
DUAL FEYNMAN TRANSFORM FOR MODULAR OPERADS

J. CHUANG AND A. LAZAREV

Abstract. We introduce and study the notion of a dual Feynman transform of a modular
operad. This generalizes and gives a conceptual explanation of Kontsevich’s dual construction
producing graph cohomology classes from a contractible differential graded Frobenius alge-
bra. The dual Feynman transform of a modular operad is indeed linear dual to the Feynman
transform introduced by Getzler and Kapranov when evaluated on vacuum graphs. In marked
contrast to the Feynman transform, the dual notion admits an extremely simple presentation
via generators and relations; this leads to an explicit and easy description of its algebras. We
discuss a further generalization of the dual Feynman transform whose algebras are not neces-
sarily contractible. This naturally gives rise to a two-colored graph complex analogous to the
Boardman-Vogt topological tree complex.
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Introduction

The relationship between operadic algebras and various moduli spaces goes back to Kontse-
vich’s seminal papers [20] and [21] where graph homology was also introduced.

Kontsevich proposed two constructions producing classes in the ribbon graph complex. The
‘direct’ construction has as the input a Z/2-graded A∞-algebra with an invariant scalar product
(or symplectic A∞-algebra in the terminology of [13]). The output is a collection of homology
classes in the ribbon graph complex (or a corresponding collection of cohomology classes in
the moduli spaces of Riemann surfaces with marked points). This construction is now well
understood from various standpoints, see, e.g. [14], [7].
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The other, ‘dual’, construction starts with a contractible differential graded Frobenius algebra
with an odd scalar product and gives rise to a collection of cohomology classes in the ribbon
graph complex. By pairing the direct and the dual constructions it is possible to prove the
non-triviality of both. Explicit examples involving so-called Moore algebras, cf. [13], [24], [12]
will be discussed in future work.

The dual construction was motivated by the combinatorics of Feynman graphs in the quantum
Chern-Simons theory. Its conceptual formulation based on the Batalin-Vilkovisky formalism is
given in [15] (for the commutative graph complex). It is probable that the approach of [15]
could be generalized to accommodate the case of general modular operads, using the language
of operadic noncommutative geometry as it is presented in e.g. [11].

The purpose of this paper is to give the most general formulation of Kontsevich’s dual con-
struction from the point of view of modular operads. We introduce the notion of a ‘dual
Feynman transform’ F∨O for a differential graded modular operad O. It turns out that F∨O
is itself a modular operad (more precisely, a mild generalization thereof which we call an ex-
tended modular operad). In other words, there is no twisting as in the case of the usual or
‘direct’ Feynman transform of [9]. Moreover, the vacuum part of F∨O, corresponding to graphs
without legs, is indeed linear dual to FO. On the other hand the components corresponding to
graphs with legs are contractible, in contrast to FO. Another striking difference between the
direct and dual notions is that the dual Feynman transform F∨O admits an extremely simple
presentation in terms of generators and relations; it is obtained from FO by freely adjoining a
generator s of square zero and such that d(s) = 1 where 1 is the operadic unit. This leads to
the correspondingly simple description of algebras over F∨O as O-algebras with a choice of a
contracting homotopy. Note that the description of algebras over FO is much more complicated;
it is given in terms of a quantum master equation, cf. [2].

Applying this construction to the modular operad OTFT (open topological field theory)
whose algebras are noncommutative Frobenius algebras we recover Kontsevich’s dual construc-
tion. In fact we find that its original formulation needs to be modified in order to produce
cohomology classes. This can be achieved by imposing a rather stringent condition on the input
Frobenius algebra. Alternatively one can modify the ribbon graph complex by allowing the
contraction of certain (or all) loops. The latter approach corresponds to compactifying the
moduli space of metric ribbon graphs, and the dual construction in fact produces cohomology
classes of certain constructible sheaves on these compactifications.

We also introduce a certain generalization of the dual Feynman transform for a modular
operad O which we call the Boardman-Vogt (or BV) resolution as suggested by Sasha Voronov.
The BV-resolution is closely related to the canonical free resolution of O given by the twice-
iterated Feynman transform of O; it could be used to construct a minimal model of an O-
algebra. An algebra over the BV-resolution of O is an O-algebra supplied with a Hodge-like
decomposition compatible with the action of O. Note that the de Rham algebra of a smooth
oriented manifold does indeed have such a structure as follows from Hodge theory. This suggests
a possible application to Chern-Simons theory on general manifolds.

Notation and conventions. In this paper we work mostly in the category of Z/2-graded
vector spaces (also known as super-vector spaces) over a field k of characteristic zero. The reason
for this choice is that operadic algebras giving rise to nontrivial classes in graph complexes tend
to be Z/2-graded. However all our results (with obvious modifications) continue to hold in the
Z-graded context. The adjective ‘differential graded’ will mean ‘differential Z/2-graded’ and
will be abbreviated as ‘dg’. The category of dg vector spaces over k will be denoted by dgVect.
All of our unmarked tensors are understood to be taken over k. On the other hand, by a chain
complex we will mean the usual Z-graded notion – a collection C• = {Cn}, n ∈ Z of k-vector
spaces together with a differential d : Cn → Cn−1. Similarly a cochain complex will mean a
collection C• = {Cn}, n ∈ Z of k-vector spaces together with a differential d : Cn → Cn+1. The
suspension of a chain complex C• is defined by (ΣC)i = Ci−1 and that of a cochain complex
C• is defined by (ΣC)i = Ci+1. For a Z/2-graded vector space V = V0 ⊕ V1 the symbol ΠV

2



will denote the parity reversion of V ; thus (ΠV )0 = V1 while (ΠV )1 = V0. For d ∈ Z/2 we set

ΠdV :=

{
ΠV if d = 1

V if d = 0
. For an ungraded vector space V of dimension n and d ∈ Z/2 we write

Detd(V ) for the Z/2-graded vector space (ΠnΛnV )⊗d ∼= (ΠV )⊗nd. For a finite set S we write
Detd(S) for Detd(kS). Note that Detd(S)∗ is canonically isomorphic to Detd(S).

We use extensively the results of [9]. Here is a brief summary of the relevant terminology
(adapted to the Z/2-graded context); the reader is referred to the original paper of Getzler and
Kapranov for details. An ordered pair (g, n) of nonnegative integers is stable if 2(g−1)+n > 0.
The only pairs which are unstable, i.e. not stable, are (0, 0), (0, 1), (0, 2) and (1, 0). The
group Aut(1, 2, . . . , n) is denoted by Sn. A cyclic S-module is a collection of dg vector spaces
{V((n)) | n ≥ 0} with an action of Sn on V ((n)). A stable S-module is a collection of dg vector
spaces {V((g, n)) | g, n ≥ 0} with an action of Sn on each V((g, n)), such that V((g, n)) = 0 for
unstable (g, n). Furthermore, if V is a stable S-module and I is a finite set then we set

V((g, I)) :=
[⊕

V((g, n))
]
Sn

where the direct sum is extended over all bijections {1, 2, . . . , n} → I. We also set V((n)) :=⊕
g≥0 V((g, n)) and V((I)) :=

⊕
g≥0 V((g, I)). We will consider the following stable S-modules:

s((g, n)) = Πnεn,

Π((g, n)) = Πk.

Here εn is the alternating character of Sn.
A graph is a one-dimensional cell complex; we will only consider connected graphs. From a

combinatorial perspective a graph consists of the following data:

(1) A finite set, Flag(G), consisting of the half-edges or flags of G.
(2) A partition Vert(G) of Flag(G). The elements of Vert(G) are called the vertices of G.

The half-edges belonging to the same vertex v will be denoted by Flag(v); the cardinality
of Flag(v) will be called the valence of v and denoted by n(v).

(3) An involution σ acting on Flag(G). The edges of G are pairs of half-edges of G forming
a two-cycle of σ; the set of edges will be denoted by Edge(G). The legs of G are fixed
points of σ; the set of legs will be denoted by Leg(G).

A stable graph is a graph G having each vertex v ∈ Vert(G) decorated by a non-negative
integer g(v), the genus of v; it is required that (g(v), n(v)) is stable for each vertex v of G. The
genus g(G) of stable graph G is defined by the formula

(0.1) g(G) = dim(H1(G)) +
∑

v∈Vert(G)

g(v).

Contracting an edge e in a stable graph G yields a new stable graph Ge; the decorations g(v)
of the vertices of Ge are defined in the obvious way, so that g(Ge) = g(G). The set of stable
graphs forms a category whose morphisms are generated by isomorphisms and edge-contractions
G→ Ge.

We denote by Γ((g, n)) the category whose objects are stable graphs G of genus g with n
labeled legs (i.e., equipped with a bijection between {1, . . . , n} and Leg(G)). Note that Γ((g, n))
is empty whenever (g, n) is unstable.

For a stable graph G and a stable S-module V we define the dg vector space

V((G)) :=
⊗

v∈V ert(G)

V((g(v),Flag(v))

of V decorations on G.
Further, set

K(G) = Det(Edge(G));

Detd(G) = Detd(H1(G)).
3



For a category C, we denote by [C] the set of isomorphism classes of objects, and by Iso C the
subcategory of isomorphisms.

1. Main construction

In this section we introduce the notion of the dual Feynman transform of a modular operad
and give its graphical interpretation. Crucially the dual Feynman transform contains an ‘un-
stable’ generator; it will be necessary to relax the stability condition of Getzler and Kapranov.

Definition 1.1.

(1) An extended stable S-module is a collection of dg vector spaces {V((g, n)) | g, n ≥ 0} with
an action of Sn on each V((g, n)), such that V((g, n)) = 0 for (g, n) = (0, 0), (0, 1), (1, 0).

(2) An extended stable graph is a connected graph G having each vertex v labeled by a
non-negative integer g(v) called the genus of v. We require that vertices of valence 0
have genus at least 2 and those of valence 1 have genus at least 1.

Remark 1.2. Our definition is a mild generalization of the notions of a stable S-module and
a stable graph, see [9], in that the unstable pair (0, 2) is allowed. In what follows we introduce
analogues of the notions considered by [9] in the context of extended stable graphs and extended
S-modules. We will omit most of the details since the treatment given by Getzler and Kapranov
can be carried over to the present situation almost verbatim.

The genus g(G) of an extended stable graph G is defined by the same formula (0.1) as in
the stable case. Furthermore, the set of extended stable graphs of genus g with n labeled legs
forms a category, just as in the case of stable graphs; the morphisms are again generated by
isomorphisms of graphs and edge-contractions. We will denote this category by Γ((g, n)). Note
that the only graphs in Γ((g, n)) for unstable (g, n) are the strings • • . . . • • of
bivalent vertices of genus 0, which lie in Γ((0, 2)).

Suppose (g, n) is stable. Then any extended stable graph G ∈ Γ((g, n)) contains at least one

stable vertex, i.e. a vertex v for which (g(v), n(v)) is stable. So G determines a stable graph G̃
obtained from G by forgetting the bivalent vertices of G having genus 0. Clearly the association
G 7→ G̃ is a functor Γ((g, n))→ Γ((g, n)).

Recall that a hyperoperad is a collection D of functors from the categories Iso Γ((g, n)) to the
category dgVect together with structure maps defined for any map between two stable graphs
f : G0 → G1:

νf : D(G1)⊗
⊗

v∈Vert(G1)

D(f−1(v))→ D(G0)

subject to some natural coherence conditions.
Any hyperoperad extends to a collection of functors on the categories Iso Γ((g, n)): for an

extended stable graph G we set D(G) := D(G̃) if (g, n) is stable and D(G) := k (with trivial
Sn-action) otherwise. The structure maps also extend in an obvious way: if the morphism f
corresponds to contracting an edge abutting an unstable vertex, i.e. a bivalent vertex of genus 0,
then the corresponding νf is the identity map.

Given a hyperoperad D we define an endofunctor MD on the category of extended stable
S-modules by the formula

MDV((g, n)) = colim
G∈Iso Γ((g,n))

D(G)⊗ V((G)).

Here V((G)) is defined in the same way as in the stable case, and we refer to D(G)⊗V((G)) as
the space of D-twisted V-decorations on G.

The arguments of [9] show that the functor MD is a triple.

Definition 1.3. An extended modular D-operad is an algebra over the triple MD. For an
extended stable S-module V the corresponding extended stable S-module MDV is called the free
extended modular D-operad generated by V.
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If V is stable the colimit defining MDV((g, n)) may be taken over Iso Γ((g, n)), and we recover
Getzler and Kapranov’s triple MD in the category of stable S-modules. Thus a modular D-
operad is precisely an extended modular D-operad whose underlying S-module is stable.

Now let S be the extended stable S-module for which S((g, n)) = 0 if (g, n) 6= (0, 2) and
S((0, 2)) = Πlk, a shifted copy of the ground field with the trivial action of S2. We will denote
by s = Πl1 the canonical basis element in S((0, 2)). Let O be a modular D-operad and consider
the coproduct of O and MDS in the category of extended modular D-operads. Informally
speaking, this is the D-operad over O freely generated by the operation s. To emphasize this
point of view, we will denote this operad by O[s]. We have the following simple but crucial
result.

Lemma 1.4. There is an isomorphism

O[s]((g, n)) ∼= colim
G∈Iso Γ((g,n))

Detl(Edge(G))⊗D(G)⊗O((G̃)).

(If (g, n) is unstable then G̃ is undefined and we read O((G̃)) as k.)

In other words, this formula expresses O[s]((g, n)) as a space of D-twisted O-decorated ex-
tended stable graphs where the decorations are only placed on the stable vertices. The degrees
of the graphs are then calculated according to the number of edges and the degree of s.

Proof. Let us assume first that O = MDV for some stable S-module V. It is clear that

(1.1) O[s]((g, n)) = MD(V⊕ S)((g, n)) =
⊕

G∈[Iso Γ((g,n))]

[D(G)⊗ (V⊕ S)((G))]Aut(G).

Now for any extended stable graph G we denote by G′ the extended stable graph obtained from
G by contracting all edges connecting stable vertices (including loops at stable vertices) and
replacing all strings of unstable bivalent vertices of length m by strings of length m− 1.

G
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Figure 1. Contract edges connecting stable vertices, then replace unstable ver-
tices by edges. Vertices are understood to have genus 0 unless otherwise notated.

Further, for any givenG′ ∈ Γ((g, n)) consider the set of all associatedG’s and collect the corre-
sponding terms in (1.1). Clearly, for a given G′ we obtain the D-twisted space of O-decorations
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on G′, tensored with
⊗

Πlk, where the product is taken over the unstable vertices of G or
equivalently the edges of G′. Here we are implicitly making use of the induced homomorphisms
Aut(G)→ Aut(G′). The desired statement is proved in this special case.

In general we have a canonical split coequalizer in the category of modular D-operads

MDMDO // // MDO // O ,

and using the fact that a split coequalizer is preserved by any functor we reduce the general
case to the one considered.

�

Remark 1.5. Although our proof of Lemma 1.4 is fairly unilluminating its statement is easy
to visualize. The vertices of our decorated graphs correspond to the operations in the operad O
whilst the edges correspond to the adjoined operation s so a decorated graph itself represents
an iterated composition of elements in O with s.

Definition 1.6. Let D be a hyperoperad and O be a modular D-operad. Define an extended

stable S-module O+ by the formula O+((g, n)) =

{
O((g, n)) if (g, n) 6= (0, 2)

k if (g, n) = (0, 2)
. Here S2 acts

trivially on O+((0, 2)). Furthermore, define the structure of an extended modular D-operad on
O+ by the following composition

MDO+((g, n)) = colim
G∈Iso Γ((g,n))

D(G)⊗O+((G))→ colim
G∈Iso Γ((g,n))

D(G)⊗O+((G))→ O+((g, n))

where the first arrow is induced by the functor Γ((g, n)) → Γ((g, n)) : G 7→ G̃ and the second
one is given by the structure of a modular D-operad on O. The canonical basis element 1
of O+((0, 2)) is called the unit of O+, and the extended modular D-operad O+ is said to be
obtained from O by adjoining a unit.

From now on we will assume that D is a cocycle, i.e. D(G) is one-dimensional (concentrated
in either even or odd degree) for any stable graph G and that the corresponding structure
maps νf are isomorphisms. In that case an MD-algebra structure on O gives rise to (possibly
parity reversing) operadic composition maps ◦i : O((m)) ⊗ O((n)) → O((m + n − 2)) and
ξij : O((n)) → O((n − 2)) by restricting the structure map MDO → O to the graphs having
only one edge.

We are now ready to define our main object of study. Recall from [9] that the Feynman
transform FDO of a modular D-operad O is a modular K⊗D∗-operad whose underlying stable
S-module is

MK⊗D∗(O∗)((g, n)) = colim
G∈Γ((g,n))

K(G)⊗D(G)∗ ⊗O((g, n))∗.

The differential on FDO is the sum of the ‘internal’ differential induced by that on O and the
differential induced by the edge-expansions of stable graphs and the operadic composition in O.

Definition 1.7. Let D be a cocycle, and O be a modular D-operad. The dual Feynman
transform of O is the quotient of the extended modular D-operad (O[s])+, where s has degree 1,
by the relation s2 := s ◦1 s = 0. It will be denoted by F∨DO. The differential d on F∨DO is the
unique extension of the differential on O satisfying d(s) = 1.

Theorem 1.8.

(1) The dg vector space F∨DO((g, n)) is contractible for n > 0 and any g.
(2) There is an isomorphism of dg vector spaces F∨DO((g, 0))∗ ∼= FDO((g, 0)).

Proof. According to Lemma 1.4 we have

O[s]((g, n)) ∼= colim
G∈Iso Γ((g,n))

K(G)⊗D(G̃)⊗O((G̃)).

Recall that the edges of a decorated extended stable graph G represent the operation s, and
unstable bivalent vertices between edges correspond to composing s with itself. Since these
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compositions are zero in F∨DO we conclude that the only nonzero contributions to the direct
sum are from graphs all of whose unstable vertices are adjacent to legs.

Let n > 0 and (g, n) 6= (0, 2). For any stable graph G ∈ Γ((g, n)) we need to consider the
2n graphs obtained from G by placing unstable bivalent vertices on a subset (possibly empty)
of legs of G. Denote the space spanned by such graphs by V ; we see therefore that the (g, n)-
component of F∨DO is isomorphic to⊕

G∈[Γ((g,n))]

(K(G)⊗D(G)⊗O((G)))Aut(G) ⊗ V.

It is clear that V is isomorphic to the tensor product of contractible dg vector spaces of dimension
two: k · 1 ⊕ k · s with d(s) = 1. In particular F∨DO((g, n)) is contractible. The contractibility
of F∨DO((0, 2)) is obvious since the latter space is spanned by 1 and s and d(s) = 1. Part (1) of
our theorem is proved.

Now let n = 0. We saw that the unstable vertices are allowed on the legs only and thus we
are reduced to considering the usual stable graphs. We have thus:

O[s]/s2((g, 0)) ∼= colim
G∈Iso Γ((g,0))

K(G)⊗D(G)⊗O((G)).

Recalling our assumption that the characteristic of k is zero, this establishes an isomorphism

F∨DO((g, 0))∗ ∼= O[s]/s2((g, 0))∗ ∼= FDO((g, 0))

as Z/2-graded vector spaces. The differential on O[s]/s2((g, 0)) is the sum of the internal
differential on tensor powers of O and the differential induced by the equation d(s) = 1. The
latter is the usual graph differential corresponding to the contractions of edges of stable graphs
and given by operadic compositions in O. The total differential is therefore dual to that in
FDO((g, 0)). �

Remark 1.9. Let us represent the identity operation by the graph • and the operation s by
the graph • • . An element in F∨DO will be represented by a graph whose stable vertices
are decorated by elements in O inscribed in circles and whose unstable vertices (which are only
allowed on the legs) are represented as dots. The differential is induced by contractions of edges
plus the internal differential in F∨DO. For example the equations d(s) = 1 and d(1) = 0 are
represented as

d( • • ) = • and d( • ) = 0

The operadic composition in F∨DO is described by the following pictures.

x ◦ y x◦y

x • ◦ y x y

Thus, the composition in the F∨DO is not the usual glueing of graphs (which, after all, would
not be compatible with our contracting differential), but the glueing followed by the contraction
of the newly formed edge. Self-glueings are determined similarly, taking into account the usual
convention that contracting a loop results in the genus of the corresponding vertex increasing
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by one. According to our definition of adjoining a unit to a modular operad the glueing of the
two edges of • is equal to zero. The relation s2 = 0 translates into the following picture.

x • ◦ • y zero

The last equation gives a graphical explanation why the unstable vertices – the dots – do not
appear on the edges.

2. Twisted modular operads and their algebras

In this section we describe algebras over modular D-operads and discuss some important
examples. We will only be concerned with the case D = Detd where d is an integer modulo 2,
i.e. D(G) = Det(H1(G))⊗d for a stable graph G. In particular, if d = 0 this corresponds to an
(untwisted) modular operad. Note that since for a tree graph G the twisting by Detd is trivial
the genus zero part of any modular Detd-operad is a usual cyclic operad. Let V be a dg vector
space with a symmetric inner product of degree d, i.e. an (even) symmetric map V ⊗V → Πdk.
Then the stable S-module {E((g, n)) = V ⊗n} forms a modular Kd-operad, see [2]. Note that
the genus zero part of E is not a cyclic operad unless d = 0; to remedy the situation we twist
the operad E by the S-module sd ⊗Πd, i.e. consider instead the operad

Ẽ((g, n)) := sd((g, n))⊗Πd((g, n))⊗ E((g, n)) ∼= Πd(ΠdV )⊗n.

Then Ẽ is a modular Detd-operad, and its genus zero part Ẽ(0, •) forms a cyclic operad. Using

the isomorphism V ∼= Πd(V ∗) we see that that Ẽ(0, •) is isomorphic to the endomorphism cyclic

operad {Hom(V ⊗(n−1), V )}.

Definition 2.1. Let O be a cyclic operad and V be a dg vector space with equipped with an
inner product of degree d. Then a (cyclic) O-algebra structure on V is a homomorphism of

cyclic operads O → Ẽ(0, •).

The notion of a O-algebra is easy to work out explicitly in the case of a quadratic cyclic
operad O. In that case O is generated by a set of cyclically invariant elements in O((3)) and
a O-algebra structure on V is specified by a collection of binary operations on V which are
cyclically invariant when regarded as elements in V ⊗3.

Example 2.2. Let us consider what this definition specializes to in the case of the three
standard cyclic operads: commutative, associative and Lie.

(1) Let O = Com be the commutative non-unital cyclic operad: O((n)) =

{
0, n = 1, 2

k, n ≥ 3
.

The operad O is generated by a single element of even degree in O((3)) with the trivial
action of S3. It follows that a cyclic Com-algebra is a (graded)-commutative dg algebra A
with an inner product 〈, 〉 of degree d which is invariant in the sense that 〈ab, c〉 = 〈a, bc〉
for any a, b, c ∈ A. In other words, A is a dg commutative Frobenius algebra.

(2) LetO = Ass be the associative non-unital cyclic operad: O((n)) =

{
0, n = 1, 2

k[Sn/Zn], n ≥ 3
.

The operad O is generated by two elements of even degree in O((3)). It follows that an
cyclic Ass-algebra is an associative dg algebra A with an inner product 〈, 〉 of degree d
which is invariant in the sense that 〈ab, c〉 = 〈a, bc〉 for any a, b, c ∈ A. In other words,
A is a (possibly noncommutative) dg Frobenius algebra.

(3) Let O = Lie be the Lie cyclic operad. It is generated by a single element of even
degree in O((3)) on which S3 acts by the sign representation; the relations come from
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the Jacobi identity. It follows that a cyclic Lie-algebra is a dg Lie algebra A with an
inner product 〈, 〉 of degree d which is invariant in the sense that 〈[a, b], c〉 = 〈a, [b, c]〉
for any a, b, c ∈ A. For example, any reductive Lie algebra is a cyclic Lie-algebra. The
commutator Lie algebra of an Ass-algebra is a Lie-algebra.

Now let O be a modular Detd-operad and Ẽ = {Ẽ((g, n))} be the Detd-operad associated to
a dg vector space V with a symmetric inner product of degree d as defined above.

Definition 2.3. The structure of a (modular) O-algebra on V is a homomorphism of Detd-

modular operads O → Ẽ .

Recall that for any stable graph G ∈ Γ((g, n)) a modular Detd-operad O determines a homo-
morphism µG : Detd(G)⊗O((G)) → O((g, n)) which corresponds to taking operadic composi-
tions in O((G)) along the internal edges of G. For a structure of an O-algebra on V given by a

map f : O → Ẽ we can form the composition

f ◦ µG : Detd(G)⊗O((G))→ Ẽ((g, n)) ∼= Πd(n−1)V ⊗n.

We will denote f ◦ µG by ZV (G) and call it the Feynman amplitude of the decorated graph G
corresponding to the algebra V .

We are going to introduce certain modular operads closely related to Ass, Com and Lie, and
describe the algebras over them. To do this we need to use the modular closure of a cyclic
operad introduced in [16]. We will use a slightly more general notion than that considered in
the cited reference in order to include the case of Det-operads.

The functor of restricting to the genus zero part of a modular Detd-operad takes values in
the category of cyclic operads. This functor admits a left adjoint; the value of the latter on a

cyclic (non-unital) operad O will be denoted by Od. For d = 0 we will shorten this notation to

O. The existence of Od follows immediately from the description of twisted modular and cyclic
operads as algebras over appropriate triples. Indeed, let O be generated by a cyclic S-module

{C((n))}. We can consider it as a stable S-module with C((g, n)) = 0 for g 6= 0. Then Od

is constructed from the free Detd-operad MDetdO by quotienting out by the same relations as

those defining O. We will call Od the Detd-modular closure (or simply modular closure for
d = 0) of O. We have the following result which follows immediately from definitions.

Proposition 2.4. There is a one-to-one correspondence between cyclic O-algebra structures on

a dg vector space V with an inner product of degree d and modular Od-algebra structures on V .

�

Remark 2.5. There is another functor from cyclic operads to modular Detd-operads which is
right adjoint to the genus zero part functor. We will denote the value of this functor on a cyclic
operad O by Od, and will shorten this to O for d = 0. Algebras over Od are characterized
by the property that their Feynman amplitudes on stable graphs of positive genus are always

zero. Note that Od is the quotient of Od by the ideal generated by the images of all contraction

maps ξij : ΠdOd((I))→ Od((I \{i, j})). One can consider other modular operads, intermediate

between Od and Od which have the property that some, but not all, contraction maps are trivial.

We will now show that the modular Detd-operads naturally give rise to two-dimensional surfaces.
Denote by Mg(n) the category of compact oriented 2-dimensional surfaces of genus g with n
parametrized and labeled boundary components; morphisms are homeomorphisms preserving
orientation, parametrizations and labelings.

Consider the modular operad TFTd such that

TFTd((g, n)) =

{
k[Mg(n)] if d = 0, or d = 1 and g = 0,

0 if d = 1 and g > 0.
9



The operadic compositions are induced by the glueing or self-glueing of surfaces at the bound-
aries. In case d = 1 a surface of positive genus obtained as a result of glueing is regarded to
be zero. This clearly makes TFTd into a modular Detd-operad. Algebras over TFTd are called
(twisted) topological field theories.

Similarly define the modular Detd-operad OTFTd as follows. Consider a two-dimensional ori-
ented compact surface of genus γ with ν boundary components, equipped with non-overlapping
orientation-preserving embeddings of n parametrized and labeled intervals into its boundary.
The category of such surfaces, with morphisms being homeomorphisms preserving orientation,
parametrizations and labelings, will be denoted by Mγ,ν(n). Set

OTFTd((γ, ν, n)) = colim
G∈Mγ,ν(n)

Detd(H1(G))

and
OTFTd((g, n)) =

⊕
2(γ−1)+ν=g−1, ν>0

OTFTd((γ, ν, n)).

The operadic compositions on OTFT are induced by the glueing or self-glueing of surfaces
at the open boundaries, i.e. at the embedded intervals. This makes OTFTd into a modular
Detd-operad. Algebras over TFTd are called (twisted) open topological field theories.

Remark 2.6. Let G be a oriented surface with boundary. Then an ordering of the boundary
components of G specifies a canonical nonzero element of Det(H1(G)). To see this, consider the
following exact Mayer-Vietoris sequence:

0→ H2(Gc)→ H1(∂G)→ H1(G)→ H1(Gc)→ 0,

where Gc is the closed surface obtained from G be glueing a disk onto each boundary component.
Taking the canonical generators of Det(H2(Gc)) = ΠH2(Gc) and of Det(H1(Gc)), we obtain an
isomorphism Det(H1(G)) ∼= Det(H1(∂G)).

It follows that for G ∈Mγ,ν(n), the action of Aut(G) on Det(H1(G)) is trivial if and only if the
surfaceG has at most one free boundary component, i.e. boundary component not containing any
open boundaries. Hence OTFT1((γ, ν, n)) ∼=

⊕
Detd(H1(G)) where the sum is over isomorphism

classes of such surfaces.

Theorem 2.7. There are isomorphisms of modular Detd-operads:

(1) Com
d ∼= TFTd

(2) Ass
d ∼= OTFTd .

Proof. To prove (1) let C be the underlying stable S-module for the (non-unital) operad Com. In

other words, C((g, n)) =

{
k for g = 0, n ≥ 3

0 for g 6= 0 or n = 0, 1, 2
. The free modular Detd-operad MDetdC

generated by C is spanned by isomorphism classes of Detd-graphs with vertices of valence at

least three. The modular Detd-operad Com
d

is the quotient of MDetdC by the associativity
relation. This means that two graphs are considered equivalent if one is obtained from the
other by a sequence of expansions or contractions of edges that are not loops. To any such
graph we associate a two-dimensional surface obtained by replacing each vertex by a sphere
S2 and each edge by a thin tube homeomorphic to the cylinder [0, 1] × S1. Contracting an

edge clearly results in a homeomorphic surface and we thus obtain a map f : Com
d → TFTd

of modular Detd-operads. Let d = 0. The space TFTd((g, n)) is spanned by the elements
corresponding to spheres with g handles and n closed boundary components. This corresponds
to the graph with one vertex, g loops and n legs. Thus, the map f is surjective. To see that
it is injective let G1 and G2 be two graphs which give rise to homeomorphic surfaces. Let g
and n be their genus and the number of boundary components respectively. Since G1 and G2

are equivalent to graphs having only one vertex it follows that these graphs should both have g
loops and n legs and therefore they are isomorphic. This shows the injectivity of f . The case
of an odd d is even simpler since a graph G having a loop admits an automorphism acting as

10



multiplication by −1 on Det(H1(G)); thus such graphs do not contribute to Com
d
. Similarly

surfaces of positive genus do not contribute to TFTd and so we are left with just spheres with

boundaries. It follows that in this case Com
d ∼= Comd ∼= TFTd.

The proof of (2) is similar. The free Detd-modular operad generated by the stable S-module
underlying Ass is the space spanned by isomorphism classes of Detd-twisted ribbon graphs;
the associativity relation allows one to contract or expand any edge that is not a loop. The
ribbon structure allows one to replace each edge and leg by a thin strip which results in a
surface with boundary. Note that the legs turn into parametrized intervals embedded into the

boundary. As in the commutative case we obtain a map Ass
d → OTFTd of modular Detd-

operads. The surjectivity of the map follows from the classification of topological surfaces with
boundary. To see that it is injective it suffices to show that any homeomorphism of surfaces
could be realized as a sequence of edge-contractions and expansions. It suffices to deal with
the case n = 0 when the graphs have no legs. Consider the category whose objects are ribbon
graphs of genus γ and with ν boundary components and whose morphisms are generated by
isomorphisms and edge-contractions. It is known, cf. for example [17] that the classifying space
of this category is homeomorphic to the moduli space of Riemann surfaces of genus γ with ν
boundary components. The desired statement then follows from the well-known fact that this
moduli space is connected. �

Remark 2.8. Theorem 2.7 is a variation on the well-known theorem due to Atiyah et al.
(see, e.g. [22]) which states that a tensor functor into the category of vector spaces from
the category of closed 1-dimensional manifolds and cobordisms between them is equivalent
to a Frobenius algebra. Our theorem is different in several respects. First of all, we treat
algebras over modular operads rather than functors from the corresponding monoidal categories.
Second, we also discuss open topological field theories and show that they give rise to not
necessarily commutative Frobenius algebras. Finally, we include also the twisted versions of the
corresponding theories which give rise to Frobenius algebras with an odd inner product. In this
connection we mention the result of Costello [6] that open topological conformal field theories
are in one-to-one correspondence with Calabi-Yau A∞-categories which could be viewed as a
derived and categorified version of part (2) of Theorem 2.7.

Remark 2.9. As mentioned in the proof of part (1) of Theorem 2.7, for d = 1 there is an

isomorphism Com
d ∼= Comd. Therefore the Feynman amplitude of a commutative Frobenius

algebra with an odd inner product on a stable graph of positive genus is zero. In the case d = 0
the vanishing of such amplitudes is a rather strong condition on a Frobenius algebra.

Next we introduce a modular Detd-operad lying between Assd and Ass
d
.

Definition 2.10. The modular Detd-operad KAssd is the quotient ofAss
d

by the ideal generated
by all surfaces with at least one free boundary component.

We will see later on that the operad KAssd appears in the construction of a certain com-
pactification of decorated Riemann surfaces due to Kontsevich who used it in his proof of the
Witten conjecture [19].

Remark 2.11. Representing surfaces as ribbon graphs we see that KAssd is obtained from Ass
d

by imposing the relation

(2.1) • = 0.

Similarly Assd is obtained from Ass
d

by imposing both relation (2.1) and the further relation

(2.2) • = 0.

The left hand side of (2.2) is the ‘double twist’ operator appearing in the Cardy condition
in Moore and Segal’s formulation of open-closed topological field theory [28], [25], [1]. These
relations translate into certain identities which should hold for the algebras over KAssd and Assd.
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For example, let A be an algebra over Ass
d

and
∑

i ai ⊗ bi ∈ A ⊗ A be the inverse to the

invariant form on A. Then equation (2.1) implies that in order that A be an algebra over KAssd

we should have
∑

i aibi = 0. Similarly we see from equation (2.2) that A further lifts to an

algebra over Assd if and only if the following additional condition holds: for any x ∈ A we have∑
i(−1)|ai||x|aixbi = 0.

Remark 2.12. While KAssd appears to be the most important quotient of Ass
d
, we list some

others that might be of interest:

• RAssd: the quotient of Ass
d

by the ideal generated by all surfaces of positive genus,
equivalently modulo the relation

(2.3) • = 0.

• KRAssd: the quotient of Ass
d

by the ideal generated by all surfaces with at least one
free boundary component and all surfaces of positive genus, i.e. modulo relations (2.1)
and (2.3).

• SAssd: the quotient of Ass
d

by the relation (2.2).

We have the following commutative diagram of modular Detd-operads; each arrow is a quotient
map:

Ass
d

yy %%
KAssd

%%

RAssd

yy $$
KRAssd

%%

SAssd

zz
Assd

We remark that SAssd is rather close to Assd; indeed we have SAssd((g, 0)) ∼= Assd((g, 0)) for
all g > 0.

The surface corresponding to the ribbon graph appearing in relation (2.3) is a torus with one
boundary component containing one open boundary. The relation translates, in the notation

of Remark 2.11, to the condition
∑

i,j(−1)|aj ||bi|aiajbibj = 0 for an Ass
d
-algebra to lift to a

RAssd-algebra. It is unclear whether this equation has any significance from an algebraic point
of view.

3. Algebras over the dual Feynman transform

In this short section we give a general formulation of Kontsevich’s dual construction for
algebras over a modular Detd-operad. Before stating the result, we extend Definition 2.3 in an
obvious way. Let O be an extended modular Detd-operad. Given a dg vector space V equipped
with an inner product of degree d, the operad Ẽ constructed in Section 2 may be regarded as an
extended modular Detd-operad. An O-algebra structure on V is defined to be a homomorphism
O → Ẽ of extended modular Detd-operads. If O is equipped with a unit 1 ∈ O((0, 2)), we

require 1 to be mapped to the identity operator in Ẽ((0, 2)) ∼= Hom(V, V ).

Theorem 3.1. Let O be a modular Detd-operad and V be a dg vector space with an inner
product 〈, 〉 of degree d. Then the structure of an F∨

Detd
O-algebra on V is equivalent to the

following data:

(1) The structure of an O-algebra on V .
(2) An odd operator s : V → V such that

12



• s2 = 0;
• (ds+ sd)(a) = a for any a ∈ V ;

• 〈s(a), b〉 = (−1)|a|〈a, s(b)〉.

In other words, an F∨
Detd
O-algebra is an O-algebra together with a contracting homotopy

having square zero and compatible with the given inner product.

Proof. By definition, the extended modular Detd-operad F∨
Detd
O is generated by O and an odd

element s ∈ F∨
Detd
O((0, 2)) of square zero; this translates into the existence of an odd square-zero

operator on V which we denote by the same symbol s. The compatibility condition between
s and d is equivalent to the identity d(s) = 1 in F∨

Detd
O. Finally, since the action of Z2 is

trivial on s ∈ F∨
Detd
O the corresponding operator s ∈ Hom(V, V ) is likewise Z2-invariant which

is equivalent to the stated compatibility condition between s and the inner product 〈, 〉. �

In particular, taking Feynman amplitudes of V on Detd-twisted O-decorated graphs without
legs (the partition function of V ) we obtain a chain map

F∨
Detd
O((•, 0)) ∼= FDetdO((•, 0))∗ −→ Πdk

or, in other words, a cycle in the dg vector space ΠdFDetdO((•, 0)).

Remark 3.2. Let V be an F∨
Detd
O-algebra, and let s : V → V be the contracting homotopy

given by Theorem 3.1. Then it is easy to see that Im s is an isotropic complement to the
isotropic subspace Ker d = Im d in V .

Conversely let V be a contractible O-algebra, and let U ′ be an arbitrary isotropic complement
to U := Ker d = Im d in V . Then d restricts to an isomorphism of U ′ onto U , and we define
s : V → V to be inverse to d on U and zero on U ′. It is straightforward to check that s satisfies
the required conditions of Theorem 3.1, making V an F∨

Detd
O-algebra.

From this characterization it follows that any contractible O-algebra can be given the struc-
ture of an F∨

Detd
O-algebra.

The isotropic complement U ′ is not unique, so different choices may lead to nonisomorphic
F∨

Detd
(O)-algebras. However it can be shown (see [4]) that the cycle in ΠdFDetd(O)((•, 0))

obtained via Feynman amplitudes of legless stable graphs depends only on the original O-

algebra V . Hamilton and Lazarev have confirmed that this is true when O = Com
d
, using

different methods [15].

4. Stable graph complexes

We have seen that the dual Feynman transform of a modular D-operad O may be viewed
as a space of twisted O-decorated stable graphs. In this section we focus our attention on the
modular Detd-operads directly related to Com and Ass that were defined in the previous section,
namely O = Com , Com ,Ass ,KAss,Ass and their twisted versions. In these cases we shall use
Theorem 2.7 to interpret twisted O-decorated stable graphs in purely combinatorial terms, as
‘oriented’ graphs with additional combinatorial structure on vertices.

Thus we define certain graph complexes associated to these modular Detd-operads, which
serve as explicit models for their (dual) Feynman transforms. The associated cell complexes
were introduced and studied in [19], [26], [30] and [27]; however our explicit description of the
corresponding chain complexes is new.

Recall that we are considering (twisted) modular operads in dg vector spaces. Their Feynman
transforms are therefore also (twisted) modular operads in dg vector spaces. Suppose however
that O is a modular Detd-operad in (Z/2-graded) vector spaces, i.e. with vanishing differential.
Then FDO is a cochain complex with respect to the following Z-grading:

13



Definition 4.1. Let O be a modular Detd-operad with vanishing differential. Then for i =
0, 1, 2, . . . the ith grading component of the Feynman transform of O is

Fi
Detd
O :=

⊕
G

[
K(G)⊗Detd(G)⊗O((G))∗

]
AutG

where the direct sum is extended over the isomorphism classes of stable graphs with i edges.

Remark 4.2. It is clear that FDetdO actually has a Z×Z/2-grading and the Z-grading defined
above is obtained by simply forgetting the Z/2-grading.

4.1. Commutative case. We start with the simplest case of commutative graphs. A stable
commutative graph is essentially what Getzler and Kapranov called a stable graph except we
will not consider graphs with legs. Furthermore, whenever a vertex has genus g we will attach
to it g dotted loops. In other words, we represent a commutative stable graph as a usual graph
having no vertices of valence 0, 1 or 2, such that some of its loops are dotted as in the following
picture.

• • •

Whenever we say simply ‘edge’ or ‘loop’ without an adjective we shall mean ‘solid edge’ and
‘solid loop’. The set Edge(G) will refer to the set of edges but H1(G) will refer to the first
homology group of G taking into account the dotted edges.

We define a 0-orientation on a stable commutative graph G to be an ordering of the edges
of G modulo even permutations. Similarly we define a 1-orientation to be an ordering of the
vertices together with an orientation of every edge of G, again modulo even permutations. A
d-orientation on G determines a non-zero element of Det(Edge(G))⊗Detd(H1(G)), see, e.g. [5];
reversing the orientation means negating the corresponding element.

We will now introduce chain complexes GCom
d

• for d = 0, 1. The underlying vector space for

GCom
d

• is spanned by the isomorphism classes of d-oriented stable commutative graphs, modulo
the relation that oppositely oriented graphs sum to zero.

The differential is defined as follows. Let G be a stable commutative graph with a d-
orientation and e be an edge of G. If e is not a loop we denote by Ge the graph resulting
from the contraction of e. If e is a loop then Ge is obtained from G by replacing e with a dotted
loop. In any case Ge inherits a d-orientation from G and we define the differential by

(4.1) d(G) =
∑

e∈Edge(G)

Ge.

We denote by GCom
d

• (g) the subcomplex of GCom
d

• spanned by d-oriented stable graphs of genus g;

it is clear that these subcomplexes form a direct sum. The complex GCom
d

• (g) will be called the
stable graph complex for d = 0 and twisted stable graph complex for d = 1. The corresponding
homology will be called stable graph homology and stable twisted graph homology respectively;

it will be denoted by HCom
d

• (g).

Remark 4.3. Our terminology ‘graph complexes’ and ‘twisted graph complexes’ is in agree-
ment with that of Getzler and Kapranov since these notions correspond to the dual Feynman
transform of a modular operad and that of a twisted modular operad respectively; see Propo-
sition 4.4 below. However since the Feynman transform of a modular Detd-operad is (after
an appropriate transfer of structure) a modular Det1−d-operad, it might also be reasonable to
interchange the labels ‘twisted’ and ‘untwisted’ – this alternative convention is adopted in [20]
and [21]. The same remark applies to the various versions of ribbon graph complexes defined
below.
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The spaces spanned by graphs having at least one dotted loop form subcomplexes in GCom
d

• (g);

quotienting out by these subcomplexes we obtain the complex of (commutative) graphs GCom
d

• (g).

This corresponds to the fact that the (twisted) modular operad Comd is a quotient of Com
d
.

It will be convenient for us to use the corresponding cochain complexes. For O = Comd

or O = Com
d

we denote by G•O(g) the cochain complex which is k-dual to GO• (g) so that
GiO(g) = Hom(GOi (g),k). The corresponding cohomology will be denoted by H i

O(g).
The following proposition compares the stable commutative graph complexes with the Feyn-

man transforms of the corresponding Detd-modular operads

Proposition 4.4. For O = Comd or O = Com
d

there is an isomorphism of complexes

F•
Detd
O((g, 0)) ∼= G•O(g).

Proof. Direct inspection of definitions. �

4.2. Associative case. In the associative case we have more versions of the graph complex

as in addition to the modular operads Assd and Ass
d

we have the intermediate operad KAssd.
Again, for the sake of simplicity of exposition we will only treat graphs without legs.

Definition 4.5. A prestable ribbon graph (or simply a prestable graph) is a connected graph
such that the set of half-edges around each vertex is partitioned into cyclically ordered subsets;
additionally a pair of non-negative integers (γ, β) is assigned to each vertex. The integer γ is
called the genus defect and the integer β is called the boundary defect of the corresponding
vertex. We do not allow both the genus defect and boundary defect to be zero at a 1-valent
vertex nor at a bivalent vertex whose two half-edges form a cycle.

It is convenient to represent a vertex v as a ‘ghost’ surface Sv having genus γ and β free
boundary components. Let Flag(v) =

∐
i∈I Flagi be the given partition of Flag(v) into cyclically

ordered subsets; then the remaining (non-free) boundary components of Sv are labeled by I;
moreover the open boundary intervals embedded into the ith boundary component are in one-
to-one correspondence with the set Flagi in a way compatible with the given cyclic ordering of
Flagi.

This description is similar to that of a stable commutative graph complex; the ghost surfaces
being analogous to the dotted loops. The notion of a prestable graph is nothing but a stable
graph decorated by the operad OTFT. The definition of a d-orientation is similar to the stable
commutative case. A 0-orientation is again an ordering of edges, and a 1-orientation is an
ordering of vertices, an orientation of each edge and an ordering of the boundary components of
the ghost surface at each vertex. As before a d-orientation is defined up to even permutation,
so each prestable graph has two d-orientations, opposite to each other. A d-orientation on
a prestable graph G determines a nonzero element of K(G) ⊗ Detd(G) ⊗ OTFTd((G)); see
Remark 2.6.

1

e2

e3

e

Figure 2. A prestable graph.
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Just like a usual ribbon graph, a prestable graph G has a set of boundary components. These
are defined as follows. Thicken the edges of G to form ribbons connecting the ghost surfaces
attached to the vertices. The boundary components of the resulting connected surface S(G) will
be called the boundary components of G; clearly their number is an isomorphism invariant of G.
This generalizes the notion of a boundary component of a usual ribbon graph. Note that we can
meaningfully speak of a sequence of edges of a prestable graph forming a boundary component.
In particular, an edge (not necessarily a loop) could itself form a boundary component.

G S(G)  with arcsS(G)

e

Figure 3. A prestable ribbon graph G and its associated surface S(G). Note
that the edge e itself forms a boundary component.

Further, the genus of a prestable graph is defined as the genus of the surface S(G). We will

now introduce complexes GAss
d

• (γ, ν) for d = 0, 1. They will be called prestable ribbon graph
complex for d = 0 and twisted prestable graph complex for d = 1. The underlying vector space

for GAss
d

• (γ, ν) is spanned by the isomorphism classes of d-oriented prestable graphs of genus
γ with ν boundary components; the grading is chosen in such a way that Gn corresponds to
the graphs with n edges. As in the commutative case, we identify an oriented graph with the
negative of the oppositely oriented graph. We will sometimes omit indicating explicitly the
dependence of the complexes under considerations on the numbers γ and ν.

Let G be a prestable graph and let e be an edge connecting two vertices v1 and v2 (which
could coincide). We will regard e as a thin ribbon joining the surfaces Sv1 and Sv2 ; there results
a new surface Sv1v2 which is the union of Sv1 , Sv2 and e. Consider the new prestable ribbon
graph Ge obtained from G by coalescing the vertices v1 and v2 into a new vertex decorated by

Sv1v2 . Then the differential in GAss
d

• is defined by the same formula as in the stable commutative
case (4.1).

Figure 4. Graph obtained by ‘contracting’ the edge e in Figure 2.

Remark 4.6. The main thrust of this section has been to give a purely combinatorial de-
scription, in terms of graphs, of certain (dual) Feynman transforms. Temporarily taking the
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opposite approach, replacing graphs by surfaces, we are led to arc systems and the point of view
of Penner [29].

We saw above that a prestable graph G determines a surface S(G) formed by replacing
vertices by ghost surfaces and thickening edges into strips. Of course different prestable graphs
may give rise to the same surface; one way to obtain a faithful representation is to endow
S(G) with a system of arcs, one for each thickened edge, connecting opposite boundaries. See
Figure 3.

This recipe gives rise to an equivalence between the category of prestable graphs and the
category A(0) whose objects are compact oriented surfaces G with boundary, equipped with
a system Arc(G) of non-overlapping embedded intervals with endpoints in the boundary of
G; each arc in Arc(G) is required to be non-isotopic (relative to the boundary) to any other
arc in Arc(G), or to a boundary arc. Morphisms in A(0) are generated by homeomorphisms
preserving orientation and arc systems, and by ‘arc deletions’. We then have an isomorphism
of chain complexes

F∨
Detd

OTFTd((0)) ∼= colim
G∈IsoA(0)

Det(Arc(G))⊗Detd(H1(S(G))),

where the differential on the right hand side is given by arc deletion. To reconstruct all of
F∨

Detd
OTFTd, including the operadic structure, we should use categories A(n) of arc systems in

surfaces with n open boundaries.

We will now introduce two other types of associative graphs.

Definition 4.7. Let G be a prestable graph. It is called a stable ribbon graph if every vertex of
G has a zero boundary defect. If every vertex of G has zero genus defect, zero boundary defect
and trivial partition on its half-edges, then G is called a ribbon graph.

Remark 4.8. The term ‘ribbon graph’ just introduced is indeed consistent with the common
usage. Indeed if each vertex of a prestable graph G has zero genus defect, zero boundary defect
and trivial partition on adjacent half-edges, then all its ghost surfaces are disks. Clearly these
ghost surfaces could simply be ignored, making G a usual ribbon graph.

Further we define two other associative graph complexes GKAss• (γ, ν) and GAss• (γ, ν), and their

twisted versions GKAss1• (γ, ν) and GAss
1

• (γ, ν); we will call these stable ribbon graph complexes
and ribbon graph complexes respectively. The definitions of the underlying vector spaces are
the same as in the prestable graph complexes. The differential is likewise defined just as in the
prestable case, except if an operation of collapsing an edge produces a graph of a prohibited
type then this operation is set to be zero. For example, the prestable graph pictured in Figure 2
is stable, but contraction of the loop e2 yields a vertex with boundary defect 1 and therefore
does not contribute to the differential in GKAss• . On the other hand, contracting the loop e3

does yield another stable ribbon graph.
We have the following hierarchy of modular operads; both arrows are quotient maps:

Ass
d −→ KAssd −→ Assd

This gives rise to quotient maps between the corresponding graph complexes:

GAss
d

• (γ, ν) −→ GKAssd• (γ, ν) −→ GAss
d

• (γ, ν).

We find it convenient to use the corresponding cochain complexes G•O(γ, ν) := Hom(GO• (γ, ν),k)

and their cohomology H•O(γ, ν) where O is Ass
d
, KAssd or Assd. Finally we have the following

analogue of Proposition 4.4 whose proof consists of simply unraveling the definitions.

Proposition 4.9. Let O be Ass
d
, KAssd or Assd. Then there is an isomorphism of complexes

F•
Detd
O((g, 0)) ∼=

⊕
2(γ−1)+ν=g−1, ν>0

G•O(γ, ν)

�
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5. Examples

To understand how Theorem 3.1 works in more down-to-earth terms, let us consider the case
O = Ass, and let V be a dg algebra with a contracting homotopy s : V → V and an invariant
inner product 〈, 〉 of degree d. We will now recall, in slightly different language, the formulation
of the dual construction given by Kontsevich in [20]. Let G be a d-oriented ribbon graph without
legs. Recall that a 1-orientation means that the vertices are ordered and each edge is directed;
reversing the order of two vertices or the direction of an edge results in changing the sign of G.
Similarly a 0-orientation is an ordering of the edges, again with the understanding that an odd
permutation means a reversal of sign. We associate the tensor 〈v1 . . . vn−1, vn〉 to any vertex

of G of valence n; this tensor can be viewed as an element in Πd(n−1)V ⊗n by virtue of the
isomorphism ΠdV ∼= V ∗. We then associate the ‘propagator’ 〈?, s(?)〉 ∈ Πd+1(V ∗ ⊗ V ∗) to any
edge of G and perform contractions along all the edges of G. The resulting function ZV (G) on
ribbon graphs, called the partition function of V , is thus a cocycle on an appropriate version of
the ribbon graph complex.

However, one needs to be careful to specify in what sort of ribbon graph complex a cycle is
obtained. The original version of the (ribbon) graph complex defined by Kontsevich is what we

have denoted by GAss
d

• . It corresponds to the dual Feynman transform of the modular Detd-
operad Assd since the formula for the differential in this complex does not include contractions
of loops. An algebra over this modular operad is not an arbitrary differential graded Frobenius
algebra, but one satisfying (2.1) and (2.2).

Similarly, a contractible dg Frobenius algebra satisfying (2.1) determines a cocycle on the

stable ribbon graph complex GKAssd• , and finally an arbitrary contractible dg Frobenius algebra

determines a cocycle on the prestable graph complex GAss
d

• .

Example 5.1. Let V be a two-dimensional Z/2-graded vector space spanned by the elements
a and 1 in degrees 1 and 0 respectively. We define an associative product on V by requiring
that 1 be a two-sided unit and that a2 = 1. There is an odd scalar product on V given by
〈a, 1〉 = 1. The differential d is given by the formula d(a) = 1 and d(1) = 0. Finally, the
contracting homotopy for d has the form s(1) = a and s(a) = 0. Note that 〈, 〉−1 = a⊗1−1⊗a
and so (2.1) is satisfied but (2.2) is not.

Observe that the propagator 〈?, s(?)〉 is zero on 1⊗ a, a⊗ a and a⊗ 1, so in the expression
for the Feynman amplitude of a ribbon graph the non-zero contributions only come from the
graphs having all their half-edges decorated by the element 1. It follows that all vertices of such
graphs should have odd valence. Consider the following ribbon graph with three vertices A,B
and C:

G = •A •
B

•C

Here the cyclic ordering around each vertex is given by a local embedding into the 2-plane as

shown in the picture above. We will first regard G as being an element in GAss
1

• , i.e. the usual
graph complex where contracting loops is not allowed. The differential applied to G produces a
sum of four ribbon graphs. The two obtained by contracting the edge AB or BC have vertices
of even valence and thus zero amplitude for V . The other two are isomorphic and identically
oriented graphs of the following shape:

• •

It follows that the amplitude corresponding to the linear combination of graphs d(G) for the
algebra V is equal to ±2; the sign here depends on the orientation of G. Therefore V does not

give a cocycle on the usual twisted ribbon graph complex GAss
1

• .
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However we know that V must give a cocycle in the twisted stable ribbon graph complex

GKAss1• ; indeed one can check that the non-zero term described above cancels with the amplitude
corresponding to the graph obtained by contracting the loop situated at the vertex B.

Example 5.2. The Z/2-graded associative algebra underlying the contractible dg algebra V
considered in the previous example gives rise to an involution in the super-Brauer group of k,
i.e. the group of central simple Z/2-graded associative k-algebra modulo Morita equivalence.
If k is algebraically closed this involution generates the super-Brauer group. It turns out
that V gives rise to a non-trivial cocycle on the twisted stable graph complex; the proof will
be given elsewhere. On the other hand the identity element is represented by the algebras

End(km ⊕ (Πk)n). It could be shown that any F∨
Detd
Ass

d
-algebra structure supported on such

a matrix algebra gives rise to the trivial cocycle on the twisted stable ribbon graph complex.

Example 5.3. Consider the two-dimensional contractible dg algebra V with an invariant odd
scalar product, defined exactly as in Example 5.1, except that the associative product is given
by a2 = 0. With this modification, both conditions (2.1) and (2.2) are satisfied; hence V is
an algebra over F∨DetAss1. However since the corresponding Feynman amplitudes for all ribbon
graph without legs are zero, the algebra V does not furnish any nontrivial cocycles on the
twisted ribbon graph complex.

6. Moduli spaces of metric graphs

In this section we introduce spaces of metric commutative and associative graphs and show
that the algebraic graph complexes considered in section 4 compute the homology of various
sheaves on these spaces. For simplicity we treat graphs without legs throughout this section.

6.1. Commutative case. Consider the following functor from the opposite category Γop((g, 0))
of stable (commutative) graphs without legs to the category TOP of topological spaces:

MComg : G 7→ the set of all functions l : Edge(G)→ R≥0 such that
∑

e∈Edge(G)

l(e) = 1.

Definition 6.1. The moduli space of stable metric graphs of genus g is the colimit of the functor

MComg . It will be denoted by M Com
g .

It is clear that the space M Com
g consists of conformal isomorphism classes of stable metric

graphs (whose first homology group has rank g), i.e. stable graphs whose edges are supplied
with a positive length function. Contracting an edge corresponds to setting its length to zero.

Remark 6.2. There is an open dense subspace M Com
g in M Com

g consisting of the usual metric

graphs (i.e. those with vertices all of genus zero). The space M Com
g is a classifying space for

Out(Fg), the group of outer automorphisms of the free group on g generators, see [8]. Allowing

the contraction of loops leads to the compactification M Com
g .

The space M Com
g is an (orbi)-simplicial complex: it is a union of quotients of open topological

simplices by actions of finite groups. There is precisely one simplex σG for each isomorphism
class of G ∈ Γ((g, 0)). Denote by st(σG) (the open star of σG) the union of interiors of all
simplices containing a given simplex σG. Clearly the collection {st(σG)} is an open covering of

M Com
g .

Consider a functor F : Γop((g, 0)) 7→ dgVect. Then F gives rise to a dg sheaf F on M Com
g .

Namely, we define F to be the sheaf associated with the presheaf whose space of sections over
st(σG) is F (G)Aut(G). This sheaf is constructible, i.e. its restriction onto the interior of each
simplex σG is isomorphic to a constant sheaf.

Now let O be a modular Detd-operad. Let FO be the dg sheaf on M Com
g corresponding to

the functor FO : G 7→ Detd(G) ⊗ O((G))∗. Note that the Feynman transform FDetdO((g, 0))

is a dg vector space augmented into O((g, 0))∗. Denote by F̂DetdO((g, 0)) the dg vector space
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Π Ker(FDetdO((g, 0))→ O((g, 0))∗). In other words F̂DetdO((g, 0)) is obtained from the Feynman
transform FDetdO((g, 0)) by throwing away the term corresponding to the graph with no edges
and then reversing parity.

Theorem 6.3. There is an isomorphism

H
(
M Com

g ,FO
)
∼= H

(
F̂DetdO((g, 0))

)
.

Remark 6.4. The reason we need to consider F̂DetdO((g, 0)) rather than FDetdO((g, 0)) is that
in our simplicial framework a metric graph necessarily has at least one non-trivial edge.

Before tackling the proof of Theorem 6.3 observe the following special cases corresponding to

the operads Com
d

or Comd. Denote by detd the sheaf on M Com corresponding to the modular

Detd-operad Com
d
. Note that if d = 0 then detd is the constant sheaf k. By abuse of notation

we will also denote by detd the inverse image (restriction) of detd on M Com
g ⊂ M Com

g . For

O = Com
d

or O = Comd define H
•
O(g) by the following formula:

Ĥk
O(g) =

{
Hk−1
O (g) if k > 0

k if k = 0

Corollary 6.5. There is a following isomorphism; here Hc(−) denotes cohomology with compact
supports:

H•c (MO
g ,detd) ∼= Ĥ•O(g).

�

Remark 6.6. For uniformity we used cohomology with compact supports in the formulation

of the above theorem for both moduli spaces. Note, however, that the space M Com
g is itself

compact and so the usual sheaf cohomology is the same as cohomology with compact supports.

In preparation for the proof of Theorem 6.3 we will introduce the notion of a labeled stable
graph. Note that the number of half-edges of a stable graph of genus g is not greater than
6g − 6. Let S be a finite set of cardinality not less than 6g − 6 and consider the category Cg of
S-labeled stable graphs (or simply labeled stable graphs) which is defined as follows.

An object of Cg is a stable graph G of genus g without legs together with a injective map
Flag(G) ↪→ S; thus the half-edges of G are labeled by distinct elements of S. The morphisms
in Cg are morphisms of stable graphs compatible with labellings, so they are generated by
isomorphisms preserving labels and by edge-contractions. Note that a labeled stable graph has
no non-trivial automorphisms. The permutation group A := Aut(S) acts on the category Cg by
changing the labels of the half-edges of labeled stable graphs.

Consider the following functor from the opposite category Copg to the category TOP:

Fg : G 7→ the set of all functions l : Edge(G)→ R≥0 such that
∑

e∈Edge(G)

l(e) = 1.

Definition 6.7. The moduli space of labeled stable metric graphs of genus g is the colimit of
the functor Fg. It will be denoted by Mg.

It is clear that the space Mg consists of conformal isomorphism classes of labeled stable
metric graphs (whose first homology group has rank g), i.e. labeled stable graphs whose edges
are supplied with a positive length function. Contracting an edge corresponds to setting its
length to zero.

The space Mg is a simplicial complex with precisely one simplex σG for each isomorphism
class of labeled stable graph G ∈ Cg. The group A acts on this simplicial complex properly
discontinuously; the stabilizer of a simplex σG is the group Aut(G) of automorphisms of the
graph G. The functor Cg → Γ((g, 0)) of forgetting the labelings on half-edges determines a map

of topological spaces f :Mg →M Com
g , which induces a homeomorphism between the quotient
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Mg/A and M Com
g . In other words, we have represented the space M Com

g of stable metric graphs
as a global quotient of a simplicial complex by the action of a finite group.

Denote by st(σG) the union of interiors of all simplices containing a given simplex σG. Clearly
the collection {st(σG)} is an open covering of Mg.

Consider a functor F : Cg → dgVect. Then F gives rise to a dg sheaf F on Mg. Namely,
we define F to be the sheaf associated with the presheaf whose space of sections over st(σG)
is F (G). This sheaf is constructible, i.e. its restriction onto the interior of each simplex σG is
isomorphic to a constant sheaf.

Now consider a functor Γ((g, 0))op → dgVect and its restriction along the label-forgetting

functor Cg → Γ((g, 0)). Associated to these functors are the sheaves F and F on M Com
g and

Mg respectively. It follows directly from definitions that

• F = f−1F ;
• F = fA∗ F .

Here f−1 and fA∗ stand for the inverse image and A-equivariant direct image functors respec-
tively. We can now prove Theorem 6.3 following [23], Theorem 3.7.

Proof of Theorem 6.3. Note that the functors f−1 and RfA∗ establish an equivalence of the de-
rived category of sheaves onMg with a full subcategory in the derived category of A-equivariant

sheaves on M Com
g . Therefore there is an isomorphism

RΓ(M Com
g ,F ) ∼= RΓA(Mg,F)

where RΓA(Mg,F) = (RΓ(Mg, F ))A is the A-equivariant derived global sections functor (ob-
serve that since A is a finite group the functor of A-invariants is exact). Furthermore, since F
is a constructible sheaf its derived global sections could be computed using the Čech complex
Č(Mg,F) corresponding to the covering ofMg by the open stars of its vertices. It only remains

to note that the dg vector space of A-invariants ČA(Mg,F) is isomorphic to F̂DetdO((g, 0)). �

6.2. Associative case. The moduli spaces of metric ribbon graphs and their decorated versions
are treated in a way completely parallel to the case of metric commutative graphs. Therefore
we shall restrict ourselves with providing the relevant definitions and formulations. In fact, the
most general treatment in the associative case would entail considering modular non-Σ-operads
and corresponding sheaves on the moduli spaces of metric ribbon graphs. We won’t go so far
and instead consider the most important special cases related to the operad Ass.

Let Γ((γ, ν, 0)) be the category whose objects are prestable ribbon graphs of genus γ with ν
boundary components and having no legs; the morphisms are generated by isomorphisms and
edge-contractions.

Consider the following functors from the opposite category Γop((γ, ν, 0)) of prestable graphs
to the category TOP of topological spaces:

MAssγ,ν : G 7→ the set of all functions l : Edge(G)→ R≥0 and such that
∑

e∈Edge(G)

l(e) = 1.

Definition 6.8. The moduli space of prestable metric ribbon graphs (or simply prestable metric

graphs) is the colimit of the functor MAssγ,ν . It will be denoted by MAss
γ,ν .

Similarly to the commutative case the points in MAss
γ,ν are conformal isomorphism classes of

stable metric ribbon graphs (of genus γ with ν boundary components) i.e. those stable ribbon
graphs whose edges are supplied with a positive length function l. There are certain natural

subspaces in MAss
γ,ν .

Definition 6.9.

(1) The moduli space of stable metric ribbon graphs is the subspace MKAss
γ,ν of MAss

γ,ν con-
sisting of those prestable metric graphs which have no vertices of positive boundary
defect.
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(2) The moduli space of metric ribbon graphs is the subspace MAss
γ,ν of MAss

γ,ν consisting
of prestable metric graphs whose ghost surfaces are spheres with only one boundary
component.

It is clear that the space MAss
γ,ν consists of conformal isomorphism classes of usual metric

ribbon graphs of genus γ and with ν boundary components i.e. graphs whose edges are supplied
with a positive length function. Contracting an edge corresponds to setting its length to zero.
Allowing the contraction of loops we arrive at two different notions of stability: if the contraction
of boundary components is prohibited we obtain the notion of a stable metric ribbon graph;
dropping this restriction we get prestable metric ribbon graphs. Note in passing that there are
other moduli spaces corresponding to modular operads intermediate between Ass and Ass ; see
Remark 2.12.

We can now formulate the analogue of Theorem 6.3 (or, rather, of Corollary 6.5) in the case of
associative graphs. The proof, which carries over from the commutative case almost verbatim,

will be omitted. For O = Assd, Ass
d

or KAssd we define

Ĥk
O(γ, ν) =

{
Hk−1
O (γ, ν) if k > 0

k if k = 0

Theorem 6.10. There is an isomorphism:

H•c (MO
γ,ν , detd) ∼= Ĥ•O(γ, ν).

�

Remark 6.11. Our combinatorial moduli spaces admit interpretations in terms of moduli
spaces of algebraic curves over C as follows.

(1) Denote by Mγ,ν the coarse (uncompactified) moduli space of curves of genus γ with ν
marked points and by ∆n−1 the (n− 1)-dimensional topological simplex. Then there is
a homeomorphism

(
Mγ,ν ×∆ν−1

)
/Sν ∼= MAss

γ,ν . Here Sν acts on Mγ,ν by permuting the

marked points, on ∆ν−1 by permuting the barycentric coordinates. This follows from
the theory of Jenkins-Strebel differentials.

(2) Denote by M γ,ν the moduli space of stable curves – the Deligne-Mumford compactifi-
cation of Mγ,ν . Two stable curves are equivalent if there is a homeomorphism between
them that is complex-analytic on all components containing marked points. The quo-
tient KMγ,ν of M γ,ν by the closure of this equivalence relation is called the Kontsevich

compactification of Mγ,ν and there is a homeomorphism MKAss
γ,ν

∼=
(
KMγ,ν ×∆ν−1

)
/Sν .

This is stated in [19] and proved in [26, 30].
(3) Consider the moduli space of stable curves of genus γ with ν marked points where

each marked point is decorated by a non-negative number, its perimeter. One requires
that the sum of all perimeters equals 1. This moduli space is clearly homeomorphic
to M γ,ν × ∆ν−1. Two stable curves are then equivalent if there is a homeomorphism
between them that is complex analytic on all components having at least one marked
point with a non-zero perimeter. The quotient of M γ,ν ×∆ν−1 modulo the closure of
this equivalence relation is a compactification of the decorated moduli space of curves.

The quotient of this compactification by Sν is homeomorphic to MAss
γ,ν . This is proved

in [27].

7. BV-resolution of a modular operad

Recall that algebras over the dual Feynman transform of a modular Detd-operad O are
essentially O-algebras together with a choice of contracting homotopy. A natural question is
whether one can adapt this construction to not necessarily contractible O-algebras. In this
section we will outline such a construction and explain how it provides a resolution of O closely
related to the canonical resolution FK⊗D∗FDO. We will call our variation on the dual Feynman
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transform the Boardman-Vogt resolution in this context because it is similar to the topological
tree complex studied in [3].

7.1. Basic construction and description of algebras.

Definition 7.1. Let D be a cocycle and O be a modular D-operad. Its BV-resolution BVDO
is the extended modular D-operad freely generated over O+ by an odd operation s and an even
operation t, both in BVDO((0, 2)), subject to the relations:

• s2=0;
• t2 = t;
• st = ts = 0.

The differential d on BVDO extends the differential on O, and d(s) = 1− t and d(t) = 0.

Remark 7.2. In keeping with our usual notational conventions from Section 1 we can write(
O[s, t]/(s2, t2 − t, st)

)
+

for the BV-resolution of O (without the differential). There is an

obvious surjection BVDO → F∨DO obtained by setting t to zero. In particular, any F∨
Detd
O-

algebra automatically becomes a BVDetdO-algebra. Furthermore, setting s to zero we obtain

an augmentation BVDO → O+. Taking in particular the case D = Detd, any O-algebra V
gives canonically a BVDetdO-algebra. The operators s and t act on V as the zero and identity
operators respectively.

We have the following analogue of Theorem 3.1:

Theorem 7.3. Let O be a modular Detd-operad and V be a dg vector space with an inner
product 〈, 〉 of degree d. Then the structure of an BVDetdO-algebra on V is equivalent to the
following data:

(1) The structure of an O-algebra on V .
(2) An odd operator s : V → V such that

• s2 = 0;
• 〈s(a), b〉 = (−1)|a|〈a, s(b)〉.

(3) An even operator t : V → V such that
• t2 = t;
• dt = td;
• 〈t(a), b〉 = 〈a, t(b)〉.

(4) The following identities for the operators s and t hold:
• st = ts = 0;
• (ds+ sd)(a) = a− t(a) for any a ∈ V.

Proof. This theorem follows directly from definitions; note that the invariance property of t
with respect to the inner product 〈, 〉 has no sign since t is an even operator. �

Example 7.4. An example of such a structure comes from any O-algebra. Such an algebra
V is a dg vector space with an inner product 〈, 〉; the differential is compatible with the inner

product in the sense that 〈da, b〉 + (−1)|a|〈a, db〉 = 0. Let V0 = Ker d and U = Im d. Choose a
complement W to U inside V0 so that W ⊕ U = V0. Then U is an maximal isotropic subspace
of W⊥; choose an isotropic complement U ′. We have therefore

V = W ⊕ (U ⊕ U ′).

It is clear that the inner product 〈, 〉 is nondegenerate on W ∼= H•(V ) and the pairing between
U and U ′ is likewise nondegenerate.

Define the operator t : V → V to be the projection onto W along U ⊕ U ′. The operator d
restricts to an isomorphism of U ′ onto U . Define s : V → V to be inverse to d on U and zero
on U ′ and W ; it is an analogue of the Green operator in Hodge theory. Then it is easy to see
that the O-algebra V supplied with the operators s and t satisfies the conditions of Theorem
7.3 and so it is an algebra over the BV-resolution of O.
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It is important to stress that the structure of a BVDO-algebra on V described here is different
from one obtained via the augmentation BVDO → O as in Remark 7.2. In particular, the
operator s is not zero on V unless V has vanishing differential.

7.2. Stable BV-graph complexes. In this subsection we will give another, more concrete,
description of the BV-resolution of a modular D-operad as a kind of decorated graph complex.
We start by defining the categories ΓBV((g, n)) of two-colored stable graphs or BV-graphs.

Definition 7.5. A BV-graph is an extended stable graph with the following additional struc-
ture: the set Edge(G) is partitioned into two subsets: those of black edges and of white edges.
We also require that the unstable vertices, i.e. the bivalent vertices of genus 0, only occur next
to legs.

We will denote the set of black edges of a BV-graph G by Edgeb(G). For typographic reasons
we will draw the black edges using straight lines and the white edges using wiggly lines. Note
that the legs of a BV-graph have no color; to emphasize this we will draw the legs using dotted
lines.

There is an obvious notion of isomorphism between two BV-graphs. The objects of ΓBV((g, n))
are BV-graphs of genus g with n labeled legs. There are three types of morphisms in ΓBV((g, n))
which generate all morphisms:

(1) isomorphisms of BV-graphs preserving labelings.
(2) contractions of black edges. For a black edge e ∈ Edgeb(G) this operation will be written

as G 7→ Ge.
(3) replacing a black edge by a white edge. For a black edge e ∈ Edgeb(G) this operation

will be written as G 7→ Ge.

We can now introduce the two-colored graph version of the BV-resolution of a modular D-
operad O which will be temporarily denoted by BV′D(O).

Given a BV-graph G we put

O[G] := Det(Edgeb(G))⊗D(G)⊗O((G)).

Here the spaceO((G)) ofO-decorations onG and the twisting D(G) are defined by forgetting the
coloring on G and just regarding it as an extended stable graph. Let e ∈ Edgeb(G) be a black
edge. Then the contraction G 7→ Ge determines a parity-reversing linear map de : O[G] →
O[Ge] given by the operadic composition in O; similarly the operation G 7→ Ge determines
tautologically a map de : O[G]→ O[Ge].

We define

BV′DO((g, n)) := colim
G∈Iso ΓBV((g,n))

O[G],

with differential d determined by the formula

(7.1) d|O[G] = dO +
∑

e∈Edgeb(G)

[de + de],

where dO is the internal differential induced by the differential on O.

Proposition 7.6. There is an isomorphism of complexes

BVDO((g, n)) ∼= BV′DO((g, n)).

The operadic composition in BVDO is given by glueing decorated BV-graphs according to the
following rule: graft legs to make a new edge and then contract the newly formed edge, using
the operadic composition in O.

Proof. Using Lemma 1.4 we see that the space O[s, t] is a space of twisted O-decorated extended
stable graphs with two types of edges: black edges corresponding to s and the white edges
corresponding to t.
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The relation s2 = 0 is interpreted pictorially as • • • = 0; thus graphs
having an unstable bivalent vertex separating two black edges are zero. Similarly the relation
t2 = t can be rewritten as

• • • = • • .

In other words the unstable bivalent vertices separating two white edges could simply be for-
gotten. Finally st = ts = 0 is equivalent to

• • • = • • • = 0.

This means that the unstable bivalent vertices only occur next to legs. Next, since d(t) = 0 the
formula for the differential only involves the s-edges (i.e. the black edges); finally the formula
d(s) = 1− t precisely corresponds to equation (7.1). �

Remark 7.7. Note that the subspace in BVDO((g, n)) = BV′DO((g, n)) corresponding to O-
decorated graphs having at least one white edge is closed with respect to the differential. The
corresponding quotient dg vector space consists of O-decorated graphs having only black edges,
i.e. the usual commutative stable graphs. In the formula for the differential the term de goes
away and we are left with the usual graph differential as in the O-graph complex (or the
dual Feynman transform of the modular D-operad O). We obtain a surjective homomorphism
BVDO((g, n))→ F∨DO((g, n)); this is the same map as the one described in Remark 7.2.

We conclude by explaining how BVDO is closely related to the standard free resolution of O
provided by the twice-iterated Feynman transform. Let Γbv((g, n)) be the subset of ΓBV((g, n))
containing BV-graphs without unstable vertices. To any G ∈ Γbv((g, n) we can associate the
BV-graph Gt obtained from G by glueing a white edge onto each leg. Then the image of the map
G 7→ Gt consists of the BV-graphs all of whose legs are connected to white edges by unstable
bivalent vertices.

We define bvDO to be the truncation of BVDO by the idempotent t, i.e. the suboperad of
BVDO defined by

bvDO((g, n)) := colim
G∈Iso Γbv((g,n))

O[Gt].

The element t serves as an operad unit for bvDO.

Proposition 7.8. Let D be a cocycle, and let O be a modular D-operad.

(1) We have an isomorphism bvDO ∼= (MDMK⊗DO)+ of extended modular D-operads in
Z/2-graded vector spaces (forgetting the differential). Moreover, provided O((g, n)) is
finite dimensional for all g and n, the extended modular D-operad bvDO is isomorphic
to the double Feynman transform (FK⊗D∗FDO)+.

(2) The inclusion bvDO ↪→ BVDO is a quasi-isomorphism of extended modular D-operads.
(3) The embedding O+ ↪→ BVDO and the augmentation BVDO → O+ are quasi-isomorphisms

of extended modular operads.

Proof. We first note that bvDO and (MDMK⊗DO)+ are isomorphic as (extended) stable S-
modules; this is the content of Lemma 5.5 of [9]. The operadic compositions match up, because
the usual glueing of BV-graphs G and G′, in which grafted legs form a white edge, corresponds
to the glueing of Gt and G′t described in Proposition 7.6 (the same applies to self-glueings). If
each O((g, n)) is finite dimensional, then it is straightforward to check that the differentials on
FK⊗D∗FDO ∼= MDMK⊗DO and bvDO are the same.

Next we turn to the statement that bvDO((g, n)) ↪→ BVDO((g, n)) is a quasi-isomorphism.
For (g, n) = (0, 2) this is clear: the inclusion of k ·t into the dg vector space W = k ·1⊕k ·t⊕k ·1
with d(s) = 1 − t and d(t) = 0, is indeed a quasi-isomorphism. When (g, n) 6= (0, 2), we need
to consider for each G ∈ Γbv((g, n)) the 3n BV-graphs obtained by tacking onto each leg of G
either a white edge, a black edge or nothing; choosing white edges for all legs produces Gt. Now
it all boils down to showing that the inclusion (k · t)⊗n ↪→W⊗n is a quasi-isomorphism, which
is obvious.

25



Finally, the composition bvDO ↪→ BVDO → O+ is a quasi-isomorphism, by Theorem 5,4
of [9]. Since the composition O+ ↪→ BVDO → O+ is the identity, the last statement of the
proposition now follows. �

Remark 7.9. Let V be an algebra over a modular Detd-operad O. According to Example 7.4,
a choice of Hodge decomposition on V leads to a BVDetdO-algebra structure on V . Now we
may truncate with the idempotent t, inducing a bvDetdO-algebra structure on tV = H(V ). It
is tempting to regard H(V ) equipped with this ‘homotopy O-algebra structure’ as an explicit
‘minimal model’ for O. A detailed treatment of minimal models for modular operads appears
in the authors’ work [4].

In the special case that V is a contractible O-algebra, we obtain a bvDetdO-algebra structure
on H(V ) = 0. This provides a slightly different take on the dual construction. Indeed, bvDetdO-
algebra structures on the zero vector space are in one-to-one correspondence with cocycles
on bvDetdO((≥ 0))/〈bvDetdO((> 0))〉 ∼= F∨

Detd
O((0)). Thus the dual construction applied to a

contractible O-algebra could be viewed as the identification of its minimal model.
In this connection we mention the following, apparently difficult question: given a modular

Detd-operad O, can every cohomology class on F∨
Detd
O((0)) be realized by a contractible O-

algebra? Note that two quasi-isomorphic operads have isomorphic homotopy categories of
algebras. If the corresponding statement were true for modular Detd-operads then applying it
to modular Detd-operads O and bvDetdO and a given cocycle on F∨

Detd
O((0)) considered as a

bvDetdO-structure on the zero vector space we would get a positive answer to the posed question.
However, even the correct definition of homotopy categories of algebras over modular operads
is not clear: we saw that a contractible (or even zero) O-algebra does not necessarily have to
be regarded as being trivial.
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