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Matrix pencil models are natural descriptions of linear networks

and systems. Changing the values of elements of networks, that

is redesigning them, implies changes in the zero structure of the

associated pencil and this is achieved by structured additive trans-

formations. The paper examines the problem of zero assignment of

regularmatrix pencils by a special type of structured additive trans-

formations. For a certain family of network redesign problems the

additive perturbations may be described as diagonal perturbations

and such modifications are considered here. This problem has cer-

tain common featureswith thepole assignmentof linear systemsby

structured static compensators and thus thenewpowerfulmethod-

ology of global linearization [J. Leventides, N. Karcanias, Sufficient

conditions for arbitrary Pole assignment by constant decentralised

output feedback, Mathematics of Control for Signals and Systems

8 (1995) 222–240; J. Leventides, N. Karcanias, Global asymptotic

linearisation of the pole placementmap: A closed form solution for

the constant output feedback problem, Automatica 31 (1995) 1303–

1309] can be used. For regular pencils with infinite zeros, families

of structured degenerate additive transformations are defined and

parameterized and this lead to the derivation of conditions for zero

structure assignment, as well as methodology for computing such

solutions. The case of regular pencils with no infinite zeros is also

considered and conditions of zero assignment are developed. The

results here provide the means for studying problems of linear

network redesign by modification of the non-dynamic elements.
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1. Introduction

The problem of redesigning passive electric networks [16] involves the selection of alternative

values for dynamic (inductances, capacitances) andnon-dynamic (resistances) elementswithin a fixed

interconnection topology and/or alteration of the interconnection topology and possible evolution of

the network (increase of elements, branches). The general redesign problem is much more complex

than the subclass of problems consideredhere,whichmaybedescribed as transformations onnetwork

based matrix pencil models [17]. The problem considered here is within the general class of redesign

problems and it is reduced to the zero assignment of regularmatrix pencils. In fact, the problemconsid-

ered is the assignment of zeros of sF + G + H, where sF + G expresses the internal dynamics matrix

of a system and H = UΛV represents a static structural change; the matrices U, V are known graph

incidence matrices (they express a topology modification) and Λ is a diagonal matrix of continuous

design parameters. In reality, the three matrices U, V ,Λ are design parameters. We shall assume that

the incidence matrices U, V are fixed and thus only the diagonal matrix Λ is free for the assignment of

zeros sF + G + UΛV . A large family of such problems can be reduced to the case of diagonal additive

perturbations and this is the problem considered here in some detail. The paper is within the area of

matrix pencils and linear systems [23] and deals with both the study of solvability conditions, as well

as the derivation of solutions, whenever such solutions exist. Thework deals with properties of matrix

pencils [4], it is within the general area dealing with problems for assigning invariants [5–12,26]; the

methodology also relates to the intersection theory of varieties [3].

The general properties of the frequency assignment map are considered first and the notion of

degenerate transformation, i.e. those making the pencil sF + G + H singular is defined. For the case

of pencils with infinite zeros, a parameterization of the set of degenerate transformations H is given

based on the nature of the resulting singularity of the pencil. The significance of degenerate solutions

is emphasized by establishing the property that if the differential of the frequency assignment map at

a degenerate pointH0 is onto, then this implies assignability of the zero structure of the pencil by some

appropriate H. The explicit form of the differential at a degenerate point is computed and it is shown

that for a generic pencil there exist degenerate points H0 such that the corresponding differential is

onto. Using as the starting point such degenerate solutions, it is shown that transformations H, which

are non-degenerate,may be constructed to assign the zeros of sF + G + H in the neighbourhood of any

arbitrary symmetric set of complex numbers. The results are developed for pencils sA + B ∈ Rn×n[s]
for which rank(A) = n − 1, whereas the more general case rank(A) < n − 1 is not considered here.

The proposed methodology for zero assignment uses a Quasi-Newton type numerical approach to

defineperturbations that assign the zeros andwhichare at adistance fromthedegenerateperturbation

that is the starting point of the algorithm; the convergence properties of the scheme are also exam-

ined. The methodology for computing solutions in this case is similar to that developed for the static

decentralised output feedback [13,1] case, based on the degenerate compensator methodology [2,29].

Finally, the case of pencils with no infinite zeros, that is rank(A) = n, is considered and conditions

for the complex zero assignment are derived in terms of invariants associated with the pencil; the

latter case is considered separately since it requires a different methodology, given that no degenerate

perturbations exist for this case. Here, if we allow complex solutions, then the Dominant Morphism

Theorem for complex varieties [27,28] can be applied simplifying the problem to that of finding one

point such that the differential of the Frequency Assignment Map, is onto.

The results in this paper provide a methodology for solving an important passive design problem

in circuit theory when the topology and the nature of the elements are given, some elements have

specified values and the values of the remaining elements are to be determined.

2. Problem formulations and background results

Passive electrical network models give rise to appropriate matrix pencil descriptions [17] and a

number of problems that may be defined on themmay be addressed within the framework of matrix

pencil structuremodifications. Here we consider a family of problemswhich are of “open loop” nature

and dealwith the change of the basic characteristics of the network by changing the parameters and/or
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the topology of the networkwithout deploying feedback compensation. Such problems are referred to

as network redesign [16] and aim at improving the dynamics of the network, as these are expressed by

the natural frequencies defined by the roots of the finite elementary divisors of an associated pencil.

The natural frequencies of an electrical network depend on two factors:

(a) The topology of the network.

(b) The nature and the values of the elements of the network.

For the designer, it is important to be able to assign these frequencies at specific locations so that

the network has certain desirable characteristics. The designer can exploit the available degrees of

freedom and in this area we may distinguish the following clusters of problems:

Case 1. Both the topology of the network and the elements are design parameters.

This is the general synthesis problem of the network theory that can be formulated as: Given a

rational matrix determine the conditions under which it can be realized as an RLC network. This

problem is the classical problem of network synthesis [17] and it is not considered here. When the

topology is fixed and the nature of the elements is given, but not their values, then we have a general

problemof assignment of impedance and admittancematrices,which is not a standardnetwork theory

problem, since the topology, and location of elements are not anymore free parameters for design and

corresponds to:

Case 2. The topology of the network and the nature of the elements are given, but their values are free

parameters to be determined.

A more restricted version of the above case corresponds to:

Case 3. The topology and the nature of the elements are given, some elements have specified values

and the values of the remaining elements are to be determined.

The last case represents typical problems of network redesign, where given the system we have to

change the least number of elements to improve the zero structure and thus improve the resulting

system performance. Two special cases of this version that can be readily handled within the Deter-

minantal Assignment Problem (DAP) framework developed for control [18] are considered next. These

are:

(i) Determination of resistors in an RL network: Assume that the branch impedance matrix [17] is

given by

Z(s) =
[
sL + R 0

0 D

]
,

where sL + R is a knowndiagonalmatrix,D is diagonal staticmatrix tobedetermined (character-

ising variable resistances) and B is the networkmatrix which can be partitioned as B = [B1, B2].
Then the loop impedance matrix is given by [17]

BZ(s)Bt = B1(sL + R)Bt1 + B2DB
t
2.

If B2 is non-singular, then the zeros of BZBt are defined as the zeros of the pencil

(B2)
−1B1(sL + R)Bt1

(
Bt2

)−1 + D.

The problem in this case is reduced to constructing a diagonal perturbation D such that the

above matrix has predefined zeros.

(ii) Determination of resistors in an RC network: This problem is dual to that of determining the values

of the resistors required for tuning the zeros of the admittance matrix AYAt in an RC network. In

this case, the previous expression becomes

(A2)
−1A1(sC + G)At

1

(
At
2

)−1 + D.
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The common mathematical formulation of the above problems is expressed as follows:

Problem formulation. Given a square pencil sA + B such that A, B ∈ Rn×n, rank A = n1 � n the prob-

lem to be examined refers to the investigation of the solvability of the equation:

det(sA + B + Λ) = φ(s) (2.1)

with respect to Λ = diag{λ1, λ2, . . ., λn} when φ(s) is a given polynomial of n1 degree where λi is

either real, or complex.

Notation. If m, n are two integers m� n, then Qm,n is the set of lexicographically ordered sequences

(see [24]) ofm integers from the set {1, 2, . . ., n} and Dn is any sequence of n integers from {1, 2, . . ., n}
with possible repetition and any order [24]. If X is an m × n matrix and r �min(m, n) then we shall

denote by Cr(X) the rth compound matrix of X , which is a matrix made up of all r × r minors of X

lexicographically ordered [24]. Note Cr(X) is a matrix with
(
m
r

)
rows and

(
n
r

)
columns. Each row of

Cr(X) ia associated with a sequence θ = (i1, i2, . . ., ir) ∈ Qr,m and each column of Cr(X) is associated
with a sequence ρ = (i1, i2, . . ., ir) ∈ Qr,n. The elements of Cr(X) are minors parameterized by the

pair of sequences (θ , ρ). If r = min(m, n) then Cr(X) is a vector (row or column respectively) referred

to as the exterior product of rows (columns). In this case if r = m < n, Cr(X) is a row vector and its

elements are simply parameterized by the sequences θ only.

Definition 2.1. For the matrix [In,Λ] ∈ Rn×2n, the nth compound Cn([In,Λ]) ∈ R
1×

(
2n
n

)
is a row

vector and its elements are defined by the sequences ω = (i1, i2, . . ., in) ∈ Qn,2n. The minors of the

compound matrix (row vector) are simply denoted by αω . For such sequences ω, we define the

following:

(a) The operation π on ω ∈ Qn,2n as:

π(ω)� (π(i1),π(i2), . . .,π(in) = (j1, . . ., jn),

where

π(ik) =
{
ik if ik � n,

îk = ik − n if ik > n.

(b) A sequence ω = (i1, i2, . . ., in) ∈ Qn,2n is called degenerate, if π(ω) = (j1, j2. . ., jn) has at least

two equal elements (ie jl = jk) and it is non-degenerate, if π(ω) = (j1, j2. . ., jn) has distinct

elements. In the latter case π(ω) = (j1, j2. . ., jn) is a permutation of n distinct elements from

{1, 2, . . ., n} and thus its sign, sign (j1, j2. . ., jn), as a permutation is defined.

(c) For a sequence ω ∈ Qn,2n, which is non-degenerate we define as the sign of ω as:

sgn(ω)� σ(ω) = sign(j1, j2. . ., jn)

and as the trace of ω, the subset of the elements of π(ω) = (j1, j2. . ., jn) which correspond to

ik > n and thus it is the set 〈ω〉 = {jk1 , jk2 , . . ., jkμ}, μ � n.

Proposition 2.1. Let [In,Λ] ∈ Rn×2n anddefineCn([In,Λ])=[. . ., aω , . . .]∈R1×∂ ,∂ =
(
2n
n

)
,ω ∈ Qn,2n.

Then the coordinates aω are defined as: aω = 0, if ω is degenerate and aω /= 0, if ω is non-degenerate.
Furthermore, if ω is non-degenerate, σ(ω) is the sign of ω and 〈ω〉 = {jk1 , jk2 , . . ., jkμ} is the trace of ω,

then aω = σ(ω)λjk1
λjk2

· · ·λjkμ
.

The set of Qn,2n sequences may thus be divided into two disjoint sets, the set QD
n,2n of degenerate

sequences and the set QnD
n,2n of non-degenerate sequences. Both subsets of sequences are assumed to

be lexicographically ordered. Consider now the characteristic polynomial of the redesigned system

φ(s) = det(sA + B + Λ) ≡ φ(A, B,Λ).
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By the Binet–Cauchy theorem [24] we have that:

det[sA + B + Λ] = det

(
[In,Λn] ·

[
sAt + Bt , In

]t)
= Cn([In,Λn])Cn

([
sAt + Bt , In

]t) = φ(s). (2.2)

Definition 2.2. Let QD
n,2n, Q

nD
n,2n be the ordered subsets of degenerate and nondegenerate sequences of

Qn,2n associated with the [In, In] structure.We shall denote by C̃n([In,Λ]) the sub-vector of Cn ([In,Λ])
obtained by omitting all zero coordinates corresponding to QD

n,2n degenerate sequences (indices) and

retaining the order of the rest. Similarly we shall denote by C̃n
([
sAt + Bt , In

])
the reduced dimension

sub-vector of Cn
([
sAt + Bt , In

])
derived by deleting the QD

n,2n set of coordinates retaining the order of

the rest. Note that the remaining set has 2n elements. The sub-vectors C̃n([In,Λ]), C̃n ([
sAt + Bt , In

])
will be referred to as [In, In]-structured projections.

Note that

Cn[In,Λ]Cn
([

sA + B

In

])
= C̃n([In,Λ])C̃n

([
sA + B

In

])
= φ(s) (2.3)

and given that C̃n([In,Λ]) = [. . ., aω , . . .] where ω ∈ QnD
n,2n, then

C̃n([In,Λ]) =
[
. . ., σ(ω) · λjk1

· λjk2
· · · λjkμ−1

· λjkμ
, . . .

]
=

[
. . ., λjk1

· λjk2
· · · λjkμ−1

· λjkμ
, . . .

]
diag{. . ., σ(ω), . . .}

= Ĉn([In,Λ])D(σ (ω)) (2.4)

then

φ(s) = Ĉn([In,Λ])D{σ(ω)}C̃n
([

sA + B

In

])
= Ĉn([In,Λ])Ĉn

([
sA + B

In

])
(2.5)

The vectors

Ĉn([In,Λ]) � C̃n[In,Λ]D{σ(ω)} ∈ R1×�
∂ ,

�
∂ = 2n, (2.6)

Ĉn

([
sA + B

In

])
�D{σ(ω)}C̃n

[
sA + B

In

]
= p̂(s) ∈ R

�
∂ [s]

will be referred to as normalized [In, In]-structured projections of Cn([In,Λ]), Cn ([
sAt + Bt , In

])t
respec-

tively. In particular, Ĉn
([
sAt + Bt , In

])t = p̂(s), will be called the [In, In]-Grassmann representative of

the system.

Proposition 2.2. The normalized [In, In]-structured projection of Ĉn([In,Λ]) may be expressed using ten-

sor products ⊗ as:
Ĉn([In,Λ]) = (1, λ1) ⊗ (1, λ2) ⊗ · · · ⊗ (1, λn). (2.7)

Theabove result followsby inspectionof theexpressionof Ĉn([In,Λ]). The characteristic polynomial

is expressed as in (2.5) and it is generated by the [In, In]-Grassmann representative of the system ie

p̂(s) = Ĉn

([
sA + B

In

])
. (2.8)
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Remark 2.1. For any sA + B, Cn
([
sAt + Bt , In

])
is a polynomial vector p̂(s), the components of which

are not necessarily coprime.

Definition 2.3. The greatest common divisor of the entries of p̂(s) will be denoted by φA,B(s) and this

will be referred to as the [In, In]-fixed polynomial of the system. A system for which φA,B(s) = 1 will be

called [In, In]-irreducible; otherwise, it will be called [In, In]-reducible.
The following result can be readily established (see also [22]):

Theorem 2.1. The fixed zeros of the redesigned polynomial φ(A, B,Λ) for all possible Λ are defined by the

roots of the polynomial φA,B(s).

If φA,B(s) is nontrivial, we can factorize p̂(s) as p̂(s) = p̃(s)φA,B(s) and then use the vector p̃(s) as

the generator of the assignable zeros. In the following we assume that φA,B(s) = 1 and thus p̂(s) is the
generator of the assignable zeros. We can now easily establish that

det(sA + B + Λ) = Ĉn([In,Λ])D{σ(ω)}C̃n
([

sA + B

In

])
= (1, λ1) ⊗ (1, λ2) ⊗ · · · ⊗ (1, λn) · p̂(s). (2.9)

The polynomial vector p̂(s) has dimension
�
∂ = 2n and degree n1 = rank(A). The coefficient matrix

of p̂(s) is a matrix of dimension
�
∂ ×(n1 + 1) and it is called the reduced Plucker matrix [18,30], P, for

the pencil
[
sAt + Bt , In

]t
with reference to the diagonal problem. By equating the coefficients of equal

powers of s in (2.9) we get

(1, λ1) ⊗ (1, λ2) · · · ⊗ (1, λn) · P = φ, (2.10)

where φ is the coefficient vector of φ(s).

Example 2.1. Let a system matrix of an RL circuit be:

sA + B =
⎡⎣s + 5 s − 1 s

2s s s + 3

1 2 −1

⎤⎦ .

In this case the C3([I3,Λ3]) matrix is

C3[I3,Λ3] · C3
⎡⎣1 0 0 λ1 0 0

0 1 0 0 λ2 0

0 0 1 0 0 λ3

⎤⎦
= (1, 0, 0, λ3, 0,−λ2, 0, 0, 0, λ2λ3, λ1, 0, 0, 0,−λ1λ3, 0, λ1λ2, 0, 0, λ1λ2λ3)

The [sA + B, In]t matrix is then expressed as:

[
sA + B

I3

]
≡

⎡⎢⎢⎢⎢⎢⎢⎣

s + 5 s − 1 s

2s s s + 3

1 2 −1

1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
The nonzero elements of C3([I3,Λ3]) are (1, λ3,−λ2, λ2λ3, λ1,−λ1λ3, λ1λ2, λ1λ2λ3) and the corre-

spondingofC3([sA + B, I3]t)are (3s2 − 21s − 33,−s2 + 7s, 2s + 5, s + 5,−3s − 6,−s,−1, 1). There-
fore:
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det(sA + B + Λ) = [
1 λ3 λ2 λ2λ3 λ1 λ1λ3 λ1λ3 λ1λ2λ3

]
× [3s2 − 21s − 33,−s2 + 7s, 2s + 5, s + 5,−3s − 6,−s,−1, 1]t .

The problem described above involves the solution of a set of nonlinear algebraic equations. When

the number of solutions is finite, this number is combinatorially large (one can prove that the degree is

n!) and this makes the problem difficult to be investigated via the standard Groebner basis tools [25],

especially when n is large. To define solutions to the problem we will follow the methodology in [2]

by studying the local properties of degenerate solutions.

3. Frequency assignment map and degeneracy

Consider the matrix pencil sA + B where rank(A) = n1. The Frequency Assignment Map associ-

ated with the problem is the map assigning to the n free elements of the diagonal matrix Λ =
diag{λ1, . . ., λn}, the coefficient vector φ, i.e.

F : Rn → Rn1 : F(Λ) = φ (3.1a)

such that

det(sA + B + Λ) = φ(s). (3.1b)

The problem of arbitrary frequency assignment can be formulated in terms of the map F . This is

equivalent to proving that the map F is onto. The study of the properties of this map contains two

distinct cases. The first corresponds to case where rank A = n and the second is when rank A < n. The

full rank case is considered in Section 6, whereas the rank deficient case is considered below. In fact

when rank A < n there exist a special class of matrices which play a crucial role for the problem of

assignment, and this is the set of degenerate matrices. A diagonal matrix Λ0 is degenerate iff:

F(Λ0) = 0 ⇔ det(sA + B + Λ0) = 0. (3.2)

In other words, Λ0 is degenerate if the pencil sA + B + Λ0 becomes singular. In the following, for the

sake of simplicity of the presentation, we concentrate to the case of rank A = n − 1which is represen-

tative of the more general case of rank A < n. The following theorem demonstrates the significance of

degenerate matrices.

Theorem 3.1. If there exists a degenerate matrix Λ0 such that the differential DFΛ0
is onto, then any set

of n − 1 frequencies can be assigned via some diagonal perturbation.

Proof. Since the differential DFΛ0
is onto and F(Λ0) = 0 there is a ball, B(0, ε), such that F(Rn) ⊃

B(0, ε). For any set of frequencies s1, s2, . . ., sn−1, there exists a polynomial φ(s) = r(s − s1)(s −
s2) · · · (s − sn−1)whose coefficient vectorφ is in the ball B(0, ε). If we now considerΛ ∈ F−1(B(0, ε))

such that F(Λ) = φ, the result is established. �
For a generic n × n pencil when n is small the set of all degenerate matrices may be constructed

via the Groebner Basis methodology as this is demonstrated below.

Example 3.1. Consider the pencil

sA + B =
⎡⎣ −3s 2 + 4s −1 − s

−3 + 4s 5 + s −1 − 2s

−4 + s 6 + 5s −1 − 3s

⎤⎦
then the set of equations defining all the degenerate matrices diag{x, y, z} is given by:

x − 4y − xy + 6z + 5xz + xyz = 0, −5 + x − 3xy − 11z + xz − 3yz = 0,

−2 + 7x + 10y − 19z = 0.
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The above set of equations defining the degenerate compensator is an algebraic set in three un-

knowns and may be solved by methods such as Groebner Basis techniques. Simple calculations using

MATHEMATICA reduces the system to the following equivalent system:

480 + 5312x + 16433x2 + 21474x3 + 15452x4 + 5726x5 + 147x6 = 0,

1579680 − 10392988x − 18923271x2 − 12885549x3

−3302425x4 − 81879x5 + 2714400y = 0,

2122560 − 12293068x − 18923271x2 − 12885549x3

−3302425x4 − 81879x5 + 5157360z = 0.

In this example, the number of solutions is defined by the degree of the first equation 6 (=3!) and these

are four real and two complex.

One can calculate the number of degeneratematrices for a generic pencil as shown by the following

result.

Theorem 3.2. For a generic n × n pencil sA + B such that rank(A) = n − 1 the number of degenerate

diagonal matrices is finite and equal to n!.
Proof. Consider the pencil

sA + B =

⎡⎢⎢⎢⎢⎢⎣
s r1 − s 0 0

0 s
. . . 0

0
. . .

. . . rn−1 − s

rn − s 0 0 s

⎤⎥⎥⎥⎥⎥⎦ , (3.3)

where r1, r2, . . . , rn are distinct numbers. Then it can be readily verified that

det(sA + B − Λ) = (s − λ1)(s − λ2) · · · (s − λn) − (s − r1)(s − r2) · · · (s − rn). (3.4)

Therefore the number of degenerate compensators Λ for this pencil is equal to the number of

permutations of (r1, r2, . . ., rn), i.e. n!. The differential of F at a degenerate point Λ0 (see Lemma 5.1

later on for its computation) is given by the coefficient matrix of the polynomial vector formed by the

diagonal elements of adj(sA + B − Λ0). These elements can be calculated as follows: By omitting the

first row and column of sA + B − Λ0 we calculate the determinant to be (s − λ2)(s − λ3) · · · (s −
λn). Similarly, by omitting the second row and column and then calculate the determinant we get

(s − λ1)(s − λ3) · · · (s − λn). The process continues until the nth determinant is computed which is

equal to (s − λ1)(s − λ2) · · · (s − λn−1). Therefore, the differential of F at that degenerate point is

equal to the coefficient matrix of

(s − r1)(s − r2) · · · (s − rn)
[

1
s−λ1

1
s−λ2

· · · 1
s−λn

]
.

To calculate the rank of the coefficient matrix G of the above polynomial vector we consider a vector

v = [v1, . . ., vn] in its left Kernel. This vector must satisfy

v1

s − λ1

+ v2

s − λ2

+ · · · + vn

s − λn

= 0 ∀s,
which leads clearly to that v = 0; this implies that G and therefore DFΛ0 has full rank. The above

proves that the differential has rank full and it is equal to n. Therefore the degenerate compensators

of the above pencil are all permutations of (r1, r2, . . ., rn) and each one of them has multiplicity one.

Counting them we can prove that the number of degenerate solutions for this pencil is n!, and this is

as many as the permutations of n objects.

To establish the result for real pencils we extend the set and consider now the set Σ of all complex

pencils sA + B with rank(A) = n − 1 and the subset:

Σ1 = {sA + B ∈ Σ : if det(sA + B + Λ) = 0 then det(DFΛ) /= 0}. (3.5)
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The above is a Zarisky open subset of Σ; furthermore, for every sA + B in Σ1, the set of its degenerate

compensators is finite (since the differential of F has full rank, the set F−1(0) is zero dimensional).

Consider now the map that assigns to every pencil the number of its degenerate perturbations, that is

g : Σ1 → N : g(sA + B) = #{Λ : det(sA + B + Λ) = 0}. (3.6)

Clearly, the above map as being from a connected set to a discrete set and being continuous, cannot

be multivalued, that is g is the constant map. Furthermore, since the value of g on the pencil we

constructed (Eq. (3.3)) is n!, then g(sA + B) = n! for every sA + B in Σ1. This also holds true for the

restriction of Σ1 on the real pencils. This proves that the number of degenerate compensators for a

generic pencil sA + B such that rank A = n − 1 is n!. �

4. Classification of degenerate compensators

We may classify the degenerate matrices Λ for a pencil sA + B according to the values of row or

column minimal indices of sA + B − Λ [20].

Definition 4.1. A degenerate matrix Λ for a pencil sA + B is of degree k, if the polynomial module that

spans the right Kernel of sA + B − Λ has Forney dynamical order k [19].

Remark 4.1. For the pencil sA + B (rankA = n − 1), a degenerate matrix Λ of degree k can be con-

structed by searching for a polynomial vector u(s) = uks
k + uk−1s

k−1 + · · · + u0 in the right null

space of sA + B − Λ, that is

(sA + B − Λ)
(
uks

k + uk−1s
k−1 + · · · + u0

)
= 0 (4.1)

or equivalently⎡⎢⎢⎢⎢⎣
A 0

B − Λ A

B − Λ O

O A

0 B − Λ

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
uk

uk−1
...
u1
u0

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0

0
...
0

0

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.2)

Examination of small dimension cases leads to a conjecture on the number of degenerate perturba-

tions of degree d, which is stated as a conjecture below. However although this conjecture is of general

theoretical interest it does not play a role in the subsequent developments.

Conjecture 4.1. For a generic n × n pencil sA + B such that rank(A) = n − 1, the number of degenerate

diagonal matrices of degree d, Bd, (0� d � n − 1) is finite and it is equal to:

Bd =
⎧⎨⎩

(
n

d + 1

)
Ad+1 if d > 0,

1 if d = 0,
(4.3)

where Ad+1 is the number of permutations of d + 1 objects with no fixed points.

Although the construction of degenerate matrices looks as though it has the same complexity to

the problem we have started, there are certain degenerate matrices that can be easily constructed via

linear equations. These are the degenerate diagonal matrices of degree 0 and n − 1.

Proposition 4.1. Consider the n × n pencil sA + B such that rank(A) = n − 1 and let vt ,w be vectors

such that:
vtA = 0, Aw = 0 (4.4)

then, the diagonal matrices defined by
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Λ0 = −diag

{
vtb1

v1
, . . .,

vtbn

vn

}
, . . .,Λn−1 = −diag

{
bt1w

w1

, . . .,
btnw

wn

}
, (4.5)

where bi,
(
bti

)
are the columns (rows) of B and vi (wi) are the coordinates of v (w), are degenerate matrices

of degree 0.

Proof. By Remark 4.1 we have that for a degree one degenerate matrix we have that[
A

B − Λ

]
w =

[
0

0

]
(4.6)

or equivalently

Aw = 0 and Bw = Λw. (4.7)

By solving with respect to Λ the result follows. �

Another classification of the degenerate matrices may be given in terms of infinite and finite gain

properties, as shown below:

Definition 4.2. A degenerate solution matrix is referred to as infinite, if they are defined as limits of

sequences of matrices {Λn} where at least one element tends to infinity.

In order to include infinity in the set of diagonal matrices we have to compactify the set of diagonal

matrices and this is done by representing this set as a product of one-dimensional projective spaces.

Remark 4.2. Any finite matrix Λ can be embedded in P1(R) × P1(R) × · · · × P1(R) by using the

representation [In,Λ], that is by introducing the function f : Rn → (P1(R))n such that

f (λ1, λ2, . . ., λn) = [(1, λ1), (1, λ2), . . ., (1, λn)]. (4.8)

In this setting, if some entry λj is a sequence λj (ε) = a/ε tending to infinity as ε tends to 0, then

it is represented by the pair (1, a/ε) in P1(R), which is equal to the pair (ε, a) which tends to (0, a).

We may state the result:

Corollary 4.1. The product of projective spaces (P1(R))n = P1(R) × P1(R) × · · · × P1(R) is the pa-

rameter space of all diagonal matrices that includes finite and infinite elements. The finite matrices are

represented by elements of the type [In,Λ], whereas the infinite matrices by

[A,Λ], A = diag{a1, a2, . . ., an} (4.9)

with at least one of ai entries zero.

Taking into account the above formulation, the degenerate matrices constructed in Proposition 4.1

are finite iff vi /= 0, ∀j. In the case where rank(A) = n − k < n − 1, then if V is the basis matrix of

the left kernel of A, the following result characterizes the existence of at least one finite degenerate

matrix.

Proposition 4.2. If V = [v1 · · · vk] is a basis matrix of the left kernel of A, then there exists a v ∈ V

such that the corresponding degeneratematrix produced by v is finite, iff∀j : 1� j � k, ∃i such that vji /= 0.

Proof. If there is an index j such that for all basis vectors the corresponding coordinate is 0, then every

v in V will have the same coordinate zero and thus it will give rise to an infinite degeneratematrix. �
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5. Genericity results and construction of solutions

The differential of the frequency assignment map F associated with our problem, plays a very

important role in the determination of the onto properties of the map and it has thus a crucial role

in the solvability of the problem. This differential can be calculated in many ways and for a general

square and rank deficient polynomial matrix A(s) the following result can be proved:

Lemma 5.1. If det(A(s)) = 0 then

det(A(s) + xB(s)) = x × trace(adj(A(s))B(s)) + O(x2). (5.1)

Proof. If we expand det(A(s) + xB(s)), then the coefficient of xwill be the sum of all determinants of

matrices having n − 1 columns from A(s) and 1 column from B(s). By expanding these determinants

with respect to the columns coming from B(s) and rewriting their sum, the result is established. �

Corollary 5.1. Ifadj(sA + B − Λ0) = v(s) · gt(s)andgi(s),vi(s)are the coordinates of these vectors, then
DFΛ0 can be represented by the coefficient matrix of the polynomial vector (g1(s)v1(s), . . ., gn(s)vn(s)).

Proof. By Lemma 5.1 the differential of F at Λ0 is given by the coefficient of x which is the

trace(adj(A(s))B(s)). Setting now A(s) = sA + B − Λ0 and B(s) = Λ we get

DFΛ0(Λ) = coefVec[trace(v(s) · gt(s)Λ)]
= coefVec[g1(s)v1(s)λ1 + · · · + gn(s)vn(s)λn] (5.2)

and this readily proves the result. �

Using the above we may now establish the following result:

Theorem 5.1. For a generic pencil sA + B, rank A = n − 1, the degenerate diagonal matrixΛ0 in the map

of the zero assignment problem, satisfies the condition: rank DFΛ0
= n.

Proof. Let us consider the matrix

K(s) =

⎡⎢⎢⎢⎢⎢⎣
1 0 · · · 0

−s
. . .

...
. . . 1

−s 0

⎤⎥⎥⎥⎥⎥⎦ (5.3)

and a pencil defined by K(s) as: sA + B = K(s)U + I, whereU is a full rank squarematrix such that the

rightmost column v of U−1 has all its entries nonzero. Then it can be easily proved that the following

properties hold true:

• Av = 0.

• The identity matrix I is a degenerate diagonal compensator.

Since the vector gt(s) = [sn−1, sn−2, . . ., 1] is the basis for the left Kernel ofK(s)U, its adjoint (which

is a representation of the differential of F at the degenerate compensator) can be written as vgt(s). By
Corollary 5.1, DFΛ0 can then be represented by the diagonal matrix⎡⎢⎢⎢⎢⎢⎣

v1 0 · · · 0

0
. . .

...
. . . vn−1 0

0 0 vn

⎤⎥⎥⎥⎥⎥⎦ ,

which has full rank, since by construction all entries of v are nonzero. �
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Corollary 5.2. For a generic pencil sA + B,with rankA = n − 1, any zero polynomial of degree n − 1 can

be assigned via diagonal perturbations.

Proof. Due to Theorem 5.1 there exists a diagonal degenerate perturbation Λ0 such that DFΛ0
has full

rank. As a consequence of Theorem 3.1 any set of n − 1 frequencies can be assigned by an appropriate

selection of some diagonal perturbation. �
The above establishes the existence of perturbations that assign any n − 1 set of frequencies.

However, the solutionswhich are produced this way have little practical value, since they are based on

the degenerate perturbation which for the problem we examine creates very large sensitivity norms.

An algorithm that assigns the required zeros, based on perturbations of reduced sensitivity norm,may

be developed using a Quasi-Newton type procedure that starts from a degenerate diagonal matrix and

gradually leading diagonal matrices which assign the desired frequencies and are at a distance from

the degenerate solution.

5.1. Frequency assignment algorithm via diagonal perturbations

The algorithm for computingΛ placing the zeros of sA + B + Λ to the required location expressed

by the polynomial φ(s), with coefficient vector φ, is based on the Global Linearization methodology

established in [2] and it is described below:

Step 1: Calculate a degenerate diagonal matrix Λ0 as in Remark 4.1 or by using Proposition 4.1.

Step 2: Calculate thedifferentialDFΛ0
of the Frequency assignmentmapat the specificdegenerate

compensator. If this map is onto, then we have complete frequency assignability and we

may proceed to the next step; otherwise we go back to the step (1).

Step 3: Apply the Quasi-Newton algorithm to compute perturbations that assign the zero struc-

ture and which are at a distance from the degenerate point. In the following let us denote

by xi = vec(Xi), where Xi is a matrix perturbation of the appropriate dimensions. The

algorithm may be expressed as shown below:

xi+1 = xi − (JF)−1
xnk−1

(F(xi) − εkφ), nk−1 < i � nk ,

k = 1, . . ., r, n0 = 0, xn0 = λ0, λ0 = vec(Λ0) 0 < ε1 < ε2 < · · · < εk < · · · ,
where φ is the coefficient vector of the desired polynomial, F is the frequency placement

map, JF is the Jacobian matrix representing the differential of the zero assignment map

and Λ0 is the degenerate matrix for which the differential DFΛ0
has full rank.

Remark 5.1. The Jacobian of F(JF) can be easily computed as F is an algebraic polynomial map. An

easier computation of JF is indicated in the following section based on the decomposition of F to a

product of a multilinear and a linear map.

The above algorithm is based on the following philosophy: If we denote by Ω(φ) the family of all

perturbations placing the zeros as the roots of the polynomial φ(s), then a degenerate perturbation,

with full rank differential, is a boundary point for all manifolds Ω(φ) corresponding to different φ’s.

Using as a starting point the degenerate perturbation (which can be readily computed as in Proposition

4.1) andselectingε1 sufficiently small theNewton–Raphsonalgorithmproducesa solutionΛ1 onΩ(φ)
which is at a small distance from the boundary point. Repeating now the method starting this time

from Λ1 and with a new step ε2 we produce Λ2 on Ω(φ) and so on.

Example 5.1. Consider a network whose system matrix T1(s) is defined by:

T1(s) =
⎡⎣G1 + G2 + sC −G2 0

−G2 G2 + G3 1

0 1 −sL − (1/G4)

⎤⎦
when the values are: C = 1, L = 1, G1 = 4, G2 = 1, G3 = 0, G4 = ∞, then the system matrix be-

comes:
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Table 1

Summary of the Quasi-Newton computations Algorithm for Example (5.1).

Iterations ε G2 G3 G4 Dist from deg perturbation

n0 = 0 0 −2 1 −3 0

n1 = 60 ε1 = 0.5 −2.55 1.050 −2.741 0.610

n2 = 100 ε2 = 1.2 −3.325 1.125 −2.652 1.375

n3 = 195 ε3 = 2.5 −4.706 1.206 −2.611 2.741

n4 = 330 ε4 = 5 −7.278 1.278 −2.594 5.301

n5 = 580 ε5 = 10 −12.33 1.333 −2.588 10.34

n6 = 660 ε6 = 18 −20.36 1.365 −2.586 18.37

T1(s) =
⎡⎣s + 5 −1 0

−1 1 1

0 1 −s

⎤⎦ .

Assuming that we would like to change the natural frequencies of the above system by tuning the

values of G2, G3, G4, we define the following perturbation:⎡⎣ G2 −G2 0

−G2 G2 + G3 0

0 0 G4

⎤⎦ =
⎡⎣ 1 0 0

−1 1 0

0 0 1

⎤⎦ ⎡⎣G2 0 0

0 G3 0

0 0 G4

⎤⎦ ⎡⎣1 −1 0

0 1 0

0 0 1

⎤⎦ = UΛUt ,

which is equivalent to applying a diagonal perturbation Λ = diag(G2, G3, G4) to the modified system

U−1T1(s)(U
t)−1 =

⎡⎣s + 5 s + 4 0

s + 4 s + 4 1

0 1 −s

⎤⎦
The equations defining the degenerate perturbations are:

f2(G2, G3, G4) = −1 − G2 − G3 = 0

f1(G2, G3, G4) = −5 − 4G2 − 5G3 − G2G3 + G4 + G2G4 + G3G4 = 0

f0(G2, G3, G4) = −5 − G2 + 4G4 + 4G2G4 + 5G3G4 + G2G3G4 = 0

and the finite solutions of these equations are given by:

(a) G2 = −2, G3 = 1, G4 = −3; (b) G2 = 0, G3 = −1, G4 = −5.

Note that both of the above solutions are full (regular) solutions, and thus both can be used as

staring points for a numerical Quasi-Newton method to place the characteristic polynomial at any

given second order one, φ(s) using the iterative procedure [21]:

xn+1 = xn − (JF)−1
x0

(f − εkφ),

where x = (G2, G3, G4)
t , φ = [1, 8, 15]t , f = [f2, f1, f0]t and x0 = (−2, 1,−3)t . Starting with a value

ε1 = 0.5, the method converges after about 60 iterations to x60 = (−2, 5507, 1, 050697,−2, 74137)t .
Taking now this as a starting point we repeat the method for ε2 = 1.2 and so on. Table 1 displays the

various solutionswe obtain through this algorithm the last column being the Euclidean distance of the

solution from thedegenerate one. Thefinal row refers to the solutionG2 = −20, 36, G3 = 1, 365, G4 =
−2, 586 which is the furthest away from the degenerate compensator. This compensator is achieved

after 660 iterations, it assigns the zeros−2, 99915 and−4, 99982 (−3 and−5were the required ones)

and its distance from the degenerate compensator is 18, 37.

6. Necessary and sufficient condition for arbitrary assignment in the complex domain: the case

rank(A) = n

So far we have examined the surjectivity property of the frequency assignment map F in terms

of degenerate compensators and their properties, when rank A = n1 < n. For the case where rank
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(A) = n, there are no degenerate compensators and the above approach cannot be deployed. In this

case we will follow the approach in [15], which is based on the examination of the rank properties of

the differential of the map F . In fact, the rank of the differential of a complex algebraic map, although

it is a local invariant, it may determine global properties of this map. The following lemma explains

how this rank is related with the (almost) surjectivity property of F . Note that by “almost onto” it is

meant that all polynomials, but a negligible set can be assigned.

Lemma 6.1 (Dominant Morphism [14,15]). If F is an algebraic map between two complex varieties X , Y for

which dim X � dim Y , then there exists x in X such that rank DFX = dim Y , iff F is (almost) onto.

This shows that the invariant that characterizes the onto property of the map F is the nth exterior

product of its differentialDFX . In the casewe examine, this invariant is the determinant of the Jacobian

of F , i.e. det(J(F)X). As F can be factored as [15]:

F : Cn T→ Cσ P→ Cn, (6.1)

where

T(x) =
n⊗

i=1

(1, xi), F(x) = T(x) · P and σ = 2n (6.2)

the Jacobian of the zero assignmentmap can be calculated in terms of the Jacobian of T and the Plucker

matrix P [18]. By the Binet Cauchy theorem det(J(F)) can be factored as a product of two compounds

as follows:

det(J(F)x) = Cn(J(T)) · Cn(P). (6.3)

The compound Cn(P) is a vector containing the system parameters, whereas the vector Cn(J(T)) con-
tains the structure implied by the diagonal structure of the controller. The calculation of det(J(F)x) is
thus reduced to calculating Cn(J(T)). The calculation of J(T) can be easily performed as shown by the

following lemma:

Lemma 6.2 [15]. The partial derivative of T with respect to xi, is given by:
∂T/∂xi = ⊗(1, x1) ⊗ · · · ⊗ (1, xI−1) ⊗ (0, 1) ⊗ (1, xI+1) ⊗ · · · ⊗ (1, xn). (6.4)

Selectn entries of the vector T(x) say a = [al , a2, . . ., an], and call the Jacobianof the function a, J(a);
then this is a square n × nmatrix whose determinant is one of the coordinates of the vector Cn(J(T));
conversely, all the coordinates Cn(J(T)) are of the form det(J(a)) for some a, i.e.

Cn(J(T)) = (det(J(a))a.

The followingresult is central inprovidinganexpression for the Jacobian J(a)needed for thedescription
for the compound Cn(J(T)).

Proposition 6.1 [15]. The Jacobian J(a) is given by:
J(a) = diag

(
x
−1
l , x

−1
2 , . . ., x−1

n

)
I(a)diag(al , a2, . . ., an), (6.5)

where the ij entry of I(a) is 1 if aj contains the xi and it is 0 otherwise. Therefore the determinant of J(a) is
expressed as:

det(J(a)) = I(a)a1, a2 . . . an/x1x2 · · · xn. (6.6)

From the above we have the following description of Cn(J(T)).

Corollary 4.1 [15]. The compound Cn(J(T)) is given by

Cn(J(T)) = (det(I(a))a1a2 · · · an/x1x2 · · · xn)a.
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Now every selection of n monomials a = [a1a2 · · · an] correspond to a minor Ma of P. For a given

monomialm consider the sum

Pm = Σ det(I(a))Ma, (6.7)

where the sum is defined over all terms such that

a1a2 · · · an/x1x2 · · · xn = m and det(I(a)) /= 0. (6.8)

The determinant of the Jacobian JF is then given as a sum
∑

m Pmm, i.e.

det(JF) = ∑
m

Pmm, (6.9)

where the Pm are numbers calculated as in (6.7) and they are related to the minors of the Plucker

matrix [18] and m are linearly independent monomials arising from the diagonal structure of the

controller and defined by (6.8). As themonomialsm are linearly independent over, the collection of all

Pm constitutes a system invariant characterizing the onto properties of the pole placement map and

this leads to the following result:

Theorem 6.1 [15]. The complex pole placement map is (almost) onto, if there exists m such that Pm /= 0.

Indeed as the determinant of the Jacobian J(F) is a linear combination of linearly independent

monomials m and it is zero, iff all the coefficients Pm are zero. This way the determination of the rank

properties of J(F) reduces to examining whether the set of numbers Pm, which are calculated in terms

of the minors of the Plucker matrix, are zero or not.

Example 6.1. The construction of the sets of invariants related to our problem is explained below.

Consider the matrix pencil

sA + B =
⎡⎣s 1 0

1 s 1

0 1 s

⎤⎦ .

The map F can be factored as T · P where T is given by

T(x1, x2, x3) = [1, x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3]
and P is the reduced Plucker matrix. For the sake of simplicity we may omit the first entry (1) of T ,

then J(T) is the collection of the three partial derivatives (with respect to (x1, x2 and x3) and it is given

by

J(T) =
⎡⎣1 0 0 x2 x3 0 x2x3
0 1 0 x1 0 x3 x1x3
0 0 1 0 x1 x2 x1x2

⎤⎦ .

Then the determinant of J(F) is given as the product of the 3rd compounds of J(T) and P. The 3rd

compound of J(T) is given by

C3(J(T)) = [1, 0, x1, x2, x1x2,−x1, 0,−x3,−x1x3, x
2
1, x1x2, x

2
1x2 − x1x3,−x21x3, 0, x2x3,

− x1x2,−x22,−x1x
2
2,−x2x3, 0, x

2
2x3,−x1x3, x2x3, 0, x

2
3, x1x

2
3,−x2x

2
3,−2x1x2x3,

− x21x2x3, x1x
2
2x3,−x1x2x

2
3]

This vector has to be multiplied by the compound vector of P ie the vector of all 3 × 3 minors M[i]
of the Plucker matrix. If we perform this multiplication and we collect together all the monomials m

appearing in C3(J(T)), we obtain det(J(F)) as the linear combination
∑

m Pmm. The coefficients of this

expression in terms of the minors of the Plucker matrix M[i] are given in Table 2. Since there exist at

least one nonzero Pm, the map F is (almost) onto. Furthermore the Jacobian of F has full rank and its

determinant is given by
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Table 2

Computation of the determinant of the Jacobian det(J(F)).

.m Pm .m Pm

1: M[1] = 0 .x1x3: M[19] − M[23] + M[27] = 0

x1: M[3] − M[6] = 1 .x1x3x
2
2: M[34] = 0

x21: M[10] = 0 .x2x3: M[19] − M[23] + M[27] = 0

x2: M[4] + M[16] = 0 .x2x3x
2
1: M[33] = 0

x22: M[21] = 0 .x21x2: M[12] = −1

x3: M[17] − M[8] = −1 .x21x3: M[14] = 1

x23: M[29] = 0 .x22x3: M[25] = −1

x1x2: M[5] + M[11] − M[20] = 0 .x22x1: M[22] = 1

x1x2x3: M[32] = 0 .x23x1: M[30] = −1

x1x2x
2
3: M[35] = 0 .x23x2: M[31] = 1

det(J(F)) = ∑
m

Pmm = x1 − x21x2 + x1x
2
2 − x3 + x21x3 − x22x3 − x1x

2
3 + x2x

2
3

It is apparent that Det(JF) is zero only in a proper subvariety of C3. This means that in almost all points

of C3, JF has full rank. The Dominant morphism theorem states that even if there exists one point such

that JF has full rank then F is almost onto.

The dominantmorphism theorem proves existence, but it is not appropriate for the construction of

solution. An efficient method for the construction of solutions for the case rank(A) = n is still an open

problemwhich themethodology of the present paper does not address. For this case, the computation

of solutions may follow the following alternative routes: We can use the usual methods based on the

multi-linear/determinantal formulation and then solving the set of algebraic equations usingGroebner

basis methods. Alternatively, the Newton–Raphson method can be employed; in fact, the dominant

morhism theorem guarantees that the Jacobian matrix is invertible for almost all diagonal controllers

and therefore. The starting point of the iterative method may be any random point and the method

guarantees convergence, if this point is close enough to the solution. We should point out, however,

that the method does not exploit the special structure of the problem and convergence to the solution

is not always guaranteed.

7. Conclusions

The problem of zero assignment for matrix pencil sA + B, for the special case of diagonal type

perturbations, has been considered and a number of results have been established characterizing the

solvability of this problem. These results cover the case of generic and nongeneric problems and exten-

sive usewasmade of the determinantal formulation of the problem. For the caseswhere rank(A) � n −
1, degenerate perturbations are defined and the global linearization provides a framework for estab-

lishing results and computing assigning perturbations; although here we have considered for the sake

of simplicity the case of rank(A) = n − 1 (onedegenerate perturbation), the results canbe extended to

the rank(A) < n − 1wheremore than one degenerate solutions exist. The interest of such cases is that

we can deploy global linearization ideas, which permit establishment of solvability conditions, as well

as development of an algorithm for the computation of the zero assigning perturbations. The analysis

hasmadeadistinctionbetween the case of regular pencilswith infinite zeros and that of regular pencils

with no infinite zeros, which require alternative methods for study. For the rank(A)) � n − 1 cases,

methodologies for computing the solutions have been given. The proposed method for computing

solutions when rank(A) = n has the usual advantages and disadvantages of the Newton method for a

set of equations. It is clear that this generalmethod needs to exploit the special features of the problem,

ifwe are to improve the chances for convergence. The results here provide themeans for studyingprob-

lems of linear network redesign by modification of the non-dynamic elements. The general network

redesign may still be formulated in terms of matrix pencils, but more general transformations than

the additive diagonal transformations are involved.
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