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Abstract

In this paper we investigate the underlying structure of the Lucas (1988) endogenous growth

model. We derive analytically, the restrictions on the parameter space that are necessary and

sufficient for the existence of balanced growth paths and saddle-path stable local dynamics. We

demonstrate that in contrast to the original model, with the addition of an external effect and

depreciation in the human capital sector, the Lucas model can be made consistent with the

high degrees of intertemporal elasticities of substitution increasingly estimated in the empirical

literature—even if there is a significant degree of increasing returns to scale in the physical

production sector of the economy. Finally we demonstrate that for a given baseline rate of

steady state growth, with the inclusion of modest degrees of depreciation and external effects

to the human capital production process, the model can accommodate the widest possible

range of economies—including those characterized by low discount factors, high elasticities of

intertemporal substitution, increasing returns in the final goods sector, and also both the high

rates of population growth and steady state per-capita output growth we observe in many parts

of the world today.
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1 Introduction

This paper has two aims. First, to provide an atlas of sorts for the Lucas (1988) two-sector endoge-

nous growth model with human capital model—one extended to include sector-specific external

effects and depreciation in both sectors—by mapping out analytically, the precise restrictions on

the parameter space necessary and sufficient for the existence of balanced growth paths and for the

existence of saddle-path stable equilibria in their vicinity. Second, the Lucas model in its original

form has trouble accommodating values for the intertemporal elasticity of substitution that are sig-

nificantly higher than one, a problem that becomes more acute for high rates of population growth

or high rates of per-capita output growth. Generalizing the process of human capital accumulation

provides the model with greater flexibility to accommodate the disparate growth experience we

observe around the world.

Lucas (1988) introduced the first growth model where endogenously generated human capital

generate both labour augmenting technology and total factor productivity, the latter by non-rival

spillovers. The two-sector model has featured in increasing numbers of applications in macroeco-

nomics. However, its most important feature remains its ability to capture the empirical regularities

in economic growth data that the neo-classical models have difficulty explaining—particularly the

apparent lack of long-run convergence, either absolute or conditional we observe in cross-country

datasets. Indeed mounting evidence suggests that a satisfactory model must be sufficiently versa-

tile to explain both evidence assembled by Pritchett (1997), Easterly and Levine (2001) and many

others that point to divergence, but also the existence of convergence clubs, as in Quah (1997),

Canova (2004) and Huang (2005).

Attfield and Temple (2010) point out how sensitive the relationships between steady state ratios

and growth are to the intertemporal elasticity of substitution. With this in mind, along with the

growing body of empirical evidence pointing towards higher values for the intertemporal elasticity

of substitution, this paper demonstrates that by adding a degree of sector-specific external effects

and/or depreciation to the human capital sector, the two-sector model can be made consistent

with high rates of intertemporal elasticity of substitution, as the well as high rates of population

growth and high rates of output growth we commonly observe in many countries in Africa, Asia,

and Central and South America.

In Section 2, we present the two-sector endogenous growth model with both depreciation and

sector-specific external effects in each sector of the economy, and derive the laws of motion that

characterize the model’s dynamic behavior. Caballé and Santos (1993) analyze the two-sector model

with depreciation in both sectors but only establish some general conditions for the existence

of balanced growth paths. Xie (1994) includes external effects in the production sector, while
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abstracting from depreciation and external effects in the production of human capital. Unlike

Caballé and Santos, Xie presents explicit bounds on the parameter space necessary and sufficient

to guarantee balanced growth, however only by setting the intertemporal elasticity of substitution

strictly equal to the reciprocal of the share of physical capital in the production sector. In this

paper we do not impose this restriction.

In Section 3, we derive the steady state values for capital, consumption, and hours of mar-

ket work. Following Benhabib and Perli (1994) and Ben-Gad (2003), we then use these values to

analytically define the restrictions on the parameter space in terms of bounds on the subjective

discount rate necessary and sufficient to ensure the existence of interior solutions to the representa-

tive agent’s optimization program which support unique balanced growth paths. In Section 4, we

further restrict the parameter space, by ruling out balanced growth paths characterized by unstable

local dynamics.

In Section 5, we begin by considering what country level growth and demographic data imply

about the value of the intertemporal elasticity of substitution within the context of the model.

We then demonstrate the implications of our analytical results using numerical examples that

focus on the behavior of the model in the usually problematic region where the intertemporal

elasticity of substitution is greater than one—the region our empirical results imply may be best

for parameterizing the model for at least many of the countries considered. Varying the magnitude

of both external effects and the intertemporal elasticity of substitution, while fixing the other

parameters of the model, we demonstrate that with the inclusion of external effects and depreciation,

the two-sector model is able to accommodate the high values for the intertemporal elasticity of

substitution as estimated by Hansen and Singleton (1982), Amano and Wirjanto (1997), Mulligan

(2002) and Gruber (2006) for the United States, or Hamori (1996) and Fuse (2004) for Japan.

Finally in Section 6, we restrict our attention to those portions of the parameter space that

correspond to a wide range of the most empirically relevant rates of growth. Fixing the baseline

rate of steady state growth, we demonstrate that including modest degrees of depreciation and

external effects to the human capital production process, enables us to calibrate the model for the

widest possible range of economies—including those characterized by low discount factors, high

elasticities of intertemporal substitution, increasing returns in the production sector, as well as the

high rates of population growth found in much of Africa, Asia and Latin America.

2 The Model

The economy is composed of a large number of households whose behavior can be represented by

the intertemporal maximization of an infinite-lived representative agent. This agent maximizes
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utility over time t, by choosing the dynamic path of per-capita consumption, c, and u ∈ (0, 1), the

fraction of time as well as per-capita human capital h devoted to working in the production sector:

max
(c,u,k,h)t≥0

∫ ∞

0
e(n−ρ)t σ

σ − 1
c1−1/σdt, (1)

subject to the constraints:
·
k = wuh + (r − δ − n) k − c, (2)

·
h = ν [(1− u) h]1−γ [

(1− ū) h̄
]γ − εh, (3)

where σ is the constant rate of intertemporal elasticity of substitution, ρ a positive discount rate,

n the natural rate of population growth, δ the rate of depreciation of per-capita physical capital k,

r its rate of return, ε the rate of depreciation of human capital and w the wage rate.1 The terms

ū ∈ (0, 1) and h̄ are the time t share of time devoted to market work and the time t stock of human

capital, aggregated over all the agents in the economy and expressed in per-capita terms—hence

the term
[
(1− ū) h̄

]γ captures the efficiency enhancing external effects of that portion of the human

capital stock devoted to its production, and the parameter γ regulates its magnitude. Time not

devoted to work for wages is spent accumulating human capital—ν is the maximum rate at which

human capital can be accumulated.

The original Lucas formulation does not distinguish between private and social returns in the

production of human capital. Empirical evidence from studies on schooling (Harmon and Walker

(1999) and Carneiro and Heckman (2003)) suggest that returns to human capital diminish at

the individual level. Yet if physical capital plays no role in human capital production, balanced

growth is only possible if in aggregate the technology that produces it is linear. Economy-wide

activity devoted to human capital production complements private production—we assume spill-

overs within the sector account for the difference.

Physical goods are produced by a combination of physical capital and effective labor φ = uh:

y =
(
ūh̄

)β
F (k, φ) , (4)

where the term
(
ūh̄

)β captures the efficiency enhancing external effects of that portion of the human

capital stock employed in the production sector. We assume that the function F : R2 → R takes

the constant returns, Cobb-Douglas form F (k, φ) = kαφ1−α. Internal factor returns are:

r =
(
ūh̄

)β
Fk (k, φ) , (5)

w =
(
ūh̄

)β
Fφ (k, φ) . (6)

1Though this formulation of preferences seems restrictive, both the rate of intertemporal elasticity of substitution

and the subjective discount rate must be constant to ensure the existence of a balanced growth path. See Palivos et.

al. (1997).
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Unlike Lucas’ aggregate external effects, we limit the scope of external effects to be sector-

specific. Only the portion of human capital that is employed in the production sector generates

spill-over effects for that sector, but this is sufficient to generate both differential rates of steady

state growth for the two types capital, and higher rental rates for human capital in rich countries.

The most obvious spill-overs are likely to be the result of complementarities between the skills of

workers—personnel in a sector interact and learn from each other. Increases in the total stock of

knowledge certainly enhance efficiency in the production sector—however, this may be knowledge

produced by both domestic and foreign human capital sectors. Restricting spill-overs to be sector-

specific obviates the need to distinguish between endogenous domestically produced human capital,

and the foreign portion of human capital which is accumulating exogenously.2

The present value Hamiltonian that corresponds to the consumer’s optimization problem is:

H (c, u, k, h, λ, µ) = e(n−ρ)t σ

σ − 1
c1−1/σ + λ [wuh + rk − c− nk] (7)

+µ
[
[(1− u) h]1−γ [

(1− ū) h̄
]γ − εh

]
,

where λ and µ are the costate variables for physical and human capital.

Inserting the values from (5) and (6), in place of r and w, the first order necessary conditions

for an interior solution to the individual constrained optimization are:

e(n−ρ)t

c1/σ
= λ, (8)

(1− α) λh
(
ūh̄

)β
kα (uh)−α = µ (1− γ) ν (1− u)−γ h1−γ

[
(1− ū) h̄

]γ
, (9)

λ
(
α

(
ūh̄

)β
kα−1 (uh)1−α − δ − n

)
= −

·
λ, (10)

µ
[
(1− γ) ν (1− u)1−γ h−γ

[
(1− ū) h̄

]γ − ε
]

+ λ (1− α)
(
ūh̄

)β
kα (uh)−α u = − ·

µ, (11)

plus the two transversality conditions,

lim
t→∞λk = 0, (12)

lim
t→∞µh = 0, (13)

and the constraint that u falls within the unit interval. We define the parameter space Θ: θ ≡
(α, β, γ, δ, ε, ν, ρ, σ, n) , and θ ∈ Θ, where Θ = R2

++ ×R4
+ × [0, 1)3.

2Paul and Siegel (1999) find strong evidence of sizeable increasing returns—two-thirds to almost three-quarters

can be ascribed to agglomeration effects—sector specific external effects at the two-digit industry level. Harrison

(1998) finds evidence of increasing returns but rejects spillovers between sectors and Benhabib and Jovanovic (1991),

demonstrate that the source of any aggregate increasing returns to scale are not associated with the capital input.

Finally, Durlauf et. al. (2008) finds strong evidence for the existence of production externalites in explaining cross-

country differences in per-capita growth.
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Setting ū = u and h̄ = h, differentiating (8) with respect to time, and substituting into (10),

the law of motion for per-capita consumption is:
·
c

c
= σ

(
αkα−1φ1−α+β − δ − ρ

)
. (14)

The law of motion for per-capita physical capital is:

k̇

k
= kα−1φ1−α+β − c

k
− δ − n, (15)

Substituting the wage equation into (9) and differentiating with respect to t:

µ̇

λ
− µ

λ2
λ̇ =

α (1− α) kα−1φβ−α

(1− γ) ν
k̇ +

(β − α) (1− α) kαφβ−α−1

(1− γ) ν
φ̇. (16)

Substituting (11) and (15) for µ̇ and k̇ into (16) yields the law for motion of effective labor:

φ̇

φ
=

α

α− β

(
(1− γ) ν − ε

α
+

1− α

α
(n + δ)− c

k

)
. (17)

The evolution of the economy is described by the system (14), (15) and (17) in the non-stationary

variables c, k and φ. To make this system stationary, we define stationary consumption and

physical capital: c̃ = cφ−
1−α+β

1−α , k̃ = kφ−
1−α+β

1−α . The dynamic system reduces to two stationary laws

of motion: ·
c̃

c̃
= σ

(
αk̃α−1 − δ − ρ

)
− ϑ

(
(1− γ) ν − ε

α
+

1− α

α
(n + δ)− c̃

k̃

)
, (18)

and ·
k̃

k̃
= k̃α−1 + (ϑ− 1)

c̃

k̃
− ϑ

(1− γ) ν − ε

α
− n + δ

α− β
, (19)

where ϑ = 1−α+β
α−β

α
1−α .

3 Balanced Growth

The balanced growth paths of the economy are the solutions to the equations (18) and (19) when
.

c̃=
.

k̃=0. Differentiating φ = uh with respect to time: φ̇ = u̇h + uḣ, setting u̇ = 0, and combining

the law of motion for human capital in (3) with (17), (18), and (19) yields the steady state fraction

of hours devoted to production in the production sector:

u∗ =
ρ− n− (η − γ) ν + ηε

(1− η) ν
, (20)

where η = (1−α+β)(σ−1)
(1−α)σ is the product of the curvature of the utility function, and the ratio of the

social marginal product of human capital to the private marginal product of human capital. The

steady state growth rate of physical output, consumption wages and physical capital is:

κ =
(1− α + β) ((1− γ) ν − ε− ρ + n)

(1− α) (1− η)
, (21)
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and the steady state growth rate of human capital is (1−γ)ν−ε−ρ+n
1−η .

Setting the left hand sides of (18) and (19) equal to zero, we solve for balanced growth con-

sumption and capital:

c̃∗ =
[
(1− α)(n + δ)

α
+

(1− α + β − η)((1− γ)ν − ε) + (α− β)(ρ − n)
α(1− η)

]
k̃∗, (22)

and

k̃∗ =
[

α (1− α) (1− η)
(1− α + β − (1− α) η) (n + δ + (1− γ) ν − ε)− β (δ + ρ)

] 1
1−α

. (23)

To ensure the existence of interior solutions along the balanced growth path, the representative

agent cannot be so impatient that he allocates all available time to immediate production, or

so patient that all participation in the labor market is postponed indefinitely as the maximum

accumulation of human capital is pursued. Therefore, as in Benhabib and Perli (1994) and Ben-

Gad (2003), we use bounds on the discount rate to describe the restrictions on preferences necessary

to ensure that the fraction of hours worked is on the unit interval and that the steady state rate of

growth is positive.

We define two disjoint subspaces of the parameter space Θ1, Θ2 ⊂ Θ:

Θ1 ≡ {θ ∈ Θ| n + (η − γ) ν − ηε < ρ < n + (1− γ) ν − ε and η < 1} , (24)

Θ2 ≡ {θ ∈ Θ| n + (1− γ) ν − ε < ρ < n + (η − γ) ν − ηε and η > 1} . (25)

Proposition 1 If θ ∈ {Θ1, Θ2}, the steady state growth rate in (21) κ > 0, the steady state fraction

of hours worked in (20) u∗ ∈ (0, 1), and the steady state stock of physical capital in (23) k̃∗ > 0.

Proof: See Appendix.

The conditions in Proposition 1 are necessary but not sufficient to ensure the existence of an

interior balanced growth path. If for example α = 0.6, β = 0.31, γ = 0.28, δ = 0.03, ε = 0.15,

ν = 0.2, ρ = 0.03, σ = 4, and n = 0.02, from (20), (21), and (23) u∗=0.0085, κ=0.0857, k̃∗=147.355.

However, the value generated by (22) for consumption is negative and equal to -0.00185. To ensure

positive steady state consumption we define the disjoint subsets ΘA
1 , ΘB

1 ⊂ Θ1 and ΘA
2 ,ΘB

2 ⊂ Θ2 :

ΘA
1 ≡ {θ ∈ Θ1|n +

(
1− 1− η

α− β

)
((1− γ) ν − ε)− ζ < ρ < n + (1− γ) ν − ε and α > β}, (26)

ΘB
1 ≡ {θ ∈ Θ1|n + (η − γ) ν − ηε < ρ < n +

(
1− 1− η

α− β

)
((1− γ) ν − ε)− ζ and α < β}, (27)

ΘA
2 ≡ {θ ∈ Θ2|n + (1− γ) ν − ε < ρ < n +

(
1− 1− η

α− β

)
((1− γ) ν − ε)− ζ and α > β}, (28)

ΘB
2 ≡ {θ ∈ Θ2|n +

(
1− 1− η

α− β

)
((1− γ) ν − ε)− ζ < ρ < n + (η − γ) ν − ηε and α < β}. (29)

where ζ = 1−η
α−β (1− α) (n + δ).
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Proposition 2 The necessary and sufficient condition for the existence of an interior balanced

growth path is: θ ∈ ∪j=A,B
i=1,2 Θj

i if α 6= β, and θ ∈ ∪i=1,2Θi if α = β .

Proof: See Appendix.

The sets Θ1 and Θ2 are separated in Θ by a hyperplane defined by the set Θ3:

Θ3 ≡ {θ ∈ Θ|ρ = n + (1− γ) ν − ε and η = 1} . (30)

If θ ∈ Θ3 the numerators and denominators in both (22) and (23) are both equal to zero, implying

the existence of an infinite number of balanced growth paths.

4 Dynamics and Equilibria

The results in the previous section demonstrate the conditions for balanced growth paths to be

both interior and unique. If α = β, the production function is linear in effective labor, and there

are no transition paths. Instead, the model’s behavior mimics that of the one sector AK models

where the growth rate is always constant. In all other cases the equilibrium paths that converge to

these growth paths are only unique if the dynamic system has a saddle path structure. To find the

local stability properties of the reduced system in the neighborhood of the balanced growth paths,

we linearize the system (18) and (19). The Jacobian of the linearized system evaluated along the

balanced growth path:

J =


 J11 −J11 + β(ρ+δ)σ−(1−α+β)((1−γ)ν+n+δ−ε)

1−η

β
α(1−α+β)J11 − β

1−α+βJ11 − (1−α)(n+δ)+(1−α+β)((1−γ)ν−ε)
α−β


 , (31)

where J11 = ϑ c̃∗

k̃∗
, and the value of c̃∗

k̃∗
is defined from (22) (see Appendix). If the eigenvalues

of the Jacobian have opposite signs, all competitive equilibria, at least in the neighborhood of

the balanced growth path are determinate (locally unique). If both eigenvalues are negative, all

paths converge to the balanced growth path and any point in its vicinity qualifies as a competitive

equilibrium. Finally, if both eigenvalues are positive, the dynamics are explosive—all paths off the

balanced growth path violate conditions (12) and (13).

Proposition 3 In the neighborhood of all balanced growth paths there exist unique competitive

equilibria iff θ ∈ ΘA
1 ∪ΘB

2 .

Proof: The determinant of J is:

|J| = α (1− α) (1− η) σ

α− β
c̃∗k̃∗α−1. (32)
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Average Annual Per-Capita Real GDP Growth 1995-2005

Κ ³ 0.03
0.0265 £ Κ < 0.03
0.024 £ Κ < 0.0265
Κ < 0.024

Figure 1: Per-capita real output growth κ, averaged over the decade between 1995-2005. Source: Penn

World Tables,

which is negative if and only if η < 1 and α > β, or η > 1 and α < β. If and only if θ ∈ ΘA
1 ∪ΘB

2 do

the eigenvalues of J have opposite signs. ¥
The implication of Proposition 3 is that there are unique balanced growth paths in the portions

of the parameter space defined by ΘB
1 and ΘA

2 , but the equilibria in their neighborhoods are either

unstable or indeterminate. We rule out the latter.

Proposition 4 If θ ∈ ΘA
2 ∪ΘB

1 , all balanced growth paths are unstable.

Proof: The trace of J is:

trJ =
ρ− n− ((1− γ) ν − ε) η

1− η
. (33)

which is positive iff θ ∈ Θ1 ∪Θ2 and negative otherwise. From (26)—(29) the determinant (32) is

positive iff θ ∈ ΘA
2 ∪ ΘB

1 . If the determinant and trace of J are positive, the eigenvalues of J are

positive as well, and we rule out multiple equilibria (indeterminacy). ¥

5 Intertemporal Elasticities of Substitution Greater than One

The vast majority of models in the macroeconomic literature employ preferences characterized by

constant intertemporal elasticity of substitution. In the Dynamic Stochastic General Equilibrium

literature these elasticities are in turn calibrated with values of σ that typically range between one

half and one.3 By contrast, in much of the endogenous fertility literature (see Barro and Becker
3For time additive utility functions, the intertemporal elasticity of substitution is the reciprocal of the Arrow Pratt

measure of relative risk aversion, usually assumed in the DSGE literature to fall between one and two.
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Average Annual Natural Population Growth 1995-2005

n ³ 0.03
0.025 £ n < 0.03
0.02 £ n < 0.025
0.015 £ n < 0.02
0.01 £ n < 0.015
n < 0.01

Figure 2: Natural rate of population growth n, averaged over the decade between 1995-2005. Source: United

Nations

Death Rates Corrected for Child Mortality, 1995-2005

no data
0.015 £ d < 0.0175
0.0125 £ d < 0.015
0.01 £ d < 0.0125
0.0075 £ d < 0.01
0.005 £ d < 0.0075
0.0025 £ d < 0.005
d < 0.0025

Figure 3: The death rate corrected for the mortality rate of children aged five averaged between 1995-2005.

Source: United Nations Statistical Division and CIA Factbook

10



+

+

+

+

+

+

+
+

+

°

°

°

°
°

°

° °

°

°

°

°

°

°

°

°

°

°°

°

°

°

°

°

°

°

° °

°

°

°

°
°

°

°

°

°

°

°

°

°

°
°

°

°

°

°

°

°

°

°

°

°

°

°

°°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°°

°

°

°
°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

° °

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

° °

°
°

°

°

°

°

0.00 0.01 0.02 0.03
-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

Natural rate of population growth 1995-2000

Pe
r-

C
ap

ita
G

D
P

G
ro

w
th

20
00
-

20
05

+
+

+

+

+
+

+

+

+

+

+

°

°

°

°

°

°

° °

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°
°

°

°

°

°

°

°

°

°

°

°

° °

°

°

°

°

°°

°

°

°

°

°

°

°

°

° °

°°

°

°°

°

°
°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°°

° °
°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°
°°

°

°

°

°°

°

°

°

°

°
°

°

°

° °

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

0.00 0.01 0.02 0.03
-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

Natural rate of population growth 2000-2005

Pe
r-

C
ap

ita
G

D
P

G
ro

w
th

20
00
-

20
05

+

+

+

+

+

+

+
+

+

°

°

°

°
°

°

° °

°

°

°

°

°

°

°

°

°

°°

°

°

°

°

°

°

°

° °

°

°

°

°
°

°

°

°

°

°

°

°

°

°
°

°

°

°

°

°

°

°

°

°

°

°

°

° °

°

°

°

°

°

°

°

°

°

°

°

°
°

°

°

°

°

°

°

°

°

°

°

°

°

°

°°

°

°

°
°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°°

°
°

°

°

°

°

0.002 0.004 0.006 0.008 0.010 0.012 0.014
-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

Corrected Death rate 1995-2000

Pe
r-

C
ap

ita
G

D
P

G
ro

w
th

20
00
-

20
05

+
+

+

+

+
+

+

+
+

+

+

°

°

°

°

°
°

° °

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°
°

°

°

°

°

°

°

°

°

°

°

°°

°

°

°

°

° °

°

°

°

°

°

°

°

°

° °

°°

°

° °

°

°
°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

° °

° °
°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°
°°

°

°

°

° °

°

°
°

°

°
°

°

°

°°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

0.002 0.004 0.006 0.008 0.010 0.012 0.014
-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

Corrected Death rate 2000-2005

Pe
r-

C
ap

ita
G

D
P

G
ro

w
th

20
00
-

20
05

Figure 4: Smoothed kernel density plots for per-capita growth against the natural rate of

population growth or the death rate corrected for the mortality rate of children aged five

averaged for the years 1995-2000 and 2000-2005. The bandwidth is set using the Silverman

criteria. Crosses represent data points for countries with per-capita GDP below $1,000 and

circles data points above $1,000. Source: Penn World Tables, United Nations Statistical

Division and CIA Factbook
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(1988), (1989)) the intertemporal elasticities of substitution are typically set higher than one. These

higher values also appear in some recent empirical studies.

Gruber (2006) estimates the intertemporal elasticity of substitution for individuals in the United

States to be two. Hamori (1996) estimates the elasticity for Japanese consumers to be between one

and two, and Fuse (2004) estimates the elasticity in Japan to be about four. Attanasio and Weber

(1989), Mulligan (2002), Vissing-Jørgensen and Attanasio (2003), Bansal and Yaron (2004), Bansal,

Kiku and Yaron (2007), and Hansen, et. al. (2007) all estimate high values for the intertemporal

elasticity of substitution for the Epstein-Zin recursive utility function.4 In terms of the model

itself, (21) suggests a connection between the growth rates and two parameters observable in the

data. The rate of per-capita economic growth κ, should be negatively [positively] correlated with

n the natural rate of population growth, and positively [negatively] correlated with the rate of

depreciation for human capital ε if η > 1 [η < 1]. Furthermore given the restrictions on the other

parameters, η > 1 [η < 1] implies that the intertemporal rate of substitution σ > 1 [σ < 1]. Indeed,

though σ > 1 implies η > 0, if η > 1, the in addition the exponent regulating the human capital

external effect β must be positive as well. Though we do not observe human capital depreciation

directly, we can use the simple proxy in Figure 3 —the rate of death for people above the age of

five.

Figure 4 presents the relationship between per-capita growth κ and both the natural rate of

population growth and the rate of death for people above the age of five, together with their

corresponding smoothed kernel density plots. The relationship in (21) refers only to balanced

growth, not growth associated with convergence. To account for this without removing all but

the richest countries from the sample we restrict ourselves to the 123 countries that experienced

growth rates that averaged between -2% and +5% during the periods 1995-2000 and 2000-2005.

There is a discernible though weak pattern in three of the four panels, negative relationships in both

1995-2000 and 2000-2005 for the relationship between per-capita growth and the natural rate of

population growth, and a positive relationship between per-capita growth and the corrected death

rate for 1995-2000, though this relationship breaks down for the data between 2000-2005.

To further investigate the relationship in (21) we use the same data and regress κ on both n and

the corrected death rate and also on the interaction of each with an indicator variable Iy>1000 that

takes the value of one for per-capita income above $1000 (represented by crosses rather than circles

in Figure 4) and zero otherwise—the results are presented in Table 1. Although the regressions
4In Benhabib et. al. (2006) the two sector real business cycle model generates impulse responses that match US

data if the intertemporal elasticity of substitution is ‘too high’, equal to 14. Similarly, Tversky and Kahneman (1992)

estimate the coefficient of relative risk aversion to be 0.22, but in their non-expected utility framework, its reciprocal

cannot be automatically treated as the intertemporal elasticity of substitution.
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Figure 5: The parameter space for α = 0.35 and n = 0.02.
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suffer from high degrees of collinearity—n and the corrected death rate are not only correlated with

the interaction terms but with each other—a clear pattern emerges. In every case the coefficient

on n is significantly below zero, ranging between about -.5 and -.75 for all the countries in the

sample. With the indicator variable included as an interaction term the result is similar for most

of the countries in the sample but approximately -1 for the extremely poor countries with per-

capita incomes below $1,000. In keeping with the pattern that emerges in the two upper panels

of Figure 4, these results suggests the value of η to be greater than one. The coefficients on the

corrected death rate are not always significant but for the period 1995-2000 the coefficient is 2.4064

and significant in regression (2) and the interaction term in (5) is 2.9843 and significant. For the

period 2000-2005 the coefficient in (2) is not statistically significant but in (5) the coefficient on

the corrected death rate is statistically significant and negative, -2.3442 for the group of countries

with per-capita incomes below $1,000 but adding together the two coefficients, positive and equal

to 0.4296 for countries with per-capita incomes above $1,000.

As one final test we consider how the changes in the growth rates themselves relate to the

changes in both the natural population growth rates and the corrected death rates which allows

us to isolate the relationship in (21) as it applies to the countries in the sample themselves rather

than as comparisons across the different countries. There are no statistically significant results

in Table 2 when 4κ is regressed on either 4n or the change in the corrected death rate alone.

Nonetheless, interacting 4n with the indicator variable generates a similar pattern to that in Table

1 for countries with per-capita incomes greater than $1,000. However for the poorest countries

in regression (2) the relationship is reversed. Interacting the indicator function Iy>1000 on the

corrected death rate does not yield statistically significant results, but interacting the variable with

a new indicator function Iy>4000 that takes the value of one if per-capita output is greater than

$4,000. Again we see the same pattern emerges—regression (5) implies that the value of η is likely

to be greater than one, but only for countries above a certain income threshold.

What can we conclude? Again (21) refers only to balanced growth, whereas the data includes

countries at various stages of development. Nonetheless the above results surely indicate that it

would be unwise to rule out parameterizations consistent with a value of η greater than one—

at least possible for all but the poorest countries. And that implies intertemporal elasticities of

substitution greater than one (and also the exisitence of at least some human capital spillovers in

the physical production process). The question remains under what circumstances the two-sector

endogenous growth model can cope with these higher elasticities?5

5Jones et. al. (2005) simulate the behavior of the endogenous growth model with elastic labor supply and

fluctuations. Though they include depreciation in both sectors of the economy, the production function for human

capital is linear at both the private and social levels—in their model the intertemporal elasticity of substitution
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(1) (2) (3) (4) (5)

constant -0.0018 -0.0021 0.0002 4x10−5 0.0002

(-0.8922) (-1.0950) (0.1455) (0.0247) (0.1533)

4pop -1.3216 8.1965*

growth (-1.6445) (1.9792)

4pop -9.8278**

growth (-2.3413)

×Iy>1000

4death rate 0.4804 -13.5313 -4.3679*

(0.3149) (-1.0236) (-1.9734)

4death rate 14.2227

×Iy>1000 (1.0671)

4death rate 8.6984***

×Iy>4000 (2.9444)

R2 0.0219 0.0646 0.0008 0.0102 0.0681

Table 2: Changes in per-capita growth rates regressed on changes in the natural rate of population

growth and changes in the death rate corrected for the mortality rate of children aged five. Differ-

ences between averages for the years 1995-2000 and 2000-2005. Ordinary Least Squares, T-statistics

in parentheses, * indicates statistical significance at the 10% level, ** at the 5% level, and *** at

the 1% level. Source: Penn World Tables, United Nations Statistical Division and CIA Factbook
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Figure 6: The parameter space for α = 0.35 and n = 0.025.
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In Figure 5, we vary the magnitude of both external effects β and γ along the unit interval, for

values of the intertemporal elasticity of substitution σ equal to 1.125, 1.5, 2, and 4, while holding

the other parameters of the model fixed. We set the share of capital in output α equal to 0.35,

and the subjective discount rate ρ equal to 0.03. The rates of depreciation for physical capital δ

is set to equal 0.1, reflecting the low end of Bu’s (2006) estimates for a selection of less developed

countries. Similarly, we set the rate of population growth to n=0.02, to approximate the recent

experience of large parts of the developing world as illustrated in Figure 2.

We know little about the rate of individual human capital depreciation outside the United

States and Western Europe. Keane and Wolpin (1997) estimate the rate of individual human

capital depreciation for white U.S. males to be 0.096 for blue collar workers and 0.365 for white

collar workers. Wu (2007) estimates the rate of human capital depreciation for U.S. workers to be

between 0.116 and 0.181, depending on gender and race. In addition, at the aggregate level, we

must also consider the rate at which cohorts leave the workforce. As a proxy we use the death

rate but correct this for the mortality rate of children aged five. Combining the lower of the

values for individual workers in the United States—about 0.11, together with the corrected death

rates in Figure 3 most common in the developing world—about 0.015, yields a value for human

capital depreciation of ε equal to 0.125. Finally, we set the value of ν to 0.25, double the value

of human capital depreciation. The human capital of an individual who spends no time working

in the production sector, but devotes all of his or her time to human capital accumulation, will

see it increase by 15% over the course of a year—roughly consistent with various estimates for the

returns to schooling (see Harmon and Walker (1999) and Card (2001)).

In the upper left-hand panel of Figure 5 we consider the conditions for the existence of an

interior balanced growth path, fixing the intertemporal elasticity of substitution to σ=1.125. The

value of η is less than one, as long as β < −1−α
1−σ , so throughout the portion of the parameter

space under consideration, η < 1. Both the areas shaded in dark and light gray, denoted ΘA
1 and

ΘB
1 , respectively, represent the combinations of β and γ along the unit interval that satisfy all the

necessary and sufficient conditions for interior balanced growth paths. However, from Proposition 3

only the former, shaded in dark gray, ΘA
1 , represents economies characterized by unique saddle-path

stable equilibria. This area is bounded from below by the constraint u∗ > 0, which begins where

the value of γ equals 0.0156 and rises linearly as the value of β increases. To ensure the existence

of an interior balanced growth path, the value of the external effect in the human capital sector, γ,

must be positive, but no greater than 1− ρ−n+ε
ν —here equal to 0.46—otherwise the constraint that

the growth rate is positive, κ > 0 is violated. However since for σ = 1.125 and all values of β < 1,

cannot be much higher than 1.11. Nonetheless it only at this upper bound that the simulated standard deviation of

the consumption-output ratio approaches that observed in US data.
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Figure 7: The parameter space for α = 0.5 and n = 0.02.
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θ ∈ Θ1, unique saddle path stable equilibria that converge to an interior balanced growth path are

not possible, unless the external effects β and γ, are no larger than 0.35 and 0.46, respectively.

Raising the value of σ to 1.5, narrows the range of values for β and γ that support the existence

of interior balanced growth paths. The value of γ, in the upper right-hand panel of Figure 5, must

be at minimum 0.127. Raise the value of σ above 1.65 and components of Θ2 appear for values

of β <1. For example, in the lower left-hand panel of Figure 5, σ = 2—if β = 0.65, then η=1,

and the set that corresponds to interior balanced growth paths reduces to a single point within the

separating hyperplane Θ3. Beyond this point, as the value of β grows beyond 0.65, the range of

values of γ consistent with interior balanced growth paths expands within the region defined by

ΘB
2 . The regions that support saddle-path equilibria, ΘA

1 and ΘB
2 , are separated in Θ by ΘB

2 , the

region associated with unstable dynamics.

Finally, raise the value of σ to 4, the highest of recent estimates of the intertemporal elasticity

of substitution cited above, and the area of ΘA
1 shrinks. Furthermore, for all values of β < α, η

is less than one. Hence the region ΘB
1 disappears, and the region ΘA

2 , where the balanced growth

path is also unstable, emerges instead. The point on the separating hyperplane Θ3, where η =1, is

{β, γ} = {0.217, 0.46}.
A necessary and sufficient condition that ensures u∗ > 0, is that σ < (1−α+β)(ν−ε)

(1−α+β)(ν−ε)−(1−α)(ρ−n+γν) .

Given ν > ε and ρ > n, this condition is satisfied for all σ < 1, even if external effects are absent

from both sectors. Raising the value of σ above one and beyond, the curvature of the human capital

production function, regulated by the value of the parameter γ, becomes critical. Furthermore, the

higher the rate of population growth, the higher the degree of curvature required as well. In the

absence of external effects in either the human capital or the production sector, the aforementioned

upper bound on σ reduces to ν−ε
ν−ε−ρ+n . Therefore in our example if n=0.02, the upper bound for

σ is 1.187, and if n=0.025 the upper bound drops to 1.042.

During the two decades between 1985 and 2005 the annual rate of population growth for each

of the countries in South America averaged 0.0183 per year, implying an upper bound of 1.103.

The rate of population growth in South Asia averaged 0.0222, corresponding to an upper bound of

1.067; in the Middle East it averaged 0.0239, corresponding to an upper bound of 1.051; in Central

America it averaged 0.0248, corresponding to an upper bound of 1.043; and in Sub-Saharan Africa

0.0262, corresponding to an upper bound of 1.031.6 Furthermore, once we introduce increasing
6South Asia: Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan, Sri Lanka; Middle East : Al-

geria, Bahrain, Egypt, Gaza, Iran, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Mauritania, Morocco, Oman,

Palestinian Territories, Qatar, Saudi Arabia, Sudan, Syria, Tunisia, Turkey, United Arab Emirates, Yemen, West

Bank, Western Sahara; Sub-Saharan Africa: Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Cape

Verde, Central African Republic, Chad, Comoros, Côte d’Ivoire, Democratic Republic of Congo, Djibouti, Equatorial
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returns at the social level generated by human capital external effects, these upper bounds drop

lower still.

Writing our necessary and sufficient conditions as bounds on the curvature of the human capital

production function, an interior balanced growth path only exists for η < 1, if (ν−ε)η+n−ρ
ν < γ <

ν−ε+n−ρ
ν ; or for η > 1, when ν−ε+n−ρ

ν < γ < (ν−ε)η+n−ρ
ν . If β = 0 and σ = 1.125, the former

bound that corresponds to the rate of population growth in South America is 0.009 < γ < 0.453;

for South Asia, 0.024 < γ < 0.469; for the Middle East, 0.031 < γ < 0.476; for Central America,

0.035 < γ < 0.479; and for Sub-Saharan Africa, 0.040 < γ < 0.485. More generally, comparing the

panels in Figure 5 where n=0.02, with the panels in Figure 6 where n=0.025, the only difference is

that all the admissible areas that correspond to interior balanced growth paths are shifted vertically

by 0.02. The higher the rate of population growth, the greater the degree of curvature in the human

capital production required if the intertemporal elasticity of substitution is greater than one.

In Figure 7 we restore the rate of population growth to n=0.02, but raise the share of capital

in the production of physical output α, to 0.5. In the upper left-hand panel, σ=1.125 and if β = 0,

the value of γ must once again fall between 0.016 and 0.46. Here the constraint that ensures

u∗ > 0 possesses a larger slope in the size of the external effect β, so the range of the parameter

set consistent with the existence of interior balanced growth paths, is narrower than in Figure 5.

If α = 0.5, β = 1, and σ=1.5, then η=1, so Θ3 is the very edge of the upper right-hand panel of

Figure 7.

In the lower left-hand panel of Figure 7, we set σ=2 so that α = 1/σ, as it is in the version of

the model investigated in Xie (1994). Like Xie (1994) here too we do not encounter any unstable

balanced growth paths, both ΘB
1 and ΘA

2 disappear. However, because we rule out intersector

spill-overs, so that only the human capital employed in the production sector generates positive

external effects there, there is no region characterized by indeterminacy either, and all interior

balanced growth paths are saddle path stable.

Finally, in the lower right-hand panel of Figure 7, for σ=4, the size of ΘA
1 reduces to a relatively

small region, while the size of ΘA
2 , the range of parameter values that correspond to unstable

dynamics expands when compared to its counterparts in Figure 5 and 6. Also here, the binding

constraint is no longer either just κ > 0 or u∗ > 0, but rather for high values of β and γ, c∗ > 0

as well. This again demonstrates why Proposition 1, or merely restricting the parameter space to

θ ∈ {Θ1, Θ2} is a necessary, but not at all a sufficient condition for the existence of an interior

Guinea, Eritrea, Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea Bissau, Kenya, Lesotho, Liberia, Madagascar,

Malawi, Mali, Mauritania, Mauritius, Mayotte, Mozambique, Namibia, Niger, Nigeria, Republic of Congo, Rwanda,

São Tomé Principe, Senegal, Seychelles, Sierra Leone, Somalia, South Africa, Swaziland, Tanzania, Togo, Uganda,

Zambia, Zimbabwe.
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balanced growth path, and the further restriction imposed in Proposition 2 is necessary.

6 Calibrating the Model for a Given Growth Rate

To better understand the nature of the parameter space and how it relates to empirically relevant

rates of growth, we can solve (21) for one of the deep parameters of the model, then redefine the

balanced growth path in terms of the steady state per-capita rate of growth κ. But which parameter

should we replace? We are interested in analyzing the behavior of the model for different values of

β, γ, ε, and σ, and the values of α, δ, ρ, and n are all parameters that can be easily calibrated using

widely available data, as indeed can the growth rate κ. By contrast, since there is very little direct

evidence available that can be used to set the value of ν, the maximum possible growth rate for

human capital at the social level, if every moment is devoted to its production (abstracting from its

rate of depreciation), we chose its value in Section 5 by inferring its value indirectly. Alternatively

we can solve (21) for ν:

ν =
(1− α) (1− η) κ + (1− α + β) (ρ + ε− n)

(1− α + β) (1− γ)
, (34)

and then substituting (34) in (20) yields steady state hours worked:

u∗ =
(1− α + β)(κ + (ρ− n + γε− κ)σ) + (1− α)γκσ

(1− α + β)(1 + (ρ− n + ε)σ)− βκσ
, (35)

in (22) yields steady state consumption:

c̃∗ =
[

1
α

(δ + ρ +
κ

σ
)− n− δ − κ

]
k̃∗, (36)

and (23) yields steady state physical capital:

k∗ =
(

ασ

κ + (ρ + δ)σ

) 1
1−α

, (37)

all in terms of the steady state growth rate κ.

Clearly from (37), if α,δ,κ,ρ, and σ are all positive, k∗ > 0. We redefine the parameter space

Θ̄: θ̄ ≡ (α, β, γ, δ, ε, κ, ρ, σ, n) , and θ̄ ∈ Θ̄, where Θ̄ = R2
++ × R4

+ × [0, 1)3 and define the subsets

Θ̄1, Θ̄2, Θ̄3 ⊂ Θ̄ :

Θ̄1 ≡
{

θ̄ ∈ Θ̄| ρ > n− γε− (1− α)γκ

1− α + β
− 1− σ

σ
κ

}
, (38)

Θ̄2 ≡
{

θ̄ ∈ Θ̄| ρ > α(n + δ + κ)− δ − κ

σ

}
, (39)

Θ̄3 ≡
{

θ̄ ∈ Θ̄| ρ > n− ε +
βκ

1− α + β
− κ

σ

}
. (40)
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Figure 8: The parameter space for δ=0.1, κ=0.025, ρ=0.03 and σ=2.
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Figure 9: The parameter space for δ=0.1, κ=0.025, ρ=0.03 and σ=2.
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Proposition 5 The necessary and sufficient condition for the existence of an interior balanced

growth path is: θ̄ ∈ Θ̄1 ∩ Θ̄2.

Proof: From (34), ν > 0 iff θ̄ ∈ Θ̄1. From (35), u∗ > 0 iff θ̄ ∈ (
Θ̄\Θ̄1

) ∪ Θ̄3. However Θ̄3 ⊂ Θ̄1. Fi-

nally, from (36), c̃∗ > 0 iff θ̄ ∈ Θ̄2. ¥
We further subdivide Θ̄1 and Θ̄2:

Θ̄A
1 ≡

{
θ̄ ∈ Θ̄1| α ≥ β, η < 1

}
, (41)

Θ̄B
1 ≡ {

θ̄ ∈ Θ̄1| α > β, η > 1
}

, (42)

Θ̄C
1 ≡

{
θ̄ ∈ Θ̄1| α < β, η < 1

}
, (43)

Θ̄D
1 ≡ {

θ̄ ∈ Θ̄1| α ≤ β, η > 1
}

, (44)

Θ̄A
2 ≡

{
θ̄ ∈ Θ̄2| α ≥ β, η < 1

}
, (45)

Θ̄B
2 ≡ {

θ̄ ∈ Θ̄2| α > β, η > 1
}

, (46)

Θ̄C
2 ≡

{
θ̄ ∈ Θ̄2| α < β, η < 1

}
, (47)

Θ̄D
2 ≡ {

θ̄ ∈ Θ̄2| α ≤ β, η > 1
}

. (48)

Proposition 6 If the parameter values θ̄ ∈ (
Θ̄A

1 ∩ Θ̄A
2

) ∪ (
Θ̄D

1 ∩ Θ̄D
2

)
, there is a neighborhood of

the balanced growth path in which there exists a unique competitive equilibrium.

Proof: Follows directly from Propositions 3 and 5. ¥
In Figure 8, we set the values of δ = 0.1, and ρ = 0.03, fix the intertemporal elasticity of

substitution to σ=2, and vary the magnitudes of both external effects β and γ. The per-capita

steady state rate of output growth is set to κ = 0.025, which approximates the average per-capita

growth rates between 1995 and 2005 in developed countries such as United Kingdom, at 0.0269;

Australia, at 0.0282; Canada, at 0.0271; Spain, at 0.374; or Sweden, at 0.0288 (see Figure 1). We

choose these values because the far higher growth rates experienced in many developing countries

are not likely to represent steady state growth. In the upper two and lower two panels the population

growth rate is n = 0.02, the share of physical capital to α = 0.35, in the upper and lower panels,

and to α = 0.5 in the lower two panels. In the middle two panels we set the rate of population

growth to n = 0.025. In the panels on the left-hand side, the rate of depreciation in the human

capital sector is ε = 0, and ε = 0.125 in the panels on the right-hand side.

What emerges in each of the six panels is that given this high rate of intertemporal substitution,

interior balanced growth paths only emerge if there is at least some curvature in human capital

production at the private level. How much curvature is required, depends directly on both the rate
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of depreciation in that sector and the population’s growth rate, and inversely on the magnitude

of returns to scale at the social level in the production sector. By contrast, the relative share

of physical capital in the production process has only a small impact on the admissible range of

parameters that support balanced growth, but once again substantially affects the model’s dynamic

behavior.

Consider the left-hand panels of Figure 8, where ε = 0. For both instances where n = 0.02,

balanced growth only emerges if the value of γ surpasses 0.1, and then only if there are no external

effects in the production sector. Raise the population growth rate to n = 0.025, and this threshold

rises to 0.3. Furthermore, in the absence of any depreciation in the human capital sector, the degree

of concavity necessary to ensure the existence of balanced growth rises steeply, as we increase the

size of β. Contrast this with the behavior of the model if we introduce a degree of depreciation

in the human capital sector. First, the threshold value of γ drops precipitously, to only 0.0167 if

n = 0.02, and to 0.05 if n = 0.025. Second, these thresholds no longer rise quite so dramatically as

the values of β increase.

We can further see the trade-offs between concavity at the private level in the production of

human capital, and the rate of depreciation in that sector, in the quasi-concave relationship between

ε and γ in the panels of Figure 9 that correspond to the necessary condition for ν > 0 in (34).

Again, there is a striking contrast between the required degree of concavity or depreciation, or

combination of both, that support interior balanced growth paths for n = 0.02 and n = 0.025.

Returning to Figure 8, the set of parameters θ̄ ∈ Θ̄ that support unique saddle path equilibria

are confined to the subsets Θ̄A
1 ∩Θ̄A

2 and Θ̄D
1 ∩Θ̄D

2 , and these areas are separated by the set Θ̄C
1 ∩Θ̄C

2 ,

that contracts to cover a narrower range of values for β, as α increases. In the lower panels of Figure

8 where α = 0.5 and hence α = 1/σ this region vanishes. In Figure 9, the regions of the parameter

space that correspond to balanced growth paths as both γ and ε vary along the unit interval all

correspond to Θ̄A
1 ∩ Θ̄A

2 , regions that are also saddle path stable if β = 0. By contrast if β = 0.55,

and α = 0.35, the relevant region corresponds to Θ̄C
1 ∩Θ̄C

2 which is not saddle path stable. However

if α = 0.5 then the relevant region is Θ̄D
1 ∩ Θ̄D

2 , which once again is saddle-path stable. The

two-sector endogenous growth model can accommodate intertemporal elasticities of substitution at

the upper bound of estimates we find in the empirical literature along with relatively high rates

of population growth, and still generate valid balanced growth paths characterized by saddle path

stable local dynamics, provided the human capital accumulation process is augmented by small

degrees of external effects and depreciation.
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7 Conclusion

The Uzawa-Lucas two sector endogenous growth model accommodates two important observations:

there are large differences in the rental rates for human capital (wage for a given skill level) across

countries, and also differences between the growth rates of physical and human capital within each

country. Hence the need to understand precisely what combinations of parameter values, and

steady state growth rates, the model can and cannot accommodate.

Unfortunately, the usefulness of the model in its original form, is somewhat hampered by its in-

ability to accommodate preferences characterized by high intertemporal elasticities of substitution,

particularly if the rate of population growth is high as well. If once this limitation was considered

relatively benign, newer research indicates that high values of these elasticities can not be ruled

out. Our empirical results also suggest that an endogenous growth model that is consistent with at

least some of the most widely available cross-country data for most countries is likely to be of only

limited use, unless it can cope with high values of the intertemporal elasticity of substitution. Once

we include external effects and depreciation, a remedy for this problem emerges—the Uzawa-Lucas

two sector endogenous growth model can now accommodate a far wider range of parameterizations

than previously thought.

8 Appendix

8.1 Proof of Proposition 1

If η < 1 then from (21) κ > 0 iff ρ < n+(1− γ) ν−ε which implies ρ < n+(1− γ) ν−ηε and u∗ < 1

from (20). Furthermore if η < 1 and ρ < n+(1− γ) ν−ε then ρ < (n + (1− γ) ν − ε)
(
1 + (1−α)(1−η)

β

)
+

(1−α)(1−η)δ
β which from (23) implies k̃∗ > 0. If η > 1 then from (21) κ > 0 iff ρ > n + (1− γ) ν − ε

which implies ρ > n + (1− γ) ν − ηε and u∗ < 1 from (20). Furthermore if η > 1 and ρ >

n + (1− γ) ν − ε then ρ > (n + (1− γ) ν − ε)
(
1 + (1−α)(1−η)

β

)
+ (1−α)(1−η)δ

β which from (23) im-

plies k̃∗ > 0. Finally, from (20), u∗ > 0 iff η < 1 and ρ < n + (η − γ) ν − ηε, or η > 1 and

ρ > n+(η − γ) ν−ηε. ¥

8.2 Proof of Proposition 2

From (22), for a positive valued k̃∗, then c̃∗ > 0 iff ρα−β
1−η > α−β

1−η n −
(
1− α−β

1−η

)
((1 − γ)ν − ε) −

(1− α) (n + δ). Assume α 6= β. If α−β
1−η > 0 then c̃∗ > 0 iff θ ∈ Θ1∪Θ2 and ρ > n+

(
1− 1−η

α−β

)
((1−
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γ)ν − ε) − 1−η
α−β (1− α) (n + δ), hence θ ∈ ΘA

1 ∪ ΘB
2 . If α−β

1−η < 0, then c̃∗ > 0 iff θ ∈ Θ1 ∪ Θ2 and

ρ < n +
(
1− 1−η

α−β

)
((1− γ)ν − ε)− 1−η

α−β (1− α) (n + δ), hence θ ∈ ΘB
1 ∪ΘA

2 . Finally, if α = β then

c̃∗ =
[

(1−α)(n+δ)+((1−γ)ν−ε)
α

]
k̃∗ and if θ ∈ Θ1 ∪Θ2 then c̃∗ > 0. ¥

8.3 The linearized dynamic system

The non-linear dynamic system is linearized:

J11 = σ
(
αk̃∗α−1 − ρ

)
− ϑ

(
(1−γ)ν

α − 2 c̃∗

k̃∗

)

J12 = α (α− 1)σk̃∗α−1 − ϑ c̃∗

k̃∗

J21 = (ϑ− 1) c̃∗

k̃∗

J22 = αk̃∗α−1 − ϑ (1−γ)ν
α

Along the Balanced Growth Path: σ
(
αk̃∗α−1 − ρ

)
= ϑ

(
(1−γ)ν

α − c̃∗

k̃∗

)
, substituting ϑ = 1−α+β

α−β
α

1−α

and rewriting in terms of parameters using

c̃∗

k̃∗
=

[
ρ− (1−α+β)(α−1/σ)

(1−α)(α−β) (1− γ) ν
]

(α−β)
α(1−η) we get J in (31) in Section 4.
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