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Transonic flutter analysis using a fully coupled

density based solver for inviscid flow

H.I. Kassem, X. Liu and J.R. Banerjee

Abstract

This paper focuses on the coupling between the high fidelity aerodynamic model for

the flow field with the modal analysis of a typical wing section to carry out flutter

analysis. This coupled aeroelastic model is implemented in one of the most widely

used open source CFD codes called OpenFOAM. The model is designed to calculate

the structural displacement in the time domain based on the free vibration modes of

the structure by constructing the numerical model directly from the modal analysis.

Essentially a second order ordinary differential equation is solved for each mode as

a function of the generalized coordinates. A density based solver using central dif-

ference scheme of Kurganov and Tadmor is used to model the flow field. Two main

cases of transonic flow over NACA 64A010 are modelled for a forced pitching oscil-

lation airfoil and a self-sustained aerofoil respectively. The self-sustained two degrees

of freedom case is modelled for three different possibilities covering damped, neu-

tral and divergent oscillations. Predicted results show very good agreement with the

numerical and experimental data available in the literature.

Keywords: Aeroelasticity, CFD, transonic flow, flutter.

1 Introduction

Aeroelasticity is the science of studying the interaction between three main forces

namely; elastic, inertia and aerodynamics. Therefore aeroelasticity is an interdisci-

plinary field combining; fluid mechanics, solid mechanics and structural dynamics.

In general, the interaction between these two or three areas is classified as aeroelastic

problems. Aeroelastic research started in the late 1920’s and the subject matter has

matured enormously over the years and now there are many excellent texts on the sub-

ject [1, 2, 3, 4]. Insufficient or inaccurate prediction of aeroelastic characteristics of

aircraft during the design process can lead to catastrophic incidents.

One of the most dangerous aeroelastic instabilities is, of course flutter. It is a self-

excited oscillation of elastic body in fluid stream. This condition is usually defined by

two important parameters namely the flutter speed and the flutter frequency. Flutter
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speed defines the speed beyond which the aircraft becomes unstable. It means that

if the aircraft flies at this speed it will have steady harmonic oscillation of constant

amplitude. This self-excited oscillation will have a frequency which is called the

flutter frequency. This point is the most critical point because if for any reason, free

stream velocity exceeds the flutter speed, the system will have divergent oscillation

and will eventually vibrate in a violent way which could lead to the destruction of

the aircraft. The aeroelastic phenomenon, flutter is due to all three types of forces,

namely elastic, inertia and aerodynamics. The fluid flow instead of playing its natural

role to damp the structural vibration, it will feed the system instead with more and

more energy until divergent oscillation occurs. The complexity of flutter analysis

arises from the fact that flutter involves very strong coupling between fluid mechanics

and structural dynamics. Therefore an accurate description of the flow field as well as

structural dynamic behaviour together with a mechanism of coupling between the two

is essential for flutter analysis.

Avoiding flutter is a mandatory requirement in any aircraft design process. Al-

though flutter analysis is a relatively old problem in aviation, but it is still challenging,

particularly with the advent of composite materials and requirement of high speeds.

The main challenge for this problem is at the transonic flow region. The transonic

flutter limit appears to be low in any flight range. Therefore for an aircraft the most

critical flutter point generally arises when the flow is transonic. The phenomenon is

called transonic dip which has featured in the literature many times [5, 6]. The tran-

sonic flow field is a transition between subsonic flow and supersonic flow exhibiting

shock waves and highly non-linear behaviour.

The transonic flow being non-linear poses a great challenge over traditional linear

theories [7] which fail to predict accurately the aerodynamic properties. Therefore

solving the non-linear governing equations of fluid flow using numerical techniques

has become essential [8, 9, 10, 3]. Despite the computational cost of using CFD, it is

necessarily being used in the aeroelasticity field for greater accuracy and better flutter

prediction. This has given birth to a new field in aeroelasticity called computational

aeroelasticity which couples computational fluid dynamics (CFD) with computational

structural dynamics (CSD) [11].

In the next section a concise theoretical background is given focusing on the gov-

erning equations of the aeroelastic system. Then the numerical methods and the im-

plemented code are explained. Finally, the results of the two validation cases are

discussed in detail. This paper is based on an earlier paper [12] but with some en-

hancement. The essential improvement in this paper appears in the results of the first

case study which is improved considerably compared to the previous work. This im-

provement is mainly due to some refinement in the convergence criteria and better

boundary condition for the slip moving wall.

Following the publication of the conference paper by the authors [12], an updated

version of the software OpenFOAM-2.3 has now been used [13]. The newer version

introduced many improvements, particularly in parallel running performance and the

implementation of a new dynamic mesh solver. Also another important improvement
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in this release is the inclusion of an enhanced ordinary differential equation solver

library which is directly relevant to the present work [14]. Due these this modifications

some of the implemented features by the authors have been updated in this paper.

2 Theoretical Background

2.1 Aerodynamic Model

The governing equations of the flow are the complete Euler equations [15, 16, 17]. If

ρ, u, p and E are density, velocity, pressure and total energy respectively, the Euler

equations in vector notation will then have the following form;

• Conservation of mass:
∂ρ

∂t
+∇ · [uρ] = 0 (1)

• Conservation of momentum:

∂(ρu)

∂t
+∇ · [u(ρu)] +∇p = 0 (2)

• Conservation of total energy:

∂(ρE)

∂t
+∇ · [u(ρE)] +∇ · [up] = 0 (3)

where ∇ is the nabla vector operator , ∇ ≡ ∂i ≡
∂
∂xi

≡ ( ∂
∂x1

, ∂
∂x2

, ∂
∂x3

). Thus for any

vector a, ∇ · a is the divergence defined by ∇ · a ≡ ∂a1
∂x1

+ ∂a2
∂x2

+ ∂a3
∂x3

. Also for any

scalar s, the gradient is ∇s ≡ ( ∂s
∂x1

, ∂s
∂x2

, ∂s
∂x3

). In equation (3), E = e+ |u|2
2

with e the

specific internal energy.

2.2 Aeroelastic Model

The typical wing section using two-dimensional model[4, 1, 3] is well established

for studying two degrees of freedom wing dynamical system. This model considers

the plunging (h) and pitching (α) motions about the elastic axis of the wing. The

governing equations of undamped motion are [18]:

mḧ+ Sαα̈ +Khh = −L (4)

Sαḧ+ Iαα̈ +Kαα = Mea (5)

where m, Iα and Sα are aerofoil mass per unit length, section moment of inertia about

the elastic axis per unit length and static mass imbalance respectively. Kh and Kα are

bending and torsional spring stiffness whereas L and Mea are the lift force (positive
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up) and moment about the elastic axis (positive nose up). The plunging displacement

h is positive down and the angle of attack α is positive nose up and is in radians. Non-

dimensionalizing the linear displacement by the aerofoil semichord (b) in equations

(4) and (5) and the time by the uncoupled natural frequency of the torsional spring

(ωα) so that the dimensionless time is τ = ωαt. The governing equations (4) and (5)

can now be reformulated in the following matrix form

[M ]{q̈}+ [K]{q} = {F} (6)

where

[M ] =

[

1 xα

xα r2α

]

; [K] =

[

(ωh

ωα
)2 0

0 r2α

]

(7)

{F} =
U2

∞
πµω2

αb
2

{

−Cl

Cm

}

; {q} =

{

h
b

α

}

(8)

In equation (6), [M ] and [K] are the mass and stiffness matrices, and {F} and

{q} are the force and displacement vectors. The non-dimensional aerofoil mass ratio

is µ = m
πρb2

with xα and rα being the static unbalance and the radius of gyration

respectively. The uncoupled natural frequencies in plunging and pitching motion are

ωh and ωα, respectively. Cl and Cm represent the lift and moment coefficients which

have the same sign convention as the aerodynamic forces and moment L and M .

2.3 Modal Analysis

The main objective now is to solve equation (6) which represents the aerofoil motion

in two degrees of freedom namely the heave and pitch. In order to solve the equations

the modal analysis methodology is used. The main concept is representing the system

displacements as a linear combination of the free vibration mode shapes through the

use of generalized coordinates. In general if a combination of the first few modes

of free vibration say N is used, then according to modal approach the displacement

vector can be represented as

{q} = [φ]{η} (9)

where [φ] is the modal matrix in which each column is an eigenvector of the free

vibration analysis eigen-problem and {η} is the generalized coordinates. Premulti-

plying equation (6) by [φ]T and substituting using (9) and applying the eigenvectors

orthogonality lead to a set of second order ordinary differential equations in general-

ized coordinates. Each equation is represented by its mode, say ith mode [18, 19] to

give

η̈i + 2ζiωiη̇ + ω2

i ηi = Qi; i = 1, 2, . . . , N (10)
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where

Qi = {φ}Ti {F} (11)

ω2

i = {φ}Ti [K]{φ}i (12)

1 = {φ}Ti [M ]{φ}i (13)

and ζi in equation (10) is modal damping which is not considered in (6). The modes

are normalized in a way such that the generalized mass matrix became an identity

matrix. In this report the structural system is considered as an undamped system.

However, the damping is shown in equation (10) just for reference and showing how

the system damping can be considered in the future work.

It is clear from the above equations that to calculate the system displacement vector

from equation (9), modal matrix [φ] and the generalized coordinates vector {η} should

be obtained first. Determining the first N modes to formulate the modal matrix [φ]
can be accomplished by solving the eigen-problem for the free vibration system. This

particular case has only two modes because the system is discrete with two degrees

of freedom only. Then to get the generalized displacement vector {η}, equation (10)

should be solved. It is a second order ordinary differential equation (ODE) in time.

Here, it will be solved using numerical integration in time by Runge-Kutta scheme. In

order to solve it, equation (10) should be reduced to two first order (ODE) in y1i and

y2i using the transformation y1i = ηi and y2i = η̇i which leads to

ẏ1i = y2i (14)

ẏ2i = Qi − 2ζiωiy2i − ω2

i y1i (15)

The system of equations (14) and (15) should be solved for each mode i. It is an

initial value problem and therefore the initial conditions for y1i, y2i, ẏ1i and ẏ2i will be

specified from the initial values of the generalized coordinates.

The general initial conditions are:

h(0) = h0; α(0) = α0 (16)

ḣ(0) = ḣ0; α̇(0) = α̇0 (17)

{η0} = [φ]−1{q0} (18)

{η̇0} = [φ]−1{q̇0} (19)

2.4 Fluid Structure Coupling

As mentioned before, closely coupled interaction is considered in this study. Two

levels of coupling are required for which the first one is essentially time coupling
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carried out by integrating the aerodynamic forces over the aerofoil at every time step to

calculate the force vector {F}. The second level of interaction is coupling between the

structural displacements and the fluid solver. For the case in hand where the aerofoil

cross section is considered to be rigid (non-deformable), the aerofoil position will be

updated at every time step according to the calculated Cl and Cm. By knowing h and

α from equation (9) the new location P1 for point P0 on the aerofoil is obtained from

{P1} = [R]{P0}+ {h} (20)

where {h} is the displacement vector in the plunging direction and [R] is the rotation

matrix involving an angle α around the elastic axis. For an aerofoil in the xy-plane,

the rotation matrix by an angle α in radian around a unit vector in the z direction

through the elastic axis is

[R] =





cosα −sinα 0
sinα cosα 0
0 0 1



 (21)

3 Numerical Scheme and Background Information

The previous section was a general introduction about the mathematical foundation of

the aeroelastic problem of a typical aerofoil section. This model is well established as

an educational tool in the literature as a representative model for studying the stability

and response problem of wings [1, 3]. In this section, the current implementation and

the other implemented models for aeroelastic study will be introduced and discussed.

This section will also highlight the main challenges of modelling fluid-structure inter-

action.

There are three main elements of the current problem. First, solving the governing

equations of the fluid flow using the finite volume method. The governing equations

will be solved numerically for a finite number of control volumes representing the

flow domain (discretization). Computational fluid dynamics techniques involve pre-

processing stages for creating a mesh and defining the boundary and initial conditions,

which is followed by the solving stage when iterative numerical algorithms are used

and finally the post-processing of the result takes place. The second element in this

problem is the structural model which has already been mentioned in detail in section

2.2. The third element is coupling between structure and fluid which was outlined in

section 2.4. In this section, the main aspects of these elements will be discussed in

greater details including a description of the developed code.

3.1 The Fluid Solver ”rhoCentralFoam”

The main purpose of this work is to predict the transonic flutter. In this regime the

flow is highly non-linear and unsteady. Moving and oscillating shock waves are the

dominant features of transonic flow field. In order to predict such complex flow field
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with high fidelity, a special technique should be applied to solve the governing equa-

tions outlined in section 2.1. In general there are two main approaches to solve these

equations in CFD. These are essentially either pressure based solver or density based

solver. The main difference between them is that the latter solves the continuity equa-

tion as a function of density, directly coupled with the rest of governing equations.

This is in contrast to the pressure based solver which solves a pressure correction

equation which is derived from the momentum and continuity equations [16]. This

pressure correction works as a constraint on the velocity field to satisfy the continuity

equation. Therefore it is called segregated solver.

Both approaches are available in OpenFOAM for high speed compressible flow.

The pressure based solver called sonicFoam and the density based solver called rho-

CenteralFoam. The advantages and disadvantages of each method are well known

amongst the CFD community [15, 16]. The main advantage for pressure based solver

is that it requires less computational resources than the density based solver due to the

segregation between the governing equations. The obvious advantage of density based

solver is the coupling between the governing equations which leads to better non-

oscillating solution, specially when discontinuities are involved due to shock waves.

In this report only rhoCentralFoam solver is used because of its advantages over sonic-

Foam for transonic flow under consideration. The implementation of rhoCentralFoam

reveals some of the advantages of Riemann solver [17]. A full comparison between

the implemented two methods in OpenFOAM showed better results of rhoCentral-

Foam solver over sonicFoam in different high speed compressible flow cases [20].

The density based solver, rhoCentralFoam uses central difference schemes based on

Kurganov and Tadmor formulation introduced in 2000 [21]. It was implemented in

OpenFOAM by Greenshields et al. in 2009 [17]. It is a semi-discrete, non-staggered

central scheme.

3.2 Dynamic Mesh

Solving a particular case involves a moving solid object requiring some special strat-

egy to include this movement. In this respect, finite volume methods are usually used

for solving fluid dynamics governing equations at fixed cells in space (control vol-

umes). When the solid objects start to move there will be a relative velocity between

the boundaries and the mesh cells. There are two approaches to solve this problem.

The first approach relies on calculating the movement of the mesh according to its

boundary displacement but maintaining the same number of grid cells. The second

approach is to calculate the new position of each grid cell with the possibility of re-

moving or adding new cells as required. These two techniques already implemented

in OpenFOAM are particularly useful [22, 23].

In this study, the first approach is used which basically solves Laplace equation

for the grid displacement at every time step [22, 23]. A diffusion coefficient for the

mesh movement is the only parameter that should be specified by the user. Before

describing the governing equation of moving grid it is useful to examine the main dif-
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ferences between static and dynamic mesh. Basically it is the relative speed between

the boundary and the mesh which has a direct relation with the flux through each

finite volume cell. Ignoring this relative speed could lead to numerical error in the

solution. Preventing this numerical problem requires applying the space conservation

law (SCL) which states [22, 15]

d

dt

∫

V

dV −

∮

S

n · vsdS = 0 (22)

where V is an arbitrary moving volume, n is the unit vector normal to the surface and

vs is the surface speed. The above condition applied in OpenFOAM solvers by a func-

tion called makeRelative. In OpenFOAM the name of the solvers which are capable

of handling dynamic meshes includes ”DyM”. For example the variant of rhoCentral-

Foam solver which is used in this study for dynamic mesh is rhoCentralDyMFoam.

Now attention is turned to the Laplace displacement mesh motion solver in Open-

FOAM, which solves for independent displacement vector d defined by

r(t+∆t) = r(t) + d (23)

where r is the point position vector. Thus Laplace equation for mesh motions with k
as diffusion coefficient is

∇ · (k∇d) = 0 (24)

Equations (22) and (24) illustrate the main difference between static mesh solvers and

dynamic mesh solvers in OpenFOAM. Also a special boundary condition for moving

walls velocity associated with dynamic mesh solver has to be used. It is called mov-

ingWallVelocity which makes the normal flux to the wall equal to zero. Also there are

other dynamic mesh solvers in OpenFOAM which solve for the grid points velocity

[22, 24].

In order to couple the structural dynamics with the fluid flow solver, a new bound-

ary condition is developed called elasticDisplacement. The main function of elas-

ticDisplacement boundary condition is to calculate the force coefficients over the

aerofoil and calculate the corresponding displacement according to the free vibration

natural modes of the system.

4 Results and discussion

In this section a number of different cases will be investigated to test the source

code. A wide range of operating conditions is modelled to display the potential of

the method presented in this study.

4.1 Case A: Pitching NACA 64A010 Aerofoil

The first test case (case A) is a pitching aerofoil about the quarter chord in transonic

flow free stream. The aerofoil section is NACA 64A010. This particular case is one
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of the widely used cases to validate transonic CFD codes. The experimental work was

carried out by Davis [25], Alonso et al. [18] as well as by Chen et al. [26] in order to

validate their CFD codes. Table 1 gives the operating conditions for this case.

Description Variable Value

Aerofoil NACA 64A010

Mean angle of attack αm 0◦

Angle of attack amplitude αA ±1.01◦

Free stream Mach number M∞ 0.8
Reynolds number Re 1.256× 107

Reduced frequency k 0.202
Pitch axis from leading edge xp 25% of chord

Table 1: Characteristics of test case A.

In this case GMSH has been used [27] instead of using one of OpenFOAM meshing

utilities. GMSH has a graphical user interface which gives more control, and thus

accelerates the mesh generation process. Figures 1 and 2 show the complete mesh and

the mesh around the sharp trailing edge respectively. The computational domain is

15c× 10c with 39, 006 grid cells.

Figure 3 shows the lift coefficient versus the angle of attack. The results from this

work are in good agreement with the experimental results [25]. Although this figure

shows an excellent agreement along the pitching cycle, it also shows that the model

did not predict very well the peak points. In general these results are comparable

with the results reported in literature [18, 26]. McMullen et al.[28] modelled this case

with a grid independent study and also reported under and over predictions for the lift

coefficients. Obviously, increasing the grid quality will increase the accuracy but it is

not the main reason for these differences. It is probably due to ignoring the viscous

effect for a streamed-line objects like aerofoils. In such cases the forces arising from

shear stress may have a noticeable contribution. More investigations using different

grids and turbulence models may clarify and pin-point the reason. Figure 4 shows the

Mach contours at the maximum angle of attack.
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Figure 1: C-mesh type around NACA 64A010

Figure 2: Mesh around NACA 64A010 tail
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Figure 3: Instantaneous lift Coefficient

Figure 4: Mach Contours at α = 1.01◦

4.2 Case B: Self-Sustained NACA 64A010

In this case, the modal analysis was used to calculate the aerofoil displacement. Again

the NACA 64A010 was used as in case A. However, three different operating condi-

tions are modelled for this case [18]. The elasticDisplacement boundary condition

was used. Table 2 shows the selected operating conditions. The structural model fol-
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lows the one which was introduced by Isogai [5, 6]. The modelling for each condition

was done using three stages, namely, fixed aerofoil, pitching aerofoil around the elas-

tic axis and finally self-sustained aerofoil. The same mesh from case A was used to

save computational time. A fifth-order Runge-Kutta with adaptive time step devel-

oped by Cash and Karp [29] was selected. It is one of the OpenFOAM ODE solvers

for non-stiff systems.

Description Variable Value

Aerofoil NACA 64A010

Mean angle of attack αm 0◦

Angle of attack amplitude αA ±1.01◦

Free stream Mach number M∞ 0.85, 0.825, 0.875
Speed Index V ∗ = U∞

ωαb
√
µ

0.439, 0.612, 1.420

Aerofoil mass ratio µ 60
Reynolds number Re 1.256× 107

Static unbalance xα 1.8
Squared radius of gyration r2α 3.48
uncoupled natural freq. in plunge ωh 100rad/s
uncoupled natural freq. in pitch ωα 100rad/s
Pitch axis from leading edge xp −50% of chord

Table 2: Characteristics of test case B.

Figures 5, 6 and 7 show the responses and the forces for the three operating condi-

tions. It is clear that Figure 5 represents a damped response, whereas Figure 7 shows

a divergent response. Both are in very good agreement with [18, 26]. It was expected

that Figure 6 would predict the flutter point as reported by Alonso et al. [18], but as it

turned out the flutter point was missed only by a small margin. Nevertheless, the trend

to predict the flutter speed is sufficiently clear.

5 Conclusions

In this paper the main aspects of computational aeroelasticity are discussed. The

newly implemented code in OpenFOAM for coupling the fluid-structure interaction

based on free vibration natural modes of an oscillating aerofoil is highlighted. One

case for forced pitching aerofoil has been investigated and the predicted results are

compared with experimental measurements from the literature. A second case for self-

sustained aerofoil based on the newly developed code has also been studied. All these

case studies are verified. Results from the implemented code showed good agreement

with experimental data and numerical predictions found in the literature.
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Figure 5: Damped Response. M∞ = 0.85, V ∗ = 0.439
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Figure 6: Damped Response. M∞ = 0.825, V ∗ = 0.612
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