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“Smoothed-market” methods are used by actuaries, when they value pension

plan assets, in order to dampen the volatility in contribution rates recom-

mended to plan sponsors. A method involving exponential smoothing is con-

sidered. The dynamics of the pension funding process is investigated in the

context of a simple model where asset gains and losses emerge as a result of

random rates of investment return and where the gains and losses are spread. It

is shown that smoothing market values up to a point does improve the stability

of contributions but excessive smoothing is inefficient. It is also shown that con-

sideration should be given to the combined effect of the asset valuation and gain

and loss adjustment methods. Practical and efficient combinations of gain/loss

spreading periods and asset value smoothing parameters are suggested.
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1 Introduction

Actuaries carry out regular valuations of defined benefit pension plans. One of their aims is

to advise on suitable contribution rates in order that pensions are funded over time. They

also carry out other types of valuations, for example for solvency or accounting purposes.

A basic premise of funding pensions in advance is that contributions towards a pension

can be systematically planned, spread out and invested in the capital markets over time.

The main aim of a funding valuation is therefore to compare the assets and liabilities of

a pension plan and to recommend contribution rates from a going-concern perspective.

Actuarial funding methods seek to budget these contributions in an organised and stable

manner over time. An implicit feature of these methods is that they incorporate devices

for smoothing contribution rates. By contrast, no such smoothing is involved in accounting

valuations (which aim to measure the economic cost to plan sponsors of pension provision)

and in solvency valuations (which aim to establish that pensions are payable in the event

of a wind-up of the pension plan). This paper is concerned with actuarial methods in the

context of funding valuations only.

One of the ways in which contribution rates are smoothed is through the use of an

actuarial value of pension plan assets. Actuarial asset valuation methods are described in a

survey carried out by the Committee on Retirement Systems Research (1998). Permissible

methods are also mentioned in the Standard of Practice for Valuation of Pension Plans of

the Canadian Institute of Actuaries (1994), in Actuarial Standard of Practice No. 4 of the

Actuarial Standards Board (1993) in the United States, and in relevant parts of the U.S.

Employee Retirement Income Security Act (ERISA) and the U.S. Internal Revenue Service

code (see McGill et al., 1996, p. 678). It is important to note that, for funding purposes, an

actuarial asset value is not an estimator of the fundamental worth of pension plan assets

but is used to moderate volatility in the market values of these assets and thereby generate
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a stable and smooth pattern of contribution rates: see Ezra (1979, p. 40), Anderson (1992,

p. 108) and Winklevoss (1993, p. 171).

This paper investigates the commonly used “smoothed-market value” method, which

calculates an average of market values of assets while allowing for the time value of money

and for cash flows (section 3). To this end, a simple model of a defined benefit pension

plan is described in section 2. The first and second moments of the contribution rate

and other variables in the pension fund are derived, in section 4, when asset gains and

losses emerge as a result of random rates of investment return. Finally, it is shown that

excessive smoothing is counterproductive and efficient smoothing parameters are suggested

(section 5). Proofs of all results can be found in Owadally and Haberman (2003).

2 A Simple Model of the Pension Fund

The smoothed-market asset valuation method employing exponential smoothing is consid-

ered in the following. Certain simplifying assumptions are required to study the effect of

valuing the assets of pension plans according to this method during funding valuations.

A simple but mathematically tractable model of a defined benefit plan is used here. For

more details, refer to Dufresne (1988) or Haberman (1992). The plan provides a pension

based on final salary upon retirement at a normal retirement age.

The plan is valued at the beginning of every year. A contribution rate Ct is determined

at the start of year (t, t + 1). Plan assets are directly marketable, their market value Ft

is instantly obtainable and an actuarial asset value AVt is calculated. A set of valuation

assumptions (known as the valuation basis) concerning mortality rates, early retirement

rates, withdrawal rates, inflation, promotional salary scale etc. is used at each valuation.

It is assumed that the actuarial valuation basis is constant. It is also assumed that the

funding method or actuarial cost method is not changed. See Aitken (1994), McGill et
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al. (1996) or Turner (1984) for descriptions of actuarial cost methods. The actuarial cost

method generates an actuarial liability (also known as standard fund) AL and a normal

cost (also known as standard contribution) NC. The valuation discount rate i is chosen

such that the actuarial liability AL is a practical approximation to the fair value of pension

liabilities. The actuarial assumption as to the projected long-term rate of return on plan

assets is also i. In the rest of this paper, the following usual notation is employed:

u = 1 + i, v = (1 + i)−1. (2.1)

Actual experience does not generally unfold according to valuation assumptions. Actu-

arial gains and losses arise when experience deviates from valuation assumptions. McGill

et al. (1996, p. 522) and Aitken (1994, p. 149) discuss the relevance and calculation of

various types of gains and losses. Favourable experience, such as higher investment re-

turns or heavier post-retirement mortality than anticipated, result in gains. Conversely,

unfavourable experience results in losses.

A simple projection of the experience of the plan is made here. The size and age profile

of the membership of the pension plan is projected to be constant and to evolve exactly

according to the life table used for valuation purposes. No gain or loss due to mortality

arises. For simplicity, neither salaries nor benefits are subject to economic inflation. The

actuarial liability AL, normal cost NC and yearly benefit outgo B are constant as a result

of the assumptions made about pension liabilities and the funding method. (Alternatively,

all salaries and benefits (including pensions in payment) may be assumed to increase at

the same rate of inflation, and all monetary quantities (including i, rt, Ft etc.) are then

deflated. AL, NC, B are then constant in real terms.)

The economic experience of the plan is such that a variable rate of return rt is earned in

year (t− 1, t). The only source of unpredictable experience in the plan is through volatile

investment returns. That is, only asset gains and losses emerge.
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This simple model resembles the model of Trowbridge (1952), who shows that when

the liability structure of the pension plan is in equilibrium, the following equation holds:

AL = (1 + i)(AL + NC − B). (2.2)

All cash flows occur at the start of the year. An asset recurrence relation may be written:

for t ≥ 0,

Ft+1 = (1 + rt+1)(Ft + Ct − B). (2.3)

If the experience of the plan is favourable relative to valuation assumptions, successive

actuarial gains will emerge and will tend to reduce any deficit (or increase any surplus)

in the pension fund. Conversely, losses increase deficits. Gains and losses are paid off

by adjusting pension contributions to restore financial balance to the pension fund. The

excess of actuarial liability over the actuarial asset value is AL − AVt and represents a

notional actuarial deficit in the pension fund. This deficit is paid off by paying a total

contribution rate Ct equal to the normal cost NC plus a supplementary contribution SCt,

Ct = NC + SCt. (2.4)

The supplementary contribution is equal to an amortization payment over a term of m years

for the deficit, that is, SCt = (AL−AVt)/äm|, where ä
m| = (1− vm)/(1− v) represents the

present value of an annuity-certain payable in advance over m years at the valuation rate of

interest i. Gains and losses are said to be spread over m years. This method of calculating

the supplementary contribution is very common (particularly in the United Kingdom) and

is discussed by Turner (1984), Dufresne (1988), McGill et al. (1996), and Owadally and

Haberman (1999) among others.

It is convenient to define the following:

K = 1 − 1/ä
m|, (2.5)
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so that the supplementary contribution is a proportion (1 − K) of the actuarial deficit:

SCt = (1 − K)(AL − AVt).

The excess of actuarial liability over the market value of plan assets is called the un-

funded liability of the plan:

ULt = AL − Ft. (2.6)

A pension plan may have an initial unfunded liability UL0, arising at plan inception

or from amendments to plan benefits or valuation methods. The initial unfunded liability

may be explicitly amortized over n years (say) by payments

Pt =















UL0/än|, 0 ≤ t ≤ n − 1,

0, t ≥ n.

(2.7)

ä
n| = (1−vn)/(1−v) represents the present value of an annuity-certain payable in advance

over n years at the valuation rate of interest i. The unamortized part of UL0 is

Ut =















UL0 än−t|/än|, 0 ≤ t ≤ n − 1,

0, t ≥ n.

(2.8)

Note that

Pt = Ut − vUt+1, (2.9)

where we define Un = Un+1 = · · · = 0.

If an initial unfunded liability is separately amortized, then gains and losses are spread

by calculating the supplementary contribution as follows (Owadally and Haberman, 1999):

SCt = (1 − K)(AL − AVt − Ut) + Pt. (2.10)

(AL−AVt−Ut) represents the portion of the actuarial deficit in excess of the unamortized

part of the initial unfunded liability.
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Finally, note that the recurrence relation (2.3) may be written in terms of the unfunded

liability using equations (2.2), (2.6) and (2.10):

ULt+1 = AL + (1 + rt+1)(ULt − SCt − v AL). (2.11)

3 Exponential Smoothing of Market Values

A smoothed-market actuarial asset value based on an exponential smoothing of market

values is commonly used and is considered here. A simple average of the market values at

different points in time cannot be used of course. The market values must be adjusted by

allowing for both the time value of money and cash flows (Anderson, 1992, p. 110).

The actuarial asset value AVt at time t is a weighted average of the market value Ft of

the fund at time t and the actuarial value of the fund at time t as anticipated at time t− 1

based on the valuation assumptions at time t − 1:

AVt = λu(AVt−1 + Ct−1 − B) + (1 − λ)Ft, (3.1)

where λ is a smoothing parameter such that 0 ≤ λ < v. A larger value of λ means that

more weight is placed on the past market values and more smoothing is applied. It is easily

verified that AVt may be expressed as an infinite exponentially weighted average allowing

for interest and cash flows (provided 0 < λ < v):

AVt =
∞

∑

j=0

(1 − λ)(λu)jFt−j +
∞

∑

j=1

(λu)j(Ct−j − B). (3.2)

If assets are valued at market only, that is λ = 0 and AVt = Ft ∀t, then the model reduces to

the one investigated by Dufresne (1988) (with the minor exception that he does not consider

the separate amortization of the initial unfunded liability in equations (2.7)–(2.9)).

We may use equations (2.2), (2.4) and (2.6) to rewrite equation (3.1) in terms of the

unfunded liability and supplementary contribution:

AL − AVt = λu[AL − AVt−1 − SCt−1] + (1 − λ)ULt. (3.3)
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Equations (2.9) and (2.10) may also be used:

AL − AVt − Ut = λKu(AL − AVt−1 − Ut−1) + (1 − λ)(ULt − Ut). (3.4)

Equation (3.4) may be written as:

AL − AVt − Ut = (1 − λ)
t

∑

j=0

(λKu)t−j(ULj − Uj). (3.5)

Hence, the supplementary contribution rate when asset values are smoothed is given by

(substituting equation (3.5) in equation (2.10)):

SCt = (1 − K)(1 − λ)
t

∑

j=0

(λKu)t−j(ULj − Uj) + Pt. (3.6)

Finally, we may replace SCt from equation (3.6) in equation (2.11) to yield an equation

for the unfunded liability of the pension plan:

(ULt+1 − Ut+1) − (AL − Ut+1)

= (1 + rt+1)

[

(ULt − Ut) − (1 − K)(1 − λ)
t

∑

j=0

(λKu)t−j(ULj − Uj)

− v(AL − Ut+1)

]

. (3.7)

The initial unfunded liability may be large and its treatment is important in practice.

Nevertheless, it has only a transient effect since it is paid off in n years and Ut = 0 for

t ≥ n (equation (2.8)). If the initial unfunded liability is disregarded (assumed to be zero

or to be paid off from a separate fund), equation (3.7) has a somewhat simpler structure:

ULt+1 − AL = (1 + rt+1)

[

ULt − (1 − K)(1 − λ)
t

∑

j=0

(λKu)t−jULj − v AL

]

. (3.8)

Equation (3.8) reveals that the asset valuation method (through the parameter λ)

and the gain/loss spreading method (through the parameter K) provide an exponential

smoothing mechanism in the pension funding process. Note also that equations (3.6)–(3.8)
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are symmetrical in K and λ: the values of K and λ could be interchanged without affecting

the dynamics of the pension funding process. The perfect symmetry above is a consequence

of the simplistic assumptions of the model. In practice, the actuarial asset value smoothes

only the volatility in asset returns whereas the supplementary contribution smoothes all

gains and losses, including demographic ones.

4 Moments of the Pension Funding Process

Suppose now that the sequence {rt} of rates of return on pension plan assets is a sequence

of independent and identically distributed random variables, with mean r and variance σ2.

Such a projection assumption simplifies reality but does introduce volatility and reflect

market efficiency. It is convenient to define d = i/(1 + i), dr = r/(1 + r), as well as

θ = (1 − K)(1 − λ)/(1 − λKu). (4.1)

The long-term expected values of various variables in the pension fund are shown in Propo-

sition 1, which is proven in Owadally and Haberman (2003).

Proposition 1 If i > −1, r > −1, λK(1 + i)(1 + r) < 1 and θ > dr, then

lim
t→∞

EULt = AL(dr − d)/(dr − θ), (4.2)

lim
t→∞

EFt = AL(d − θ)/(dr − θ), (4.3)

lim
t→∞

EAVt = AL − ALθ(dr − d)/(1 − K)(dr − θ), (4.4)

lim
t→∞

ECt = NC + ALθ(dr − d)/(dr − θ). (4.5)

The symmetry between K and λ in the first moments (except in that of the actuarial

value AVt which involves only smoothing through asset valuation and not through the

supplementary contribution) is again evident. When unsmoothed market values of plan

assets are used (λ = 0) then θ = 1 − K, in which case the results reduce exactly to those
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obtained by Dufresne (1988). When asset gains and losses are not spread but are paid off

immediately (m = 1, K = 0) then θ = 1 − λ, in which case the results mirror those of

Dufresne (1988) with λ exactly replacing K.

Simpler results follow if the actuarial assumption i as to the rate of return on plan

assets is unbiased and equals the mean rate of return r.

Corollary 1 Suppose that r = i. Then:

EULt =















UL0 än−t|/än|, 0 ≤ t ≤ n − 1,

0, t ≥ n,

(4.6)

EFt = EAVt =















AL − UL0 än−t|/än|, 0 ≤ t ≤ n − 1,

AL, t ≥ n,

(4.7)

ECt =















NC + UL0/än|, 0 ≤ t ≤ n − 1,

NC, t ≥ n.

(4.8)

See Owadally and Haberman (2003) for a proof. If the actuarial assumption as to

returns on plan assets is a best estimate and is borne out by experience on average, then

no asset gain or loss is expected to emerge. After the initial unfunded liability is defrayed,

the plan is expected to remain fully funded and no supplementary contribution beyond

the normal cost is paid on average. The Standard of Practice for Valuation of Pension

Plans of the Canadian Institute of Actuaries (1994, para. 5.01) requires that an asset

valuation method be consistent with liability valuation and that systematic gains or losses

do not emerge. The smoothed-market method described in section 3 therefore satisfies this

criterion for consistency.

The second moments of the pension funding process are considered in Proposition 2.

The simplifying assumption is made henceforth that the assumed rate of return is unbi-

ased (r = i). The variance of the random rate of return on plan assets is σ2 = Varrt.
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Furthermore, define q = E(1 + rt)
2 = u2 + σ2 and V∞ = σ2v2AL2/Q, where

Q = (1 − qK2)(1 − λ2u2)(1 − λKu2)

− λ(1 − K)σ2[2K(1 − λ2u2) + λ(1 − K)(1 + λKu2)] (4.9)

= (1 − qλ2)(1 − K2u2)(1 − λKu2)

− K(1 − λ)σ2[2λ(1 − K2u2) + K(1 − λ)(1 + λKu2)]. (4.10)

Proposition 2 Provided that r = i > −, 0 ≤ K < v, 0 ≤ λ < v, Q > 0 and

(1 + λ2K2qu2)(1 + λ3K3σ2u2 − λ4K4qu6)

> 2λ4K4(λ + K)qσ2u4 + λK(λ + K)2qu2(1 − λ2K2qu2), (4.11)

then

lim
t→∞

VarFt = V∞[(1 − λKu2)(1 − λ2K2u2) + 2λK(1 − λ)(1 − K)u2], (4.12)

lim
t→∞

VarAVt = V∞(1 − λ)2(1 + λKu2), (4.13)

lim
t→∞

VarCt = V∞(1 − K)2(1 − λ)2(1 + λKu2), (4.14)

lim
t→∞

Cov[Ft, AVt] = V∞(1 − λ)[1 + λK(1 − K − λ)u2], (4.15)

lim
t→∞

Cov[Ft, Ct] = −V∞(1 − K)(1 − λ)[1 + λK(1 − K − λ)u2], (4.16)

lim
t→∞

Cov[Ct, AVt] = −V∞(1 − K)(1 − λ)2(1 + λKu2). (4.17)

Refer to Owadally and Haberman (2003) for a proof. Again, the moments (except those

involving the smoothed actuarial asset value AVt) exhibit symmetry and the smoothing

parameters K and λ can be interchanged. When pure market values of assets are used

(λ = 0) then Q = 1 − qK2 and the second moments are identical to those obtained by

Dufresne (1988) (lim VarFt = lim VarAVt). When asset gains and losses are not spread but

are paid off immediately (K = 0) then Q = 1− qλ2 and Dufresne’s (1988) results are again

obtained but with λ exactly replacing K.
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5 Effects of Smoothing Asset Values

5.1 Stability (Finite Variance)

An important property of an asset valuation method is that it should lead to stable funding

for pension obligations: the funding process should at least exhibit finite variance. The

convergence conditions of Proposition 1 and 2 are sufficient for finite variance. These

conditions are realistic in normal economic circumstances and the condition that most

constrains the choice of gain/loss spreading period m (or spreading parameter K) and of

asset valuation parameter λ is Q > 0. (K and m are in a direct one-to-one relationship:

see equation (2.5).) It is necessary, but not sufficient, for stability that K < 1/
√

q and

λ < 1/
√

q.

Table 1 exhibits the stability constraints in terms of maximum allowable spread periods

for various choices of {i, σ, λ}. Table 2 shows maximum allowable smoothing parameters

for various choices of {i, σ, m}. Both tables are based on the stability conditions of

Proposition 2. It is easily verified in Tables 1 and 2 that inequalities K < 1/
√

q and

λ < 1/
√

q hold.

It is clear from Table 1 that gains and losses should not be spread over very long periods

as this could result in an unstable funding process. This conclusion is also emphasized by

Dufresne (1988) who considers only pure market values of assets. Spreading periods should

be even shorter if asset values are being smoothed.

Table 2 shows that excessive smoothing of asset values must be avoided, especially

if gains and losses are being spread over long periods. Asset valuation and gain/loss

adjustment perform a complementary actuarial smoothing function and there is a finite

limit to the cumulative amount of smoothing that may be applied.
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5.2 Effect on the Smoothed Actuarial Asset Value

A suitable asset valuation method should generate an asset value that is realistic in the

sense that it remains fairly close to market values. Furthermore, the asset value should be

more stable or less variable than the market value (Berin, 1989, p. 29). Since pension funds

enjoy favourable tax treatment, the Internal Revenue Service in the United States imposes

a maximum funding limit and for this purpose it requires that the smoothed asset value be

within a corridor of 20% of the market value of assets (McGill et al. , 1996). Proposition 3

(proven in Owadally and Haberman, 2003) states that these properties do indeed hold.

Proposition 3 Provided that the stability conditions of Proposition 2 hold,

lim
t→∞

E[Ft − AVt]
2 < ∞, (5.1)

lim
t→∞

VarAVt ≤ lim
t→∞

VarFt. (5.2)

Inequality (5.2) shows that the smoothed asset value is less variable than market value,

provided the given conditions hold. Inequality (5.1) shows that the deviation between the

smoothed actuarial asset value and the market value of plan assets remains bounded in the

mean-square, provided that the amount of smoothing in the asset valuation and gain/loss

adjustment methods are constrained as discussed in section 5.1. Excessive averaging of

market values (as well as spreading of gains/losses over very long periods) must therefore

be avoided. Note in particular that if λ = 1, the actuarial asset value AVt in equation (3.1)

does not revert towards the market value Ft and unless the fund is marked-to-market

regularly the actuarial asset value will diverge from the market value of pension plan

assets.
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5.3 Effect on the Fund Level

Dufresne (1988) and Owadally and Haberman (1999) consider only pure market values of

assets (λ = 0) but show that spreading or amortizing gains and losses over longer periods

lead to more variable fund levels. This is reasonable. As gains and losses are deferred for

longer periods, fast enough action is not taken to defray them and the level of funding

becomes more volatile. Likewise, one anticipates that heavier smoothing of asset values,

which delays the recognition of asset gains and losses, should also adversely affect the

security of pension benefits. This is encapsulated in Proposition 4, proven in Owadally

and Haberman (2003).

Proposition 4 Provided that the stability conditions of Proposition 2 hold, lim VarFt

increases monotonically with both m and λ.

This result is illustrated in the first contour plot in Figure 1. The symmetry between

asset valuation and asset gain/loss spreading is clearly exhibited: the contour plot is sym-

metrical in the plane K = λ.

5.4 Effect on the Contribution Rate

Slower recognition and amortization of gains and losses should result in smoother and more

stable contribution rates. In the context of pure market values of assets (λ = 0), Dufresne

(1988) shows that spreading gains and losses over longer periods does initially stabilize

contributions, but beyond a certain critical period contributions become more variable:

lim VarCt against m has a minimum at m∗ corresponding to K∗ = 1/q. (Owadally and

Haberman (1999) also assume that assets are valued at market prices and prove a similar

result when gains and losses are directly amortized rather than indirectly spread.)

An immediate consequence of the symmetry between gain/loss spreading and the ex-
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ponential smoothing asset valuation methods used here is that, if gains and losses are

immediately paid off and not spread forward (m = 1 or K = 0), then lim VarCt against λ

has a minimum at λ∗ = 1/q. Therefore, smoothing beyond a certain amount (weighting

the current market value of assets by less than 1 − λ∗) is countereffective, as contribu-

tions become more variable. (The proof is obtained, as a matter of course, by repeating

Dufresne’s (1988) proof and replacing all K by λ.)

The combined effect of asset valuation and gain/loss spreading on the stability of con-

tribution rates is investigated in Proposition 5 (proof in Owadally and Haberman, 2003).

Proposition 5 Suppose m > 1 and λ > 0. Provided that the stability conditions of

Proposition 2 hold,

1. as m increases,

lim VarCt has at least one minimum at some m < m∗, provided 0 < λ < λ∗;

lim VarCt increases monotonically, provided either λ ≥ λ∗ or m ≥ m∗;

2. as λ increases,

lim VarCt has at least one minimum at some λ < λ∗, provided 1 < m < m∗;

lim VarCt increases monotonically, provided either m ≥ m∗ or λ ≥ λ∗.

The variation of lim VarCt with K and λ is illustrated in the second contour plot in

Figure 1 and in Figure 2. The two parts of Proposition 5 are identical except that K and

λ are interchanged. The variation of lim VarCt with K is similar to its variation with λ.

The boomerang-shaped contours of Figure 1 are a further indication of the complementary

function of gain/loss adjustment and asset valuation: the same contribution or fund level

variability may be achieved by trading off λ and K.

Proposition 5 does not state whether no more than one minimum occurs but numerical

work, as illustrated by Figure 2, does indicate at most one minimum. This suggests that

15



• lim VarCt against K exhibits a minimum, except for large enough λ when lim VarCt

increases monotonically;

• lim VarCt against λ exhibits a minimum, except for large enough K when lim VarCt

increases monotonically.

Thus, in Figure 2, lim VarCt versus K exhibits a minimum when λ < λ∗ = 0.82. The

minimum for λ = 0 is seen to occur at K = K∗ = 0.82. The minima for 0 < λ < λ∗

clearly occur at some K < 0.82. But when λ ≥ λ∗ = 0.82, lim VarCt versus K has no

minimum and increases monotonically. In other words, if asset values are being heavily

smoothed (λ ≥ λ∗), it is counterproductive to spread gains and losses in an effort to

smooth contribution rates further. Likewise, if gains/losses are being spread over long

periods (K ≥ K∗ or m ≥ m∗), averaging market values of plan assets in an effort to

generate smoother contribution rates is counterproductive.

Attention must therefore be paid to the combined smoothing effect of gain/loss adjust-

ment and asset valuation.

5.5 Efficient Asset Valuation and Gain/Loss Spreading

It is argued by Dufresne (1988) that maximizing the security of plan members’ benefits

(by minimizing lim VarFt) and maximizing the stability of contributions required from the

plan sponsor (by minimizing lim VarCt) are rational actuarial objectives in pension funding

in the long term. Given such objectives, it is possible to go further than in section 5.4 and

state that:

Proposition 6 Under the objectives of minimizing lim VarFt and lim VarCt,

1. it is not efficient to smooth asset values by weighting current market value by less

than 1 − λ∗;
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2. it is not efficient to adjust gains/losses by spreading them over periods exceeding m∗.

Proposition 4 states that increasing λ causes lim VarFt to increase. Proposition 5 states

that increasing λ initially causes lim VarCt to decrease but eventually increasing λ beyond

λ∗ causes lim VarCt to increase. Hence, it is inefficient to smooth asset values using λ > λ∗

as there is some other choice of λ for which both lim VarFt and lim VarCt may be reduced.

By symmetry, the second part of Proposition 6 is also proven.

The second part of Proposition 6 encompasses the conclusions of Dufresne (1988) who

investigates the choice of m when pure market values are used (λ = 0).

Numerical work indicates that lim VarCt against λ or K has at most one minimum,

as discussed in section 5.4. For any given gain/loss spreading period m, it is inefficient

to smooth asset values by more than the [lim VarCt]-minimizing value of λ as a lower λ

will reduce both lim VarFt and lim VarCt. If m is long enough and lim VarCt is strictly

increasing with λ, then pure market values should be used. Table 4 lists the [lim VarCt]-

minimizing values of λ for various choices of {i, σ, m}. It is efficient to smooth asset values

using a value of λ between 0 and the [lim VarCt]-minimizing value in Table 4. The first

column of Table 4 (m = 1 or K = 0) contains the upper bound λ∗ = 1/q. The values

in Table 4 are of course lower than the corresponding maximum allowable values of λ for

stability in Table 2.

By symmetry, Table 3 shows the longest periods over which gains and losses can be

efficiently spread for various choices of {i, σ, λ}.

Tables 3 and 4 suggest that pension benefits would be efficiently funded if gains and

losses are spread over terms of 1–5 years with a weight of 20–100% placed on the current

market value of assets (λ should be at most 80%). Spreading asset gains and losses over

up to 10 years requires the current market value to be weighted by at least 60% for

efficiency (assuming real rates of return averaging up to 5% with standard deviations of up

to 15%). This analysis is limited by the fact that only asset gains and losses were allowed.
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Uncertainty in mortality, early retirement and other factors was assumed to be negligible

compared with investment uncertainty.

6 Conclusion

The motivation for the use of special actuarial methods to value the assets of defined

benefit pension plans was discussed in the context of funding valuations: an actuarial asset

value is employed to moderate volatility in market values. A simple pension plan model was

described where experience unfolds deterministically except for random investment returns.

Asset gains and losses emerge and supplementary contributions are paid so as to spread

the gains and losses. A smoothed-market asset value incorporating exponential smoothing

was described. Symmetry between asset gain/loss adjustment and smoothed-market asset

valuation was demonstrated and it was shown that they have a similar smoothing function

in the pension funding process.

The first two moments of several variables (the level of contribution required, and the

market and smoothed actuarial values of pension plan assets) were obtained. An important

result is that asset valuation and gain/loss adjustment techniques have a complementary

function in achieving smoothness in the pension funding process and their combined effect

must be considered. Conditions for the funding process to be stable in the mean-square

were obtained, restricting the total amount of smoothing through both techniques. The

actuarial asset value does not diverge from, and is more stable than, the market value of

plan assets if the conditions for stability hold.

It was also shown that the total amount of smoothing is further constrained if funding

is to be efficient and the long-term variability of both contribution and funding levels is

to be minimized. Numerical work appears to indicate that a combination of a gain/loss

spreading period of 1–5 years and a 20–100% weighting on the current market value of
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assets is efficient, as is a combination of 1–10 years and 60–100% respectively.

These results are mitigated by the fact that only asset gains and losses were considered

in the model. This is a reasonable approximation to reality if volatility in mortality and

other factors is small compared to volatility in investment returns. Further research is

required to establish the effects of more general economic and demographic uncertainty in

pension funding.
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Table 1: Maximum allowable m for various choices of {i, σ, λ}. Blanks indicate that

stability conditions do not hold.

σ i λ = 0 λ = 20% λ = 40% λ = 60% λ = 80% λ = 90%

0.1 1% 112 111 110 109 104 94

3% 67 67 66 64 59 47

5% 51 50 49 47 42 29

10% 33 33 32 30 23 5

15% 25 25 25 22 14

0.2 1% 42 41 41 39 34 26

3% 32 32 31 28 24 20

5% 27 27 24 22 19 9

10% 20 20 17 15 11

15% 17 16 15 13 7
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Table 2: Maximum allowable λ (%) for various choices of {i, σ, m}. Blanks indicate that

stability conditions do not hold.

σ i m = 1 3 5 10 15 20 25 30 40 50

0.1 1% 98.5 98.5 98.4 98.4 98.3 98.2 98.0 97.8 97.5 97.0

3% 96.6 96.6 96.5 96.2 95.9 95.5 94.9 94.2 92.4 88.9

5% 94.8 94.7 94.6 94.1 93.4 92.5 91.2 89.6 82.9 34.7

10% 90.5 90.4 90.1 88.8 86.7 83.6 78.0 63.2

15% 86.6 86.4 85.9 83.6 79.5 71.4 40.8

0.2 1% 97.1 96.9 96.6 95.8 94.5 92.9 90.6 86.8 54.9

3% 95.3 94.9 94.5 92.8 90.4 86.6 79.4 58.0

5% 93.6 93.0 92.4 89.8 85.7 78.2 55.0

10% 89.4 88.6 87.4 82.1 71.5 25.2

15% 85.7 84.6 82.7 74.2 49.7
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Table 3: lim VarCt-minimizing values of m for various choices of {i, σ, λ}. † indicates that

lim VarCt increases monotonically with m with smallest value at m = 1. Blanks indicate

instability.

σ i λ = 0 λ = 20% λ = 40% λ = 60% λ = 80% λ = 90%

0.1 1% 42 41 41 39 36 28

3% 20 19 19 17 14 3

5% 13 13 12 11 6 1

10% 7 7 6 5 1 †

15% 5 5 4 2 †

0.2 1% 19 19 18 17 13 5

3% 13 13 12 11 6 1

5% 9 9 9 7 3 †

10% 6 6 5 4 1

15% 5 4 4 2 †
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Table 4: lim VarCt-minimizing values of λ (%) for various choices of {i, σ, m}. † indicates

that lim VarCt increases monotonically with λ with smallest value at λ = 0. Blanks indicate

instability.

σ i m = 1 3 5 10 15 20 25 30 40 50

0.1 1% 97.1 96.9 96.7 96.0 94.8 91.6 73.1 34.5 3.2 †

3% 93.4 92.6 91.4 80.6 23.9 † † † † †

5% 89.9 87.9 83.8 22.8 † † † † † †

10% 82.0 73.0 35.0 † † † † †

15% 75.0 50.4 4.0 † † † †

0.2 1% 94.3 93.4 92.0 81.5 27.1 † † † †

3% 90.8 88.6 84.2 25.0 † † † †

5% 87.5 83.2 70.7 † † † †

10% 80.0 66.0 20.2 † † †

15% 73.4 42.0 † † †
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Figure 1: Contour plots of lim VarFt (above) and lim VarCt (below) against K and λ.

i = 10%, σ = 5%. Lighter shading represents higher values.
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Figure 2: limVarCt (scaled) against K for various λ. K and λ can be interposed. i = 10%,

σ = 10%, λ∗ = K∗ = 0.82.
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