-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by City Research Online

Blasco, J., Hernandez-Castro, J. C., Tapiador, J. M. E., Ribagorda, A. & Orellana-Quiros, M. A.
(2009). Steganalysis of Hydan. IFIP Advances in Information and Communication Technology, 297,
pp. 132-142. doi: 10.1007/978-3-642-01244-0_12

CITY UNIVERSITY City Research Online
LONDON

FST 1894

Original citation: Blasco, J., Hernandez-Castro, J. C., Tapiador, J. M. E., Ribagorda, A. &
Orellana-Quiros, M. A. (2009). Steganalysis of Hydan. IFIP Advances in Information and
Communication Technology, 297, pp. 132-142. doi: 10.1007/978-3-642-01244-0_12

Permanent City Research Online URL.: http://openaccess.city.ac.uk/13755/

Copyright & reuse

City University London has developed City Research Online so that its users may access the
research outputs of City University London's staff. Copyright © and Moral Rights for this paper are
retained by the individual author(s) and/ or other copyright holders. All material in City Research
Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research
The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries
If you have any enquiries about any aspect of City Research Online, or if you wish to make contact
with the author(s) of this paper, please email the team at publications@city.ac.uk.

https://core.ac.uk/display/42630036?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Steganalysis of Hydan

Jorge Blasch Julio C. Hernandez-CastroJuan M.E. Tapiaddr
Arturo Ribagord and Miguel A. Orellana-Quirds
! {jbalis, jcesar, jestevez, artr@inf.uc3m.es
2mangel.orellana@meh.es

February 26, 2009

Abstract

Hydanis a steganographic tool which can be used to hide any kindfofmation inside executable files. In
this work, we present an efficient distinguisher for it: Weédeveloped a system that is able to detect executable
files with embedded information througtydan Our system uses statistical analysis of instruction sgtiduition
to distinguish between files with no hidden information amesfthat have been modified wiklydan We have
tested our algorithm against a mix deanand stego-executable files. The proposed distinguishdiésta tell
apart these files with a 0 ratio of false positives and negatithus detecting all files with hidden information
throughHydan

1 Introduction

Steganography is the art and science that tries to hide thieege of messages [4]. The objectives of steganogra-
phy are not the same that those of cryptography, which mairisaio conceal the message contents by perform-
ing different transformations so only authorized persams iead it. At first, one may think that cryptography
is enough to ensure the security of the communications lestwweo parties, but there are scenarios where the
knowledge of the existence of a communication between twtesamay be critical. These scenarios all have
something in common with that described by Simmons and kresthe Prisoners problenfil2]. In this, two
prisoners (Alice and Bob) want to plot an escape plan. As #reynot in the same cell they must communicate
through a warden (Willie). If Willie ever suspects that Adiand Bob are planning to escape or are engaging in
any kind of secret communication he will put them into isimatcells. In this scenario, Alice and Bob can not
simply use cryptography because Willie will recognize gpted messages and infer they are communicating
secretly, so he will stop this channel. Alice and Bob shout htheir messages into seemingly innocuous ones,
so Willie will not notice the covert communication. Additially, Willie can behave in different ways: If Willie
just checks the messages and forwards them to its recipiemt,Willie is apassive wardenOn the other hand,

if Willie has high suspicions of Alice and Bob planning ana&se, but he does not have a proof, it is possible
that he will modify slightly the message contents trying éotprb any hidden information. In this case, Willie is
anactive warden Both possible scenarios must be considered when desigtégg-systems, so the quality of
a stego-system can be measured (in addittion to other pgregelby means of the difficulty to detect its content
and the possibility that hidden information is not lost eifeahe stego-object suffers some modifications.

The first documented use of steganography [5] was madedmaratus who wanted to warn the Greeks
about a Persian invasion leadedXgrxes Demaratussent a message written on a wooden table covered by wax,
so it could pass all the guard controls and arrive to Sparta.

Since those days, steganography has developed as a s@iedaeany different approaches have been used
to cover contents of any kind [9]. Image Steganography [4drie of the most used techniques. Covering
contents into images can be done in many different ways. Blogble techniques hide information on the least
significant bits (LSB) of each pixel. Other techniques usagecompression algorithms. For example, the
JPEG image compression algorithm is based on the paranwdtdrs discrete cosine transform (DCT). Using
different parameters in the DCT calculation allows hidinfprmation in the image file. Another widely used
cover are digital audio files. Audio steganography alsauige$ techniques such as LSB (similar to image LSB
steganography).

https://www.researchgate.net/publication/2573553_Information_Hiding_-_A_Survey?el=1_x_8&enrichId=rgreq-1308b50f-0bb4-41dc-948b-282164316f62&enrichSource=Y292ZXJQYWdlOzIyMDcyMjQ4NjtBUzoxMDMzNDA1NjYzODQ2NTBAMTQwMTY0OTcxOTg0NQ==
https://www.researchgate.net/publication/260583963_Exploring_Steganography_Seeing_the_Unseen?el=1_x_8&enrichId=rgreq-1308b50f-0bb4-41dc-948b-282164316f62&enrichSource=Y292ZXJQYWdlOzIyMDcyMjQ4NjtBUzoxMDMzNDA1NjYzODQ2NTBAMTQwMTY0OTcxOTg0NQ==
https://www.researchgate.net/publication/260583963_Exploring_Steganography_Seeing_the_Unseen?el=1_x_8&enrichId=rgreq-1308b50f-0bb4-41dc-948b-282164316f62&enrichSource=Y292ZXJQYWdlOzIyMDcyMjQ4NjtBUzoxMDMzNDA1NjYzODQ2NTBAMTQwMTY0OTcxOTg0NQ==
https://www.researchgate.net/publication/220722260_The_History_of_Subliminal_Channels?el=1_x_8&enrichId=rgreq-1308b50f-0bb4-41dc-948b-282164316f62&enrichSource=Y292ZXJQYWdlOzIyMDcyMjQ4NjtBUzoxMDMzNDA1NjYzODQ2NTBAMTQwMTY0OTcxOTg0NQ==

Changing the last significant bit on each audio sample preistight modifications on audio files that can
not generally be distinguished by humans, specially if #akindancy ratio is high. Audio steganography can be
performed also in compressed audio files like MP3s. Somes tik@ MP3Stego [10] can hide information during
theinner loopstep, by modifying the DCT values. Much more steganogratggbniques can be found in the
literature such as subliminal channels [12], SMS [11], T@P8] and games [3].

All security requirements for cryptographic systems areallg (or should be) applied to steganographic
systems. This means that the security of a steganograpgjodthim should not rely itself on the secrecy of the
algorithm, which should be public, but on the knowledge @fkey. In steganography, it should not be possible
to distinguish aleanobject from a stego-object if the key is unknown. In this wamke prove that it is possible to
distinguish ecleanexecutable file from a stego-object created throdghanwithout the possession of the key.
The remainder of this document is structured as followsti&e® introduces previous work done in executable
files steganography. Section 3 describes the basielydénand how it works. Section 4 shows the steganalysis
performed orHydanand the resulting distinguisher. This section also perfoantliscussion on possible ways
to overcome the steganalysis presented. Section 6 prekergathered conclusions and possible lines of future
work.

2 PreviousWork

Hydan[2] is the first documented tool and scheme that uses diregi¢gutable files as a cover. During years,
other techniques have been used to insert hidden informatio source files, but for copyright protection pur-
poses only. These involve access to source code, whereapmoggrs insert copyright marks and integrity checks
right inside their code. Information inserted in this way &g used to prove the integrity and authorship of the
program [13]. Outsidélydan other authors [1] have later described different techesqw introduce informa-
tion in executable files. Authors describe four differemtht@ques.Instruction Selectionreplaces some of the
instructions in the executable file for others with the sanrefionality. Register Allocatiorencodes embedded
information in changes on the registers used by some irginsc Instruction Schedulinghanges the order of
non-dependant instructions. Finalypde Layoutses the order of big blocks.

Authors have implemented all the proposed techniques inra edvanced tool calleStilo. A steganalysis of
Stilois proposed in the same paper based on a concept n@odml Transformation Signaturevhich is defined
as the set of characteristics that can be used to detectéBemure of hidden information infstilo executable
files. Authors describe theode Transformation Signaturésr Stilo and propose a group of countermeasures to
avoid them. Authors also mentidfiydan but they do not perform any steganalysis nor reveal theesponding
Code Transformation Signaturésr Hydan Apart from this work, no other techniques have been prapdse
hide information on executable files. In this paper we déscthe main properties (iSode Transformation
Signature} that can be used to detect executable-files with hiddenrirdtion throughHydan Based on those
properties, a very efficient distinguisher is proposed.

3 Hydan

Hydanis a steganographic tool which covers messages in exeedtkdd. It does not change the functionality of
the executable neither the size of it. A detailed descriptio howHydanworks can be found on [2].

Hydan uses the “redundancy” on the instructions sets of exeartfilels to introduce hidden information.
Specifically,Hydanuses the concept dfinctionality-equivalent instructionsA set of functionality-equivalent
instructionsis a group of instructions in which any instruction of the gpacan be replaced for other without
loss of functionality. For example, to add a certain amoona specific register it is possible to uaed, r1,

8 or , equivalently, ussub, rl, -8 In this case, th@dd instruction could encode the bit value 0, and s
instruction may encode the bit value 1. Depending on thediziee functionality-equivalent instructionsets it
is possible to encode more than one bit with one instructoset of fourfunctionality-equivalent instructions
would allow codifying 2 bits (00, 01, 10 and 11). Generallythwa set ofn equivalent instructions it would be
possible to encoddog,(n)| bits. Table 1 describes thienctionality-equivalent instructiongroups and number
of instructions in each of the groups for tk@6 set, which is the most common and the one useHyyan

Embedding process ¢iydanis done in two steps. First step encrypts the message to HerhigsingAES
or Blowfishwith the password given by the user. In the second step, theygied message is embedded into
the executable file. Specificalldydanworks as follows: Once the message has been encrygiethnsearches
for possible places to introduce information. Thelydangenerates a random number seeded with the password
entered by the user. This number is used to select which ofdleeted places of the executable file will be

https://www.researchgate.net/publication/220722141_Embedding_covert_channels_into_TCPIP?el=1_x_8&enrichId=rgreq-1308b50f-0bb4-41dc-948b-282164316f62&enrichSource=Y292ZXJQYWdlOzIyMDcyMjQ4NjtBUzoxMDMzNDA1NjYzODQ2NTBAMTQwMTY0OTcxOTg0NQ==
https://www.researchgate.net/publication/220833945_Steganography_for_Executables_and_Code_Transformation_Signatures?el=1_x_8&enrichId=rgreq-1308b50f-0bb4-41dc-948b-282164316f62&enrichSource=Y292ZXJQYWdlOzIyMDcyMjQ4NjtBUzoxMDMzNDA1NjYzODQ2NTBAMTQwMTY0OTcxOTg0NQ==
https://www.researchgate.net/publication/234799152_Recognition_in_software_watermarking?el=1_x_8&enrichId=rgreq-1308b50f-0bb4-41dc-948b-282164316f62&enrichSource=Y292ZXJQYWdlOzIyMDcyMjQ4NjtBUzoxMDMzNDA1NjYzODQ2NTBAMTQwMTY0OTcxOTg0NQ==
https://www.researchgate.net/publication/220722260_The_History_of_Subliminal_Channels?el=1_x_8&enrichId=rgreq-1308b50f-0bb4-41dc-948b-282164316f62&enrichSource=Y292ZXJQYWdlOzIyMDcyMjQ4NjtBUzoxMDMzNDA1NjYzODQ2NTBAMTQwMTY0OTcxOTg0NQ==
https://www.researchgate.net/publication/2936160_Hydan_Hiding_Information_in_Program_Binaries?el=1_x_8&enrichId=rgreq-1308b50f-0bb4-41dc-948b-282164316f62&enrichSource=Y292ZXJQYWdlOzIyMDcyMjQ4NjtBUzoxMDMzNDA1NjYzODQ2NTBAMTQwMTY0OTcxOTg0NQ==
https://www.researchgate.net/publication/2936160_Hydan_Hiding_Information_in_Program_Binaries?el=1_x_8&enrichId=rgreq-1308b50f-0bb4-41dc-948b-282164316f62&enrichSource=Y292ZXJQYWdlOzIyMDcyMjQ4NjtBUzoxMDMzNDA1NjYzODQ2NTBAMTQwMTY0OTcxOTg0NQ==

Table 1: Groups ofunctionality-equivalent instructionssed inHydan

Group Inst. Group Inst. Group Inst.
toac8 5 toac32 5 rrcmp8 2
rrcemp32 2 toasxc8 7 toasxc32 6
addsub8 2 addsub8-2 2 addsub32-1 2
addsub32-2 2 addsub32-3 2 xorsub8 4
xorsub32 4 add8 2 add32 2
adc8 2 adc32 2 and8 2
cmp8 2 cmp32 2 mov8 2
mov32 2 or8 2 or32 2
sbb8 2 sbb32 2 sub8 2
sub32 2 Xor8 2 xor32 2
and32 2

used to hide the information. With this mechanism, the passwill be needed to recover the data and different
passwords will lead to different placements of the embeddfdmation. Recovery process first extracts the
encrypted message from the executable file. Then, the messdgcrypted using the provided password.

With Hydan it is possible to embed (on average) 1 bit of information p&0d bits of executable code. In
fact, it is possible to embed different ratios of informatibut El-Khalil proposed the specified one as the better
trade-off between security and capacity [2].

Hydanchanges perceptibly the content of the executable files kiittlen information. Therefore, if these
changes lead to a specific signature, it is possible to bisistem that is able to distinguishHydanexecutable
file from any other executable file. This signature may shomamy different ways. Next section discusses the
possible methods to detectHydanmodified executable and proposes a very efficient distihguito detect a
Hydancovert-channel.

4 Steganalysis of Hydan

Changes introduced bylydaninto assembler code can modify different properties of thigimal executable
file. Hydandoes not change the size of the stego-object, but it chahgesote itself. If the original program is
available it will be possible to check through integrity cke (CRCs [8], hash functions [7], etc.) if the executable
file has been modified, but these are not proof of embeddechiafiton. Other properties such as execution time,
flag activation and copyright marks checks, can prove that@table code has been modified, but will not be
proof of embedded information.

Most compilers often produce similar sets of instructiofi$us, if a compiler has to select between two
instructions with the same functionality it will usuallyleet the same instruction. This property of most compilers
allows building a profile otleanapplications based on the probability distribution of instions insideclean
programs. Changes made Hydanmay lead to another probability distribution of instruciso If these changes
can be profiled and generalized, it would be possible to téftem executable file has hidden information.
Steganalysis performed on this paper is based on this agiproa

We have built a distinguisher that is able to detect exedeitfilles with embedded information throudty-
dan To construct this distinguisher, first we have built a statal model ofcleanexecutable files. Then, we
have performed different concealment operations in a yadéexecutable files. We have analyzed the main
differences between the set dbanexecutables and the set ldydan modified executables. In this paper, we
also describe possible countermeasures and the maximumigapf Hydan steganographic files to overcome
this steganalysis.

4.1 Statistical Analysisof Clean Executable Files

The distinguisher proposed is based on the presence of alnsests of instructions on executable files. We have
performed a statistical analysis of a set of 126danexecutable files retrieved frofasr/binand/usr/sbinof an
Ubuntu x86distribution. Figure 1 shows the frequency distributiortted functionality-equivalent instructions

https://www.researchgate.net/publication/2329734_Universal_One-Way_Hash_Functions_and_Their_Cryptographic_Applications?el=1_x_8&enrichId=rgreq-1308b50f-0bb4-41dc-948b-282164316f62&enrichSource=Y292ZXJQYWdlOzIyMDcyMjQ4NjtBUzoxMDMzNDA1NjYzODQ2NTBAMTQwMTY0OTcxOTg0NQ==
https://www.researchgate.net/publication/3474160_Cyclic_Codes_for_Error_Detection?el=1_x_8&enrichId=rgreq-1308b50f-0bb4-41dc-948b-282164316f62&enrichSource=Y292ZXJQYWdlOzIyMDcyMjQ4NjtBUzoxMDMzNDA1NjYzODQ2NTBAMTQwMTY0OTcxOTg0NQ==
https://www.researchgate.net/publication/2936160_Hydan_Hiding_Information_in_Program_Binaries?el=1_x_8&enrichId=rgreq-1308b50f-0bb4-41dc-948b-282164316f62&enrichSource=Y292ZXJQYWdlOzIyMDcyMjQ4NjtBUzoxMDMzNDA1NjYzODQ2NTBAMTQwMTY0OTcxOTg0NQ==

sets for our set of files. This distribution tells the prollipthat a random instruction belongs tdunctionality-
equivalent instructiorset. Depending on this distribution, the bandwidth of theecbchannel offered by an
executable may differ a lot. The bigger is the proportionnsttiuctions belonging to a big set fainctionality-
equivalent instructionghe bigger will be the informatiokhlydanis able to hide.

35
30
25
20
15

10

Frequency in %
o (5]
toac32 I
mov32 I

©Q 0 N QAN AN N MmN 0N Q0N 0N Q 0 N NN © N
o QM XD oh oA N2 MT MO T ®mam > Scm Qo maoms o
s Eagsg%mmgsntvgcuggo °© 52232 Q35
8 S E®@»n 3 S>Saea00 3 7 © S o E E 8 "3 <
E 09 ® 22353535 0 2 S
£E*® 03T T 2 22 X O
¥ T T T T T <
© ® T T T
T ®©® @©

Functionality-equivalent instruction sets

Figure 1: Frequency distribution &inctionality-equivalent instructiorsets

Our analysis has shown that all thenctionality-equivalent setsf instructions are present in our test files.
Nevertheless, most of the instructions found on the andlyites belong to a small group déinctionality-
equivalent instructionsets. Therefore, the capacity of the covert channel dependbfe capacity of these
commonly used sets (Fig. 1). In order to build our statistivadel, we have analyzed distribution of instructions
inside each of the most frequelinctionality-equivalent instructiorsets.

One of the most usefiinctionality-equivalent instructionsets istoac32 This set includes five different

instructions. Thus, it can encodig,(5) | = |2.32| = 2 bits. Frequency distribution of instructions inside the
set is shown in Fig. 2.

100

90

80

70

60

50

Frequency in %

40

30

20

test r/m 32, r32 orr/m 32, r32 or r32, r/m32 and r/m32, r32 and r32, /m32

Instructions

Figure 2: Frequency distribution of instructionstoac32set

Results obtained in the frequency analysis of this insivactet have been gathered in Table 2.

Table 2: Frequency distribution of instructions tmac32set

Instruction Frequency
test r/m32, r32 100.0%
orr/m32, r32 0.0%
orr32, r/m32 0.0%

and r/m32, r32 0.0%

and r32, r/m32 0.0%

In all analyzed files, only one instruction of this set wasduda this case, a variation of the distribution of
instructions within this set would be detected easily.

For each of the remaining sets of equivalent functions, we ltamputed the frequency distribution of its
instructions based on our set of executable files, as inahe32set. Once we have constructed a frequency
distribution model for each of the sets, we have also conapilite proportion of instructions per set in each of the
executable files. Each of the proportions computed for eéelarfidfunctionality-equivalent instructiorset has
been compared using a chi-square statit?) @gainst the frequency distribution of tHanctionality-equivalent

instructionsset calculated for all the files. For each of thumctionality-equivalent instructionsets we have
calculated the averagg? statistic (Equation 1).

n X
ne;j
Averagge; = ;T 1)

I

Wheresef is afunctionality-equivalent instructionset, andfile; is theith file on our set of files. Fig-
ure 3 shows the average for all the functionality-equivalent instructionsets. For most of the equivalent
instructions sets, the distribution of its instructions mamained constant in all the executable files. Thus, its
averaged chi-square is Grunctionality-equivalent instructionsets with higher average value indicate that the
frequency distribution of that sets has more variabilityw@en executable files. Figure 3 shows how six of the
functionality-equivalent instructiorsets suffer lots of variability on the distribution of itsstnuctions depending
on the executable file.

Differences introduced bilydanwill change the frequency distribution of instructionside each of the
functionality-equivalent instructiorsets. Comparing the new instruction distributions obthiagainst the refer-

ence distributions for each of ttienctionality-equivalent instructionsets will allow to determine if information
has been embedded into the executable file.

20

0

-
v

-
o

Average chi-square value

R R R R E R KRR R B R S
N N
L E2R 2383833332888 s 2ES223°522322 85
S 8 E@ w5335 o000 3 ®©3T © S o EE 2 283 x
S £S5 o0 ®mmwn>sSsS S 0 2 G €
= Y O T T v v » X O
¥ T T T T T x
® ®© T T T
® @© @©

Functionality-equivalent instruction sets
Figure 3: Average chi-square statistic for each offtirctionality-equivalent instructiorsets

This can be easily seen through an example. Figure 4 repsetberdifferences, in terms ofyg statistic, on

the frequency distribution of eadhnctionality-equivalent instructioeet of theapt-getexecutable file with no
embedded information. Differences obtained are congistith the average shown on Fig.3.

180
160
140
120
100
80
60
40

20

Chi-square value
o
toac8
toac32
rremp8
rremp32
toascx8
toascx32
addsubg-1 I
xorsub8
xorsub32
add8
add32
adc8
and8
and32
cmp8
cmp32
mov8
mov32
or8
or32
sbb8
sbb32
sub8
sub32
xor8
xor32

addsubg-2

addsub32-1 |

addsub32-2

addsub32-3

Functionality-equivalent instruction sets

Figure 4: Chi-square statistics for each of the equivalesttiictions sets iapt-get

Inserting information into this executable file will modiffie frequency distribution of instructions inside
some of the sets of equivalent instructions. Figure 5 remissdifferences, in terms of @2 statistic, on the

distribution of instructions inside each of the equivali@structions sets of thept-getexecutable with embedded
information.

160
140
120
100

80

Chi-square value

60

40

20

addsub8-1 I
addsubg-2 I

addsub32-2 I

OII I I | | | lII -
Q A © N © o — M O NN O O @ O NN ® A O N © NN ®© N O N O o
O N a0 X q & G2 QT ®O T H®o® =® 502020 5 0
@ O g a 9 X >3 9 T T T c T g 9 9 2 s 2 9 23 9 % &5
S 85 E2Q Q R P 3 8T © 8 £ 5 £ E QO ©»w g o 3 e
2 £ 9038 8 > 5 6 2 © © S € @]

E = g 7] @ X G
had e} e} x
o =]
© @

Functionality-equivalent instruction sets

Figure 5: Chi-square values for each of the equivalentuistitsn sets irapt-getwith hidden information

Frequency distribution of instructions inside the highiriable functionality equivalent instruction sets has
also offered high chi-square values, as in the referenae @iand clean file comparison (Fig. 4). Nevertheless,
distributions of somdunctionality-equivalent instructionsets have changed and its chi-square has increased
comparing it with the reference comparison (Fig. 3) and tle@ipus chi-square value (Fig. 4), which was O.

The same procedure has been performed with all the exeeuibds, obtaining for each set a model of the
frequency distribution of that set. This has allowed us taldish which distributions of instructions inside

Table 3: Distinguisher results for different sets of exabl# files

Distinguisher Clean Hidden at 40% Hidden at 80%
Mean 0.000604 151.254608 299.039886
Standard Deviation 0.024571 12.298561 17.292770

Table 4: Distinguisher classification results for differsets of executable files
Expected clean executa-Expected embedded

bles exec.
Predicted clean executables 1063 0
Predicted embedded exec. 0 2126

functionality-equivalentnstruction sets remain constant between diffec@anexecutable files. These results
have been used to build our distinguisher which is explaine¢de next section.

5 Distinguisher Design

The proposed distinguisher measures the changes on thibutish of instructions inside a selection fafnc-
tionality equivalent instructionsets. These measures have been made in termsyéfsaatistic against the
reference distribution for each of the selectedctionality-equivalent instructiorsets.Functionality-equivalent
instructionssets with high variability of instruction distribution vetencleanfiles have not been selected in
the calculations of our distinguisher value. High varigpimay elevate the result offered by the distinguisher,
marking somecleanfiles as stego-objects. Our distinguisher only useduhetionality-equivalent instructions
sets which its average chi-square value is 0, as calculatgéd Therefore, 8 sets dfinctionality-equivalent in-
structionsare not usedtoac8 rrcmp32 addsub8addsub8-2addsub32-1laddsub32-2addsub32-&ndxorsub8
Mathematically, the value obtained with our distinguisisezxpressed as follows:

n
D(file) = ‘%Xi%struction set @
i=

Wheren is the number of sets dfinctionality-equivalent instructionshose average chi-square value is 0.
To obtain the threshold of our distinguisher we have catedlall the results the distinguisher offers from three
set files: a set of clean files, a set of files with embeddedrmdition using a 40 % of its capacity and a set of files
with embedded information using an 80 % of its capacity. Weelaalculated the mean and standard deviation
of values obtained by the distinguisher for the three se¢suRs obtained are shown in Table 3.

We have selected the threshold of our distinguisher as tti¢i@u of the mean and the standard deviation of
the clean files set. When a file offers a value above the expectmn and typical deviation it is marked as a
stego-object. Threshold of our distinguisher is descrixeds follows.

T = Mearyean+ T.Deviationean = 0.000604+ 0.24571= 0.025175 A3)

5.1 Results

With the selected threshold we have performed a test ovee thets of files, each having 1063 files. The first set
of files is a selection ofleanfiles from theUbuntu 8.10 x8&listribution. Second set of files is the setobdan
files with embedded information up to 40% of the capacity ahefile. Last set is composed by the first set of
files with embedded information up to an 80% of the capacityauwh file. Distinguisher values obtained for each
of the files are shown in Fig. 6.

Values obtained by our distinguisher for the clean files @gagated from the ones offered by files with
embedded information. Some results offered by embeddednnaition files are low, but higher than the values
returned by any of the clean files. In fact, our distinguidtes classified all the executables correctly (Table 4).

In order to produce executable files that are not detectedibyool some changes should be donélialan
Our analysis have shown that replacemenfuotctionality-equivalent instructionis not secure if the frequency

Distinguisher value (logarithmic scale)

1000

0,1
®no hidden information
a °*40% hidden information

. . = *80% hidden information
001 &
n

- - - in n", -.- :
0,001 -'.ﬁ:":"{'. i L 1 i'-"! i _'.{a-.l'-:

Figure 6: Distinguisher results for sets of executable files

distribution of instructions inside fanctionality-equivalent instructioget is constant. A first approach to secure
Hydan would be to use only the functionality-equivalentinstion sets not used by our distinguisher. This would
reduce the capacity of hidden information up to a 35% of thgimal capacity. Stego-files generated this way
would not be detected by the distinguiser, producing faéggatives.

6 Conclusions and Future Work

Steganalysis techniques are needed in order to ensure anolvigrthe security of stego-systems in the same way
cryptanalysis is needed to foster the security of cryptalgyatechniques. With this work, we have developed
a distinguisher that is able to recognize executable fil¢is hidden information throughlydan To create our
distinguisher we have built a statistical modelatéanexecutable files. In our tests, the proposed distinguisher
classified correctly all executable files in different prajmns of concealment (0%, 40% and 80%). We have also
described how to overcome this steganalysis. Researctegargigraphy of executable files is not extensive at
the moment, but improvements to secHiygdlanand other related steganographic tools [1] could only bésaed
through extensive research in the field. We have advancédsiditection, and plan to further advance by refining

the steganalytic methods proposed in [1] aga8t#o.

References

[1] Anckaert B., De Sutter B., Chanet D., De Bosschere K.g&tegraphy for Executables and Code Trans-

formation Signatures. Lecture Notes in Computer Sci€806, 425—-439 (2005)

[2] El-Khalil, R.: Hydan: Hiding Information in Program Bamies (2003). Lecture Notes in Computer Science

3269, 187-199 (2004) http://crazyboy.com/hydan/. Cited 20 ZD&8

[3] Hernandez-Castro J.C., Lopez |.B., Tapiador J.M.Ebdgorda A.: Steganography in Games. Computers

and Security25(1), 64—71 (2006)

[4] Johnson N.F., Jajodia S.: Exploring steganographyirgeee unseen. Comput8i(2), 26—34 (1998).

[5] Kipper, G.: Investigator's Guide to Steganography. CR@&ss (2004)

[6] Murdoch S.J., Lewis S.: Embedding Covert Channels inBPTP. Lecture Notes in Computer Science
3727, 247-261 (2005)

[7] Naor M., Yung M.: Universal One-Way Hash Functions an@iFICryptographic Applications. Proceedings
of the twenty-first annual ACM symposium on Theory of compgtipp. 33—43. ACM, New York, NY, USA
(1989).

[8] Peterson W., Brown D.: Cyclic Codes for Error Detectiétroceedings of the IRE9(1), 228-235 (1961)

[9] Petitcolas F.A.P., Anderson R.J., Kuhn M.G.: InformatHiding:A Survey. Proceedings of the IEBE7)
pp. 1062-1078 (1999)

[10] Petitcolas F.A.P.: MP3Stego (2006). http://www.pmilas.net/fabien/steganography. Cited 20 Oct 2008

[11] Shirali-Shahreza M., Shirali-Shahreza M.H.: Textdatgography In SMS. Int. Conference on Convergence
Information Technology pp. 2260-2265 (2007)

[12] Simmons G.J.: The History of Subliminal Channels. IEE&Ernal on Selected Areas in Communications,
16(4), pp. 452—-462 (1998)

[13] ZhuW., Thomborson C.: Recognition in Software Waterkirey. Proceedings of the 4th ACM international
workshop on Contents protection and security, pp. 29—-38MAZ006)

All in-text references are linked to publications on ResearchGate, letting you access and read them immediately.

