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Abstract: Given a 3-vectorz € A’R° the least distance problem from the Grassmann
variety G,(R°) is considered. The solution of this problem is related to a
decomposition ofz into a sum of at most 5 decomposable orthogonal 3-vectors in

A’R®. This decomposition implies a certain canonical structure for the Grassmann
matrix which is a special matrix related to the decomposability properties ©his

special structure implies the reduction of the problem to a considerably lower

dimension tensor space’ R* where the reduced least distance problem can be solved
efficiently.

1. Introduction

The Determinantal Assignment Problem (DAP) is an abstract problem formulation
unifying the study of frequency assignment problems of linear systems [6]. The
solution to this problem is reduced to finding real intersections between the
Grassmann variety and a linear variety of a projective space [11]. Computationally,
this is an inherently non-linear problem due to its determinantal character, and clearly
expresses the significance of exterior algebra and classical algebraic geometry for this
family of control problems. The multi-linear nature of DAP has suggested [6] that it
may be reduced to a linear problem of zero assignment of polynomial combinants,
defining a linear variety, and a standard problem of multi-linear algebra expressed by
the additional condition known as decomposability of multi-vectors [12], [13]. The
decomposability problem is equivalent to that the multi-vector belongs to the
Grassmann variety of the respective projective space [5] and it is thus characterized
by the set of Quadratic Plucker Relations (QPR) [12]. An alternative characterisation
of decomposability has been introduced by the representation of the decomposable
multi-vectors by special structure and properties matrices, the Grassmann Matrices

[8], [9].

The DAP framework provides a unifying computational framework for finding the
solutions, when such solutions exist, and relies on exterior algebra and on the explicit
description of the Grassmann variety in terms of the QPR. This search for exact



solutions is equivalent to finding real intersections and this may be interpreted as a
zero distance problem distance problem between varieties in the (real) projective e
space. Such an interpretation allows the transformation of the exact intersection to a
problem of “approximate intersection”, i.e., small distance -via a suitable metric-
between varieties and transforms the exact DAP from a synthesis method to a DAP
design methodology, where approximate solutions to the exact problem are sought.
This enables the derivation of solutions, even for non-generic cases and handles
problems of model uncertainty, as well as approximate solutions to the cases where
generically there is no solution of the exact problem. In [10] the approximate DAP
has been considered for the distance from theR")variety and a closed form
solution to the distance problem was given based on the skew-symmetric matrix
description of multi-vectors via the gap metric. A new algorithm for the calculation of
the approximate solution was derived and the stability properties of the approximate
DAP solutions were investigated. The study of the general case of distance from the

variety G (R"), m>n , is not straightforward; a crucial step to this study is the study
of the distance fromG,(R°) which is considered here.

In this paper we consider 3-vedar= ) z,e/Ae Ag eNR°, where{g}?, is an

1<i< j<k<6
orthonormal basis ofR°. The problem of decomposability of is to find three
vectors z,,z,,z, € A'R°® such thatz =z Az, Az,. If this holds true, the multi-vector is

S50
decomposable [12]. Clearly, not all multi-vectots- A’R® are decomposable and
those which are decomposable 3-vectors obey certain algebraic relations the so-called

QPR (Quadratic Plucker Relations) which define a projective variety in the projective
space P(A'R°). This is the Grassmann variety iA’R°)= P(R*) defined as the

image of all 3-dimensional subspaces®rf(the GrasmanniaG(3,R®)) through the
Plucker embedding.

When z is not decomposable it is desirable in many applications to approxuriate
the closest decomposable 3-vectpez Az, Az, € R, i.e. to findz,z,,z, € A’R® such

that |lz—z Az Az is minimized and thus define approximate solutions of the

corresponding problem. In the simpler case whenA’R” the problem has been
solved via considering the spectral structure of the majriwhich is then” n skew-

symmetric matrix representing, z,,z, € A’R° [10]. In the latter case the least distance
problem implies a canonical decomposition

z=0,aNb+0,8 Nb+-+0oa N

where k:\% and a,h,a,hL ,a,pis a specially selected orthonormal set. In this

paper we consider the case of € A’'R® which is formulated as the optimization
problem min||z —x, A x, A x,||. It is shown that the first order conditions for the related
g,eR“

problem max<g,§1 AX, /\13>, s.t. H%H-H%H-H%H:I , imply a selection of an appropriate



basis x,x,',x,,» .y, ,»] of ;¢ such thatz is written as a sum of at most 5

decomposable multivectors. This decomposition implies a certain diagonal structure
for the corresponding Grassmann matrix [8] as well as a certain symmetry of its
squared singular values. In fact the squared singular values can be grouped in pairs
such that the sum of every pair is the squared norm of the 3-veckurthermoreit

is shown that via this symmetry the problem may be mapped to the lower dimensional
vector spacex’ R* where it can be solved efficiently.

Throughout the paper the following notation is adoptedf¥ Ifis a field, or ring then
F™" denotes the set ofmxn matrices over #. If H is a map, then
R(H), N (H), N, (H) denote the range, right, left nullspaces respectively,
denotes the set of lexicographically ordered, strictly increasing sequencks of
integers from the set ={1,2....,n}. If V is a vector space ar{c_iil,...,\_/i} are vectors
of vV theny, A..Ay, =V A, @=(i,...i) denotes their exterior product andv the

r —th exterior power o¥/ [12]. If H e #™" andr <min{m, 1}, thenC (H) denotes

the r —th compound matrix ofH [13]. In most of the following, we will assume
thats =11.

2. Theproblem of approximate decomposability

The problem of approximate decomposability (AD) is finding the best approximation
of a 3-vectorz € A’'R° by a decomposable 3-vect®rA x, Ax,. This problem has two

equivalent formulations in the affine and the projective space settings which are
defined below:

Affine space formulation of AD: Solve the optimization problem:

min
1AL AGEN' RS

Z—LA%AgH

W
For the Projective space formulation of AD we have to use of a suitable metric in the

projective space>(U?; ) such as the gap metric, which is defined as:

2
Z,.,Z

—{@’—‘J [z][z,]€ P(N'R®)

eIl

d([z][z]D =

where [z] denotes the line passing through and 0. Then we may define the
projective formulation of AD as

Projective space formulation of AD: Solve the optimization problem:

min _ d([z],[x, Ax, Ax,])

[5A5A%1EP(NR®)



Given that the sef{y]:[y]=[x, Ax, Ax,]€ P(N'R®)} is the image of the Grassmannian

G,(R®) through the Plucker embedding [5] and tatR®) is compact, we may state
the following result:

Theorem(2.1). Letz e A’R® z = (0 then the projective AD acquires a global minimum
which satisfies:

min d([z][x, Ax, Ax,]) = dist([2],G,(R"))

[xAx,AxJEP(A’R®)

Pr oof:

The distance functiord([z],[x, Ax, Ax,]) defines a continuous map,(R®) — Rand

its image is a compact subsetof Therefore the distance function acquires a global
minimum.

W
The relation between the two formulations is now described by the following result:

Proposition(2.1). Let z € A’R® z = 0andPnmi, be the nonempty set defined by:

P ={(m,[x/Ax) A 13”]) S(my,[xIA XA 13”]) is a global optimum for the projective AD}

mi 2

wherem, is the optimum value of the objective function of the projective Ren
the set

A ={(m, 51' A )_c; A 13’ ): (ml,gll A g A 13’ ) is a global optimum for the affine AD}
where m;is the optimum value of the objective function of the affine /D,
nonempty. Furthermore, the elements of the two BgtsA ., (m,,[x/A x) Ax!]) and
(m,x Ax, Ax]) can be paired so that:
) m=|zm
(z.x/AI N,

H / / / " "
i) X Ax,Axy=-——"——Fx'Ax, X
== O, |

X, A\ X, A\ X

Proof:
We consider the following expansion:

HZ-MI 4r /\53H2 :HzHZ _2>‘<§’11 AX, /\§3>+>‘2”11 A, /\53”2

For fixed x,%,.x, this norm is minimized whem=(z,x Ax, Ax,)/|lx Ax, Ax,[ .
Therefore the Affine AD minimization problem:
min _
A% ALEN RS

is equivalent to the minimization problem:

Z—&A&A&H



min g—<__l—_2_3>x Ax, NX (2.1)
4ALAGEN R ||E Ax, Ax H

<zx/\x /\x>

z— L 2 Ty Ax, Ax —H H — —H H d([z].[x, N x, /\x])

e Ao, nf
The minimization problem (2.1) (which is equivalent to the Affine AD) may be
solved via the minimization problem min  d([z],[x,Ax, Ax,]) and as the latter

[x /\rzAvc3]EP(/\ R®)
has a global minimum so does the first. This proves Aats nonempty. According
to the above arguments we may now write:

(2.3 735, Ax,)

min H2 XNANX NAX||=

X AX, AX; €N SR®

z—x AX, /\xH— min |1z —
XARAGENR Hll/\lz/\lg

(2.2)

=|lz| min  d(zllxAx,AxD

[x A% A% lEP(NR®)

By (2.2),assertion i) is now evident. Furthermore by (2.2)LfA x! A x}] is a solution

of the projective AD themxgU x¢U xg= Mggﬁggﬁzgﬁ is a solution of the
x40 x$U x|

affine AD which is the assertion ii).
W

Definition(2.1) Let zeA'R°,z=0 and (m,x ANx, AX,), (my,[x'Ax)Ax])  be
solutions (global optima) of the affine and the projective AD respectively, we call
x/Ax,Ax. the best decomposable approximatiofi z andm ,m, the respective
affine and projective distance$ z from the set of decomposable veciarg*R°that

is the Grassmann variety of the projective space’R").

W
Remark(2.1) The best decomposable approximation may not be unique for example

1

1
=ilg N Ngl(—=,
(ﬁ[e e e])(ﬁ[

Ne Ne+3e NeNe, thenP = eNeANel)r and

W
In other words there are two decomposable approximations of z nakgely, A e,

and 3¢, A e A e, Which equally approximate z. Now the projective AD formulation
suggests that we may equivalently maximizer, Ax, Ax, ) given that |[x, Ax, Ax||=1.
Thus we may define the three following constrained maximization problems:

M(1): I;ﬁ{)ﬁ(@,gl AX, /\£3> subject tq’ll AX, /\£3H: l.



M (2): max<g,§1 AX, A§3> subject to[gl iX, :53][[11 1X, :53]: I

3
L.EJR"

M@): max(z.5 Az, Az} subject tojs]|{fs|-x|=1

Where [x:x,:x,] is the 3x6 matrix having as columns the veckgss,x,. As

explained previously, the maximization problem M(1) is derived from the least
distance projective formulation. The problems M(1) and M(3) are both relaxations of
problem M(2). More importantly they all share a common solution. Therefore one
may prefer to solving M(23ince it is computationally more robust given that we use
orthogonal bases

Proposition(2.2) The three maximization problems M(1),M(2),M(3) attain the same
global maximum valuen which satisfies:

) m= Lt
i) m= 4 nf
Proof: Due to the inequality:
b, ey o < e |

the problem M(4) defined as:
M (4): ri%§<g,£l Ax,Nx,) subject toH;1 AX, A%HSI

is a relaxation of all M(1), M(2) and M(3). M(4) can be equivalently expressed as
M (5): I}Eﬂggg<g,z> subject to||y|<1and QPR(y)=0.

where QPR()=0 denotes the quadratic equations defining decomposability. of
Problem M(5) is defined on a compact set therefore it attains a global maximum
We will prove that this is also a global maximum for all M(1), M(2) and M(3). lddee
by a rescaling argument a maximiser of M(4) must be located on the boundary

Hgl/\ngg_gH:I. Furthermore, given a maximizer of M(4), expressed in matrix form

by X,, then X, (X, X,)"* = satisfies all constraints for M(1),M(2),M(3)

roorL
XX, X

and attains the same value for all objective functions, therefore it is also
maximizer for the three problems. Taking into account we have that:

. 2 2 2
min d([g],[{l/\gz/\%])—\/(I—I/HZH )[ max <Z,§1/\£2/\§3> /HXI/\EZ/\&H

[xA%Ax,JEP(AR®) [xA%AxJEP(AR®)

we deduce that the maximum of M(1) is related tom, by i). Furthermore, by
Proposition(2.1) and pait of the current proposition, part ii) readily follows.

The above optimization problems may be solved utilizing known optimization
algorithms such as those in [1],],[®r specialized methods for tensor problems as

6



those described i[2], [4], [11], [12). Additionally since all problems are defined on
smooth varieties (constraints) and the objective functions are polynomial (multi-
linear), it suffices to solve simultaneously the first order conditions and select those
solutions that assign the highest value to the objective function as we know that the
global optimum exist for all the problems. However the special skew symmetric and
multilinear structure of the problems suggests that we may siniplify contracting

the 3-vector with one of the 1-vectofs, x, x} and then consider an equivalent
problem in A*R® which can be solved using matrix theory. In fact the least distance

problem inA*R° may be solved by the following theorem:
Theorem(2.2) Let z ¢ A°R° then_z can always expressed as:
z=04Ab+o,a Nb+0,aNb

Where{a, b, a, 1, _a_§ is an orthonormal basis oR® and the coefficients,.s,, s,
are three nonnegative numbers satisfyg s,* s,.These numbers aréerived
from the 3 imaginary eigenvalue paitss,.+ is,,* is ;0f the skew symmetric matrix
T, (this matrix has its ij-th element to bg if i<j, - z if i>j and O otherwisp
representing the 2-vectar In this setting the closest decomposable vectar i®
given by oa Ab. Furthermore, the vectors, h maximize the bilinear form
<z,xAy> with HEHHZHZI and the maximum value is.

W
The above theorem can be found in [10] as a consequence of Lemma 2.2 p 145 and
Corollary 2.2 p.148

Based on the following definition of the Hodge*-operator which defines a duality in
the exterior algebra and can be used as a generalisation of Kernel spaces or as in the

present paper for contraction purposes so that the elementiRéare viewed as
parameterised elements afR®:

Definition(2) [5]: The Hodge *-operator, for a oriented n-dimensional vector space
U equipped with an inner product <.,.>, is an operator defined as:
¥ A"U — A" such thatgU (b*)=<a,b>w Wherea, b eA™U , we A"U defines

the orientation oy and m<n.

we may apply Theorem (2.2) Using the identity

(z.x Ax, Ax,)= <(£1 Az'),x, /\£3>

and wemay use Theorem(2.2) for the parameterized 2-vecter(x, Az") € A’R®

Theorem (2.3) The optimization problem M(2) may be reduced to the following
lower dimensional maximization problem:

max x such that x*- f,(x)x+ f,(x)/4, |x]=1

x,€R’



2 2 . B
wherefz(ll):Hza , A(Il)szz, /\zilH . If (x,x) is a solution of the above then

i. m=4x
ii. (»',z)) can be taken from the complex eigenveciprt iz corresponding to
the maximum eigenvalue paitim of T, The solution of M(2) is then

(m,£1/921/721,)'
Proof: Since
%TTzﬂJ_(: <Zzl’£1 A[>: (XA fAx Nz') =0 Vfe R’
the matrix T, has non-trivial kernel ands its spectrum is purely imaginary this

kernel is at least two dimensional. Therefore the spectrurm, ofis of the form

(%is,,*+is,,0,0). Then according to theorem (2.2)
Zzl:Gl(ll)gl/\b1+02(£1)942/\é2 Wlth S13 S23 0

and{a,,b,a,,b} are orthonormal. Then,

2 2
HleH :012(51)+022(§1) and sz] AZ&H :4012(£‘)022(£')'
Therefores*(x), s,’(x,) satisfy the equation
X2- T+ f,0¢)/ 4 (2.3)

For a fixed x the solution of M(2) (according to Theorem 1) (is(x,),x,,a,.8,)-

Therefore M(2) is equivalent to maximizirg(x,) when x €$° where s" is the n-
dimensional sphere. As(x) satisfies (2.3) the result is proved.

W
Coroallary (2.1): The study of the problem M(2) can be reduced to
max F()_c):(f2 ST —f4)/2 subject to|x|=1 (2.4)
W

The quadruple{m,gl/,zl’,g"} defined in Theorem (2.3) provides the solution to the

problem where m is the maximum value of the objective function{gﬁ,cj_zl’,gl’} are

the three vectors realizing this maximum value ie the vectors forming the best
decomposable approximation whichni@I’ A le /\gl/.

Corollary (2.2) The optimalx € S° may be calculated via a Krylov type of iteration

x,.,=VF(x,)/|[VF(x,)




The iteration converges to a vectoy which is one of the three vectors constituting
the best decomposable approximationzofThe other two are found by applying
Theorem (2.3) to the multi-vecter, =(x'Az") e AR’

Next section describes the first order conditions for M(3) and its implication for a
canonical decomposition of a 3-vector.
3. Thefirst order conditions and a canonical decomposition of a 3-vector
Here we will consider the first order conditions for the optimization problem M(3) ie
Ax,Ax.) subjectt e[|l =1

max(z,x, Az, Ax,) subject te |||

The Lagrangian of this problem is given by
L=z oty s )= N s | 1)

Theorem(3.1): The First Order Conditions (FOC) for M(3) are given by:

0, 0-{2 s Ml s 5 =0
0,0 (2 g e el s =0 @

V, 0:=(2 A ) N s = 00 e =

Proof : These conditions may by deduced from the identities:

(z.x, Nx,Nx,)= <—(z Ax, A£3)*,zl> = <(§ Ax, /\£3)* ,z2> = <—(z* Ax, Azz)*,£3>

and taking into account that (|x|)= x, /||x. For examplev (L)may be calculated
as follows:

V0=V, (2572 )= N[l |- 1) =

=V, (zx Am Ax )N 1Y, el =~ (= Am Ax ) =3l Vs

Proposition(3.1): If I, x, x,, x, satisfy the FOC for M3 then we have:

) N=(zxAx,Ax,)
i) (x,x)=0when' j and wher#0

Proof: i) If we apply the inner product by, both sides of the first FOC we get:

(~(a na s =\ sl )

which is equivalent to:



(20, Aoty Aoty ) = Mo /s s
and this proves i).

ii) If we apply the inner product by, both sides of the first FOC we get:

(~{ ns ) o) = N sl )
which is equivalent to:

(2505 05)=0 =N el )

As 3#0 we must have(x,x,)=0. Similarly the other two inner products

(%,%),(%,%) are zero.

O
Remark (3.1): Based on Proposition (3.1) if, x, x,, x, satisfy the FOC for M(3)

then x /x|, x, /|x,| . xs/|x{ satisfy the constraints of M(2) and the simplified first
order conditions:

s

—<Z*/\£2/\53)*_>\§1:0’ (g*/\zl/\%) —xx, =0 —(z*/\xl/\xz)*—XxSZO (3.20)

These new conditions are not the FOC for M(2), however the solutions corresponding
to the global maximum must coincide. From now on we will consider that
X, X,, X;are orthonormal and satisfy the above simplified FOC.

If we define the annihilator sef an g € A’R® asn/, = {g eENR :nANa= 0}, then

Proposition (3.2) Let x, x,, x,be orthonormal vectors that satisfy the simplified FOC
(3.2) and lety,, y,,y, be orthonormal vectors that extend x,, x,to an oriented

orthonormal basis qf®, and let\/ denotes the annihilator set.é
(g* -\, Ay, /\&) N, NN, NN

A%

Proof: Applying the Hodge star operator to the simplified FOC (3.2) we get:

AL A =N =NGALAY AP, Ay, —Z AN AL =N =N A Ay Ay, Ay,
ZAXNG =N =N A A A, A Y,
Therefore,
(gak—)\)_/l/\&/\&)/\5/\{3 =0, (g*—kzl/\zz/\&)/\gl/\%:o
(g*—XXl/\)_/z/\&)/\gl/\gz =0

which proves the result.
O

Lemma(3.1): Let ¢ A"R" and x,, x, € R”" :<L,12>:0. Thenthe following hold true:

Mo 2y

10



i) If anx =0, then,

m—1 €
a=a ANx, Where,a e \" " span(x,)

i) If anx Ax, =0, then,

a=gUx+ aU.x, whereg A" span(x,)", a, €N span(x,)"

Proof:

Without loss of generality we assume thaf =[x, =1
i) Consider an orthonormal basis fef whose first vector ig . Expand
ac A"R" with respect to this basis. Then

m—1

a=a,Ax,+a, where g € \""'span(x,)" and a, € \"span(x,)"
Sinceg Ax, =0 we must have, Ax, =0 implyinga,= 0 and hence the result.
ii) Consider an orthonormal basis f&f whose first two vectors are, x, .

Expancal U"; " with respect to this basis then=a Ax, +a, A x, +a,, where

m—1 m—1

a €N 'span(x))" , a, € " 'span(x,)” and a, € \"span(x,,x,)"

Sincea A x, Ax, =0 we must have, Ax, Ax, =0 implying a;= 0 and hence the
result.

O
Proposition (3.3): The setV/ | NN, NN _ definedin Proposition(3.2) is given

by:
N NN NN =

XAx xAx A%

{yAx, Ax 4V Ax Ax Y A AX, +px, AX, XYY" €spaniy,,y,.y,} and p € R}

Pr oof
Letae N'R":ae N, NN NN, ,thensincezc N, by Lemma(3.1)
a=a Ax,+a,\x,, a€Nspan(x)", a, €N span(x,)* (3.3)

Furthermore, we also have that x, A x, = 0; by Lemma(3.1) the following also
holds true

1 1
a,=bAx +bAx, b€Espan(x,x,)", b, €span(x,,x,)

Since alsoaAx, Ax,=0, by Lemma(3.1) we must have
a,=c, Ax,+c,Ax,, ¢ €span(x,x,)", ¢, Gspan(xZ,xB)l
Therefore,
b=dx,+y, b=dx+y, =dx,+y, 6 =dx, + Y, V3, V5 Y, €pan(y,,yy,¥s)
Substituting all the above to (3.3) we get that

a=yAx, A%+ Y AL A+ Y A AX, +px Ax, A

11



Conversely ifa is an element of
{)_)/\52 /\53 +y//\§1 AE} +y”/\£1 /\ﬁz +p£1 /\Ez /\13 :Z’Z"Z"ESP“”{Zsz’Zz} and pER}

we can easily deduce thag Ax, Ax, =aAx Ax,=aAx, Ax,=0

O
Definition(3.1): We define the dot-exterior produch” as:
(A’”R”)p x(AkR")p —A L A"™FR", where
. P
(@0 ) A(b,esb )= a,Ab
i=1
and the element&,,...a ), (b,...b)), (¢, Ab,..a, Ab)) may be considered as
"Axp,| ™ |xpand x1 matrices respectively.
m m+k
O

With the above definition we may state the following result.

Theorem(3.2): Let x, x,, x, andy,, y,, y, as in Proposition(3.2) thene A’R° can be
expressed as:

g:)ql/\lzA%—|—CZ(Y)/\(XA)—I—p’Zl/\Zz/\)_/3 (3.4)

where C,(Y)=[y, Ay, Ayuy, Ay, X =[x:x,:x] and A is a real 3x3 matrix.
Furthermore ifz is expressed as in (3.4) wiflx, x,, X, ¥, ¥, ¥4 being an oriented

orthonormal basis fd°, then {I, x, x,, xJ satisfy the simplified FOC for the
problem.

Proof: UsingPropositions(3.2) and (3)3 z can be written as:

2 =N AP AV XA Ay, 4 a,y, +ayy) x5 A% Aay,y, +ay,y, +ay )+
+x, Ax; Aay y, + ay,p, +agy)+px Ax, Ax,

Applying the Hodge-star operator both sides and rearranging the terms accordingly

g:)@lAgz/\%—l—)_/lA)_/z/\(a'x +al x —i—a’x)—l—zl/\%/\(al'zgl—i—a' x, +a x.)

1= 2192 313 22=2 32=3

9, Ay M@ X+ ax, ) oy Ay, Ay,

which in the formulation of definition(3.1), it may be written as the theorem states.
Conversely if z can be written ag(3.4) then it is easy to veriffl, x, x,, x} satisfy
the FOC.

W
The results so far indicate that the first order conditions imply a certain decomposition

of zin terms of an orthonormal basis Bf as a sum of 11 decomposable vectors with
coefficients\,p € R and A ¢ R*>. The following results simplify this decomposition

12



into a sum of five decomposable vectors, by transforming appropriately the basis
{X% X» X3 Y1 ¥ Y- First we state the following Lemmas:

n n

Lemma(3.2): LetA ,B be Xp, x p matrices representing two elements of

m
(Um; "), (U"; ")’ respectively and bea pxp matrix then the following identity holds
true:

AA(BT)=(AT)A B
[l

Lemma(3.3): Let U € O(3) be the group of 3x3 orthogonal matrices SO(3) be the

group of 3x3 specialrthogonal matrices, {be the second order compound matrix
and G be the third order compound matribhen the following hold true:

i) C,(U)eS003)
i) C,(C,(U))=det(U)U

Pr oof:
i) Based on Sylvester-Frankeeorem we hawdetC, U ))= dety j= :

0 0 1
J=0 -1 0
1 0 O

i) C,(U)=det(U).JU'J where
C,(C,(U)) =det(C,(U)).JC,(U)J = JC,(U")J = det(U)J*UJ* = det(U).U
O
Theorem (3.3). Let z € A’R° which can be expressed as in theorem)(3.2
2= Ax, Ax, + C(Y)A (XA +9'y, Ay, Ay,
If U,V € 0(3)thenz can also be written as:
z=Ndet(U)x/ A x; A x; +det(V)C,(Y)A(XA) +ply Ay, Ay,
where

X' =[x,x,x]=[x,%,51U=XU , Y = [y, ¥, 01=13,,0,,,]C,(¥) = YC,(V) and A’ = U' 4V

Proof: Note that

13



z=X5 Ax, Ax,+ C(V)AXUU " AVY )+ 'y, Ay, Ay,

by Lemma (3.2) we have:

2= 5 Ax, A+ C(Y)V AXUU AV ) +p'y, Ay, Ay,

by Lemma (3.3) we get:

z =Xy, Ax, Ax, +det(V)C,(Y)C,(C,(V) A(XUU AV +ply, Ay, Ny, =
=y, A X, Ax, +det(V)C,(YC,(V ) A(XUUT AV ) +p'y, Ay, Ny, =
=Ndet(U)x/ A x) Ax]+det(V)C,(Y)A(XA)+ply A yy Ay,

O
As a result of the previous theorem and the singular value decomposition of the

matrix A we may simplify the decomposition o&s a sum of 5 decomposable vectors
as shown below.

Theorem(3.4) For any z € A’R® there exists an oriented orthonormal basis; 6f
{x.%.%.y,.y,y} such that

ZENAL AL NI AL AL NP ARG TN AP ANy Ay, Ny, (3.9)
Proof: We start with a decomposition=\x, A x, A x, + C,(Y) A(X4)+p'y, Ay, Ay,
arising from the FOC. Consider now the singular value decomposition of

A: A=U-%-V"anddenotethe sign ofdet(A) assign(A . Then A can be written as:
A=U, -(sign(A)E)-VlT

whereu,,v, orthogonal andietU, )= dety, = - By applying Theorem (3.3) we get:
z= Ml’ A gg A gg + sign(A)CZ(Y') AX'D)+ plzll A Zﬁ A Zg
Where X' =[x/, x;,x]=[x,x,%]1U, = XU, , Y =[], ;. »11= [, 2, ,1C, (V) = YC, (V)
Note that
sign(A)Cz(Y’) AX'D) = sign(A)(oﬂl' A X; A {1' + 02X1/ A X; A gz/ + olzé A X; A g)

Thereforez is written as:

2= Ay A+ sign(A)o ] Ay, Ax + 0,0 AV Ax, + o,y AYIAK) OV A A,

U

Remark(3.2) This decomposition of z into 5 decomposable vectors is not unique as it
can be formed for every,x,x,,x, satisfying the FOC. Furthermore if we fix one
solution of FOC then the SVD of the matrix A may not be unique (the case of
multiple singular values). To get a canonical decomposition we impose two
requirements, first to fix one solution of FOC (this can be done be choosing the global
maximizer, provided it is unique) and second the corresponding matrix A to have a
unique SVD (there are no multiplicities); Conditions for this to happen in terms of z
are derived in the following chapters.
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O
Corollary(3.1): For anyz e A’R°,z =0 there exists an oriented orthonormal basis of
R® {11,52,13,)_;1,12,)_;3}such that
ZENAG AL NI AL AL AN AL AL TN AP AL TNy Ay Ny, (3:6)

with X} >N+ X! and [N, >[N [>[,[.

Proof: Construct| , x,X,,%;,y,,Y,,y. as previously for the solution of the FOC

corresponding to the global maximum of M(3). This wayx, Ax, has been
constructed so A is the maximum of the objective function
<g,/_€] Ak, /\k3> with Hl—ﬂ”Hl—‘zH”l—‘sH: 1. Thus we have that

2.y, Ay AKX, )

NNEBS: SVNTN
2 5

And this proves the first inequality. The second inequality is proved by the fact that
the three numbers, 43, A4 are related to the three singular values of the matrix A in
descending order.

A :<;,)_clm_czu3>><

1

O
A consequence of Corollary(3.1) is the following:

Corallary(3.2) For anyz € A’'R°,z =0 there exists an oriented orthonormal basis of
R {%, %X Y1.Y,y} such that

Z=NNAG AL F NN AD NG TN AP AL F XY A AX NP A, A Yy

with X, > max || N N[ N[ and [N =5 >[X,[-

O
Proof:
As N >N4N, 3=\ =[] we can easily deduce  that
N, = max N[N NN

O

The above discussion and results imply the following algorithm for the construction
of a canonical decomposition:

Construction of Canonical Decomposition
i) Construct the global maximiza, x,, x,, x, of M(3)
i) Complete{x,.x,.x,.y,.,.y,} to be an oriented orthonormal basis F.
iii) Develop an expression of z of the form

Z:>\?£1A12/\13+C2(Y)/\(M)+p,21/\)_’z/\Zs

This can be done by multiplying by C,([X, Y]). The eleven nonzero coordinates are
the coefficients of the above expression.
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iv) Calculate the SVD of A:4=U-Z- V'
v) Calculate a new basfst’,Y’] such that X’ = det(U)XU , Y' = YC,(V)

vi) Calculate an expression of the form
Z=NGAG NG FNVAD AL FND AV AL TN AP AX NP A Y Ay
This can be done by the five non zero terms of the expres&iofix’,Y’])
O
Example(3.1): Let

2=[5-3-8,-7,-4,-10,4,8,-2,-4,-7,-9,-4,2,-5,-3,4,-2,-9,6] . Then solving the
maximization problem:  max(z.x Ax, Ax,) S.t. x|

||| {lx||= 1, we get:
b - |

T

03628 0461 0556 —0.4727 —0.3517 0.00032
X=[x:x,:x|=| 04426 —0.1127 —0.5356 0.0458 —0.5957 0.384
0.4645 0.4637 —0.0463 03374 05630  0.3691

with maximum valué.=23.020¢. Constructy' as the left null space of ie

T

0.133  —0.153 04892 0773 —0.3292 —0.1186
Y=y iy ip]=| 0492 —0726 02606 —02494 03056  0.0868
~0.444 —0.1012 03078 —0.0327 —0.0521 0.8333

then z is written as

2=123.0209-x, Ax, A\x; +5.811- y Ay, A\x, +0.483-y, Ay, Ax, —2.664-y, Ay, A x,
—0.446-y, Ay, Ax, +1.818-y, Ay, Ax, —1.063-y, Ay, A x,
—3.087-y, ANy, Ax, +4.3934-y, Ay, Ax, +7.643- y, ANy, A x,
—4.589-y, Ay, Ay,

Next, we calculate a Singular Value Decomposition for the matrix A:

5811 0.483 —2.664
A=| —0.446 1818 —1.063
—3.087 4393 7.643

—-0.48 —0.873 0.079 10.348 0 0 —0.532
A=U-D-V"=| 0.005 —0.094 —0.996 |- 0 4.627 0
0.877 —0.478 0.05 0 0 2.12

—-0.769  0.355
0.351 —-0.582 —-0.734
0.771 —-0.265 0.579

We change the basis fablspan(X, colspan(Y to X', Y’ as follows:
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03203 0.073 —0.519 0528 0412 0418
X'=XV=|-0660 —0412 —0.1035 0247 0467 —0324 | =[x:xl x|
0.0731 0515  0.564 —0.0062 0.638 —0.067

0461 —0.738 0.308 —0.213 0284  0.147
Y=Y-C,(U)=| =037 —0.0936 0478 0364 —0231 0.663 | =|y/:).:)|
0327 —0.081 028 0.695 —0.265 —0.505

With respect to the new basis,can be written as

2=23.0209-x/ A x; Ax;+10.348- y/ Ay, Ax/+4.627 -y Ay, A X, +2.12- Y] Ay A X,
—4.589-2{ /\)_/; /\Z;

]
4. Thestructure of the Grassmann matrix

The Grassmann matrix is the matrix representation of the multiplication opekator (
[8], [9] that is: ®)(z):R° — A'R°defined by ®’(z)u=unz. The transpose of this
matrix Fi(z)" is the matrix representation of the operator

®}(z)" :A'R® — R°such that ®}(z)" y=—(y"Az)

The singular values of this matrix are related to the decomposability propertres of
[10]. To establish this we will examine the spectral properties of the operator

= (9;(2))'®;(z):R°* —R® where &;(z)" ®}(z2)u=—((urz) Nz)

Theorem(4.1): Let
ZENGAL AL F N AR A NP AR AL F NP APAXANY AP Ay

be the decomposition of as inTheorem (3.4)Then consider the 2-dim spaces:
V, = spar(_x, ¥), V, = spar{_%, ¥), V,= spar{_x, Y)

These three subspaces drénvariant and) ), ¢)] is an orthogonal decomposition
of R®. The restriction orF on these subspaces has the following representation:

oy N ANEND N oIy NAEN N NN
1 ! -

_>‘2>\5 >‘12 + >‘; ’ >‘3>‘5 >‘12 + >‘§

NAENEND N

q)/)/:;: 2 2
AN NN
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Proof: We calculate the value & on the basis of] ie {x,,y,}

(x, Nz) = N5 A YA Yy /\)—C2)* + X, (5 Ay, Ay, /\)—Cs)* XN (5 Ay A Y, /\Zs)*
= _>‘3£3 A Yo >‘412 A b + >‘5£2 A X,

(X, N2) N2) =N AR AV AN =N Ay Ay, Ay Ax)
2 * *
NG AR AP AV ALY AN 00 AX A Y Ay, Ax)
= _>‘§§1 - >‘z21£1 - >\§11 + >‘2>‘5)_"3

Therefore,
(I)‘El = (>\§ + >‘421 + >‘§)§1 - >‘2>‘SZ3
Additionally we have,

(A2 =NAEALAL) N A Ay, Ax)
= _>‘1)_/1 NY, _>‘2£2 A X,

((y, Az) Az) = >\f(y1 Ny, Nx AXx, /\x3)* —>\§(x2 ANx; Ny, Ny, /\xl)*
NN (A AP A Y, Ay3)*
:—>\12y3 —>\§y3+)\ AX

2775771

Therefore,
Dy, =N X))y =M

Proving thatv, is ®-invariant and
NN HN N,
N NN
The proof is similar for the other two subspaces.

®/) =

Corollary(4.2): If we denoteby T the matrix

= z1i23i12il}2i§35)_/1

then ® can be diagonalized as follows
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N AN N NN
X A+

2

NAN N A,
AN NN

T'®T =

NAN AN NN
AN, NN

________T_______T________
S S B
|
S SO L
RN

Proof:
As V, = spar( x ¥),V, = spar( %, ¥),V;= spar{ % y) and by Theorem(4.1) all three
spaces ar@ invariant subspaces, using a change of basis by T the matan be
block diagonalised with the blocks defined by Theorem(4.1).

O
Corollary(4.3): As HgHZ =3 N =tr(4) =tr(4,) =tr(4,), the six eigenvaluegny , of

F can be paired so that the sum of every pdje|fs

Proof:
The restriction of® on every spacey, ), ), is given by the 2x2 matrices
A.A, A respectively. The three pairs of eigenvalues of these three matrices are
eventually the six eigenvalues of the matrix ®@. As the trace of each of the three
matrices equals fia|* the result readily follows.

O
Corollary(4.4) :The singular values Osz(g) can be grouped into three pairs such

that the 2-norm of each pair jg .

Proof:
As the singular values ab’(z) are the positive square roots of the eigenvalues of the

matrix @ the result readily follows from Corollary(4.3).

O
Theorem(4.2): Assume that the three blocks have the following three pairs of
eigenvalues

eig(A,-)—{uf, gHz—uf} >
Then =2 i,j=1,2,3iff [\ [=|\ | 7.j=12.34
Proof: As the traces of the three blocks are equal, to proveulhatui L,j=12731it
is equivalent to prove thatdet(d )' detd ) j = 1,2,. One can easily calculate the
following:

det(4,) —det(4,)= -\ = X)(\2 —=\2)

det(4,) —det(4,)= —(>\f—>\§)(>\§—>\j) 4.1)

det(4,) —det(4)= -\ =X\ —X\))
which proves the result.
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Theorem(4.3) Let zeA’R® and {I, x, x,, x} be the global optimum solution for
M(3). Additionally let the related decomposition to this solution be:

Z=NAL AL FNVAD AL TND AP AL TN AP AX NP A Y, Ay

with the additional generic relatidn> || > [ J> | , to hold true. Then the matrices
4,,4,, 4, defined as in Corollary (4.2) satisfet(A )< detp, )<de#, . Furthermore,

the invariant subspaces{), )}, }j} where the three blocks are defined can be

uniquely associated with the eigenstructuré of

O
Proof: According to Corollary(3.1) the above decomposition zokatisfies the
following property: 1,2 |1 ,|°> |l J* |l /. For a generiz the above inequalities are
strict. In this case taking into account equations (4.1) in the proof of theorem(4.2) we
have det(4,) <det(4,)<det(4,). If

eig(@) = {00307, 03 =[] - 03 =[] o3 = [ -}
are the eigenvalues @ in descending order with corresponding eigenvectors

{u_é,zs,u_4,23,zz,ul}
thenthe eigenvalue pair that correspondsApis the one whose product of elements

attains the lowest value i«%oé,ofz“g”z—cz}, as well as the corresponding 2-dim

invariant subspace, is given by spanfu u }, similarly A, corresponds to the

) 0 2 R 2 B i
eigenvalue paifo?,o} =||z|[ —o? t and )} =span{u, ,u,} and finally 4, corresponds

to the eigenvalue pai{roj,o§ =l —cj} and, = span{u, .u, .

O
The above result implies that the spack and the corresponding blogk
correspond to the pair of the highest and the lowest eigenvalues; thels@acethe
corresponding block A, correspond to the pair of the second lowest and second
highest eigenvalues of ® and the space )/, and the corresponding blogkcorrespond
to the pair of the third and the fourth eigenvalues of @.

Corollary (4.4): LetzeA’'R°. When Fi(z) has 6 distinct singular values the
assumptions and the implications of Theorem(4.3) hold true.

L
Corollary (4.5): Let z€A'R® when ®2(z) has 4 distinct singular values|z|/+2
and a double singular value |z|/«2 the assumptions and the implications of
Theorem(4.3) hold true.

L]
If we define the characteristic polynomial ®f(z)" ®}(z) as:
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X\, z) =det(N, — 2 (z) ©(z))
and the resultant:

R = Res (x(n2) X2

Then the set€={zcA’'R° R(z)=0} contains all three-vectors whose Grassmann

matrix has distinct singular values. This is a Zarisky open setdm’R® by its
definition. Let z € £, then according to Corollary(4.4) we may apply theorem(4.3) so
that if

Z=NGAG NG FNVAD AL FND AV A% TN AP AX NP A Y, Ay

is a decomposition of and if {u_é,gs,u_4,y3,gz,ul} are the right singular vectors of

Fi(z) (corresponding to singular values in descending order) then:
spar{ y, W} = spanx ¥ spdn,u = spap Xy shpap } = {spady

If we relabel {u;,u,u,u,u, 4 by {¢.6.6.6.¢. ¢ we may derive the
following theorem:

Theorem(4.4): Let z € £, thenz can be written as

Z= W GAGL NG,

i.j.k=12

where W = <g,§i Ae,., /\gk+4> .
i,j,k=1,2

Proof: To prove the result it is equivalent to prove that
<z,g AQ,A9,>=0
when the set of two out of the three indi¢gs equals to one of the sets {1,2},{3,4}
or {5,6}. Assume that i=1, j=2 theg Ae, Ae, = x, Ay, Ag, Up to sign. Then
(2.6 Mg ng )=
(NG AL AL AN AP AL ANGALAL A NP AV AL FNY AV, APk Ay Ag)
=N\ <xAX, ANXp X, A Yy A E >+, VAL NXLX AN YN >+
TN SUAPNG N AYING > HN <P AP ALY A Y NG >HN <Y AP, Ay X Ay N>
=04+04+0+0+0=0

We may perform similar calculations for the other combinations and end up with the
same result. As{gl. Ne; /\g,} is a basis for\’R® the only possible combinations

1<i< j<I<6
with nonzero coefficients in the expansionzadre the ones that the present theorem
states.

U
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Corollary (45): There is a map 7:£— ' R*where T(z)=(w,,)

i,jk=12

\ <ze/\e Ne

ij.k —k+4

Theorem(4.4).

> where e are the right singular vectors ob’(z) as in

O
Corollary (4.6): All zin £ acquire a decomposition in eight decomposable vectors if

expanded on a special basis/dR° in terms of the right singular vectors @f(z)

O
Next theorem states that the map is not onto but the tensoWw

defined =(w, ) where w,, =(z.e e, Ae,,) defined by Corollary (4.5)

satisfies certain conditions:

Theorem(4.5): The tensolV satisfies the following conditions:

z l/k Z/k Z 11k 12k Z 1/1 1/2
J.k=1.2 ik=1,2 i,j=1,2

Proof: Consider the expansion pas in theorem(4.4) ie

Z=W o ENELNEL,

i,j,k=12
Then ag’s are the right singular vectors of F(z) we have that:
¢/ ;(2) 0i(2)e, =0, ¢/P(2) P;(2)e, =0, ¢ P;(2) Pi(2)g =0

Writing the above three equalities in terms of the expansianvefget

1//( /\gl/\€_1+2/\€k+4’ i,j.k eZ/\e/\eJ+2/\€k+4 Z 1//( 2jk
i,j,k=12 i,j,k=12 Jk=12

l/k /\gl/\€|+2/\§k+4’ i,j.k —4/\€1A§_|+2/\§k+4 Z 11/( 12/c
i,j,k=12 i,j,k=12 k=12

< Wi GNENEL NG W,y —66/\€i/\ej+2/\§k+4>_ Zwi,j,lwi,j,zzo

i,j,k=12 i,j,k=12 i,j=1,2

which proves the result.

O
The above results allow us to establish an effective algorithm to solve the minimum

distance problem initially defined.

5. An efficient computation of decomposition in A°R®

Both the closest decomposable vector and the decompositions of multivectors rely on
the calculation of an appropriate orthonormal bagliSc_z,zs,)_/l,)_/z,)_/g} of R . Due to

Theorem(4.3) we may group the eigenvector§ ohto pairs{e, €}, {e, €} , {e, &
so that the corresponding eigenvalues are complementary. In this case

V= span{e. e} = spantx,.y,}, V, = spane, ¢} = spanfx, .y,
V, = spante, ¢} = span{x,.y,}
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Although this correspondence is unique when the singular values)@f are
distinct, it can still be carried out when there are multiplicities.
Therefore, the maximize, Ax, Ax, of (zx, Ax, Ax,) may be written as

A5 Ay, =(ag+a,e)Nbe+be)N(cetc,g), a12+a22 :b12+b22 :clz—l—cj =1.

Therefore, the original maximization proble@,glAgz/\g3>in A’R® is transformed
into a much simpler maximization problemdnR?, i.e.

max Z aibjck<z’§i/\g_i+2/\§k+4>:<w’g®h®g>

ijk=12,...

where W is the tensor W = (Wi,j,k) defined above, W = <g,gi /\gj+2 /\gk+4>,
i,j k=12
a=(a,a), b=(0,b,), e =(c,c,). e =] = ef| = 1-
This may be rewritten as:
max[bpbz] AW T awy W, +a,w, ¢ subject tofla] = |[b|[=]=1
ab,c Wiy, + AWy GWiy + AWy, 2

For a fixed_a, this is the maximum singular vatkue A(q) of the matrix:

aw .  +aw aw,. . +aw

17111 2 211 177112 27212
A(a)=
alW121 —I_ a2w221 a1W122 —I_ a2W222

And the optimal vectors b, ¢ correspond to the left and right singular vectors for this
singular value. In this setting our optimization problem is reduced to:

max o A(a) subjectto HQH: 1 (5.1)
The square x& of the maximum singular valug satisfies the equation:
‘AA’ —x12‘ — —tr(AA’)x-i—‘A‘z )

As the functionx:s' — R , S'is the circle defined bjg|= 1 defined by:

x(a)={tr(A(a)4(a)) + \/(tr(A(ﬂ)A(g)’))z - 4|A(£)|2 /2
is a (genericall) smooth real function defined on a compact and connected set so its
image must be a closed finite interval. This function acquires a global maximum
which must satisfy the first order conditions. Therefore we may calculate the solutions
of the first order conditions and select the one that corresponds to the maximum x.
One way to accomplish this, is to parametrise the circle ||al]|=1 as:

S'=85 us'us,

! The quantity, d, under the root is a sum of squares and thus theqgigirircle that d=0 are
defined by more than two equations giving generically an empty set.
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where

1 1 y 1 1 y
S+ ={( > )y eR}, ST ={(— > T ).y €R}
J1+ 1+ J1+5? NI

As x(- a)= x(@we need only to considerc S, U{(0,1)}. After the substitution

a= (1/\/1+ a ,y/\/1+ y2)

We may rewrite the optimization problem (5.1) in terms(qf) and obtain the
following equivalent problem:

max(f) where /(x,y)=(1+y7)x" (14 y")r(AQ) A(y))x +HAo) =0

The first order conditions of this problem are given by the following system of
polynomial equations:

1Fx.y) _
Ty

whose solutiongx,y) along with the solutions at infinity form a finite sEt of
candidates for the global optimum for our problem. The optimum sol@tgg) is
selected fromx, as the painx,y) with the maximumx coordinate. The optimum

singular value is given by:

and the optimum pais, = (a, a)is given by:

0, fky)=20

a=1/J1+ vy’ , a= y 1+ ¥
using this paira, we calculate the singular value decomposition of the mafay.
Its maximum singular value is by construction theand the corresponding left and

right singular vectors are the optimal vectbss,. The best decomposable 3-vector
approximating is given by:

oo(a,g+a,e)N(be+be)N g +eg)
Furthermore the basis &° for the five vector decomposition of z WR® is given
by:
(% X X3 Yp Y2 Y3 =
{ag+ a6 bet bp c# L£& L2 .Ge Lbe  he e}

We may summarise the process of decomposition as it is indicated below:

Steps
1. Given a multi-vector Calculate the Grassmann matrix then the ma@rand
its eigenvalues and eigenvectors
2. With the help of this eigenframe calculate the tensor W
3. With the help of W calculate the parametrised matrix A(a) and solve the
maximisation problem (5.1)
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4. The solution of (5.1) leads to the calculation of the optimal veatbrs
5. Using the vectors a,b,c and the eigenvectors of step 1 form an new basis

{a1§+ a6 IP_§+ Q? L& L€ L2 G .2t§|'e _1-Qe 2 e_l}:for i 6
The expansion ot in this basis gives us its optimal 5 decomposable vector
decomposition, where the best decomposable approximation corresponds to
(a,¢ +a,e)N(be+be)N(cg+c6)
O
Example (5.1): Considerzin A’R® as in Example (3)1The Grassmann matrix of
which is given by:

7 4 -3 -5 0 0]
9 10 -8 0 -5 0
4 -4 -7 0 0 -5
2 8 0 8 -3 0
5 2 0 7 0 -3
3 4 0 0 -7 8
4 0 -8 -10 4 O
®(2)=|-2 0 2 4 0 4
9 0 4 0 4 10
6 0 0 4 -2 -8
0 -4 2 9 -7 0
0 2 -5 4 0 -7
0 -9 3 0 -4 9
0 6 0 3 -5-2
0 0 6 9 -2 -4

Its squared singular values are given by:
[640.845, 552.444, 534.691, 149.309, 131.556, 43.155]

We can pair theSiwith the 8", the 29 with the 3" and the % with the 4" so that their
sum is equato 684 the square norm of z. The corresponding 2-dimensional subspaces

of R® formed by the related eigenvectors can be given (in terms of their basis
matrices):

-0.4631 0.0614733 -0.351728 0.29327 0.336006 - 0.67759
0.724921 0.533318 0.0751618 0.07923 0.0726397 - 0.41576
-0.322316 0.555798 —0.237349 - 0.53981 -0.482902 - 0.079193
0.212711 - 0.00083399¢’ | -0.734598 0.47046| ' | —0.351291  0.265293
—0.299763 0.630776 0.231609 0.43189 0.2548 0.455157
-0.145039 - 0.07072795 0.470135 0.45655 —0.678455 - 0.29015

Based on this decomposition, the 3rd order homogeneous polynomial to be
maximised is given by:

F(a,b,c) =3.455bc, - 10.67Qsbc, +4.8381b,c, +0.32%,b,c, -

-2.28% b, +0.722,bc, - 1.604ab,c, +22.942,b,c,
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Subject to|ja||=|lb]|4l|=1. This is reduced to finding the matr(a) with the
maximum possible singular value from the family of matrices:

-3.4550%, — 10.6708, - 2.2883L 0.72163
4.837%, + 0.329252 — 1.60430+ 22.943
subject to ||a]|=1. This squared singular valug ysatisfies the equation:

‘AA’ —x]z‘ — 5 —tr(AA’)x+‘A’2 )
After the substitution:

a=1/\1+ Ya , &= y/ﬂf1+ ¥

and taking the first order conditions, we obtain the following system of polynomial
equations:

f(x,y)=276.095- 43.1547+x” - 2156.82 3933yt3- 684+
+2x°y*+31800.9°+ 60046)8'— 640.845'+ x %y ‘=

f,(x,y)=-2156.32- 7866.26— 1368.+ x¥y+ 95400°3

+240187y° — 2563.38° + xfy’=
The real solutions(x,y) of this system of equations are: (529.961.-12.506),
(124.818,3.618 (33.603,-0.0419), (11.381-0.075, (0,-0.425), (0,0.160) and the

solutions at infinity are:1(13.967,), (526.878, «). The maximum squared singular
value of A corresponds to the maximum x appearing to the set of solutions ie

s, =/529.961= 23.020. The optimal values for a are the ones corresponding to y=
-12.506 ie

a=1/y1+ (- 12.506) =0.08 , a = - 12.50Q// +1-( 12.508)- o
The optimal A(0.08,-0.997), is given by:
( 10.3611 - 0.90177I
0.0573917 - 22.997
The optimalb, ¢ are the right and left singular vectors of A &afx ie.
b, =-0.051, b, =—0.999, ¢, =-0.0252, ¢, =0.999
The basis matrix for the canonical decompositidtY]E[x1,X2.X3,Y1,¥2,¥s] iS given by:

[a,y, + a,v5, 0, + by, v + oy, =, v+ 0y, —by, + by, —a,, + a,]

Giving rise to the basis matrices:

-0.320381 - 0.0729902 0.51918 — 0.527515- 0.412056 0.41
X" =| 0.659757 0.411562 0.103485 - 0.24721- 0.467446 0.324
0.073135 0.514863 0.56375F% 0.00619919 0.638137  0.067!

0.461402 - 0.738143 0.308194- 0.212623 0.283757 0.146
Y' =| 0.369803 0.093548 — 0.478285 0.364243 0.231484 0.66
—0.327233 0.0812379 — 0.27962- 0.694763 0.265296 0.50%
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Using these matrices we may decompo®g multiplyingz by C3([X,Y]) . This way,
we get only five non zero entries which induce the following decomposition:

2=23.0209x, Ax, Ax, +1035y, Ay, Ax, +4.627y Ay, Ax, + 212y, Ay, Ax, =459y, Ay, Ny,

Furthermore the best decomposable approximation of z is the3ea®x, A x, A x,.

O
Conclusions

The approximate decomposability of 3-vectors AtR® was considered. The first
order conditions of the optimization problem, implgecomposition of 3-vectors in
five orthogonal decomposable 3-vectors. Utilizing the Grassmann matrix 3{hef

problem can be reduced into a similar problem in the tensor space The results
leads to a computationally efficient method to calculate the best decomposable

approximation of a 3-vector jxR® which then can be utilized to solve approximate
frequency assignment problems. For this method to be applicable to such problems
has to be modified so that it calculates best decomposable approximation of three-
vectors parameterised by a linear variety. Such approach is currently under
investigation.
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