆y

]

+Hx|n−1/2

i, j+1/2
(12.1a)

Hy|n+1/2

i+1/2, j =
∆t

µi+1/2, j

[

Ez|ni+1, j −Ez|ni, j
∆x

]

+Hy|n−1/2

i+1/2, j (12.1b)

Ez|n+1
i, j =

∆t

εi, j

Hy|n+1/2

i+1/2, j −Hy|n+1/2

i−1/2, j

∆x
−

Hx|n+1/2

i, j+1/2
−Hx|n+1/2

i, j−1/2

∆y

 (12.1c)

+Ez|n−1
i, j

As the square grid is considered for the 2D formulation, the CPU optimal 2D formulation

of the TE governing equations can be written as,

Hx|n+1/2

i, j+1/2
=Ai, j+1/2

[

Ez|ni, j −Ez|ni, j+1

]

+Hx|n−1/2

i, j+1/2
(12.2a)

Hy|n+1/2

i+1/2, j =Ai+1/2, j

[

Ez|ni+1, j −Ez|ni, j
]

+Hy|n−1/2

i+1/2, j (12.2b)

Ez|n+1
i, j =Bi, j

[(

Hy|n+1/2

i+1/2, j −Hy|n+1/2

i−1/2, j

)

−
(

Hx|n+1/2

i, j+1/2
−Hx|n+1/2

i, j−1/2

)]

(12.2c)

+Ez|n−1
i, j

Here, ∆x = ∆y = ∆, Ai, j =
∆t

∆·µi, j
and Bi, j =

∆t
∆·εi, j

.

Equations 12.2 do not perform any time consuming division operations. It should be

noted that Eqs. 12.2 avoid performing any repetitive calculation by storing Ai, j and Bi, j into

the memory. All the equations are composed of addition, subtraction and multiplication

operations which are less time consuming. Therefore, the formulation is CPU optimised.

Similar optimisation can be performed on Eqs. 2.8 to obtain the CPU optimised form.

12.1 CPU Performance for Two-dimensionals Formulation 125

Table 12.1 Compute Operations and Latencies for 2D FDTD Method with General Purpose

Instructions

Equ.
Add Sub Mult Total

Ins. Late. Ins. Late. Ins. Late. Ins. Late.

12.2a 1 3 1 3 1 5 3 11

12.2b 1 3 1 3 1 5 3 11

12.2c 1 3 3 3 1 5 5 17

Total for E → H: 6 22

Total for H → E: 5 17

Total for One Time-step: 11 39

Latency for General Purpose Instructions

Table 12.1 shows the number of instructions required for each equations in Eqs. 12.2 when

only the general purpose instructions are used for calculation. The table also list the latency

(no. of clock cycles) required for each and operation and show the theoretical minimum

latency required by each equation for execution. The total latency shows the time required

for calculating one time-step on a single Yee’s cell.

It can be noticed that the FDTD method in 2D requires only 3 general purpose instruc-

tions with a total latency of 11 cycles for both Eq. 12.2a and 12.2b. Total Eq. 12.2c requires

5 instructions and the minimum latency is 17 cycles.

Latency for General Purpose and SIMD Instructions

Table 12.2 presents the performance of the 2D FDTD method when SIMD instructions are

used alongside the general purpose instruction set. In can be noticed that only two sub-

traction can be replaced with one SIMD subtraction in Eq. 12.2c. There is no change in

Eqs. 12.2a and 12.2b as they only use one instance of addition, subtraction and multiplica-

tion. Therefore, execution latency for Eq. 12.2c is reduced by only 3 cycles.

12.1 CPU Performance for Two-dimensionals Formulation 126

Table 12.2 Compute Operations and Latencies for 2D FDTD Method with General Purpose

and SIMD Instructions

Equ.
Add Sub SIMD Sub Mult Total

Ins. Late. Ins. Late. Ins. Late. Ins. Late. Ins. Late.

12.2a 1 3 1 3 0 3 1 5 3 11

12.2b 1 3 1 3 0 3 1 5 3 11

12.2c 1 3 1 3 1 3 1 5 4 14

Total for E → H: 6 22

Total for H → E: 4 14

Total for One Time-step: 10 36

12.1.2 CPU Optimised Formulation for Proposed FETD in Two-dimensions

The discretised form TE propagation governing equations for the proposed FETD method

in 2D has been presented in Eqs. 2.13. Although only the equilateral mesh is considered,

no optimisation is performed for the specific shape of the elements. Because, the reason of

using FE based method is to have the flexibility to modify the shape of the element to have

accurate representation of the structure. Therefore, the optimisation will only consider the

minimisation of the CPU instructions by pre-calculating and storing repeated operations.

Similar to Section 12.1.1. Although the formulation in Eqs. 2.13 allows unequal division

of time-step, for optimisation calculation equal division of time-step is considered. The

reasons are, firstly, the FDTD method always carried out equal division for E field and H

field calculation. To have a fair comparison for the space discretisation, it is assumed that

the time discretisation should remain the same. Therefore to consider the output presented

in Section 11.1.1 and 11.1.2 for CPU performance calculation equal division is required.

The CPU optimal formulation for proposed FETD method in 2D can be represented as,

12.1 CPU Performance for Two-dimensionals Formulation 127

h
(n+1)
x = A

(

3

∑
i=1

∂Ni

∂y
e
(n)
zi

)

+h
(n−1)
x (12.3a)

h
(n+1)
y = B

(

3

∑
i=1

∂Ni

∂x
e
(n)
zi

)

+h
(n−1)
y (12.3b)

e
(n+1)
z = C

(

3

∑
i=1

∂Ni

∂x
h
(n)
yi −

3

∑
i=1

∂Ni

∂y
h
(n)
xi

)

+ e
(n−1)
z (12.3c)

Here, A = −1/
(

µ dQ2
dt

)

, B = 1/
(

µ dQ2
dt

)

and C = 1/
(

ε dQ2
dt

)

can be stored into the

memory.

Latency for General Purpose Instructions

Table 12.3 presents the the instructions and latency for Eqs. 12.3. It can be noted that for

Eqs. 12.3a and 12.3b require a total of 29 cycles latency each. This is much higher than

that for the 2D FDTD, where equivalent Eqs. 12.2a and 12.2b require only 11 cycles each

as shown in Table 12.1. For Eq. 12.3c the comparison is even wider as it requires 53 cycles

compared to Eq. 12.2c, which requires only 17 in Table 12.1. Theoretically, the proposed 2D

FETD is 2.846 times slower than 2D FDTD method when only general purpose instructions

are used and the number of cells/elements are kept equal in both methods.

Table 12.3 Compute Operations and Latencies for 2D FETD Method with General Purpose

Instructions

Equ.
Add Sub Mult Total

Ins. Late. Ins. Late. Ins. Late. Ins. Late.

12.3a 3 3 0 3 4 5 7 29

12.3b 3 3 0 3 4 5 7 29

12.3c 5 3 1 3 7 5 13 53

Total for E → H: 14 58

Total for H → E: 13 53

Total for One Time-step: 27 111

12.1 CPU Performance for Two-dimensionals Formulation 128

Latency for General Purpose and SIMD Instructions

Table 12.4 shows the theoretical performance of the proposed 2D FETD when both general

purpose and SIMD instructions are used for implementation. It can be noted that, Eqs. 12.3

scale better than Eqs. 12.2 when SIMD instructions are used to optimise the performance

of both the methods. Eqs. 12.3a and 12.3b each requires only 19 cycles compares to 29 in

Table 12.3. Eq. 12.3c scales even better reducing the latency from 53 in Table 12.3 to 27 in

Table 12.4.

Therefore, combining general purpose instructions with SIMD instructions is desired for

the proposed method. On the contrary the SIMD implementation of the 2D FDTD method

sees very little improvement.

Although with SIMD instruction added the proposed 2D FETD method become sig-

nificantly faster compared to the general purpose implementation, Theoretically it is still

slower than both the SIMD and non-SIMD 2D FDTD implementations by a factor of 1.806

and 1.667, respectively when the number of elements considered to be equal for both the

methods.

1
2
.1

C
P

U
P

erfo
rm

an
ce

fo
r

T
w

o
-d

im
en

sio
n
als

F
o
rm

u
latio

n
1
2
9

Table 12.4 Compute Operations and Latencies for 2D FETD Method with General Purpose and SIMD Instructions

Equ.
Add SIMD Add Sub Mult SIMD Mult Total

Ins. Late. Ins. Late. Ins. Late. Ins. Late. Ins. Late. Ins. Late.

12.3a 3 3 0 3 0 3 1 5 1 5 5 19

12.3b 3 3 0 3 0 3 1 5 1 5 5 19

12.3c 1 3 2 3 1 3 1 5 2 5 7 27

Total for E → H: 10 38

Total for H → E: 7 27

Total for One Time-step: 17 65

12.1 CPU Performance for Two-dimensionals Formulation 130

12.1.3 Comparing Proposed FETD and FDTD considering RRF in Two-

dimensions

As we have demonstrated in Section 11.1.4 that, when the numerical dispersion is consid-

ered the resolution in for the 2D FDTD method is not equal to the resolution of the 2D

FETD method, when ET mesh is used with the proposed 2D FETD. With ET mesh and

proposed FETD the similar accuracy in numerical dispersion can be achieved with lower

density mesh. Therefore, to have a fair comparison the resolution reduction factor for two-

dimensions presented in Section 11.1.2 should be considered.

To compare the CPU latency performance of the proposed method and the FDTD2D

method and to consider the RRF, a programme was developed in Python which calculates

the CPU latency of one time-step for the proposed FETD2D method without the SIMD im-

provements using results from Table 12.3 and calculate CPU latency with SIMD improve-

ments using results from Table 12.4. It also calculated the CPU latency without and with

SIMD improvements for the FDTD2D method using the results from Tables 12.1 and 12.2,

respectively. The program implements the RRF of Eq. 11.6 as a subroutine and uses the

input FETD2D resolution to calculate the equivalent FDTD2D resolution by the following

equation,

rFDT D = RRF(rET) · rET (12.4)

The output of the subroutine for Eq. 12.4 is used by the program to calculate the CPU

latencies (without and with SIMD improvement) for the FDTD2D method.

The performance can be compared by calculating the ratio of the FDTD2D CPU latency

over FETD2D CPU latency.

The program was used to calculate the CPU latency of one time-step for different size

of computational domain at different FETD2D resolutions. Figure 12.1 presents the result

obtained from the calculations. To make calculation simple, only square computational

domains was considered and only multiples of wavelength was considered as dimensions of

12.1 CPU Performance for Two-dimensionals Formulation 131

(F
D

T
D

2
D

 l
a

te
n

c
y
)/

(F
E

T
D

2
D

 l
a

te
n

c
y
) 

w
it
h

o
u

t
S

IM
D

0

200

400

600

800

Resolution (Sample/λ)

5/λ 7/λ 9/λ 11/λ 13/λ 15/λ 17/λ 19/λ 21/λ 23/λ

(1λ,1λ) (3λ,3λ) (5λ,5λ) (7λ,7λ) (9λ,9λ)

0

200

400

600

800

λ,1λ) λ,2λ) λ,3λ) λ,4λ) λ,5λ) λ,6λ) λ,7λ) λ,8λ) (9λ,9λ)

(a) FDTD2D latency over FETD2D latency vs resolution for different size

of computational domain

(F
D

T
D

2
D

 l
a

te
n

c
y
)/

(F
E

T
D

2
D

 l
a

te
n

c
y
) 

w
it
h

o
u

t
S

IM
D

0

200

400

600

800

Dimension of Computational Domain

(1λ,1λ) (2λ,2λ) (3λ,3λ) (4λ,4λ) (5λ,5λ) (6λ,6λ) (7λ,7λ) (8λ,8λ) (9λ,9λ)

5/λ 8/λ 12/λ 16/λ 20/λ 24/λ

(b) FDTD2D latency over FETD2D latency vs size of computational do-

main for different resolutions

Fig. 12.1 CPU latency (without SIMD enhancement) comparison between FDTD2D and

FETD2D with ET mesh

12.1 CPU Performance for Two-dimensionals Formulation 132

(F
D

T
D

2
D

 l
a

te
n

c
y
)/

(F
E

T
D

2
D

 l
a

te
n

c
y
) 

w
it
h

 S
IM

D

0

325

650

975

1,300

Resolution (Sample/λ)

5/λ 7/λ 9/λ 11/λ 13/λ 15/λ 17/λ 19/λ 21/λ 23/λ

(1λ,1λ) (3λ,3λ) (5λ,5λ) (7λ,7λ) (9λ,9λ)

0

325

650

975

1,300

λ,1λ) λ,2λ) λ,3λ) λ,4λ) λ,5λ) λ,6λ) λ,7λ) λ,8λ) (9λ,9λ)

(a) FDTD2D latency over FETD2D latency vs resolution for different size

of computational domain

(F
D

T
D

2
D

 l
a

te
n

c
y
)/

(F
E

T
D

2
D

 l
a

te
n

c
y
) 

w
it
h

 S
IM

D

0

325

650

975

1,300

Dimension of Computational Domain

(1λ,1λ) (2λ,2λ) (3λ,3λ) (4λ,4λ) (5λ,5λ) (6λ,6λ) (7λ,7λ) (8λ,8λ) (9λ,9λ)

5/λ 8/λ 12/λ 16/λ 20/λ 24/λ

(b) FDTD2D latency over FETD2D latency vs size of computational do-

main for different resolutions

Fig. 12.2 CPU latency (with SIMD enhancement) comparison between FDTD2D and

FETD2D with ET mesh

12.1 CPU Performance for Two-dimensionals Formulation 133

domains. For analysis domain size is represented as (aλ ,aλ) where, a ∈ N.

Figure 12.1a shows affect of increasing resolution on the CPU latency ratio. The reso-

lution is defined as “sample/node per wavelength” or sample/λ . This format of resolution

has been chosen because, the characteristics apply to all resolution as the sample per wave-

length are increased. The resolution used in the x-axis of Fig. 12.1a is the rET in Eq. 12.4.

As mentioned earlier the equivalent resolution for the FDTD was calculated using Eq. 12.4

and was for the simulation. But has been plotted against rET . This ensures the comparison

for equivalent result (or error level based on STD). This approach has been followed for the

SIMD comparison and also for the 3D analysis. As can be seen, the ratio increases with

the increase in resolution for all size of computational domain. It can also be noticed that

for bigger computational domain the ratio is decreasing. It also can be noted that the reduc-

tion of speed is saturating as the domain size is increased. This phenomenon can be better

illustrated in Fig. 12.1.

In Fig. 12.1, the relation between the size of the domain and the CPU latency ratio is

shown. As can be seen, the ratio initially decreases and settles down as the reduction slows

down. This happens for all the resolutions.

Similar relations can be observer when SIMD enhancements are considered. Figure 12.2

shows the results when SIMD enhancement is considered. Similar to Fig. 12.1a for all

domain size the CPU latency ratio increases with the resolution.

Figure 12.2 shows that with the increasing domain size similar to Fig. 12.1, the CPU

latency radio decreases and saturated at for all the resolutions.

In fact the only difference between Figs. 12.1 and Figs. 12.2 is the increase in the CPU

latency ratio for the SIMD implementation. The SIMD performance is on an average 1.57

times better than non-SIMD performance. In both occasions the CPU latency performance

of the proposed FETD2D method is far better than the FDTD2D method because for all res-

olutions used in Figs. 12.1 and 12.2 the CPU latency ratio is always higher than 1 meaning

higher than the speed of the FDTD2D when RRF and equivalent resolution is considered.

12.2 CPU Performance for Three-dimensionals Formulation 134

12.2 CPU Performance for Three-dimensionals Formula-

tion

Similar to the two-dimensional CPU performance analysis in Section 12.1 a CPU optimisa-

tion has to be performed on both the FDTD and the proposed FETD 3D governing equations.

In this section Eqs. 7.9 will be used to optimise and derive the CPU optimised form of the

FETD3D method.

12.2.1 CPU Optimised Formulation of the FDTD in Three-dimensions

The discretised form governing equations for the FDTD method in 3D has been presented

in [12, 25] as,

Hx|n+1/2

i, j,k =− ∆t

µi, j,k

[

Ez|ni, j+1/2,k −Ez|ni, j−1/2,k

∆y
−

Ey|ni, j,k+1/2
−Ey|ni, j,k−1/2

∆z

]

(12.5a)

+Hx|n−1/2

i, j,k

Hy|n+1/2

i, j,k =
∆t

µi, j,k

[

Ez|ni+1/2, j,k −Ez|ni−1/2, j,k

∆x
−

Ex|ni, j,k+1/2
−Ex|ni, j,k−1/2

∆z

]

(12.5b)

+Hy|n−1/2

i, j,k

Hz|n+1/2

i, j,k =− ∆t

µi, j,k

[

Ey|ni+1/2, j,k −Ey|ni−1/2, j,k

∆x
−

Ex|ni, j+1/2,k −Ex|ni, j−1/2,k

∆y

]

(12.5c)

+Hz|n−1/2

i, j,k

Ex|n+1/2

i, j,k =
∆t

εi, j,k

[

Hz|ni, j+1/2,k −Hz|ni, j−1/2,k

∆y
−

Hy|ni, j,k+1/2
−Hy|ni, j,k−1/2

∆z

]

(12.5d)

+Ex|n−1/2

i, j,k

12.2 CPU Performance for Three-dimensionals Formulation 135

Ey|n+1/2

i, j,k =− ∆t

εi, j,k

[

Hz|ni+1/2, j,k −Hz|ni−1/2, j,k

∆x
−

Hx|ni, j,k+1/2
−Hx|ni, j,k−1/2

∆z

]

(12.5e)

+Ey|n−1/2

i, j,k

Ez|n+1/2

i, j,k =
∆t

εi, j,k

[

Hy|ni+1/2, j,k −Hy|ni−1/2, j,k

∆x
−

Hx|ni, j+1/2,k −Hx|ni, j−1/2,k

∆y

]

(12.5f)

+Ez|n−1/2

i, j,k

To calculate the minimum number of CPU instructions required for the calculation of

a single time-step, all 6 equations in Eqs. 12.5 have to be optimised for the CPU in a way

similar to Section 12.1.1. The CPU optimal formulation of the 3D FDTD method can be

presented as,

Hx|n+1/2

i, j,k =A

[(

Ey|ni, j,k+1/2 −Ey|ni, j,k−1/2

)

−
(

Ez|ni, j+1/2,k −Ez|ni, j−1/2,k

)]

(12.6a)

+Hx|n−1/2

i, j,k

Hy|n+1/2

i, j,k =A

[(

Ez|ni+1/2, j,k −Ez|ni−1/2, j,k

)

−
(

Ex|ni, j,k+1/2 −Ex|ni, j,k−1/2

)]

(12.6b)

+Hy|n−1/2

i, j,k

Hz|n+1/2

i, j,k =A

[(

Ex|ni, j+1/2,k −Ex|ni, j−1/2,k

)

−
(

Ey|ni+1/2, j,k −Ey|ni−1/2, j,k

)]

(12.6c)

+Hz|n−1/2

i, j,k

Ex|n+1/2

i, j,k =B

[(

Hz|ni, j+1/2,k −Hz|ni, j−1/2,k

)

−
(

Hy|ni, j,k+1/2 −Hy|ni, j,k−1/2

)]

(12.6d)

+Ex|n−1/2

i, j,k

12.2 CPU Performance for Three-dimensionals Formulation 136

Ey|n+1/2

i, j,k =B

[(

Hx|ni, j,k+1/2 −Hx|ni, j,k−1/2

)

−
(

Hz|ni+1/2, j,k −Hz|ni−1/2, j,k

)]

(12.6e)

+Ey|n−1/2

i, j,k

Ez|n+1/2

i, j,k =B

[(

Hy|ni+1/2, j,k −Hy|ni−1/2, j,k

)

−
(

Hx|ni, j+1/2,k −Hx|ni, j−1/2,k

)]

(12.6f)

+Ez|n−1/2

i, j,k

Here, A= ∆t
µi, j,k∆

and B= ∆t
εi, j,k∆

can be stored in the memory for each node in the grid.

It can be noted that the Eqs. 12.6 avoid all redundant operations by storing them onto the

memory. It should also be noted that the equations are composed of CPU efficient addition,

subtraction and multiplication.

Latency for General Purpose Instructions

Table 12.5 shows the instructions required for each equation in Eqs. 12.6 when general

purpose instruction of Intel Haswell architecture. Unlike the 2D formulation in Eqs. 12.2

all equations in Eqs. 12.6 requires 5 instructions and 17 cycles each.

Table 12.5 Compute Operations and Latencies for 3D FDTD Method with General Purpose

Instructions

Equ.
Add Sub Mult Total

Ins. Late. Ins. Late. Ins. Late. Ins. Late.

12.6a 1 3 3 3 1 5 5 17

12.6b 1 3 3 3 1 5 5 17

12.6c 1 3 3 3 1 5 5 17

12.6d 1 3 3 3 1 5 5 17

12.6e 1 3 3 3 1 5 5 17

12.6f 1 3 3 3 1 5 5 17

Total for E → H: 15 51

Total for H → E: 15 51

Total for One Time-step: 30 102

12.2 CPU Performance for Three-dimensionals Formulation 137

Table 12.6 Compute Operations and Latencies for 3D FDTD Method with General Purpose

and SIMD Instructions

Equ.
Add Sub SIMD Sub Mult Total

Ins. Late. Ins. Late. Ins. Late. Ins. Late. Ins. Late.

12.6a 1 3 1 3 1 3 1 5 4 14

12.6b 1 3 1 3 1 3 1 5 4 14

12.6c 1 3 1 3 1 3 1 5 4 14

12.6d 1 3 1 3 1 3 1 5 4 14

12.6e 1 3 1 3 1 3 1 5 4 14

12.6f 1 3 1 3 1 3 1 5 4 14

Total for E → H: 14 42

Total for H → E: 14 42

Total Operation for One Time-step: 28 84

Latency for General Purpose and SIMD Instructions

Table 12.6 presented the latency distribution for the 3D FDTD method. As can be noticed,

unlike the 2D FDTD, theoretically all the Eqs. 12.6 benefited from the use of SIMD instruc-

tions with the general purpose instructions. Compared to latency distribution presented in

Table 12.5 for only general purpose instructions, every equation in Table 12.6 gets a latency

reduction for the use of 1 SIMD subtraction instruction. Therefore, each of them gets a

small latency reduction. The total impact is significant as the total latency for calculating 1

time-step reducers from 102 to 84.

12.2.2 CPU Optimised Formulation for Proposed FETD in Three-dimensions

The discretised form of the proposed 3D FETD method has been presented in Eqs. 7.9. Sim-

ilar to the 2D formulation in Section 12.1.2, no optimisation are performed for using only

the ET3D mesh. This is to preserve the capability to move the nodes of the tetrahedron to

produce any shape if necessary. All optimisations are done to reduce redundant computation

by performing them prior to the execution of the governing equations and storing them into

memory. The CPU optimised form of the governing equations can be presented as follows,

12.2 CPU Performance for Three-dimensionals Formulation 138

h
(n+1)
x =C

(

4

∑
i=1

∂Ni

∂ z
e
(n)
yi −

4

∑
i=1

∂Ni

∂y
e
(n)
zi

)

+h
(n−1)
x (12.7a)

h
(n+1)
y =C

(

4

∑
i=1

∂Ni

∂x
e
(n)
zi −

4

∑
i=1

∂Ni

∂ z
e
(n)
xi

)

+h
(n−1)
y (12.7b)

h
(n+1)
z =C

(

4

∑
i=1

∂Ni

∂y
e
(n)
xi −

4

∑
i=1

∂Ni

∂x
e
(n)
yi

)

+h
(n−1)
z (12.7c)

e
(n+1)
x =D

(

4

∑
i=1

∂Ni

∂y
h
(n)
zi −

4

∑
i=1

∂Ni

∂ z
h
(n)
yi

)

+ e
(n−1)
x (12.7d)

e
(n+1)
y =D

(

4

∑
i=1

∂Ni

∂ z
h
(n)
xi −

4

∑
i=1

∂Ni

∂x
h
(n)
zi

)

+ e
(n−1)
y (12.7e)

e
(n+1)
z =D

(

4

∑
i=1

∂Ni

∂x
h
(n)
yi −

4

∑
i=1

∂Ni

∂y
h
(n)
xi

)

+ e
(n−1)
zk (12.7f)

Here, C= 1/
(

µ dQ2
dt

)

and D= 1/
(

ε dQ2
dt

)

can be stored in the memory for each associ-

ated element.

Latency for General Purpose Instructions

Table 12.7 Compute Operations and Latencies for 3D FETD Method with General Purpose

Instructions

Equ.
Add Sub Mult Total

Ins. Late. Ins. Late. Ins. Late. Ins. Late.

12.7a 7 3 1 3 9 5 17 69

12.7b 7 3 1 3 9 5 17 69

12.7c 7 3 1 3 9 5 17 69

12.7d 7 3 1 3 9 5 17 69

12.7e 7 3 1 3 9 5 17 69

12.7f 7 3 1 3 9 5 17 69

Total for E → H: 51 207

Total for H → E: 51 207

Total Operation for One Time-step: 102 414

12.2 CPU Performance for Three-dimensionals Formulation 139

Table 12.7 list the latency distribution for the CPU optimised formulation for the pro-

posed 3D FETD governing equations in Eqs. 12.7. As can be seen in the table, each of

the equations cause same latency similar to the 3D FDTD method presented in Table 12.5.

But each of the equations for the 3D FETD requires 69 CPU cycles compared to 17. The

main reason for the excessive use of the addition and multiplication operations. Excessive

use of general instructions made the total performance for each time-step much slower than

the 3D FDTD performance with general purpose instructions. The 3D FDTD theoretically

requires 102 CPU cycles compared to the proposed 3D method requiring 414. Therefore,

the performance of the proposed 3D method with general purpose instructions are almost 4

times slower than the 3D FDTD with general purpose instructions.

Table 12.8 presents the latencies associated with the proposed method with general pro-

pose and SIMD instructions together. It can be noted that when SIMD instructions are used

for additions and multiplications, the latency of all the equations in Eqs. 12.7 decrease sig-

nificantly from 69 CPU cycles to 27 CPU cycles. Therefore, the total reduction of latency

is more than 60% from 414 CPU cycles in Table 12.7 to 162 in Table 12.8.

1
2
.2

C
P

U
P

erfo
rm

an
ce

fo
r

T
h
ree-d

im
en

sio
n
als

F
o
rm

u
latio

n
1
4
0

Latency for General Purpose and SIMD Instructions

Table 12.8 Compute Operations and Latencies for 3D FETD Method with General Purpose and SIMD Instructions

Equ.
Add SIMD Add Sub Mult SIMD Mult Total

Ins. Late. Ins. Late. Ins. Late. Ins. Late. Ins. Late. Ins. Late.

12.7a 1 3 2 3 1 3 1 5 2 5 7 27

12.7b 1 3 2 3 1 3 1 5 2 5 7 27

12.7c 1 3 2 3 1 3 1 5 2 5 7 27

12.7d 1 3 2 3 1 3 1 5 2 5 7 27

12.7e 1 3 2 3 1 3 1 5 2 5 7 27

12.7f 1 3 2 3 1 3 1 5 2 5 7 27

Total for E → H: 21 81

Total for H → E: 21 81

Total Operation for One Time-step: 42 162

12.2 CPU Performance for Three-dimensionals Formulation 141

Although the reduction is more significant compared to the 3D FDTD method in Ta-

ble 12.5, the CPU latency for the proposed 3D method with the SIMD enhancements is still

almost twice slower compared to the 3D FDTD method with similar enhancement when

the number of elements/cells are equal for both the methods. As it was mentioned before,

the proposed method does not employ any optimisation for the shape of the mesh used.

Whereas the 3D FDTD method is optimised for the cubic grid. This is the primary cause of

the slower performance.

12.2.3 Comparing Proposed FETD and FDTD considering RRF in Three-

dimensions

To make the method faster than the 3D FDTD method a technique should be applied which

reduces the number of elements without sacrificing the quality of the result. Similar to the

2D FETD in Section 11.1.2, the resolution reduction factor in Section 11.2.2 provides a

way to reduce the number of elements on a ET3D mesh. As we mentioned at the beginning

of this chapter, only equilateral meshes are going to be used. This section will discuss the

affect of considering RRF with the proposed method.

As mentioned in Section 11.2.2 the RRF is 1.903 for all resolutions for ET3D mesh and

the cubic FDTD grid, this will allow us to reduce the resolution by almost half. But the

actual reduction of number of elements would much higher as the number of elements will

be a cubic function of the effective resolution.

To analyse the affect of the RRF on the speed of the proposed method a Python code

was developed. Since the RRF is insensitive of resolution, for this analysis the resolution

for the proposed 3D FETD was considered to be 10/λ . Therefore, the resolution for the 3D

FDTD method was 19. The domain size was determined interns of number of division in

each direction. For simplicity, a cubic domain was considered.

The program generated required number of elements necessary for a cubic domain

with ET3D mesh and calculated the latency using the information presented in Table 12.7

and 12.8. It also generated the 3D cubic grid with necessary number of cells and calculated

12.2 CPU Performance for Three-dimensionals Formulation 142

(F
D

T
D

3
D

 l
a

te
n

c
y
)/

(F
E

T
D

3
D

 l
a

te
n

c
y
) 

w
it
h

o
u

t
S

IM
D

1.7

1.92

2.14

2.36

2.58

2.8

Number of divisions in each direction

10 40 70 10
0

13
0

16
0

19
0

22
0

25
0

28
0

31
0

34
0

37
0

40
0

43
0

46
0

49
0

(a) FDTD2D latency over FETD2D latency vs size of computational domain without SIMD

Instructions

(F
D

T
D

3
D

 l
a

te
n

c
y
)/

(F
E

T
D

3
D

 l
a

te
n

c
y
) 

w
it
h

 S
IM

D

3.6

4

4.4

4.8

5.2

5.6

6

Number of divisions in each direction

10 40 70 10
0

13
0

16
0

19
0

22
0

25
0

28
0

31
0

34
0

37
0

40
0

43
0

46
0

49
0

(b) FDTD2D latency over FETD2D latency vs size of computational domain with SIMD

Instructions

Fig. 12.3 CPU latency comparison between FDTD2D and FETD2D with ET3D mesh

12.2 CPU Performance for Three-dimensionals Formulation 143

the CPU latency using information from Table 12.5 and 12.6.

A theoretical CPU performance ratio can be calculated by dividing the CPU latency of

the 3D FDTD method by the CPU latency of the proposed 3D method.

Figure 12.3 shows the outputs of the Python code1. As can be seen in Fig. 12.3a, the

CPU performance ratio is much higher at when the number of division is much lower. It

decrease with a saturation curve and settles down around 1.71 at higher resolutions when

only general purpose instructions are considered with the RRF.

Figure 12.3b shows the performance with SIMD instructions. Similar to Fig. 12.3a, the

CPU performance ratio is higher at the beginning and settles around 3.6 at higher resolution.

Although both Fig. 12.3a and 12.3b shows higher performance compared to the 3D

FDTD method, the an implementation with SIMD instructions are more likely to hold the

CPU performance advantage when implemented for real world usage.

For this performance analysis only the advantage of better numerical dispersion of the

proposed FETD is considered to illustrate possible CPU time advantage of the method over

the FDTD method.

Moreover, the FETD method can use irregular mesh for many problems required no.

of node points for the FETD method can be much less than the FDTD method which uses

regular rectangular grid to discretise the problem domain. This advantage of the proposed

was not studied here.

1The small increase in performance at the FETD resolution 170 is due to a round off issue. As resolutions

are integers the Python code used round() function from the numpy package to round off the equivalent

resolution for the FDTD calculation. As the RRF is 1.903, the round off function started to chose higher value

from the FETD resolution 170. Hence, both the plot shows a small performance increase at 170.

Part IV

Future Plan and Conclusions

Chapter 13

Future Works

The FE-based method presented in this thesis shows significant improvement in both accu-

racy and CPU performance over the FDTD method by showing faster executing time. To

achieve the level of performance the method only utilised the resolution reduction factor

for both 2D and 3D implementations. But to utilise full potential of the method proposed

further developments are necessary. Specially to improve the speed farther, increase the

accuracy and reduce the memory requirement of the method further development is needed.

To convert the proposed method into a faster, more efficient and more accurate replacement

for the FDTD method following future research can be carried out.

13.1 Unstructured Mesh

The method presented in this thesis has used structured grid. To utilise the full potential of

the FE mesh of the proposed method it is essential to use unstructured mesh with the method.

An unstructured mesh could make the method more efficient by reducing the number of

elements in materials where the wavelength is larger. It might be able to make dense and

corse mesh as per requirement of the analysis more efficiently then the FD counterpart.

Therefore, improve the efficiency of the method even higher.

Unlike other FE-based methods, the proposed method was developed keeping perfor-

mance and accuracy as the top priority. As a result, there are a few requirements of method

13.1 Unstructured Mesh 146

that has to be satisfied by the unstructured mesh. Therefore, an off-the-shelf meshing li-

brary or algorithm may not be attached to the method without any preconditioning. The

requirements are as follows,

The Mesh: The mesh has to be as it is a requirement by the first order implementation of

the method. At present there is no meshing library which produces a mesh like the

mesh used in this work similar to the meshes discussed in Chapter 3 and 8 for 2D

and 3D, respectively. Therefore, mesh generated by any off the shelf library has to be

preprocessed before using with the method. The mesh used is also one of the reasons

for the higher CPU performance of the proposed method.

Equilateral or Near Equilateral Elements: The shape of the element is crucial for both

2D and 3D. Specially the numerical dispersion performance heavily depends on the

shape. As has been discussed in Chapter 11, Sections 11.1.1 and 11.2.1, equilateral

elements provide much better numerical dispersion characteristics that might allow

simulation at a lower resolution (discussed in section 11.1.2 and 11.2.2). Although

in many practical situations it might not be possible to have all equilateral elements,

having most of the elements equilateral or near equilateral will allow the similar ad-

vantages. Thereby it will not only reduce the error level of the simulation but also

reduce the CPU time and memory resulting in faster simulation.

Double Mesh System: To make the calculation explicit, a double mesh system consisting

of the main and auxiliary mesh (Chapters 3 and 8) was developed using the regular

meshes in this thesis. Similar double mesh system has to be developed for the un-

structured mesh by generating the auxiliary mesh by connecting some inner points

(i.e. centroid) of the elements. Although it may sound trivial, but with unstructured

mesh generating an auxiliary mesh might be quite tricky.

Gradual Change in Density: From Fig. 11.1 it can be noted that with the increase in res-

olution the average speed of propagation is also increasing. With unstructured grid

in use if the difference in resolutions between the dense and course regions are high,

13.2 Variable Time-stepping 147

the speed of propagation will abruptly change. Thereby, causing an impedance mis-

match and will cause spurious reflection. Therefore, any change in resolution has to

be gradual enough to make reduce the mismatch in impedance negligible.

The unstructured mesh is very important because it will not only make discretisation of

the structure easier and more accurate but also allow the user to define dense and course

according to his necessity. For example, EM wave inside a denser material (Silica) requires

higher density of points to represent it accurately compared to the same in a lighter mate-

rial (Air). Therefore, it is desirable to have smaller size elements in dense materials and

larger elements in lighter materials. This can only be achieved efficiently by adopting a

unstructured meshing algorithm for the method. The result, will be farther reduction of total

number of elements making the proposed method even faster in execution.

13.2 Variable Time-stepping

With the use of unstructured mesh, there will be small and large elements in the same mesh.

Therefore, to maintain stability the time-step of the simulation has to be calculated with

the smallest element in the domain. In many occasions the number of small elements will

be small compared to the total number of computational domain. This choice of smallest

possible time-step might be wasteful in-terms of CPU time. As most of the elements are

course, a more sensible choice will be to select a larger time-step. But that will cause

instability in the smaller elements.

To avoid instability with larger time-step a variable time-stepping mechanism has to be

developed, where smaller elements will use small time-step multiple times before the entire

mesh uses a large time-step to go forward in time. This was the smaller elements (inferior

in number) will perform required number of time-steps while the larger elements will be

spared from executing over and over. Hence, this technique could save significant CPU

time.

13.3 Partial Mesh Solution for Pulse Propagation 148

13.3 Partial Mesh Solution for Pulse Propagation

In the special case of pulse propagation, the computational domain is excited with time

limited pulse which normally propagates in one or more specific direction depending on

the structure of the device. An intelligent technique can be developed which will track the

propagation of power inside the computational domain and have the ability to switch on an

off elements for computation depending on the movement of the pulse in side the computa-

tional domain. This could cut down majority of the calculation as for pulse propagation the

power normally stays in one or more small areas of the entire domain.

13.4 Higher Order Implementation

Higher order implementation of the proposed technique could increase the speed and accu-

racy of the method even higher as higher order implementation will allow bigger elements.

Thereby, it might reduce the error level in the simulation farther.

Chapter 14

Conclusion

The principal objective of this research work was to develop a finite element based technique

to solve the electromagnetic time domain problem in a fast and efficient manner which can

be considered as a realistic alternative to the standard FDTD method. All the objectives

mentioned in the motivation section of the introductory chapter have been fulfilled in this

research. To develop the technique the accuracy of result and CPU performance were given

the top most priorities. To develop an explicit and data parallel formulation the Maxwell’s

equations in their differential form was considered which is similar as in the FDTD method.

The explicit formulation of the equations were discretised with using linear finite ele-

ments (triangles for 2D and tetrahedrons for 3D). As the Maxwell’s equations are coupled a

unique coupled dual mesh system was introduced in this thesis in Chapters 3 and 8. Hence

the number of elements required were reduced to half for 2D and 1/5 times for 3D when

compared with full mesh systems.

Several benchmarking simulations were performed and reported in Chapters 6 and 10 to

show the effectiveness and of the method compared to other numerical techniques like the

FEM method for modal analysis. To show the strength of the method complex metamaterial

simulation was performed and the obtained result was compared with the published result.

For reflection and interference performance in 3D nano power splitter was simulated and

the results were analysed in Section 10.3.

To analyse the accuracy of the method the numerical dispersion relation of both the 2D

150

and 3D implementation was derived from the governing equations in Chapter 11. It has

been shown in this chapter that for both 2D and 3D equilateral elements for the proposed

method provide significant advantage in terms of numerical dispersion. In these chapters

a new parameter called resolution reduction factor was introduced and it was shown by

simulation using both the proposed method and the FDTD method that a lower resolution

simulation with the proposed method is more accurate when equilateral elements are used

(Sections 11.1.1, 11.1.4 and 11.2.1). The resolution reduction factors for both 2D and 3D

are measured and discussed in Sections 11.1.2 and 11.2.2.

In Chapter 12 a theoretical analysis was performed on the CPU performance of the

proposed method for both 2D and 3D implementations. Theoretical CPU performance of

the proposed method was compared with the theoretical CPU performance of the FDTD

method. To do this analysis CPU latency information was obtained from latest CPU docu-

mentation from Intel [85]. In this chapter it was shown that when the resolution reduction

factor is considered the CPU performance of the proposed method become much faster than

that of the FDTD method. When Single Instruction Multiple Data (SIMD) instructions are

used alongside the general purpose instructions, the method become much faster than the

FDTD method.

At the end of the research higher CPU efficiency was achieved for both 2D and 3D by

only considering the resolution reduction factor. As the proposed method is an FE-based

method, all advantage of Finite Elements can be incorporated with the method. At the

end of the research probable direction for further research and development was pointed

out in Chapter 13. All the proposed improvement in the chapter will utilise the FE-roots

of the method to increase the speed of simulation even faster by reducing the number of

computational elements by incorporating intelligent techniques which are only possible to

implement in FE based method and not applicable in FD based FDTD method. Thus this

thesis clearly shows the way to make the proposed method the faster, more efficient and

more accurate future replacement for the FDTD method.

References

[1] B. A. Rahman and A. Agrawal, Finite Element Modeling Methods for Photonics.

Artech House, 2013.

[2] D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Meta-

material electromagnetic cloak at microwave frequencies,” Science, vol. 314, no. 5801,

pp. 977–980, 2006.

[3] A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing

mathematical operations with metamaterials,” Science, vol. 343, no. 6167, pp. 160–

163, 2014.

[4] E. Yamashita, Analysis methods for electromagnetic wave problems. Artech House

Boston London, 1990.

[5] R. F. Harrington and J. L. Harrington, Field computation by moment methods. Oxford

University Press, 1996.

[6] M. M. Ney, “Method of moments as applied to electromagnetic problems,” Microwave

Theory and Techniques, IEEE Transactions on, vol. 33, no. 10, pp. 972–980, 1985.

[7] E. Yamashita and R. Mittra, “Variational method for the analysis of microstrip lines,”

Microwave Theory and Techniques, IEEE Transactions on, vol. 16, no. 4, pp. 251–256,

1968.

[8] K. Stamnes, S.-C. Tsay, W. Wiscombe, K. Jayaweera et al., “Numerically stable algo-

References 152

rithm for discrete-ordinate-method radiative transfer in multiple scattering and emit-

ting layered media,” Applied optics, vol. 27, no. 12, pp. 2502–2509, 1988.

[9] C. Christopoulos, The transmission-line modeling method: TLM. Institute of Electri-

cal and Electronics Engineers (New York and Oxford), 1995.

[10] W. J. Hoefer, “The transmission-line matrix method–theory and applications,” Mi-

crowave Theory and Techniques, IEEE Transactions on, vol. 33, no. 10, pp. 882–893,

1985.

[11] G. Mur, “A finite difference method for the solution of electromagnetic waveguide

discontinuity problems,” Microwave Theory and Techniques, IEEE Transactions on,

vol. 22, no. 1, pp. 54–57, Jan 1974.

[12] S. Hagness and A. Taflove, Computational Electrodynamics: The Finite-Difference

Time-Domain Method (Second Edition), 2nd ed. Artech House, 2000.

[13] J. Yamauchi, Propagating beam analysis of optical waveguides. Research Studies

Press Exeter, 2003.

[14] K. Yee, “Numerical solution of initial boundary value problems involving maxwell’s

equations in isotropic media,” Antennas and Propagation, IEEE Transactions on,

vol. 14, no. 3, pp. 302–307, 1966.

[15] B. Rahman and J. Davies, “Finite-element analysis of optical and microwave waveg-

uide problems,” Microwave Theory and Techniques, IEEE Transactions on, vol. 32,

no. 1, pp. 20–28, 1984.

[16] M. Koshiba, Optical waveguide theory by the finite element method. Ktk Scientific,

1993.

[17] S. Obayya, Computational photonics. John Wiley & Sons, 2011.

[18] G. R. Werner and J. R. Cary, “A stable fdtd algorithm for non-diagonal, anisotropic

dielectrics,” Journal of Computational Physics, vol. 226, no. 1, pp. 1085–1101, 2007.

References 153

[19] G. R. Werner, C. A. Bauer, and J. R. Cary, “A more accurate, stable, fdtd algorithm for

electromagnetics in anisotropic dielectrics,” Journal of Computational Physics, vol.

255, pp. 436–455, 2013.

[20] M. Clemens and T. Weiland, “Magnetic field simulation using conformal fit formula-

tions,” Magnetics, IEEE Transactions on, vol. 38, no. 2, pp. 389–392, 2002.

[21] T. Weiland, “A discretization model for the solution of maxwell’s equations for six-

component fields,” Archiv Elektronik und Uebertragungstechnik, vol. 31, pp. 116–120,

1977.

[22] M. C. T. Weiland, “Discrete electromagnetism with the finite integration technique,”

Progress In Electromagnetics Research, vol. 32, pp. 65–87, 2001.

[23] J. Whinnery, S. Ramo, and T. Van Duzer, “Fields and waves in communication elec-

tronics,” J. Wiley and sons, 1994.

[24] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals:

Molding the Flow of Light (Second Edition), 2nd ed. Princeton University Press,

2008.

[25] A. Taflove and S. Hagness, Computational electrodynamics. Artech house Boston,

1995.

[26] M. N. Sadiku, Numerical techniques in electromagnetics. CRC press, 2000.

[27] M. Koshiba, K. Hayata, and M. Suzuki, “Approximate scalar finite-element analysis

of anisotropic optical waveguides,” Electronics Letters, vol. 18, no. 10, pp. 411–413,

1982.

[28] B. Rahman and J. Davies, “Finite-element solution of integrated optical waveguides,”

Lightwave Technology, Journal of, vol. 2, no. 5, pp. 682–688, 1984.

[29] A. Berk, “Variational principles for electromagnetic resonators and waveguides,” An-

tennas and Propagation, IRE Transactions on, vol. 4, no. 2, pp. 104–111, 1956.

References 154

[30] Y. Tsuji and M. Koshiba, “A finite element beam propagation method for strongly

guiding and longitudinally varying optical waveguides,” Lightwave Technology, Jour-

nal of, vol. 14, no. 2, pp. 217–222, 1996.

[31] M. Feit, J. Fleck Jr et al., “Light propagation in graded-index optical fibers,” Applied

optics, vol. 17, no. 24, pp. 3990–3998, 1978.

[32] M. Feit and J. Fleck Jr, “Computation of mode properties in optical fiber waveguides

by a propagating beam method,” Applied Optics, vol. 19, no. 7, pp. 1154–1164, 1980.

[33] D. Pinto and S. Obayya, “Accurate perfectly matched layer finite-volume time-domain

method for photonic bandgap devices,” Photonics Technology Letters, IEEE, vol. 20,

no. 5, pp. 339–341, 2008.

[34] A. Cangellaris, C. Lin, and K. Mei, “Point-matched time domain finite element meth-

ods for electromagnetic radiation and scattering,” Antennas and Propagation, IEEE

Transactions on, vol. 35, no. 10, pp. 1160–1173, 1987.

[35] M. Feliziani and E. Maradei, “Point matched finite element-time domain method using

vector elements,” Magnetics, IEEE Transactions on, vol. 30, no. 5, pp. 3184–3187,

1994.

[36] J. Lee, R. Lee, and A. Cangellaris, “Time-domain finite-element methods,” Antennas

and Propagation, IEEE Transactions on, vol. 45, no. 3, pp. 430–442, 1997.

[37] S. Obayya, “Efficient finite-element-based time-domain beam propagation analysis of

optical integrated circuits,” Quantum Electronics, IEEE Journal of, vol. 40, no. 5, pp.

591–595, 2004.

[38] F. Teixeira, “Time-domain finite-difference and finite-element methods for maxwell

equations in complex media,” Antennas and Propagation, IEEE Transactions on,

vol. 56, no. 8, pp. 2150 –2166, aug. 2008.

[39] H. Songoro, M. Vogel, and Z. Cendes, “Keeping time with maxwell’s equations,” Mi-

crowave Magazine, IEEE, vol. 11, no. 2, pp. 42–49, 2010.

References 155

[40] J. S. Hesthaven and T. Warburton, Nodal discontinuous Galerkin methods: algorithms,

analysis, and applications. Springer, 2007, vol. 54.

[41] M. J. White, Z. Yun, and M. F. Iskander, “A new 3d fdtd multigrid technique with di-

electric traverse capabilities,” Microwave Theory and Techniques, IEEE Transactions

on, vol. 49, no. 3, pp. 422–430, 2001.

[42] P. Silvester, “Finite element solution of homogeneous waveguide problems,” Alta Fre-

quenza, vol. 38, pp. 313–317, 1969.

[43] K. Hayata, M. Koshiba, M. Eguchi, and M. Suzuki, “Vectorial finite-element method

without any spurious solutions for dielectric waveguiding problems using transverse

magnetic-field component,” Microwave Theory and Techniques, IEEE Transactions

on, vol. 34, no. 11, pp. 1120–1124, 1986.

[44] M. Koshiba, Y. Tsuji, and M. Hikari, “Time-domain beam propagation method and

its application to photonic crystal circuits,” Journal of lightwave technology, vol. 18,

no. 1, p. 102, 2000.

[45] T. W. J.S. Hesthaven, “High-order/spectral methods on unstructured grids i. time-

domain solution of maxwell’s equations,” ICASE NASA Langley Research Center,

Hampton, Virginia, Tech. Rep. 2001-6, March 2001.

[46] S. Gedney and U. Navsariwala, “An unconditionally stable finite element time-domain

solution of the vector wave equation,” Microwave and Guided Wave Letters, IEEE,

vol. 5, no. 10, pp. 332–334, 1995.

[47] J.-M. Jin, The finite element method in electromagnetics. John Wiley & Sons, 2014.

[48] F. M. Tesche, M. Ianoz, and T. Karlsson, EMC analysis methods and computational

models. John Wiley & Sons, 1997.

[49] J. Mackerle, “2d and 3d finite element meshing and remeshing: A bibliography (1990-

2001),” Engineering computations, vol. 18, no. 8, pp. 1108–1197, 2001.

References 156

[50] W. Thacker, “A brief review of techniques for generating irregular computational

grids,” International Journal for Numerical Methods in Engineering, vol. 15, no. 9,

pp. 1335–1341, 1980.

[51] D. S. Lo, Finite Element Mesh Generation. CRC Press, Jan 2015.

[52] O. Zienkiewicz and D. Phillips, “An automatic mesh generation scheme for plane and

curved surfaces by ‘isoparametric’co-ordinates,” International Journal for Numerical

Methods in Engineering, vol. 3, no. 4, pp. 519–528, 1971.

[53] G. L. Dirichlet, “Über die reduction der positiven quadratischen formen mit drei unbes-

timmten ganzen zahlen.” Journal für die reine und angewandte Mathematik, vol. 40,

pp. 209–227, 1850.

[54] G. Voronoi, “New parametric applications concerning the theory of quadratic forms-

second announcement,” Journal Fur Die Reine Und Angewandte Mathematik, vol.

134, pp. 198–287, 1908.

[55] B. Delaunay, “Sur la sphere vide,” Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i

Estestvennyka Nauk, vol. 7, no. 793-800, pp. 1–2, 1934.

[56] D. F. Watson, “Computing the n-dimensional delaunay tessellation with application to

voronoi polytopes,” The computer journal, vol. 24, no. 2, pp. 167–172, 1981.

[57] A. Bowyer, “Computing dirichlet tessellations,” The Computer Journal, vol. 24, no. 2,

pp. 162–166, 1981.

[58] J. C. Cavendish, “Automatic triangulation of arbitrary planar domains for the finite

element method,” International Journal for Numerical Methods in Engineering, vol. 8,

no. 4, pp. 679–696, 1974.

[59] C. Lawson, “Software for c1 surface interpolation, math,” Software Syrup, 1977.

[60] S. Lo, “A new mesh generation scheme for arbitrary planar domains,” International

Journal for Numerical Methods in Engineering, vol. 21, no. 8, pp. 1403–1426, 1985.

References 157

[61] M. S. Shephard and M. A. Yerry, “Approaching the automatic generation of finite

element meshes,” Computers in Mechanical Engineering, vol. 1, no. 4, pp. 49–56,

1983.

[62] M. A. Yerry and M. S. Shephard, “Automatic three-dimensional mesh generation by

the modified-octree technique,” International Journal for Numerical Methods in Engi-

neering, vol. 20, no. 11, pp. 1965–1990, 1984.

[63] S. M. R. Kabir, B. Rahman, A. Agrawal, and K. T. V. Grattan, “Elimination of numer-

ical dispersion from electromagnetic time domain analysis by using resource efficient

finite element technique,” Progress In Electromagnetics Research, vol. 137, pp. 487–

512, 2013.

[64] O. M. Shir et al., Niching in derandomized evolution strategies and its applications

in quantum control. Natural Computing Group, LIACS, Faculty of Science, Leiden

University, 2008.

[65] G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the

time-domain electromagnetic-field equations,” Electromagnetic Compatibility, IEEE

Transactions on, no. 4, pp. 377–382, 1981.

[66] U. S. Inan and R. A. Marshall, Numerical electromagnetics: the FDTD method. Cam-

bridge University Press, 2011.

[67] A. Bayliss and E. Turkel, “Radiation boundary conditions for wave-like equations,”

Communications on Pure and applied Mathematics, vol. 33, no. 6, pp. 707–725, 1980.

[68] R. L. Higdon, “Numerical absorbing boundary conditions for the wave equation,”

Mathematics of computation, vol. 49, no. 179, pp. 65–90, 1987.

[69] J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,”

Journal of computational physics, vol. 114, no. 2, pp. 185–200, 1994.

References 158

[70] M. Kuzuoglu and R. Mittra, “Frequency dependence of the constitutive parameters of

causal perfectly matched anisotropic absorbers,” Microwave and Guided Wave Letters,

IEEE, vol. 6, no. 12, pp. 447–449, 1996.

[71] J. A. Roden and S. D. Gedney, “Convolutional pml (cpml): An efficient fdtd imple-

mentation of the cfs-pml for arbitrary media,” Microwave and optical technology let-

ters, vol. 27, no. 5, pp. 334–338, 2000.

[72] Y. Hao and R. Mittra, FDTD modeling of metamaterials. Artech house, 2009.

[73] V. Veselago et al., “The electrodynamics of substances with simultaneously negative

values of ε and µ ,” Physics-Uspekhi, vol. 10, no. 4, pp. 509–514, 1968.

[74] D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite

medium with simultaneously negative permeability and permittivity,” Physical review

letters, vol. 84, no. 18, p. 4184, 2000.

[75] J. Pendry, A. Holden, W. Stewart, and I. Youngs, “Extremely low frequency plasmons

in metallic mesostructures,” Physical review letters, vol. 76, no. 25, p. 4773, 1996.

[76] D. R. Smith and N. Kroll, “Negative refractive index in left-handed materials,” Physi-

cal Review Letters, vol. 85, no. 14, p. 2933, 2000.

[77] R. Ziolkowski and E. Heyman, “Wave propagation in media having negative permit-

tivity and permeability,” Physical review E, vol. 64, no. 5, p. 56625, 2001.

[78] R. Ziolkowski, “Pulsed and cw gaussian beam interactions with double negative meta-

material slabs,” Opt. Express, vol. 11, pp. 662–681, 2003.

[79] J. Berenger, “Perfectly matched layer for the fdtd solution of wave-structure interaction

problems,” Antennas and Propagation, IEEE Transactions on, vol. 44, no. 1, pp. 110–

117, 1996.

References 159

[80] D. Leung, N. Kejalakshmy, B. Rahman, and K. Grattan, “Rigorous modal analysis of

silicon strip nanoscale waveguides,” Optics Express, vol. 18, no. 8, pp. 8528–8539,

2010.

[81] E. Kirby, J. Hamm, K. Tsakmakidis, and O. Hess, “Fdtd analysis of slow light prop-

agation in negative-refractive-index metamaterial waveguides,” Journal of Optics A:

Pure and Applied Optics, vol. 11, no. 11, p. 114027, 2009.

[82] C. Themistos and B. Rahman, “Design issues of a multimode interference-based 3-db

splitter,” Applied optics, vol. 41, no. 33, pp. 7037–7044, 2002.

[83] A. Ferreras, F. Rodŕiguez, E. Gomez-Salas, J. De Miguel, and F. Hernandez-Gil, “Use-

ful formulas for multimode interference power splitter/combiner design,” Photonics

Technology Letters, IEEE, vol. 5, no. 10, pp. 1224–1227, 1993.

[84] J. Juntunen and T. Tsiboukis, “Reduction of numerical dispersion in fdtd method

through artificial anisotropy,” Microwave Theory and Techniques, IEEE Transactions

on, vol. 48, no. 4, pp. 582–588, 2000.

[85] Intel® 64 and IA-32 Architectures Optimization Reference Manual, Intel Corporation,

2014.

[86] “http://www.top500.org,” Tech. Rep., June 2014. [Online]. Available: http:

//www.top500.org

[87] L. H. Jamieson, P. T. Mueller, and H. J. Siegel, “Fft algorithms for simd parallel pro-

cessing systems,” Journal of Parallel and Distributed Computing, vol. 3, no. 1, pp.

48–71, 1986.

[88] S. Agaian and D. Gevorkian, “Synthesis of a class of orthogonal transforms. parallel

simd-algorithms and specialized processors,” Pattern Recognition and Image Analysis,

vol. 2, no. 4, pp. 394–408, 1992.

http://www.top500.org
http://www.top500.org

References 160

[89] Y. Ben-Asher, D. Egozi, and A. Schuster, “2-d simd algorithms for perfect shuffle

networks,” Journal of Parallel and Distributed Computing, vol. 16, no. 3, pp. 250–

257, 1992.

[90] J. Apostolakis, P. Coddington, and E. Marinari, “New simd algorithms for cluster

labeling on parallel computers,” International Journal of Modern Physics C, vol. 4,

no. 04, pp. 749–763, 1993.

[91] H. Chen, N. S. Flann, and D. W. Watson, “Parallel genetic simulated annealing: a mas-

sively parallel simd algorithm,” Parallel and Distributed Systems, IEEE Transactions

on, vol. 9, no. 2, pp. 126–136, 1998.

[92] I. Hong, S. Chung, H. Kim, Y. Kim, Y. Son, and Z. Cho, “Ultra fast symmetry and

simd-based projection-backprojection (ssp) algorithm for 3-d pet image reconstruc-

tion,” Medical Imaging, IEEE Transactions on, vol. 26, no. 6, pp. 789–803, 2007.

[93] F. Goualard, “Fast and correct simd algorithms for interval arithmetic,” in PARA’08.

Springer, 2010.

	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Numerical Methods for Electromagnetics
	1.2 Maxwell's Equations
	1.2.1 Integral Form
	1.2.2 Differential Form
	1.2.3 The Wave Equation

	1.3 Numerical Analysis Techniques
	1.3.1 Modal Analysis
	1.3.2 Beam Propagation Method
	1.3.3 Frequency Domain Analysis
	1.3.4 Time Domain Analysis

	1.4 Motivation for the Research

	I Two-dimensional Formulation
	2 Derivation of Governing Equations for Two-dimensions
	2.1 Discretisation
	2.1.1 Space Discretisation
	2.1.2 Time Discretisation

	3 The Two-dimensional Mesh
	3.1 The Space Mesh System
	3.1.1 Completeness of the Mesh

	3.2 The Time Mesh System

	4 Perfectly Matched Layer Boundary for Two-dimensions
	4.1 Large Computational Domain
	4.2 Absorbing Boundary Condition
	4.2.1 Methods Based on Oneway Wave Equations
	4.2.2 Perfectly Matched Layer Boundary

	4.3 X Axis PML
	4.4 Y Axis PML
	4.5 Corner PML
	4.6 Placing the PML in the Computational Domain

	5 Dispersive Materials
	5.1 Maxwell's Equations with Drude Model
	5.2 Governing Equations for Metal
	5.3 Governing Equations for Metamaterial

	6 Results of Simulations in Two-dimensions
	6.1 Free Space Propagation
	6.2 Planar Waveguide
	6.3 Metamaterial Flat Lens & Backward Propagation

	II Three-dimensional Formulation
	7 Governing Equations for Three-dimensions
	7.1 Space-Time discretisation
	7.1.1 Space discretisation
	7.1.2 Time discretisation
	7.1.3 Discretised Governing Equations

	8 The Three-dimensional Mesh
	8.1 The Space Mesh
	8.2 The Time Mesh

	9 Perfectly Matched Layer Boundary for Three-dimensions
	9.1 X PML
	9.2 Y PML
	9.3 Z PML
	9.4 XY PML
	9.5 YZ PML
	9.6 ZX PML
	9.7 XYZ PML

	10 Results of Simulations in Three-dimensions
	10.1 Free Space Propagation
	10.2 Nanowires
	10.3 Nano Power Splitter
	10.4 Nano Directional Coupler
	10.4.1 Full Vectorial FEM Analysis
	10.4.2 Calculation of Coupling Length using the FETD 3D

	III Performance Analysis
	11 Numerical Dispersion
	11.1 Numerical Dispersion for 2D Formulation
	11.1.1 Calculation of Numerical Dispersion
	11.1.2 Calculating Resolution Reduction Factor
	11.1.3 Comparing Numerical Dispersion of Meshes by Simulation
	11.1.4 Comparison with the FDTD Method

	11.2 Numerical Dispersion for 3D Formulation
	11.2.1 Calculation of Numerical Dispersion
	11.2.2 Calculation of Resolution Reduction Factor
	11.2.3 Comparison with the FDTD Method

	12 Theoretical CPU Performance
	12.1 CPU Performance for Two-dimensionals Formulation
	12.1.1 CPU Optimised Formulation of the FDTD in 2D
	12.1.2 CPU Optimised Formulation for Proposed FETD in 2D
	12.1.3 Comparing Proposed FETD and FDTD considering RRF in 2D

	12.2 CPU Performance for Three-dimensionals Formulation
	12.2.1 CPU Optimised Formulation of the FDTD in 3D
	12.2.2 CPU Optimised Formulation for Proposed FETD in 3D
	12.2.3 Comparing Proposed FETD and FDTD considering RRF in 3D

	IV Future Plan and Conclusions
	13 Future Works
	13.1 Unstructured Mesh
	13.2 Variable Time-stepping
	13.3 Partial Mesh Solution for Pulse Propagation
	13.4 Higher Order Implementation

	14 Conclusion
	References

