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Abstract – Operational modal analysis (OMA) is a widely used 
construction verification and structural health monitoring 
technique aiming to obtain the modal properties of vibrating civil 
engineering structures subject to ambient dynamic loads by 
collecting and processing structural response acceleration signals. 
Motivated by the need for cost-efficient OMA using wireless 
sensor networks which acquire and transmit measurements at a 
lower than the Nyquist rate, a novel OMA approach is put forth 
to derive modal properties directly from sub-Nyquist sampled 
(compressed) acceleration measurements from arrays of sensors. 
This is achieved by adopting sub-Nyquist deterministic non-
uniform multi-coset sampling devices and by extending a 
previously proposed in the literature power spectrum blind 
sampling (PSBS) method for single-channel spectral estimation of 
stochastic processes to treat the case of multiple channel cross-
spectral estimation. The standard frequency domain 
decomposition is used to obtain the modal properties from the 
cross-spectral matrix derived directly from the sub-Nyquist 
measurements. The applicability and efficiency of the proposed 
approach is exemplified by retrieving mode shapes of a white-
noise excited simply supported steel beam with good accuracy 
according to the widely used modal assurance criterion (MAC) 
using 70% less than the Nyquist rate measurements.  

Keywords - Power spectrum blind sampling; multi-channel cross-
spectral estimation; compressive sub-Nyquist sampling; 
structural health monitoring 

I. INTRODUCTION AND MOTIVATION  

Operational modal analysis (OMA) relies on linear system 
identification techniques to derive the dynamic (modal) 
properties of vibrating civil engineering structures (i.e., natural 
frequencies, damping ratios, and mode shapes) subject to low-
amplitude ambient dynamic excitations (e.g., due to wind or 
traffic induced loads) [1][2]. This is achieved by processing 
only acceleration structural response signals recorded by 
relatively dense arrays of sensors, while the input excitation 
loads are not measured but are assumed to have a flat spectrum 
over a wide range of frequencies (i.e., white noise excitation 
assumption). OMA is a widely used structural health 
monitoring technique since it obtains modal properties 
efficiently, under operational conditions, which are then used 
for condition assessment, design verification, and damage 
detection of civil engineering structures. From a practical 
viewpoint, the use of wireless sensor networks (WSNs) offers 
low-cost and rapid OMA implementations compared to 
tethered sensors, especially in large scale and geometrically 
complex structures [3],[4]. On the antipode, the consideration 
of WSNs for OMA increases maintenance costs as wireless 

sensors require frequent battery replacement (or expensive 
local energy harvesting), while they pose limitations to the 
amount of data that can be transmitted.  

To address the above issues, fairly recently, various 
researchers considered compressive sensing (CS) based 
techniques for OMA aiming to reduce the energy consumption 
at the sensors by considering slower sampling rates at the 
analog-to-digital converter (ADC) units and, at the same time, 
to reduce the data transmitted within WSNs [5][7]. The latter is 
achieved without local on-board offline data storage and 
compression-before-transmission, which is the current norm 
for wireless sensors [3]. Therefore, CS techniques may also 
lead to simpler and cheaper sensors. However, in all CS 
approaches reported in the literature, the response acceleration 
signals are treated as deterministic, which is not in alignment 
with the assumption of white-noise excited structural systems, 
while a certain level of sparsity is assumed for measured 
signals which may not hold true for noisy environments 
encountered in practice. Further, with the exception of [5], 
computational expensive signal reconstruction from the 
compressed measurements is required after transmission [8].  

To circumvent the above limitations, this paper proposes a 
novel sub-Nyquist approach for OMA which treats response 
acceleration signals as stochastic processes (i.e., white noise 
filtered through linear structural systems), does not 
theoretically require signal sparsity, and provides estimates of 
modal properties directly from the compressed (sub-Nyquist 
sampled) measurements without signal reconstruction. The 
proposed approach builds on recent work by the authors on 
power spectrum blind sampling (PSBS) for system 
identification of white-noise excited structural systems [9],[10], 
and extends the works in [11],[12], to achieve cross-spectral 
estimation from simultaneous multiple sensing channels. 
Specifically, the multi-coset sampling device in [11] is adopted 
yielding deterministic, non-uniform, periodic samples taken at 
a sub-Nyquist rate [13]. The PSBS technique in [12] is 
extended to estimate the cross-spectral matrix from sub-
Nyquist measurements from an array of such devices. The 
standard frequency domain decomposition algorithm [14] is 
finally employed to retrieve structural modal properties. 

II. SUB-NYQUIST OPERATIONAL MODAL ANALYSIS  

A. Multicoset Sampling Strategy and Device  

Let x(t) be a continuous in time t real-valued wide-sense-
stationary stochastic process (or random signal) characterized 



 

in the frequency domain by the power spectrum Px(ω) band-
limited by 2π/T. It is desired to sample x(t) at a rate lower than 
the Nyquist sampling rate 1/Τ (in Hz), and still be able to 
obtain a useful estimate of the spectrum Px(ω). To this aim, the 
multi-coset sampling strategy is herein adopted [13], which can 
be implemented by utilizing M interleaved ADC devices 
operating at a sampling rate 1/(NT). A discrete-time model of 
such a sampling device is shown in Figure 1 in which the 
discrete-time signal x[n]= x(n/T) enters M branches and at each 
m branch (m= 0, 1,…, M−1), the signal is convolved by an N-
length sequence cm[n] and down-sampled by N [11]. The 
selection of M samples (sampling pattern) within each block is 
governed by the coefficients cm[n] of the filter written as cm [n] 
= 1 for n = −nm and cm [n] = 0 for n ≠ −nm where there is no 
repetition in nm, i.e., 

i jm mn n .i jm m   The output of the 

m-th branch is given as 
0

1

[ ] [ ] [ ].m m
p N

y k c p x kN p
 

   The 

limiting case of M=N samples x[n] at the Nyquist rate, while 
the case of M/N<1 corresponds to sub-Nyquist sampling and 
the ym sequences become “compressed measurements” of x[n].   

Figure 1.  Discrete-time model of the adopted AIC device in [11] 

B. Input/Output Correlation Function Relationships 

Consider an array of D identical multi-coset sampling 
devices measuring acceleration response signals at different 
locations of a white-noise excited structure. Each device has M 
branches with output sequences [ ]d

my l  where m= 0,1,…, M−1 
and d=1, 2,…, D. The cross-correlation function between two 
output sequences of the mi branch of the da device and of the mj 
branch of the db device is hereafter denoted by  y,

[ ] E [ ] [ ] ,a b
a b

i ji j

d d
m my y

r k y l  y l k  where Ea{·} is the 

mathematical expectation operator with respect to a. Further, 
the cross-correlation function between the input signals 

[ ]dx m to the devices da and db is denoted by  [ ] E [ ] [ ] .a b
a b

d d
xx x

r n x m  x m n   

Under the assumption that all considered devices have the 
same sampling pattern across their branches, the common 
pattern cross-correlation function is expressed as 
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      where δ[n] 

= 1 for n = 0 and δ[n] = 0 for n ≠ 0. The above assumption 
allows to relate the cross-correlation functions of the output 
sequences in the array as 
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which is a generalization of the single device (channel) case 
considered in [9][12]. In the previous expression, 
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is the M2-by-D matrix collecting the output cross-correlation 
sequences 

,
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i jy y
r k  among the M branches of the array of 

devices, where a “T” superscript denotes matrix transposition; 
T

[ ] [ ] [ 1] [( 1) 1]  a b a b a b a bx x x x x x x x
n r nN r nN r n N     r  is 

the N-by-D matrix collecting the input cross-correlation 
sequences; and [ ]c lR  is the M2-by-N matrix defined as 
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By assuming that the input cross-correlation sequences 
[ ]

a bx x nr  take on negligible values outside the range −L ≤ k ≤ L, 

the input/output relationship can be cast in matrix form  

cy x
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where y ya br  is the M2(2L+1)-by-D matrix defined as 
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the N(2L+1)-by-D matrix defined in a similar manner, andcR  
is the M2(2L+1)-by-N(2L+1) matrix given by 
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Equation (2) defines an overdetermined system of linear 
equations which can be solved for 

a bx xr without any sparsity 

constraints provided that cR  is full column rank. The latter 

condition is satisfied for 2M N  [11]. 

C. Power Spectrum Blind Sampling from compressed sub-
Nyquist measurements 

Suppose that xa[n] and xb[n] are sampled at the Nyquist rate 
from the band-limited continuous-time processes xa(t) and xb(t) 
respectively. Then, the cross power spectrum of xa(t) and xb(t) 
can be expressed within the 0 ≤ ω ≤ 2π range as 
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   where 1.i    The latter 

expression is further discretized in the frequency domain and 
cast in matrix form as  

(2 1) ,a b a bL Nx x x xs F r  (4) 

where (2 1)L NF  is the N(2L+1)-by-N(2L+1) standard discrete 

Fourier transform matrix and a bx x
s  is a N(2L+1)-by-D power 

spectrum matrix evaluated at discrete frequencies ω= [0, 
2π/((2L+1)N), …, 2π(2L+1)N−1/((2L+1)N)]. 

Consider the unbiased estimator of the output cross-
correlation function 

,
ˆ [ ]a b

i jy y
r k . The following weighted least 

squares criterion is adopted [12] 
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in which the weighted version of the Euclidean norm is given 
by 2 T

W
a a Wa , and W  is a weighting matrix. An estimate of 

the cross-spectrum matrix a bx x
s is obtained by 

  1T 1 T 1
(2 1)

ˆ ˆ ,a b a bL N c c cx x y y

 s F R W R R W r  (6) 

where the “−1” superscript denotes matrix inversion. In the last 
equation, the (2L+1)M2-by-D matrix 

y y
ˆ a br is an unbiased 

estimator of the matrix 
y y

.a br The cross-spectrum matrix in (6) 

is efficiently computed directly from the cross-correlation 
estimator of the compressed acceleration measurements from 
the array of D AIC devices. This is achieved by exploiting the 
sparse structure of the cR  matrix as detailed in [12].  

D. Frequency Domain Decomposition (FDD) algorithm 

Any established frequency domain algorithm for OMA can 
be utilized to derive structural modal properties from the cross-
spectral matrix in (6) obtained directly from sub-Nyquist 
acceleration measurements of white-noise excited structures. In 
this study, the standard frequency domain decomposition 
(FDD) algorithm is used, which applies the singular value 
decomposition to the matrix in (6) , i.e. T =  a bx x

s U Σ V , where 

Σ is a diagonal positive semi-definite matrix comprised of the 
singular values, and U, V are the unitary singular matrices 
holding the left and right singular vectors respectively. The 
modal information is carried on the singular values and 
singular vectors of the first coordinate (principal component) 
which retains the highest variance [15]. In this respect, natural 
frequencies are located at the peaks of the principal singular 
values and the pertinent mode shapes are obtained from the left 
singular vector of the principal components. 

III.  NUMERICAL ASSESSMENT 

For numerical validation, it is sought to verify the vertical 
in-plane mode shapes and corresponding natural frequencies of 
the simply supported IPE300 steel beam depicted in Figure 2 
with length l=5m and elastic modulus E=210GPa using the 
proposed sub-Nyquist OMA approach. A critical damping ratio 
of 1% is assumed for all modes. The dynamic properties 
(natural frequencies and mode shapes) of this beam are found 
by application of standard continuous structural dynamics 
formulae (e.g. [2]). The first 4 natural frequencies are given in 
Table I. Further, the n-th mode shape of the beam is given as 
φn(x)=  sin(nπx/l) along the x longitudinal ordinate (0≤x≤l). 

 

Figure 2.  Simply supported steel beam instrumented with 15 sampling 
devices measuring vertical acceleration response signals. 

It is assumed that the vertical response acceleration of the 
beam is measured at 15 equi-distant locations along its length, 
as indicated in Figure 2, using the multi-coset sampling device 
of Figure 1 for white noise excitation applied at location 1 
along the gravitational direction. The discrete-time Nyquist-
sampled sequence that enters each sampling device is 
simulated by filtering band-limited zero-mean discrete-time 
white noise sequences through appropriately defined auto-
regressive-moving-average (ARMA) filters. Specifically, for 
each of the 15 measurement locations, a different ARMA filter 
is considered defined by “fitting” the magnitude of its transfer 
function to the following power spectral density function     

using the two-stage method detailed in [16]. The function in (7) 
is the square magnitude of the frequency response function for 
an input excitation force at location j and an output acceleration 
response at location i on the beam [2]. In particular, ωn and ζn 
are the natural frequency and critical damping ratio of the n-th 
mode, respectively, φni is equal to the φn(xi) mode shape 
ordinate at a distance xi of point i from the left end of the beam, 
and δrs=1 for r=s, and δrs=0 for r≠s. All 15 sampling devices 
considered are identical comprising M=5 branches with a 
down-sampling parameter N=16 and a common deterministic, 
non-uniform, and periodic sub-Nyquist multi-coset sampling 
pattern given by the sequence n = [0 1 2 5 8]T [8],[10][12]. 
They achieve a compression ratio of M/N≈30%. Following the 
PSBS approach in section II, the spectral matrix in (6) is 
approximated using the output cross-correlation estimates 
derived directly from the sub-Nyquist measurements of the 15 
AIC devices. The thus obtained matrix is used together with 
the standard FDD algorithm to estimate the natural frequencies 
and mode shapes of the beam under study.  
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Table I reports the percentage error between the estimated 
and the exact natural frequencies for the first 4 mode shapes. 
The case of natural frequency estimation from measurements 
sampled at the Nyquist rate (i.e., for M/N=100%) is also 
reported. The differences found are small and well within the 
range of engineering accuracy. Further, Fig. 3 plots the first 4 
mode shapes estimated from the left singular vector U of the 
decomposed spectral matrix (solid curves), together with the 
exact mode shapes of the beam (broken curves). Mode shapes 
estimated from Nyquist sampled measurements are also 
included in Fig. 3 for comparison. It is seen that the herein 
proposed OMA approach using sub-Nyquist samples yield 
reasonably accurate mode shapes. The level of accuracy for the 
estimated mode shapes is quantified using the modal assurance 
criterion (MAC) [2] which is widely used in OMA for the 
purpose. Note that MAC is a correlation measure between two 
eigenvectors (in this work between the exact and the estimated 
mode shapes) taking values between 0 and 1. It is common to 
assume that MAC values above 0.9 represent practically valid 
estimates of mode shapes [2]. Table I reports the obtained 
MAC values for the sub-Nyquist OMA approach which are 
well above 0.9 for all mode shapes considered.  

Figure 3.  Exact (dashed curves) and estimated (solid and dotted curves) 
mode shapes of the beam in Figure 2.   

TABLE I.  NATURAL FREQUENCIES AND MODE SHAPES VALIDATION  

Modes 

Natural Frequencies Mode Shapes 

Theoretical 
values (Hz) 

Difference [%] MAC 

Nyquist Sub-Nyquist Nyquist Sub-Nyquist 

1 54.9 0.3 0.3 0.955 0.955 

2 153.1 0.89 −0.11 0.964 0.967 

3 313.5 −0.01 −0.01 0.958 0.953 

4 409.2 0.52 0.52 0.970 0.971 

 

IV.  CONCLUDING REMARKS 

A novel OMA approach is put forth to derive modal 
properties directly from sub-Nyquist sampled (compressed) 
acceleration measurements from arrays of sensors. This is 
achieved by adopting sub-Nyquist deterministic non-uniform 
multi-coset sampling devices and by extending a previously 
proposed in the literature power spectrum blind sampling 
(PSBS) method for single-channel spectral estimation of 
stochastic processes to treat the case of multiple channel cross-
spectral estimation. The standard frequency domain 
decomposition is used to obtain the modal properties from the 

cross-spectral matrix derived directly from the sub-Nyquist 
measurements. The applicability and efficiency of the proposed 
approach is exemplified by retrieving mode shapes of a white-
noise excited simply supported steel beam with good accuracy 
according to the widely used modal assurance criterion (MAC) 
using 70% less than the Nyquist rate measurements. These 
numerical results render the proposed approach a promising 
tool for cost-efficient and rapid implementation of OMA using 
WSNs, though further numerical work pertaining to more 
complex structures and to noisy measurements is warranted. 
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