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Discrete Wavelet Transform Based Whole-Spectral and Sub-Spectral
Analysis for Improved Brain Tumour Clustering
using Single Voxel MR Spectroscopy

Guang Yan§ Member, IEEE Tahir Nawaz Thomas R. Barrick, Franklyn A. Howe, and Greg SiaffaSenior Member, IEEE

Abstract—Many approaches have been considered for
automatic grading of brain tumours by means of pattern
recognition with magnetic resonance spectroscopy (MRS).
Providing an improved technique which can assist cliniciansin
accurately identifying brain tumour grades is our main
objective. The proposed technique, which is based on the
discrete wavelet transform (DWT) of whole-spectral or sub-
spectral information of key metabolites, combined with
unsupervised lear ning, inspects the separ ability of the extracted
wavelet features from the MRS signal to aid the clustering. In
total, we included 134 short echo time single voxel MRS spectra
(SV MRS) in our study that cover normal controls, low grade
and high grade tumours. The combination of DWT-based
whole-spectral or sub-spectral analysis and unsupervised
clustering achieved an overall clustering accuracy of 94.8% and
a balanced error rate of 7.8%. To the best of our knowledge, it
is the first study using DWT combined with unsupervised
learning to cluster brain SV MRS. Instead of dimensionality
reduction on SV MRS or feature selection using model fitting,
our study provides an alter native method of extracting features
to obtain promising clustering results.

Index Terms—Brain tumour, glioma grade, clustering,
dimension reduction, discrete wavelet transform, magnetic
resonance spectr oscopy, unsuper vised learning.

. INTRODUCTION

pre-treatment assessment of grade is requivedever, the
sole use of standard MRI sequences may be insufficient for
an accurate diagnosis [3]. The current gold standard for
diagnosis of a suspicious abnormal mass is the
histopathological analysis of a biopsy sample [4]. However,
due to tumour heterogeneity a tumour may be under-graded
if the area of greatest malignancy is not selected for biopsy.

Alternatively, in-vivo 'H  magnetic resonance
spectroscopy (MRS) can be used to non-invasively inspect
the biochemical information of the metabolites present in the
living tissue, and can improve characterisation of human
brain tumours compared to using standard MRI alone. There
areup to 12 different metabolites in the brain that can be
measured usintH MRS at clinical field strengths of 1.5T or
3T [5]. In particular, single voxel (SV) MRS extracts
metabolic information of a specific region of interest (ROI),
and it is a unique non-invasive tool to aid classification of
human brain tumours with appropriate spectral analysis such
as with pattern recognition [6]

Analysis of'"H MRS data for data clustering and tissue
classification generally requires some form of data
reduction, either to reduce the noise or extract the most
salient features. Mainardi et al. [7] designed a quantification
model for in-vivo MRS parameters using the discrete
wavelet packet decomposition (WPD). Mahmoodabadi et al.

Magnetic resonance imaging (MRI) is a widely-use@oposed a modified frequency ordered WPD method
modality that facilitates the diagnosis and prognosis of brafipmbpined with fuzzy classification framework to analyse

tumours. $andard MRI sequences are routinely used tgediatric metabolic brain diseases using wavelet transform
differentiate among various brain tumour types based &@Sed features extracted from both MRS and diffusion-
qualitative visual analyses of the represented soft tisst¢ighted imaging [8]. Tiwari et al. investigated combining
contrast. Indeed, more than 120 classes of brain tumours $f@velet (Gabor and Haar filters) features extracted from
known [1], which are categorised into four grades dependirgPth T-weighted MRI and MRS modalities, apgi to

on the level of malignancy by the world health organisatiopUPervised prostate cancer detection [9]. The discrete
(WHO) [2]. The grading from low to high (I-IV) representsWavelet transform (DWT) has the advantage of providing
malignarey levels from biologically least aggressive to mosfhulti-resolution — discriminatory information [10] from
aggressive brain tumours as shown by histological criterigifférent acquisition modalities, including but not limited to
e.g., invasiveness, vasculagignd tumour growth rate [1]. digital signals and images [9]. However, there is very limited

Gliomas are the most common primary brain tumour ari§search in the literature on fully-automating an
unsupervised brain tumour data clustering using DWT based

analysis that does not require labelled data or incur possible
overfitting during the training procedure.

Here we hypothesise that unsupervised learning based
clustering on extracted DWT features can improve brain
tumour grading compared to dimension reduction
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techniques, which are based on second and higher-order
statistics (e.g., PCA and ICA) or manifold learning based
nonlinear methods (e.g., Laplacian Eigenmaps (LBJg
extract DWT features of the whole-spectra and sub-spectra
(as shown in Figure 1), and hypothesise that local
information from only a few key metabolites of the sub-
spectrais sufficient to distinguish between tumour grades,
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because those metabolites exhibit discriminativhistological diagnosis of the tumour type and grade as the

characteristics for specific tumour grades [6]. overall gold standard (ground truth).
To accomplish this, we build a feature vector by using the In total N = 134 SV MRS were obtained including 24
DWT coefficients of the whole-spectra or by encoding th&rade 1l (GIl) tumours (2 oligodendroglioma, 3

non-parametric statistics of the computed DWT coefficientsligoastrocytoma, 3 fibrillary astrocytoma, 4 gemistocytic
of the sub-spectra corresponding to different metabolitegstrocytoma and 12 diffuse astrocytoma) and 31 Grade IV
Then in an agglomerative hierarchical clustering framewor{&!V, glioblastoma multiforme). A further 79 MR spectra
the MR spectra belonging to different tumour grades akéere obtained from three normal controls using multiple
separated. We show the effectiveness of the propos\é@‘el MRS ywth the same acquisition parameters (i.e., which
method on SV MRS data (134 spectra), acquired frofffd compatible TR/TE) as the SV MRS (Table 1).
normal brain tissue and from low and high grade gliomas TABLE 1
The proposed methods show encouraging performance by\IUMBER OF PATIENTS STUDIED AND NUMBER OF SPECTROSCOPIC
achieving an unsupervised clustering accuracy of 94.8%-=fe« VOXELS ANALYSED FOR EACH TISSUE CLASS
both whole-spectral and sub-spectral analysis that Tissue Class

. . Normal Gradell GradelV Total
outperforms our previous analyses of this data. Instead@fmber of Subjects Studied 3 24 31 53
extracting eigen-decomposed features using dimensionalymber of MRS Voxels Analysec 79 24 31 134
reduction techniques, this study explores DWT features
using whole-spectral and sub-spectral analysis, and obtain®ll SV MRS data were acquired at short Echo Time)(TE
promising clustering results for separating different brainsing the GE developed point-resolved spectroscopic
tissue types. Section Il details the materials and magequence (PRESS) protocol (Repetition Time (TR) =
methods of this study. Section Il demonstrates ow000ms, Echo time (TE) = 30ms, 2048 data points with
experimental results followed by elaborated discussio®$00Hz bandwidth).

(Section 1V) and a conclusion (Section V). An expert panel (including spectroscopists, pathologists
Subspectum  Subspectum Sub-spectrum Suspecira and radiologists) validated the brain tissue types included in

of Cho of cr of NAA of Lipids and Lactate this study as part of the eTUMOUR project, with a
E A A AN histopathological diagnosis of the central nervous system

\1 'Normm (CNS) tumours according to WHO criteria [2]. Individual
\|——oan || voxels were placed to encompass predominantly viable
i|——6WNv tumour tissue as much as possible and avoid areas of pure
1 necrosis. Apodisation in the time domain was performed
using a half Hann window followed by a fast Fourier

4 transform and automatic phasing according to [11]. Each
spectrum was referenced to both N-acetyl Aspartate (NAA
1 at 2ppm and a search regian20ppm — 1.80ppm) and
Choline (Cho at 3.21ppm and a search regiG®ppm —
3.12ppm) for chemical shift alignment, and then truncated to
the chemical shift range of 4.0 to 0.2ppm. In addition, the
phased real part of the spectra were used for further analysis
[12]-[14]. Each whole spectrum consistedMf= 198 data
points representing the majority of metabolic information.
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_ y ppm , All SV MRS data were stored as a 2D matSx RM*N,
Figure 1: Decomposition of a whole MR spectrum ingetof sub-spectra where S = ntain h trum
(sub-regions coloured in cyan) corresponding to differmetabolites. ere S = (sy,sz,..,Sy) contains each spectru as a

Representative Grade I (GII) tumour, Grade IV (Giujnour and Normal COlumn vector s, € RM. The column vectors weré.,
spectra are shown in blue, red and green colours.sEeeted features normalised,
using MRMR are shown with magenta circles.

Sn

si=—"— vne{12,..,N} &)
VEN S
Il. MATERIALS AND METHODS ) _ _ o
o . . to form the matrixs* = {s;}}; with $* € RM*N, which is a
A Data Acquisition and Patient Subjects set of normalised MR spectrid.is the number of the spectra

MR data were obtainedt St. George’s University of —andM is the number of the data points of each spectrum.
London using a 1.5-Tesla scanner (GE Healthcare, We used the DWT to encode the MR spectral information.
Milwaukee, WI, USA), which was equipped with 82T'/m  For both the whole-spectral and sub-spectral analysés,
gradients and a quadrature head coil. Written informewbmpared widely-used wavelet basis functions including
consent was obtained from all participants in accordan&aubechies (Dbl, Db2, Db3), Coiflets (Coifl, Coif2, Coif3)
with local ethics procedures. Either biopsy or resecteahd Symlets (Syml, Sym2, Sym3).
tumour tissue samples obtained as part of pheents’ For the whole-spectral analysis, we tested multiple levels
clinical diagnosis or treatment were used to provide @e., 1 to 12 levels) of decompositioAt each level of

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.ol
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resolution or octave, the spectral sigsglis convolved ®) compared to normal brain [20]. Additionally, the Lipid and
simultaneously with a high-pass filtep) and a low-pass lactate signal observable at short TE increase with tumour
filter (y;) to obtain the corresponding coefficients. @nd grade [20]. The sub-spectra for NAA, Cho, Cr, Lipid (0.9
1.) as h, = (s;®y) 1 2 and 1. = (s;®y)) | 2 with the ppm) and Lipid and Lactate (1.3 ppm) were denoted as
subsampling or decimationd)(by a factor of 2 after each s;NAA  g;Cho  g:Cr s;‘“pl, and slf‘“pz, respectively. The
pass through the paired filters [15]. The feature vectors afgndow sizes for each; were fixed and denoted ag¥A4,
computed for alls; to obtain the feature matrix, of size,Cho ,Cr Lipl gnqwlipz respectively. We applied the

134 x Fy, in whichF,, is the size of the approximation andpwT using the single-level implementation of Mallat's

detail coefficients at different Ieyels= 1,.2, .12 (Taple 2. approach [10] on each of tisgA4, g:Cho grCr. sHPL ang
For the sub-spectral analysis by giveh we built the 5, . . y

feature vectorf;, as follows. We extraetl information for ~ Si signals  to obtain the corresponding set of

the key metabolites by taking the sub-spectra windowd@pproximation and detail) coefficienB}'*4, D{", D",

symmetrically around their respective ppms (FiggreWe D®*, D respectively. The higher levels of

performed a mutual information based feature selection (i.eiecomposition were not needed given the smaller sub-

mMRMR, minimum redundancy and maximum relevancepectra window sizes compared to the whole-spectra

method [16]) to identify the key metabolites, which are thanalysis and single-level decomposition was expected to be

most powerful discriminants in terms of separating the thregifficient to effectively capture the frequency information.

tissue types (Normal, GIl and GIV). The only parameter:

specified in the mRMR method is the number of features, B 1 Normal

which was set to 10 in order to obtain a moderate sample per 228, A

feature ratio to avoid overfitting [17The mRMR method .

resulted in 10 selected features (Figure 1) at 3.62, 3.24, 2.99, ——

2.49, 2.05, 2.03, 2.01, 1.99, 1.19, and 0.85 ppm.skbr T

spectral analysis we chose dominant high signal to noise

ratio biochemicals [18] whose peak areas are mostly

strongly associated with these regions: NAA (main singletat  ———

2.05 ppm), Cho (3.21 ppm), Creatine (Cr) (3.02 ppm) and e

lipids and macromolecules (main peaks at 1.3 and 0.9 ppm). EF |

The excluded points of 3.62 ppm and 2.49 ppm include sl

strongly overlapping multiplet peaks from Myo-inositol with . m“

glutamate and glutamine (GIx) and those from GlIx witr[}m_ ) :

NAA respectively. Note in high-grade tumours there may ‘ . - .
F1.Cho.3.2ppm F2.Cr.3.0ppm F3.NAA.2.0ppm F4.Lip1.1.3ppm F5.Lip2.0.9ppm

also be a contribution from lactate (doublet centred at 1.33

ppm). Boxplots of the five selected features among thr&gure 2: Boxplot of the five selected features ambmegt tissue types
different tissue types are shown in Figure 2, and statistiddliormal: green; Gll: blue; GIV: red). Red_cirpled slatre the outliers of
significances were given by two-sample Wilcoxon rank-sufffich 9oup (*** indicatep<0.0001 and ** indicatep<0.001).

test between each two tissue types (significance level of
p<0.01 subject to the Bonferroni correction [19#) general
NAA and Cr are decreased and Cho increased in tumo

The choice of the window sizesw) for different
rpetabolites can influence the performance of the system. In
Yddition, the window size must be kept small to avoid

TABLE 2
PARAMETER SETTINGS OFTHE DWT METHOD USING WHOLE-SPECTRAL ANALYSIS AND SUBSPECTRAL ANALYSIS(WBF: WAVELET BASIS FUNCTIONS LD:
LEVEL OF DECOMPOSITION. BOLD TEXT INDICATES THE BEST PARAMETER SETTINGS

Whole-spectral WF LD Accuracy (Mean + Standard Deviation) Best Accuracy (with WF and LD Settings)
- 0, 0,
Daubechies EE; [1-12] 83.10/0 + 1.60/0 . )
(DbAl) [1-12] 82.5% + 2.1% 94.8% (with Db1 and 7 levels of decomposition)
Db3  [1-12] 78.3% + 2.5%
) Coifl  [1-12] 81.0% + 2.5%
%;lgﬁ) Coif2  [1-12] 83.2% + 1.6% 94.8% (with Coifl and6 levels of decomposition)
Coif3  [1-12] 79.8% + 2.2%
Syml [1-12] 83.2% + 1.6%
(Ssy;?r:%ﬁ) Sym2 [1-12] 83.2% + 1.6% 92.5% (with Sym1 and 7 or 9 levels of decomposition’
Sym3  [1-12] 83.1% + 1.6%
Sub-spectral WF LD Window Sizes for Each Metabolite Best Accuracy (with WF and WS)
Dbl 1
Daubechies Db2 1
Db3 1
Coifl 1 94.8%
Coiflets Coif2 1 ©=[0.02ppm,0.04ppm,...,0.28ppm,0.30ppm] with Coif1 ande**=0.16ppm, ®“"°=0.16ppm,
Coif3 1 ©°'=0.04ppm, ©-'"=0.18ppm, and "'*?=0.20ppm)
Sym1 1
Symlets Sym2 1
Sym3 1

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.ol
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overlap between of adjacent metabolites, and we also ndetheans clustering, hierarchical clustering requires no
enough data points for further data clustering. We analysédttialisation settings, and thus can avoid possible local
the effect of the variation that minima that could trap themeans algorithm.

w = [0.02ppm, 0.04ppm, ...,0.28ppm, 0.30ppm], i.e., 15 sets of  For hierarchical clustering a dissimilarity measure was
window sizes [-0.01ppm, 0.01ppm], [-0.02ppm,specified (the Euclidean distance) between disjoint groups of
0.02ppm],..., [-0.14ppm, 0.14ppm], [-0.1pm 0.15ppm observations according to pairwise dissimilarities between
around each peak of the metabolites) with respect tahe observations in the two groups. An agglomerative (i.e.,
clustering performance (Table. Z)he window size for each bottom-up) paradigm was used which recursively merges
metabolite was varied in turn with the window sizes of thpairs of clusters into a single cluster at each level [22]. Pairs
remaining metabolites kept fixed, and inherent to thigrere merged based on the smallest inter-group dissimilarity
process is the assumption that the window sizes amed representation of the recursive binary agglomeration was
independent in terms of optimisation. The first keychieved using dendrograms (i.e., rooted binary trees).
metabolite was Cho (centred at 3.21ppm) and the windc

was varied with window size for the other metabolites fixe = o2
at the initial smallest value. Subsequently, the window sizi _ 0.5 . S S can
for Cr centred at 3.02 ppm, NAA at 2 ppm, Lip2 at 1.3 ppn < o [Ty | 3 ca
and Lip1 at 0.9ppm were optimized in turn. § 00 ™ =
Inspired ly [21], we further encapsulated the distribution 3 = oot
of the computed DWT coefficients non-parametrically for : 5 **[ {1 [1 [1 [1 [ [ [1 [] T S o
metabolite, e.g., NAA, as follows: 5 80
£¥4 = (min(DY), Qs (DY), Qs(DF), Qs (DY), max(@DP)}, @) 3 |
wherefN44 denotes the feature vector that encodes the nc ~ °™{| [ [| [| ||
parametric statistics for the DWT coefficientBN¢4) of 070
s;VA% using the minimum coefficient valuen{n(DNA4)), S

25th percentile @,5(D}'**)), 50th percentile {so(DN44)),

75th il (DNAA d th . fficient Figure 3: Comparison between different wavelet basistfons in terms of
percentile @;5(D; ))! an € maximum COeTNCIeNt o ohtained clustering accuracy) (for both whole-spectral and sub-

value fmax(D}44)). fNA* comprehensively captures thespectral analysis. Error bars represent the standard éttar mean (SEM).

: : *NAA : s . For the whole-spectral analysis, SEM was calculated wgpect to
information ofs; by encoding the overall distribution of different decomposition levels. For the sub-spectralysis, SEM was

its coefficients [21]. Similarly to Equation 2, the featuréomputed with respect to various window sizes. Circles atheverror bars
*Ch #C *Lip1 *Lip2 o : : . .
vectors fors;Ch°, s:¢r s’ , ands; can be computed indicate the maximum accuracy achieved by differenvetes basis

i ' i

. ; functions.
and denoted af{r, f&he, P! £'P?, respectively. The
feature vectorf;, is therefore defined as follows: D. Performance Assessment
£, = (£, £he, £, 600 1,177, ®3) We evaluated the performance of the proposed method

andf; is a 25-dimensional row vector. Using Equation 3 th&0m a clinical point of view using the following measures:

feature vectors are computed for sfllto obtain the feature Precision ¢), recall/sensiti\T/IiDty (R), F-score f) and
matrix, of sizel34 x 25. clustering accuracyA(). P = P whereTP andFP are the

Unsupervised learning based hierarchical clustering iumber of true positives (correct estimations) and false
then performed on the feature matrix extracted using Who'ﬁésitives (incorrect estimationg).= TP \whereFN is the
" TP+FN

spectral or sub-spectral analyasdescribed below. . . N .
P P ¥ number of false negatives (missed estimations). In addition,

F = 2%. Furthermore,A provides the overall clustering

To quantitatively validate and compare the efficacy of 0OWccyracy as a ratio of the number of correct clustering
DWT bgsed feature extraction me_thod to previous st_udle@qurrect) and total number of input spectr&l)(that is
we applied agglomerative hierarchical clustering algorithm$ ~ Neorrect .
to the feature extraction outputs. Compared to widely uséd™ n~ P.R,FandA€[01], and the higher

TABLE 3
PERFORMANCE COMPARISON OF THE PROPOSHDWT METHOD (WHOLE-SPECTRAL ANALYSIS USINGCOIF1 WITH 6 LEVELS OF DECOMPOSITION OR SUB
SPECTRAL ANALYSIS USINGCOIF1 WITH 1 LEVEL OF DECOMPOSITON) WITH PCA, PCA+ICA AND NONLINEAR LE METHODS.

C. Data Clustering

Method Brain Tissue Predicted Group Membership Precision Recall F-Score  Accuracy  Silhouette Statistics 5
Types Normal Gll GIV (P) (R) (F) Q) (isw Osw)

Normal 71 8 0 1.00 0.90 0.95

PCA Gll 0 21 3 0.60 0.88 0.71 0.873 0.521+0.230 0.140
GIV 0 6 25 0.89 0.81 0.85
Normal 79 0 0 1.00 1.00 1.00

PCA+ICA Gll 0 21 3 0.78 0.88 0.82 0.933 0.551+0.213 0.106
GIV 0 6 25 0.89 0.81 0.85
Normal 79 0 0 1.00 1.00 1.00

LE Gll 0 21 3 0.78 0.88 0.82 0.933 0.612+0.201 0.106
GIV 0 6 25 0.89 0.81 0.85
Normal 79 0 0 1.00 1.00 1.00

DWT Gl 0 23 1 0.79 0.96 0.87 0.948 0.743+0.278 0.078
GIV 0 6 25 0.96 0.81 0.88

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.ol
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P,R,F and A, the better the performance. In addition, we Comparison results between DWT and other methods are
also calculated the balanced error rate [23] (BER), which jgovided quantitatively (Table 3). From a clinical point of
the average of the errors on each class, and is suitable vimw, the whole (6 levels of decomposition) and sub-spectral
unbalanced datasets. (1 level of decomposition) DWT method using Coifl (from
We also evaluated the discriminative ability of the featurthis point onwards referred to as the proposed DWT method
vector,f;, in terms of quantifying intra-cluster tightness andvith the best settings as seen in Table 2) ghbtve best
inter-cluster separability. To this end we used the silheuetperformance for Gll, GIV and Normal spectra, as reflected
statistics that is computed for tieh data point as follows by its highest precisiorP{, recall ®) ard F-score £) values
[24]: sw; = %% [-1,1], whereaq; is the average distance (Table 3). For the case of Normal spectra, PCA+ICA, LE

max(a;,b;)
of thei-th data point to the remaining points within the sam@nd the proposed DWT method obeinP =R =1

cluster andb, is the minimum average distance of thth meaning that all of the Normal spectra were perfectly

data point to any of the remaining clusters. We used tigParated without any false positivelsP(= 0) and false
mean fisy) and the standard deviationg(y) of sw; values Negatives KN = 0). PCA also obtaied a precision of 1 but
as performance indicators. Highgg,, With lower ogy its recall rateof R = 0.9 is lower, as it misclassifie®
indicate better partitioning of the clustering results anplormal spectra KN = 8). For the case of GIV spectra,
hence the better discriminative ability of the feature use§CA PCA+ICA ‘and LE producefP =3 each with

pisw > 0.5 indicates a proper partitioning whereag, < £ = 0-89. The proposed DWT method producé® = 1
0.2 indicates an improper partitioning [24]. and thus resulted in a better= 0.96. On the other hand, all

methods missd 6 GIV spectra withR = 0.81. For the case
of GllI spectra, the proposed DWT method outpertxithe

) i ) remaining methods both in terms of precision and lreca
Figure 3 shows the comparison of the widely-Usegis method produced the least number of incorrect

wavelet basis functions based on the clustering _accu;acy Classifications N — Neorreer = 7) thus obtaining the best

for both whole-spectral and sub-spectra analysiemples (tapje 3), but incorrectly classified one Gl spectrum as a
of using Daubechies (Dbl, Db2, Db3), Coiflets (Coiflg)y spectrum, and six GIV spectra as Gl spectra. In this
Coif2, Coif3) and Symlets (Syml, Sym2, Sym3) of thease the incorrect clustering of GIV spectra in the Gli
whole spectra are shown as DbAII, CoifAll and SymAll. Fotster, show spectral characteristics that make it non-trivial
the whole spectra, we tested multiple levels ofy gistinguish them as GIV spectra. Moreover, the proposed
decomposmon _ with standard_ error of the mean (SEMywT method shoed the highest pey = 0.743,
shown in the Figure 3. The minimum accuracy (40.3%) Wafsmonstratig better separability of clustersf the feature,
obtained using Coifl with 3 levels of decomposition whﬂq., than for thoseextracted using PCA, PCA+ICA and LE

the maximum accuracy (94.8%) was achieved by Coitheihods (Table 3). In terms ofyy LE shows the smallest
using 6 levels or Dbl using 7 levels of decomposition (Tab riation in the silhouette values (Table 3

2). The Coifl basis function achieved the highest clustering
accuracy with a low level of decomposition, hence this
represents the best option for the whole-spectral analysis. In
addition, for the sub-spectral analysis, we display the SEM Overall, the experimental results suggest that our wavelet
with respect to various window sizes (Figure 3). We testdised feature extraction (by whole-spectralsub-spectral
different values fomNAA, wCho ,Cr LIl anqyLip2 35 analysis) and clustering provides the maximum accuchcy
aforementionedto maximise clustering accuracy for each94.8% for tissue separation, which demonstrates an
wavelet basis function. In so doing, we obtained the begaprovement compared to the PCA, PCA+ICA, and
clustering accuracy (94.8% in Table 2) using the Coifl basi®nlinear LE methods. In addition, our accuracies for
function with window sizes found to beNA4 =0.16ppm, distinguishing GIlI from GIV tumours using DWT and
wChe =0.16ppm, w =0.04ppm, wlP! =0.18ppm and hierarchical clustering compares well to the results of
whiPZ =0.20ppm, respectively. The whole-spectral analysi@arcia-Gomez et al. [25], who achieved 92.58% accuracy
(using Coifl basis function with 6 levels of decompositionjor distinguishing low from high grade gliomaby

and sub-spectral analysis (using Coifl with 1 level ofombining data from SV long echo and short echo data,
decomposition) performed identically (Tablg. For the which would be difficult to routinely achieve with MRS
whole-spectral analysis, clustering accuracies obtained Byquisitions due to time limits for patient scanning. A more
the Coifl basis function with different decomposition levelgecent approach [26] used Non-negative Matrix
showed no significant difference compared to the results phctorisation (NMF) to accomplish the feature extraction
u_sing the Dbl basis function, but showed _signific_aqtask for SV tumour spectra. However, NMF methods
differences compared to the_ results o_f other baS|_s f“nCt"?ri‘ﬁevitably converge to local minima and various
For the sub-spectral analysis, clustering accuracies obtaingfjisations provide different dimensionality reduction;

by the Cp'fl. _ba3|s _funct|on wit various window sizes therefore, NMF requires an elaborate initialisation scheme as
showed significant differences compared to the results . . . L L

) . . . discussed in previous investigation [26]. In addition, we
using other basis functions (Non-parametric Kruskal-Wallis

test with Dunn’s multiple comparisons was performed with a aChleved. similar .BER (0.078ni Tgble 2) using an
significance level 0p<0.05) unsupervised learning based clustering as Ortega-Martorell

Ill. RESULTS

IV. DISCUSSION
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et al. [26] obtained with a supervised learning Hases defined by local biopsy or resected tumour samples that
framework. The short echo SV MRS data used in the curretht not accurately represent the tissue that has been
study is a subset of the INTERPRET and eTUMOUR projedtvestigated by MRS. The tumour biopsy samples used for
data used in [25] and [264nd are compatible for acquisition histopathology have typical volumes mm?, whereas the
parameters and ground truth diagnosis from th8V MRS data are acquired from a voluinecn® [14]. In
histopathological and clinical information. particular, the highest grade tumour cells observed in the
Interestingly, our results on whole spectra showed largdoPSy determine the clinical assignation of tumour grade
variance of the clustering accuracy with respect to differeAf?d may only represent a small proportion of the tissue in
decomposition levels. The decomposition of the MR e MRS voxel. Additionally GIV tumours are frequently

signals using multiple levels of resolution present with much' 9¢€ heterogeneous masses that have areas of low-grade

larger variance in accuracy compared to the sub—specﬁ%pearance biH MRS [27], and the most malignant region

nalvsis while varving the window siz S in may not have been sampled by a single voxel placement.
analysis ¢ varying the OW SIzes. Suggesting sub- g, analysis may have some potential limitations. As
spectral DWT analysis may be more stable. In additio

i . : ) forementioned, the whole-spectral analysis suffers from
average results of using different basis functions of the sy fge variance of the clustering accuracy ewh

spectral analysiare supgrior to the average results of _Usmﬂecomposition levels of the DWT are varied. For the sub-
the whole spectra (Figure 3). However, the maximumgpectral analysis, we rely upon pre-definition of the key
clustering accuracy determined from the whole spectra ffochemical peaks, which require elaborate tuning prior to
94.8% using the Coifl basis function and 6 levels dfpplication of DWT. However, once the window sizes are
decomposition, which is still superido PCA, PCA+ICA fixed, more SV MRS data (i.e., more normal, GlI, and GIV
and nonlinear LE methods. Nevertheless, the minimu®V MRS data) may be added withawstuning. In addition
clustering accuracy is 48%6 using Coifl basis function with there may be diagnostically useful contributions to the
3 levels of decomposition indicating that DWT analysis ompectra from biochemicals with lower overall visibilitifor
whole spectra is unstable with respect to decompositiexample quantified levels of yo-inositol, glutathione,
levels. glutamate-glutamine have been used in previous tumour
classification studies, metabolites whose major contributions
to an MR spectrum are outside of our selected spectral
regions [13], [18]. Our selection of five key biochemical
used in this study may have certain subjectivity
Nevertheless, these metabolites and lipid peaks are well
known and widely used, features to discriminate brain
tumour grades. For example, Opstad et al. [18] indicated that
Choline, Creatine, Lactate and Lipid (1.3 ppm) were the
most discriminative for Gll and GIV tumour, and NAA and
Lipid (0.9 ppm) were useful for classifying normal spectra
Moreover, we only included GIl and GIV patients for this
study due to lack of reliable Glll MRS data. However, we
; . - - - can envisage a straightforward application of the current
(c) (d) DWT based feature extraction and unsupervised clustering
‘ | framework for SV MRS dataset incorporating Glll cases.

V. CONCLUSIONS

To the best of our knowledge, this is the first study using
DWT and unsupervised clustering to separate SV MRS data
4 3 %) 1 04 3 2 1 o from different brain tumour types. We tested both DWT
Figure 4: (a) FLAIR image of the misclassified GII ca$®; T2-weighted based whole-spectral and sub-spectral analysis, and we have
image of one misclassified GIV case; (c) Blue curve: SV MR8al of (a); concluded that a sub-spectral analysis is sufficient by using
(d) Blue curve: SV MRS signal of (b), Planned SV MB&juisitions are  \yindowed key metabolites to distinguish different grades o
shown in cyan boxes overlaid on structural MRI images. . . .

the brain tumour. The achievement is threefold: (a) we

The improvement provided by the proposed DWT methocbmpared different DWT settings including various wavelet
is abetter separation between Gll and GIV tumours. There limsis functions for both whole-spectral and sub-spectral
one misclassified GlI spectrum as GIV (Figure 4(a) and (c)analysis, different window sizes for the sub-spectral
and 6 misclassified GIV as Gll (one example shown ianalysis, and multiple levels of decomposition for the whole-
Figure 4(b) and (d)). The one misclassified Gll spectrum hapectral analysis, and we have found that Coifl wavelet
unexpectedly high peaks of Lipid (Figure 4(d)) contrast, obtained the best clustering results; (b) we compared DWT
all misclassified GIV spectra have very low Lipid signalbased sub-spectral analysis with DWT feature extraction
and so resemble Gll spectra. The misclassification of thege®e whole spectra. Quantitative evidence show that our sub-
tumour spectra may be due to the fact that our ground trigpectral analysis is more stable irrespective of the window
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sizes selected for the key metabolites; (c) we also compairéd
to conventional feature extraction methods such as PCA,
PCA+ICA, and newly applied nonlinear LE algorithm, and
the comparison demonstrated that both our DWT based
whole-spectral and sub-spectral analysis can further improye,
the separation between GIl and GIV tissue types while
maintaining the accuracy of separating tumour spectra from
normal brain spectra in controls. In summary, our DWT
based feature extraction and hierarchical clustering produdés
promising brain tumour classification that has potential for
analysis of larger multi-centre datasets and be applicable to
automated analysis of the large datasets obtained i%
multivoxel *H MRS using chemical shift imaging. [16]
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