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Abstract. The importance of cavitation inside multi-hole injectors for direct injection internal 

combustion (IC) engines has been addressed in many previous investigations. Still, the effect of 

cavitation on jet spray, its stability and liquid breakup and atomisation is not yet fully understood. 

The current experimental work aims to address some of these issues. It focuses on the initiation 

and development of different types of cavitation inside a 7x enlarged transparent model of a 

symmetric 6-hole spark ignition direct injection (SIDI) injector and quantifies the effect of 

cavitation on near-nozzle spray cone angle and stability utilising high speed Mie scattering 

visualisation. The regions studied include the full length of the nozzle and its exit jet spray where 

the primary breakup takes place. 

 

 

1.  Introduction 

Multi-hole injectors for IC engines are wildly used in both diesel and gasoline engines and have many 

advantageous such as their flexibility in terms of number of holes and their arrangements which can be 

fitted to different combustion cylinder head, their ability to produce stable spray which is critical for 

spray guided combustion concept and their ability to be used at high injection pressure to ensure 

enhanced atomization and evaporation [1, 2]. Experimental studies of in-nozzle flow characteristics, in 

particular, cavitation in enlarged transparent models of multi-hole injectors and spray characteristics of 

real size ones have been extensively investigated by City research group [3-10]. These studies revealed 

the formation of three different types of cavitation, namely needle, geometric and string cavitation. 

Cavitation within the nozzle holes of multi-hole SIDI injectors can lead to significant spray instabilities 

and lack of targeting which can cause problems in combustion when operating in stratified mode. The 

simultaneous presence of these types of cavitation regimes creates a complex two-phase flow structure 

in the nozzle holes which seems to be responsible for hole-to-hole and cycle-to-cycle spray variations. 

Investigations [7-10] revealed the cavitation sites, their frequency of formation, and the locations of 

erosion within the nozzle. In addition, they showed how to minimise surface erosion using tapered 

converging holes. Large variations in the instantaneous fuel injection quantity of individual injection 
holes have been recorded when a cavitation string is observed inside them. Combination with model 
predictions has revealed that the observed reduction in the individual hole flow rate is partially attributed 
to the increased vapour fraction inside the hole when a string is present; the vortex flow developing 
upstream of the hole entry is the main reason for the observed trend [9]. Despite available information, 

the true dynamics and mechanisms of cavitation development and its link with near nozzle liquid break-

up at the exit of the nozzle hole are not fully understood. Therefore deeper understanding of in-nozzle 

flow characteristics and the dynamic link between cavitation and the emerging jet spray is essential. 

This calls for high temporal simultaneous imaging of the in-nozzle cavitation and the exiting liquid jet 
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spray in order to establish how cavitation influence spray shape, instability and break up. Thus the focus 

of this study is to establish these links and their mechanisms in a 7x 3-D transparent models of a six-

hole mini-sac-type nozzle utilised with gasoline direct injection; a high speed camera has been used to 

obtain simultaneous images at a rate of 50,000fps. 

2.  Experimental test-rig 

The experimental set up is shown in fig. 1a; amultistage centrifugal pump provides the upstream pressure 

in the transparent enlarged model. Working fluid is water at 25oC. A long telescopic extension tube was 

used on the CCD camera to maximise the magnification ratio of the screening area. The injection 

pressure was varied from 0.5bar to 3bar and the sprays from each nozzle hole were injected into the 

atmosphere and were collected back into the supply tank. A 100mm diameter focusing lens with the 

focal length of 300mm was used to increase the light intensity around the nozzle area to more than 2 

million Lux. Three set of 45° hot mirrors were used to filter out infrared wavelength in order to protect 

the Perspex nozzle from high temperatures. To ensure capturing high quality images, 2 set of cooling 

fans were used to decrease the temperature further around the nozzle and also to remove the water mists 

of the spray away from the near nozzle towards the suction collector to avoid fouling the imaging 

window. The injector assembly has a needle lift mechanism adjusted by a micrometer to set the exact 

needle height. The flow inside the nozzles is continuous, i.e. steady state flow condition, which means 

that transient nature of needle during its opening and closing processes is absent. The enlarged 

transparent model is geometry similar to the real-size injector and operates at similar Reynolds numbers. 

 

 
Fig. 1.(a) The closed loop steady-state flow rig of the transparent 7 times enlarged injector with the 

schematic diagram of flow circuit (left); (b) Close-up of transparent nozzle injector assembly.  

 

 
Fig. 2. Front view of the 7-times enlarged model installed on the test rig (red box) and schematic of the 

imaging area and the near-nozzle jet (yellow box). 
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(b) 



 

 

 

 

 

 

3.  Results 

Sample images of the results are shown below. Fig. 3 shows a sequence of 6 images of the in-nozzle 

flow and the emerging spray at full lift (1.05mm) at cavitation numbers of CN = 0.75, 1, 1.5, 1.75, 2, 

and 2.5. Cavitation number is defined here as CN= (Pinj - Pback)/(Pback - Pvap). Cavitation was not present 

at CN range between 0.75 to 1.0. Increasing cavitation above 1 induces cavitation in the nozzle and 

resulted to full film cavitation from CN=2 and above. It can be claimed that as the cavitation number 

rises from 1.0 to 1.5, the upper near-nozzle spray angle increases due to cavitation as can be seen from 

the images shown in fig. 3. 

 

  

  

  
Fig. 3. In-nozzle flow and the emerging spray at CN = 0.75, 1, 1.5, 1.75, 2, and 2.5. 

 

  

  

  
Fig. 4. Comparison of the upper and lower part of the very near-nozzle spray at CN=2. 
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As cavitation number gradually increases from 1.5 to 2.0, the geometric cavitation becomes more intense 

and stretches down the nozzle towards the exit. Another observation is that the structure of the geometric 

cavitation on top of the nozzle undergoes a transition with increase in CN from a cluster of bubbly cloud 

vapour into a smoothly horseshoe film cavitation as evident from images at CN=2 and CN=2.5 

respectively; this had impact on the structure of the upper part of the near exit spray.  Fig. 4 shows a 

sequence of 6 consecutive images of the in-nozzle flow and the emerging spray at CN = 2.0during100μs. 

The sequence depicts the near-nozzle structure of the spray with the extension of the smooth curved line 

that is stretched out of the nozzle. At t = 0, a pocket of bubbles was observed at the lower part of the 

nozzle inlet. This moves down and reaches the nozzle exit at t=100μs. This shows that the average 
velocity of this pocket is around 20m/s. However the upper part of the spray has much lower velocity 

(around 7m/s; tracked by the bold yellow circles)compared to the bottom part of the nozzle where the 

bulk of the liquid exists. 

4.  Conclusion 

Simultaneous imaging of in-nozzle cavitation and emerging spray have been obtained in a 7 times 

enlarged model of SIDI injector at different injection pressures and needle lifts under steady state 

conditions. Observations showed that bubble cloud cavitation influence the structure and the angle of 

emerging spray, in particular, on the upper part of the nozzle which could lead to spray instabilities. It 

has also been observed that once the geometric cavitation reaches the exit of the nozzle, its structure 

transform from a bubbly cloud into a smoothly curved lines film cavitation, which greatly influences 

the exiting spray structure. Further image analysis showed lower spray velocities on the upper part of 

the nozzle, where the spray is dominated by in-nozzle cavitating flow, than the lower part.  
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