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“Mortality rates are not just frivolous statistics, they are a reminder to cherish each and

every moment with the people we love."

“Las tasas de mortalidad no son solo estadísticas frívolas, son también una advertencia

para que apreciemos cada momento con las personas que queremos.”
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Abstract
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Mortality: Modelling, Socio-Economic Differences and Basis Risk

by Andrés M. Villegas Ramírez

During the last two centuries the developed world experienced a persistent increase in life

expectancy. Although past trends suggests that life expectancy will continue to increase,

there is considerable uncertainty surrounding the future evolution of mortality. In addi-

tion, past mortality improvements have not been shared equally across the population,

resulting in a widening of socio-economic inequalities in mortality. The uncertainty and

socio-economic variability of life expectancy pose a challenge for the design of pension

systems and the management of longevity risk in pension funds and annuity portfolios.

This thesis is devoted to the investigation of the trends and financial implications of

socio-economic differences in mortality. It comprises three parts. The first part in-

troduces new modelling techniques for the quantification of socio-economic mortality

differentials in aggregate and cause-specific mortality, which are applied in the study of

the relationship between mortality and deprivation in the English population. The sec-

ond part evaluates the suitability of several multipopulation stochastic mortality models

for assessing basis risk in longevity hedges and provides guidelines on how to use these

models in practical situations. Finally, the third part introduces new modelling tools

which aim to permit a more effective and widespread use of stochastic mortality models.
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1
Introduction

During the last two centuries the developed world has experienced a persistent increase

in life expectancy. For instance, data from the Human Mortality Database (2014) shows

that life expectancy at birth in England and Wales passed from 41.59 years in 1841 to

81.04 years in 2011.

This increase in life expectancy, though a sign of social progress, poses a challenge to

governments, private pension plans and life insurers as it can have a potential impact on

pension and health costs. However, this challenge does not arise as a consequence of the

increase in life expectancy by itself. If mortality improvements were fully anticipated,

they could be properly managed. Rather, the real challenge emerges as a result of

the uncertainty surrounding the increases in life expectancy. The magnitude of this

uncertainty is illustrated by the ongoing debate among demographers on the extent to

which past increases in life expectancy will continue into the future. Whereas some

demographers (Oeppen and Vaupel, 2002), based on recent mortality trends, argue that

no natural limit can be set to life expectancy, others (Olshansky et al., 2005) suggest

that life expectancy might level off or even decline.

The uncertainty of future mortality trends, i.e. longevity risk, can result in important

economic implications for individuals, pension plans and annuity providers. On the one

hand, individuals face the risk of outliving their savings and having to reduce their living

standards at old ages. On the other hand, pension plans and annuity providers may incur

significant financial losses if they consistently underestimate the survival probabilities of

their pensioners and policyholders. These potential consequences of longevity risk are
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particularly acute in current times when the baby boom generation is starting to retire

and real interest rates are at low levels.

Besides the uncertainty in life expectancy, there exists a considerable variability in the

way mortality improvements are spread over the population. For instance, in England

and Wales workers in different occupational classes not only have different life expectan-

cies, but have also experienced significantly different mortality improvements. Whilst

65 year old professional males have gained 4.6 years of life expectancy increasing from

a life expectancy of 14.0 in 1972-1976 to a life expectancy of 18.6 in 2002-06, unskilled

manual workers have only gained 2.9 years increasing from 11.6 in 1972-1976 to 14.5 in

2002-06 (Johnson, 2011).

These socio-economic differences in mortality result in additional challenges for the de-

sign of pension systems and the management of longevity risk in pension funds and

annuity portfolios. For instance, the equity and solidarity of national pensions systems

can be considerably undermined by socio-economic mortality differentials as they may

induce an undesirable redistribution of wealth from less affluent socio-economic groups

with shorter life expectancy to more affluent socio-economic groups with above average

longevity (Brown, 2002; Liebman, 2002; Whitehouse and Zaidi, 2008; Mazzaferro et al.,

2012). Moreover, the inadequate allowance of mortality heterogeneity in the pricing

and reserving of annuities can lead to annuities only being attractive to a limited por-

tion of the population (Knox and Tomil, 1997) or to an inadequate funding of annuity

and pension obligations (Meyricke and Sherris, 2013). Further, the flourishing of the

emerging market of standardised longevity securities requires a good understanding of

socio-economic mortality differentials as they are in most situations the main determi-

nant of the basis risk associated with index-based longevity hedges (Coughlan et al.,

2011).

The successful addressing of the challenges derived from longevity risk requires the best

possible understanding of the past and possible future evolution of mortality improve-

ments and of how these improvements have been shared across the society. To contribute

to this understanding, this PhD thesis is devoted to the investigation of the trends and fi-

nancial implications of socio-economic differences in mortality. Specifically, it introduces

modelling techniques for the assessment of the magnitude of mortality differentials and

for the examination of their possible future evolution.
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The technical backbone of this thesis is the rapidly growing actuarial and demographic

literature looking at the simultaneous modelling of mortality in two (or more) related

populations (e.g. Li and Lee (2005); Jarner and Kryger (2011); Cairns et al. (2011a);

Dowd et al. (2011); Li et al. (2015)). These multiple population stochastic mortality

models provide a flexible tool which allows the assessment of historical mortality differ-

entials as well as the forecasting of future mortality trends while taking into account the

uncertainty around these trends. As such, this thesis also makes some contributions to

the emerging area of multiple population mortality modelling and to the more mature

field of single population stochastic mortality modelling.

This thesis comprises three parts: the first part is devoted to the modelling and forecast-

ing of socio-economic differences in mortality with particular reference to the English

population; the second part presents a rigorous comparison of two-population models

for the assessment of basis risk in longevity hedges; and the third part presents some

general tools for mortality modelling which were by-products of the research carried

out in the first two parts. The document is composed of five self-contained chapters

stemming from five research papers. These papers were developed in collaboration with

co-authors who are mentioned at the beginning of each chapter. Being self-contained,

each chapter has its own introduction, notation, conclusions and references. In addition

the last chapter presents global conclusions and future research perspectives. A brief

description of the contributions of each chapter follows.

Chapter 2: On the Modelling and Forecasting of Socio-economic Mor-

tality Differentials: An Application to Deprivation and Mortality in

England

This chapter has been published in the North American Actuarial Journal in 2014, Vol-

ume 18, issue 1, pages 168-193

In this chapter we discuss the suitability for the modelling and forecasting of socio-

economic differences in all-cause mortality of several multiple population extensions of

the Lee-Carter model (Lee and Carter, 1992), including a newly introduced relative

model based on the modelling of the mortality in socio-economic subpopulations along-

side the mortality of a reference population. We then use these modelling techniques
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to analyse the extent of mortality differentials across deprivation subgroups in England

and to evaluate the impact of these differentials on the valuation of annuities.

Chapter 3: Modelling Mortality by Cause of Death and Socio-economic

Stratification: Trends and Projections for England, 1981-2030

This chapter is a research collaboration with Madhavi Bajekal from University College

London, who, besides providing the data, has assisted with the epidemiological background

for the modelling assumptions and for the interpretation of the research findings.

After looking at all-cause mortality differentials in Chapter 2, in this chapter we turn

our attention to socio-economic difference in cause-specific mortality and introduce new

modelling techniques that enable the modelling and projection of mortality trends by

cause of death and socio-economic stratification.

One of the key challenges for the modelling of mortality by cause of death is posed by

the frequent changes in the classification of causes of death which, if not taken into

account appropriately, can compromise the validity of any analysis of trends in cause-

specific mortality. To deal with this issue, in this chapter we first extend the widely-used

model of Lee and Carter (1992) to enable the consideration of coding changes in cause-

specific mortality data. Then, we embed this model into a multiple population setting to

allow for the consideration of socio-economic differences in mortality. Finally, in order

to complement the analysis of all-cause mortality differentials in England performed

in Chapter 2 and to shed light on the drivers behind these differentials, we apply the

newly introduced modelling approach to the examination of the relationship between

deprivation and mortality for the leading causes of death in England.

Chapter 4: A Comparative Study of Two-population Models for the

Assessment of Basis Risk in Longevity Hedges

The majority of this chapter has been carried out within the framework of a joint research

project between Cass Business School and Hymans Robertson LLP. This project was

commissioned by the Longevity Basis Risk Working Group of the Institute & Faculty of

Actuaries and the Life & Longevity Markets Association with the objective of developing

a practical methodology for assessing basis risk for longevity transactions. Therefore,
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part of this chapter draws from the technical report documenting this research. The

paper underpinning this chapter is joint work with Steve Haberman, Vladimir Kaishev

and Pietro Millossovich. We have all participated in the development of the research

ideas in the paper, while I have been in charge of their computational implementation

and of the majority of the drafting of the document.

In Chapters 2 and 3 we found that mortality inequalities are persistent and seem to be

widening, which has implications for the managing of longevity risk in pension funds and

annuity portfolios. In particular, the basis risk emerging from the mismatch between

the socio-economic characteristics of annuitants and those of the national population is

one of the key obstacles preventing many pension schemes and insurers from consider-

ing index based longevity transactions as a legitimate alternative for the management

of their longevity risk (LLMA, 2012). Two-population stochastic mortality models of-

fer an alternative to overcome this obstacle as they allow market participants to com-

pare and project the mortality experience for the reference and target populations and

thus assess the amount of demographic basis risk involved in an index-based longevity

hedge. Aiming to contribute to the development of the market of standardised longevity

transactions, in this chapter we systematically evaluate the suitability of several multi-

population stochastic mortality models for assessing basis risks and provide guidelines

on how to use these models in practical situations.

Chapter 5: StMoMo: An R Package for Stochastic Mortality Modelling

This chapter is joint work with Vladimir Kaishev and Pietro Millossovich. We have all

participated in the development of the research ideas in the chapter, while I have been in

charge of their computational implementation and of the majority of the drafting of the

document.

Due to the significant number of two-population mortality models that have recently

been proposed in the literature, the rigorous comparison of models carried out in Chapter

4 was a major empirical exercise. To facilitate this exercise, we developed general R code

which permitted the implementation of many of the models under a unifying modelling

framework. Since we believe that the wider actuarial science community could benefit

from these developments, we have turned part of this code into a publicly available R

package, whose usage is documented in this chapter. More specifically, in this chapter
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we define the family of Generalised Age-Period-Cohort (GAPC) stochastic mortality

models and introduce the R package StMoMo, which exploits the unifying framework

of the GAPC family to provide computational tools for implementing many of the single-

population stochastic mortality models proposed to date.

Chapter 6: Robustness and Convergence in the Lee-Carter Model with

Cohort Effects

The research presented in this chapter has been carried out in collaboration with Andrew

Hunt, a fellow PhD Student at Cass Business School. Both of us have contributed equally

to the development of the ideas and to the writing of the associated paper. This chapter

has been published in Insurance: Mathematics and Economics in 2015, Volume 64, pages

186-202

The model for assessing socio-economic mortality differentials introduced in Chapter 2

has as one of its integral parts the Lee-Carter model with cohort effects proposed by

Renshaw and Haberman (2006). During the implementation of this latter model we

encountered numerous robustness and convergence issues which prompted the develop-

ment of this chapter. The existence of robustness and convergence problems with the

Lee-Carter model with cohort effects is not new and several author have conjectured that

such problems are the result of an unresolved identifiability issue (Cairns et al., 2009,

2011b; Haberman and Renshaw, 2011; Currie, 2014). In this chapter, after investigating

systemically the robustness of cohort extensions of the Lee-Carter model and the con-

vergence of the algorithms used to fit it to data, we demonstrate the existence of such

an identifiability issue and propose an additional approximate identifiability constraint

which solves many of the problems found.
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On the Modelling and Forecasting of Socio-economic Mortality

Differentials: An Application to Deprivation and Mortality in

England

Andrés M. Villegas, Steven Haberman

Cass Business School, City University London, United Kingdom

Abstract

In any country, mortality rates and indices such as life expectancy usually differ across

subpopulations, for example, defined by gender, geographic area or socio-economic vari-

ables (e.g. occupation, level of education, income). These differentials, and in particular

those related to socio-economic circumstances, pose important challenges for the design

of public policies for tackling social inequalities, as well as for the design of pension

systems and the management of longevity risk in pension funds and annuity portfolios.

We discuss the suitability for the modelling and forecasting of socio-economic differ-

ences in mortality of several multiple population extensions of the Lee-Carter model,

including a newly introduced relative model based on the modelling of the mortality in

socio-economic subpopulations alongside the mortality of a reference population. Using

England mortality data for socio-economic subpopulations defined using a deprivation

index, we show that this new relative model exhibits the best results in terms of goodness

of fit and ex-post forecasting performance. We then use this model to derive projections

of deprivation specific mortality rates and life expectancies at pensioner ages and analyse

the impact of socio-economic differences in mortality on the valuation of annuities.

Keywords: Mortality modelling; multipopulation models; socio-economic circumstances;

annuity pricing
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2.1 Introduction

In any country, mortality rates and indices such as life expectancy usually differ across

subpopulations, for example, defined by gender, geographic area or socio-economic vari-

ables. In particular, there is a well established inverse relationship between socio-

economic circumstances – whether measured by educational attainment, occupation,

income or area deprivation – and mortality, with higher socio-economic subgroups hav-

ing lower mortality rates and, in most cases, also experiencing faster mortality improve-

ments than lower socio-economic subgroups (see, e.g., Shkolnikov et al. (2006); Johnson

(2011); Tarkiainen et al. (2012); Raleigh and Kiri (1997)).

These socio-economic differences in mortality not only pose significant challenges for the

design of public policies for tackling social inequalities, but also for the design of pension

systems and the management of longevity risk in pension funds and annuity portfolios.

On the one hand, differential mortality can have important consequences on the redis-

tribution properties of both defined benefit and defined contribution pension schemes

(Liebman, 2002; Brown, 2002), for example, undermining the equity and solidarity of

national pensions systems by inducing an undesirable transfer of wealth away from lower

socio-economic groups with shorter life expectancy to higher socio-economic groups with

above average longevity. On the other hand, the ignorance of mortality heterogeneity

when valuing pension liabilities or pricing annuities could result in an inadequate funding

of annuity and pension obligations. Furthermore, the successful development of a mar-

ket of standardised longevity securities requires a good understanding of socio-economic

mortality differentials as they are in most situations the main determinant of the basis

risk associated with index-based longevity hedges (Coughlan et al., 2011).

In view of this, there is a need for methods that help us assess the magnitude of socio-

economic mortality differentials within a population and that enable us to examine their

possible future evolution. In general, to measure and project mortality differentials we

require a modelling approach that permits the simultaneous modelling of mortality in

a group of subpopulations. Moreover, in the specific context of socio-economic sub-

populations, such a model should ideally capture both mortality level differentials and

mortality improvement differentials among the subpopulations, that is, differentials in

the average level of mortality and differentials in the pace of mortality change.
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Some authors have suggested the application of generalised linear models (Madrigal

et al., 2011) and survival models (Richards, 2008) in the quantification of socio-economic

mortality differentials. These statistical methods have specifically been proposed for the

assessment of baseline (level) mortality differentials, ignoring, in part due to the lack of

appropriate data, the differences in improvements by socio-economic characteristics and

the modelling of their possible future evolution. Provided that data requirements are

met, a modelling alternative that does allow the consideration of both level and trend

differentials in mortality, as well as the projection of their future evolution, is offered

by the numerous stochastic mortality models that have recently been proposed for the

simultaneous modelling and forecasting of mortality in a group of populations. Unfor-

tunately, most of these multipopulation models have not been designed with the aim of

assessing socio-economic differences in mortality, but with the purpose of comparing the

mortality evolution of a group of countries or of genders or regions within a country. As

a result, some of these models may lack some of the desirable features of an approach

for the modelling and forecasting of mortality in a group of socio-economic subpop-

ulations, which include: transparency for the disentangling of level and improvement

differentials in mortality; consistency of subpopulation-specific mortality forecasts with

national mortality forecasts; ability to produce adequate interval forecasts of mortality

differentials; and ability to produce mortality rates forecast that preserve the inverse

relationship between socio-economic circumstances and mortality.

In this chapter, we discuss the suitability for the modelling and forecasting of socio-

economic differences in mortality of several multiple population extensions of the Lee-

Carter model (Lee and Carter, 1992), including a newly introduced relative model based

on the modelling of the mortality in socio-economic subpopulations alongside the mor-

tality of a reference population. This latter model has especially been designed taking

into consideration the characteristics of socio-economic subpopulations as well as some

of the typical issues of mortality data disaggregated by socio-economic circumstances.

Although previous studies have investigated the use of multipopulation mortality models

in the assessment of mortality differentials among two countries (Li and Hardy, 2011)

and regions within a country (Debón et al., 2011), this is the first study to apply such

models to socio-economic mortality differentials in particular. More specifically, we use

multipopulation mortality models to analysis the extent of mortality differentials across

deprivation subgroups in England.
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The reminder of this chapter is organised as follows. Section 2.2 describes several alterna-

tive methods for the measurement and projection of mortality differentials. Particularly,

Section 2.2.4 introduces our proposed new relative modelling approach. In Section 2.3,

we apply these models in the examination of the relationship between deprivation and

mortality in the English population, emphasising on its implications for the valuation

of life annuities. Finally, Section 2.4 concludes with a discussion of our main findings.

2.2 Modelling socio-economic mortality differentials

In this section, we describe several multipopulation extensions of the Lee-Carter model

(Lee and Carter, 1992), and discuss their suitability for the modelling of socio-economic

mortality differentials. All these models propose a parametric representation of the

central death rate nµxtg in year t for people age [x, x+n) in subpopulation g, based on a

cross-classified mortality experience containing the observed number of deaths ndxtg at

ages [x, x+n), x ∈ X := {x1, . . . , xk}, in year t, t ∈ T := {t1, . . . , tn}, for subpopulation

g, g ∈ G := {g1, . . . , gm}, with matching exposures nextg.

2.2.1 Independent modelling

The simplest approach for modelling mortality in a set of subpopulations would be to

use independent unrelated Lee-Carter models for each subpopulation. Thus, we could

model mortality in each subpopulation g ∈ G using the specification

log nµxtg = αxg + βxgκtg, (2.1)

where αxg captures the general age-specific mortality pattern for subpopulation g, κtg

is a time varying mortality index representing the overall level of mortality in year t for

subpopulation g, and βxg measures the age-specific response to changes in the general

level κtg. The parameters of this model are identifiable only up to a transformation as

for any constants c1 and c2 6= 0, if we replace αxg by αxg + c1βxg, βxg by 1
c2
βxg, and

κtg by c2(κtg − c1), equation (2.1) will produce the same log death rates. Therefore, in
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order to ensure the identifiability of the model, the constraints

∑

x∈X

βxg = 1,
∑

t∈T

κtg = 0

are imposed.

In this model mortality forecasts are obtained by modelling and forecasting the period

indexes using independent univariate ARIMA processes. In most applications, each

period index ktg, g ∈ G, can be modelled using a random walk with drift (ARIMA(0,1,0)):

κtg = dg + κt−1,g + ξtg, (2.2)

where dg is the drift term and ξtg is a normally distributed error term with zero mean

and variance σ2
g . We note that under the independent modelling approach the error

terms for each subpopulation ξtg, g ∈ G, are assumed to be independent of one another.

The independent modelling approach is straightforward to implement. However, it has

several shortcomings. First, it assumes no interdependence among the mortality of the

subpopulations, a very unrealistic assumption for socio-economic subpopulations within

a country, which are likely to follow similar mortality trends. Second, although mortality

level differentials could be assessed by comparing the αxg terms and trend differentials

by comparing the βxg and κtg terms, this is not a straightforward task.

The assumption of complete independence among the subpopulations can be relaxed

by, instead of using independent random walks to model the time indexes, using a

multivariate random walk with drift so that

κt = d + κt−1 + ξt, ξt ∼ N(0,Σ), (2.3)

where κt := (κt,1, κt,2 . . . , κt,m)′, d is a vector of drift parameters and Σ is the variance-

covariance matrix. Since the diagonal terms of the variance-covariance matrix Σ coin-

cide with the variances σ2
g , g ∈ G, of ξtg in (2.2), the central and interval projections

of mortality rates for each subpopulation derived from the multivariate random walk

and the independent random walk with drifts are identical. However, the multivariate

random walk yields more precise interval projections of mortality differentials as the
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non-diagonal terms of the variance-covariance matrix Σ capture the dependence among

the subpopulations.

A further enhancement of the independent approach would be the use of co-integration

methods to model κt as suggested by Carter and Lee (1992) and described in Li and

Hardy (2011) and in Yang and Wang (2013). However, although theoretically sound,

mortality data disaggregated by socio-economic variables are typically available for short

periods of time, hampering the application of the required econometric techniques.

2.2.2 The joint κ-model

A second alternative for modelling mortality differentials is the joint-κ model proposed

by Carter and Lee (1992). This extension of the Lee-Carter model assumes that all

the subpopulations are driven by a single period index. Formally, the model can be

expressed as

log nµxtg = αxg + βxgκt,

where αxg describes the average age profile for subpopulation g, κt is a period index driv-

ing the mortality trend for all subpopulations, and βxg represents the age-subpopulation-

specific pattern of mortality change.

In order to facilitate the assessment of mortality differentials, it is convenient to re-

parametrised the model as1:

log nµxtg = αx + αxg + (βx + βxg)κt (2.4)

with the following constraints

∑

x∈X

βx = 1,
∑

t∈T

κt = 0

∑

g∈G

αxg = 0,
∑

g∈G

βxg = 0 for all x ∈ X

1 Delwarde et al. (2006) have considered a similar parametrisation in the simultaneous modelling of
mortality in five developed countries.
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to ensure the identifiability of the model. This parametrisation allows the measure-

ment of subpopulation mortality as deviations from the general mortality pattern of the

population. Thus, parameters αx and αxg capture mortality level differentials, whereas

parameters βx and βxg capture mortality improvement differentials. Specifically, the

term exp(αxg) quantifies the average percentage deviation of subpopulation g from the

the general level of mortality in the population exp(αx). That is, if exp(αxg) > 1 then

at ages [x, x + n) mortality in subpopulation g is higher than in the total population,

and if exp(αxg) < 1 then mortality is lower. Similarly, if βxg > 0 then at ages [x, x+ n)

mortality in subpopulation g is improving at a faster pace than in the total population

and if βxg < 0 then mortality is improving at a slower rate.

Whilst the independent modelling approach includes a period index for each subpopula-

tion, the joint-κ has a single period index. Hence, mortality forecast for all the subpop-

ulations can be derived by modelling this period index using a univariate random walk

with drift

κt = d+ κt−1 + ξt

Besides the transparency provided by parametrisation (2.4) for the identification of

both level and trend differentials in mortality, there are other compelling statistical and

demographics reasons that suggest that the joint-κ may be a very attractive approach.

Statistically, a single time index is a very parsimonious way of linking the mortality of

multiple populations. Demographically, a single mortality driver may impose greater

consistency among the subpopulations, ruling out the possibility that the mortality of

the subpopulations evolves in completely different ways. Nevertheless, a single mortality

driver also implies that the improvement rates of the subpopulations will be perfectly

correlated, resulting in extremely narrow interval forecasts of mortality differentials.

There are two restricted versions of the joint-κ model which are worth exploring as

alternatives for modelling mortality differentials: the “common factor” model introduced

by Li and Lee (2005) and the stratified or additive Lee-Carter model considered in Butt

and Haberman (2009) and in Debón et al. (2011). The common factor model, obtained
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by setting βxg = 0, can be expressed as

log nµxtg = αx + αxg + βxκt

and the stratified Lee-Carter, which also sets αxg = αg, is given by

log nµxtg = αx + αg + βxκt (2.5)

These two variants of the joint-κ model, although very parsimonious, may be too strin-

gent for some applications. Both models assume the same mortality improvements for

all subpopulations, which implies that improvement differentials in mortality are as-

sumed to be non-existent and makes it impossible to draw any conclusion as to whether

relative mortality differentials are increasing or decreasing. In addition, the stratified

Lee-Carter model ignores any variation of mortality differentials with age, failing to cap-

ture the commonly observed decrease in socio-economic differentials in mortality with

rising age (Hoffmann, 2005).

2.2.3 The three-way Lee-Carter

The three-way extension of the Lee-Carter model proposed by Russolillo et al. (2011)

provides an additional alternative for modelling mortality differentials. This variant of

the Lee-Carter model adds a subpopulation parameter that deals with trend differences

in mortality. Specifically, the model is given by

log nµxtg = αxg + βxλgκt,

where αxg measures the age-subpopulation-specific pattern of mortality, βx and κt have

the same interpretation as in the Lee-Carter model, and λg is a new term capturing

the variability in the improvement rates of the subpopulations. As with the joint-κ

model, the interpretation of mortality differentials is made easier if we consider the

re-parametrisation

log nµxtg = αx + αxg + βxλgκt,
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with constraints

∑

g∈G

αxg = 0 for all x ∈ X

∑

x∈X

βx = 1,
∑

t∈T

κt = 0,
1

m

∑

g∈G

λg = 1

to ensure identifiability of the model. In this new parametrisation parameters αx and αxg

capture level differentials in mortality and have the same interpretation as in the joint-

κ model. Improvement differentials in mortality are captured by parameters λg, with

λg > 1 (λg < 1) meaning that mortality in subpopulation g improves at a faster (slower)

rate than mortality in the general population. As in the joint-κ model mortality forecasts

are obtained by modelling the singe mortality driver κt using a univariate random walk

with drift.

The joint-κ model and the three-way Lee-Carter share similar advantages and disad-

vantages. As the joint-κ model, the three-way Lee-Carter offers a parsimonious and

transparent way of assessing mortality differentials, but, as a result of having a single

mortality driver, it also suffers from very narrow interval forecasts of mortality differen-

tials.

2.2.4 A relative modelling approach

Finally, in order to model socio-economic mortality differentials, we introduce a new rel-

ative modelling approach whereby subpopulation mortality is modelled relative to the

mortality of a reference population, which would in most cases be the national popu-

lation of the country from which the subpopulations come from. A relative approach

offers several advantages when compared with the previously described approaches that

rely exclusively on the mortality data of the socio-economic subpopulations. First, na-

tional mortality data are normally available for a longer period than mortality data

disaggregated by socio-economic circumstances, permitting a more precise estimation

of the long-run mortality trend. Moreover, modelling the subpopulations alongside the

national population will ensure the consistency of the subpopulation-specific mortality

forecasts with the national mortality forecasts. Second, as opposed to mortality data for

socio-economic subpopulations which are normally available in an age-grouped format,
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national mortality data are typically available for individual ages, facilitating the con-

sideration of the effect of year of birth (cohort) in mortality which has been identified

in some populations (see, e.g., Willets (2004) for the UK).

Thus, we assume that besides the subpopulation mortality experience (ndxtg, nextg),

there is available an additional experience containing the number of deaths d′
xt at age x,

x ∈ X ′ =: {x′
1, . . . , x

′
k′}, in year t, t ∈ T ′ := {t′1, . . . , t

′
n′} for a reference population with

corresponding exposures e′
xt, possibly covering a wider age range and a longer period of

time than in the subpopulations’ data, i.e., x′
1 ≤ x1, x′

k′ ≥ xk + n, t′1 ≤ t1, and t′n′ ≥ tk.

With this additional data at hand, we follow a modelling approach similar to that of

Jarner and Kryger (2011) and model the subpopulations death rates, nµxtg, relative to

the reference population death rates, µ′
xt. Specifically, we model the mortality rates of

the reference population as

logµ′
xt = α′

x + β′
xκ

′
t + γ′

t−x (2.6)

and the mortality rates of the subpopulations as

log nµxtg = log nµ̄
′
xt + αxg + βxκtg, (2.7)

where

nµ̄
′
xt =

(

n−1
∏

i=0

µ′
x+i,t

)

1
n

= exp

(

1

n

n−1
∑

i=0

(

α′
x+i + β′

x+iκ
′
t + γ′

t−x−i

)

)

is the geometric average of the mortality rates in the reference population between age x

and age x+ n− 1. The identifiability of the model is ensured by imposing the following

parameter constraints
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∑

x∈X ′

β′
x = 1 (2.8)

∑

t∈T ′

κ′
t = 0 (2.9)

∑

z=t−x
t∈T ′,x∈X ′

γ′
z = 0 (2.10)

∑

x∈X

βx = 1 (2.11)

∑

t∈T

κtg = 0 for all g ∈ G (2.12)

The parametric structure defined by (2.6) was introduced by Renshaw and Haberman

(2006) as a generalisation of the Lee-Carter model to allow for the consideration of cohort

effects. In (2.6), α′
x captures the general age-specific mortality pattern in the reference

population, κ′
t represents the overall time trend of mortality in the reference population,

β′
x measures the age-specific response to changes in the general level of mortality, and

γ′
t−x captures the cohort effect. This parametrisation assumes that cohorts effects are

the same for all the subpopulations, which might be reasonable for socio-economic sub-

populations within a country but might not be appropriate for the modelling of multiple

populations of a different nature such as countries. We also note that for some appli-

cations the cohort effect might not be significant and one might consider the original

Lee-Carter model, omitting γ′
t−x from the model.

Equation (2.7) models mortality in the subpopulations relative to mortality in the ref-

erence population. Within this parametric structure αxg captures mortality level differ-

entials, whilst βx and κtg capture mortality improvement differentials. As in the joint-k

and three-way Lee-Carter models, the term exp(αxg) measures the average percentage

deviation of subpopulation g from the pattern of mortality in the reference popula-

tion. The subpopulation-specific time index κtg measures the deviations of mortality

improvements in population g from the mortality improvements of the reference popu-

lation. Therefore, a decreasing trend in κtg implies that mortality in subpopulation g is

improving at a faster rate than in the reference population, while on the contrary, an

increasing trend means that mortality is improving at a slower pace than in the reference

population.
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The age-modulating parameter βx indicates the magnitude of mortality improvement

differentials at each particular age. In principle, we could consider a model structure

where the age-modulating parameter is subpopulation specific (i.e., βxg as opposed to

βx) as in the augmented common factor model proposed by Li and Lee (2005). How-

ever, besides being more parsimonious, a subpopulation-independent specification of

the age-modulating parameter is convenient in the forecasting of mortality in socio-

economic subpopulations, where an ordering of mortality levels is natural (subpopu-

lations with lower socio-economic conditions tend to have higher mortality than sub-

populations with higher socio-economic conditions). Notice that if subpopulation g1

has historically had lower mortality than subpopulation g2 (i.e. αx,g1 < αx,g2 for all

x ∈ X ), then a sufficient condition for maintaining this ordering in the forecasted mor-

tality rates (i.e. nµx,tn+h,g1 < nµx,tn+h,g2 , h > 0) is βx > 0, and (κtn+h,g1 − κtn,g1) >

(κtn+h,g2 −κtn,g2), h > 0. Hence, the problem of preserving the mortality ordering among

the subpopulations reduces to modelling appropriately the multivariate time index κtg.

Mortality rate extrapolations for the subpopulations require time series forecasts of the

multivariate period index κt := (κt,1, κt,2 . . . , κt,m)′ as well as projected values of the

mortality rates in the general population, which in turn require times series forecasts

of κ′
t and possibly of γ′

t−x, depending on the projected trajectories of interest. We

employ a random walk with drift to model the reference population period index, and

extrapolation of the cohort parameter is not required in the case study considered in

this chapter. For the period index of the subpopulations, we consider a multivariate

random walk with drift (see equation (2.3)) so that any potential dependence among

the subpopulations is captured.

2.2.5 Fitting the models

To fit the models we consider that subpopulation death counts are independent Poisson

responses nDxtg ∼ Poisson(nextg nµxtg) and derive parameter estimates by maximising

the log-likelihood

L(ndxtg, nd̂xtg) =
∑

x∈X

∑

t∈T

∑

g∈G

ωxtg

{

ndxtg log nd̂xtg − nd̂xtg − log ndxtg!
}

,
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where nd̂xtg denotes the expected number of death predicted by the model and ωxtg are

0-1 weights indicating empty or omitted data cells.

For the new relative model we suppose that the reference population death counts are

also independent Poisson responses D′
xt ∼ Poisson(e′

xtµ
′
xt) and estimate simultaneously

the parameters of equations (2.6) and (2.7) by maximising the total model log-likelihood

under the assumption of independence between D′
xt and nDxtg:

L(ndxtg, nd̂xtg, d
′
xt, d̂

′
xt) = Lref (d′

xt, d̂
′
xt) + Lsub(ndxtg, nd̂xtg)

=
∑

x∈X ′

∑

t∈T ′

ω′
xt

{

d′
xt log d̂′

xt − d̂′
xt − log d′

xt!
}

(2.13)

+
∑

x∈X

∑

t∈T

∑

g∈G

ωxtg

{

ndxtg log nd̂xtg − nd̂xtg − log ndxtg!
}

,

where

nd̂xtg = nextg exp

(

1

n

n−1
∑

i=0

(

α′
x+i + β′

x+iκ
′
t + γ′

t−x−i

)

+ αxg + βxκtg

)

,

d̂′
xt = e′

xt exp
(

α′
x + β′

xκ
′
t + γ′

t−x

)

,

and ω′
xt, ωxtg are 0-1 weights that indicate empty or omitted data cells. In order to

maximise the log-likelihood functions, we employ suitable straightforward extensions of

the Newton-Raphson iterative procedure used by Brouhns et al. (2002) in the estimation

of the Lee-Carter model.

It is well-known that as a result of the relationship cohort = period – age, age-period-

cohort (APC) modelling is problematic (Renshaw and Haberman, 2006). Hence, the

inclusion of a cohort effect in the modelling of the reference population of the relative

model makes the fitting of this model complicated. Specifically, it has been reported

that cohort-based extension of the Lee-Carter model have a slow rate of convergence

and a lack of stability in the fitted parameters (Cairns et al., 2009). Cairns et al. (2009)

suggest that these issues might be the result of a remaining identifiability problem, with

the log-likelihood function being flat or approximately flat in certain dimensions. In fact,

in Chapter 6 we show that if the period index κ′
t is approximately linear, as is the case

in the mortality experience of most developed countries (Tuljapurkar et al., 2000), then
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an approximately invariant parameter transformation arises. Therefore, to overcome the

problems with the fitting of the relative model we use the results of Chapter 6 and add

to constraints (2.8), (2.9), (2.10), (2.11) and (2.12) the constraint

∑

c=t−x
t∈T ′,x∈X ′

(c− c̄)γ′
c = 0, (2.14)

where c̄ = 1
k+n−1

∑

c=t−x,t∈T ′,x∈X ′ c, which combined with constraint (2.10) ensures that

any linear trend in the cohort effect is eliminated, and improves the stability and con-

vergence of the model.

2.3 Case study: Mortality by deprivation in England

In this section we employ the previously discussed models in the investigation of the

relationship between socio-economic circumstances and mortality in England. To this

end, we have derived a socio-economic classification of the English population using the

Index of Multiple Deprivation 2007 (IMD 2007) which measures socio-economic circum-

stances at a small area level (Noble et al., 2007). The IMD 2007 is a composite index of

deprivation comprising seven deprivation domains2 and is calculated for each geograph-

ically defined Lower Layer Super Output Area (LSOA) in England. There are 32,482

LSOAs in England covering approximately 1,500 people each. In our analysis LSOAs

are ranked and then grouped into deprivation quintiles based on their IMD 2007 score.

For each deprivation quintile we have population and deaths estimates for the period

1981-2007, classified by sex and age groups 50-54,. . .,80-84. Throughout this chapter,

we will refer to the deprivation quintiles as Q1, Q2, Q3, Q4, and Q5, with Q1 being

the least deprived quintile of the population and Q5 the most deprived quintile. A par-

ticular feature of this dataset is that it addresses the issues of low volume, consistency

and credibility that have been encountered in other similar datasets of mortality dis-

aggregated by socio-economic circumstances for the English population. The mortality

counts grouped by deprivation quintile were obtained from the ONS (Office for National

2The seven deprivations domains with their percentage participation in the index are: i) Income
deprivation (22.5%), ii) Employment deprivation (22.5%), iii) Health deprivation and disability (13.5%),
iv) Education, skills and training deprivation (13.5%), v) Barriers to housing and services (9.3%), vi)
Crime (9.3%), and vii) Living Environment deprivation (13.5%).
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Statistics, UK) and the corresponding populations were estimated. The details of the

compilation of this dataset are described in Lu et al. (2014).

For the proposed new relative model, we consider deprivation-specific mortality relative

to mortality in England and Wales. Thus, we use as reference population data the

England and Wales mortality experience for calendar years 1961-2009 and individual

ages 10, 11, . . . , 99, obtained from the Human Mortality Database (2012). Despite the

fact that the available subpopulation data cover the age range 50-84 and the period

1981-2007, we use for the reference population a wider age range, 10-99, and a longer

observation period, 1961-2009, so that more reliable estimates of the cohort effect and

of the long-run mortality trend can be produced. We exclude ages below 10 years as

infant mortality tends to exhibit a significantly different behaviour than mortality at

older ages.

2.3.1 Comparison of the models

We first compare the models discussed in Section 2.2 in terms of their ability to fit and

forecast the mortality differentials in the deprivation subpopulations. Thus, we have

fitted the independent Lee-Carter model, the joint-κ model and its constrained variants

the stratified Lee-Carter and common factor models, the three-way Lee-Carter model,

and the new relative model using both the Lee-Carter model and the age-period-cohort

model (2.6) for the England and Wales reference population. Due to space constraints,

we limit our comparisons to the male population, but most of the conclusions of this

section also apply to the female population. Figures 2.1 to 2.7 present the correspond-

ing parameters estimates for the male population. These parameters plots reveal a

clear association between deprivation and mortality in the English population. Specif-

ically, αg in the stratified Lee-Carter model and αxg in all the other models show a

marked inverse relationship between deprivation and mortality, with more deprived sub-

populations having considerably higher mortality than less deprived ones. In addition,

parameters βxg of the joint-κ model, λg of the three-way Lee-Carter model, and κtg of

the relative models indicate that less deprived subpopulations have experienced faster

mortality improvements than most deprived ones. Although this last conclusion could
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Figure 2.1: Parameter estimates of the independent Lee-Carter model for the male
deprivation subpopulations.

also be drawn from the parameters of the independent Lee-Carter model, it is less obvi-

ous as it requires the analysis of the interactions between βxg and κtg, underscoring one

of the main disadvantages of this approach.

A first way of evaluating the goodness of fit of the models is inspecting the standardised

deviance residuals of the fitted subpopulation model

rxtg = sign(ndxtg − nd̂xtg)

√

dev(x, t, g)

φ̂
, φ̂ =

D(ndxtg, nd̂xtg)

N − ν

and, when applicable, the deviance residuals of the reference population model

r′
xt = sign(d′

xt − d̂′
xt)

√

dev′(x, t)

φ̂
, φ̂′ =

D′(d′
xt, d̂

′
xt)

N ′ − ν ′
,

where

D(ndxtg, nd̂xtg) =
∑

x∈X

∑

t∈T

∑

g∈G

dev(x, t, g) =
∑

x∈X

∑

t∈T

∑

g∈G

2ωxtg

{

ndxtg log
ndxtg

nd̂xtg

− (ndxtg − nd̂xtg)

}

,

D′(d′
xt, d̂

′
xt) =

∑

x∈X ′

∑

t∈T ′

dev′(x, t) =
∑

x∈X ′

∑

t∈T ′

2ω′
xt

{

d′
xt log

d′
xt

d̂′
xt

− (d′
xt − d̂′

xt)

}

,
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Figure 2.2: Parameter estimates of the stratified Lee-Carter model for the male
deprivation subpopulations.
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Figure 2.3: Parameter estimates of the common factor model for the male deprivation
subpopulations.
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Figure 2.4: Parameter estimates of the joint-κ model for the male deprivation sub-
populations.

N =
∑

xtg ωxtg, N ′ =
∑

xt ω
′
xt are the number of observations in the subpopulation and

reference population data, respectively, ν is the effective number of parameters in the

subpopulation part of the model, and ν ′ is the effective number of parameters in the

reference population part of the model3. Regular patterns in the residuals are a sign of

the inability of the model to describe all of the phenomena appropriately.

Figures 2.9 plots the standardised deviance residuals of the models without a reference

population, whereas Figure 2.10 plots the residuals of the relative models with a reference

population. The residuals of the stratified Lee-Carter model show systematic patterns

by age and calendar time, indicating that deprivation subpopulations do not satisfy the

underlying model assumption that on a log scale the age-specific mortality profile of the

subgroups defined by the extra variate (g) deviate parallelly from the population age-

specific mortality profile. The common factor model does not exhibit any clear pattern

by age and deprivation quintile, signifying that it captures satisfactorily mortality level

differentials among the deprivation subpopulations. However, this model assumes that

3For example, the stratified Lee-Carter model (2.5) requires the estimation of k values of αx, m values
of αg, k values of βx and n values of κt, totalling 2k + m + n parameters, but since the parameters have
to satisfy the constraints

∑

x
βx = 1,

∑

t
κt = 0 and

∑

g
αg = 0, the effective number of parameters is

ν = 2k + m + n − 3. For the relative model with age-period-cohort reference we take v′ as the number
of parameters in the reference population equation (2.6) less 4 to account for constraints (2.8)-(2.10),
(2.14) and v as the number of parameters that appear exclusively in the subpopulation equation (2.7)
less 2 for constraints (2.11) and (2.12).
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Figure 2.5: Parameter estimates of the three-way Lee-Carter model for the male
deprivation subpopulations.

mortality level differentials are constant over time, failing to capture differences in the

rate of mortality improvement as revealed by the diagonal patterns observed in the

calendar year residual plots. The independent Lee-Carter model, the joint-κ model and

the three-way Lee-Carter model do not exhibit any clear pattern in their residual plots,

suggesting that all three models capture successfully both mortality level and mortality

improvement differentials among the deprivation subgroups. In Figure 2.10 we observe

a distinctive ripple effect in the year-of-birth residual plots under the Lee-Carter model

for the reference population, indicating a failure to capture cohort effects. This contrasts

with the absence of any major distinctive pattern in both the reference population and

subpopulation residual plots under age-period-cohort modelling, indicating the success

of this model in capturing the main effects of the reference population as well as in

capturing mortality differentials in the deprivation subpopulations.
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Figure 2.6: Parameter estimates of the relative model for the male deprivation sub-
populations with Lee-Carter reference.

When assessing the goodness of fit of different models, it is natural that models with

more parameters provide a better fit to the data. Therefore, we use information cri-

teria to rule out the possibility that the better fit observed in a model is a result of

overparametrisation. Information criteria modify the maximum likelihood criterion by

including a penalty function so that overparametrised models are penalised. Here, we

consider the Bayes Information Criterion (BIC) which has been proposed by Cairns

et al. (2009) for the quantitative comparison of mortality projection models. This crite-

rion is given by BIC = L − 0.5ν logN , where L denotes the maximum log-likelihood of

the model and ν is the effective number of parameters of the model. From this defini-

tion, it is clear that models with higher BIC values are preferable. In order to allow the

comparison between models with and without a reference population, for models with

a reference population we take the total model log-likelihood as being comprised of a
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Figure 2.7: Parameter estimates of the relative model for the male deprivation sub-
populations with age-period-cohort reference.
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Figure 2.8: Parameter estimates of the relative model for the female deprivation
subpopulations with age-period-cohort reference.
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(b) Stratified Lee-Carter: log nµxtg = αx + αg + βxκt
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(c) Common factor: log nµxtg = αx + αxg + βxκt
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(d) Joint-κ: log nµxtg = αx + αxg + (βx + βxg)κt
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(e) Three way Lee-Carter: log nµxtg = αx + αxg + βxλgκt

Figure 2.9: Deviance residuals for the models without a reference population applied
to the male deprivation subpopulations.
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Figure 2.10: Deviance residuals for the models with a reference population applied
to the male deprivation subpopulations. The first row of each subfigure displays the
residuals for the reference population and the second row of each subfigure displays the

residuals for the deprivation subpopulations.

reference population part, Lref , and a subpopulation part, Lsub, as in equation (2.13),

and report thus the two corresponding BIC values BICref = Lref − 0.5ν ′ logN ′ and

BICsub = Lsub − 0.5ν logN .

Table 2.1 contains BIC values for each of the seven adjusted models, together with their

respective rankings (in brackets). The small BIC values for the stratified Lee-Carter

model and the common factor model confirm the inability of these models to capture

adequately the differentials in mortality of the deprivation subpopulations. We observe
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Table 2.1: Log-likelihood L, effective number of parameters ν, and BIC values for
the different models applied to the male deprivation subpopulations.

Subpopulations Reference population
Model ν L BIC ν′ L BIC

Independent LC 195 -6 448 -7 116(5) - - -
Stratified LC 43 -22 770 -22 918(7) - - -

Common factor 66 -7 827 -8 053(6) - - -
Joint-κ 94 -6 538 -6 860(2) - - -

Three way LC 71 -6 670 -6 913(4) - - -
Relative (LC reference) 171 -6 310 -6 896(3) 227 -31 025 -31 997(2)

Relative (APC reference) 171 -5 630 -6 216(1) 353 -23 251 -24 731(1)

that the relative model with age-period-cohort reference, the only model capturing the

cohort effect, is by far on top of the subpopulation BIC ranking. This model is followed

by the joint-κ model, the relative model with Lee-Carter reference and the three-way

Lee Carter, all of them with very close matching statistics. We also note that among

models with a reference population, the age-period-cohort model performs much better

than the Lee-Carter model, providing evidence of the existence of a cohort effect.

It is possible that a model has good in-sample-fit but produces poor ex-post forecast,

that is, forecasts that deviate significantly from the realised outcomes. Therefore, in

addition to the assessment of goodness of fit, it is necessary to evaluate the ex-post

forecasting performance of the models using suitable backtesting methods. For that

purpose, we apply an expanding horizon backtest as proposed by Dowd et al. (2010).

This backtesting procedure entails the following steps:

(a) Select a metric of interest, that is, the forecasted variable which is the focus of the

backtest. Since our interest is forecasting both individual subpopulation mortality

rates and mortality rates differentials among the subpopulations, we base our

backtest exercise on the subpopulation-specific probability of dying between ages

50 and 85, 35q50,t,g, as well as on the ratio of these probabilities in the most and

least deprived subpopulations, 35q50,t,Q5/35q50,t,Q1, and in the fourth and second

IMD quintiles of the population, 35q50,t,Q4/35q50,t,Q2, with 35q50,t,g calculated on a

period basis using the expression

35q50,t,g = 1 − (1 − 5q50,t,g) (1 − 5q55,t,g) · · · (1 − 5q80,t,g)
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where

5qx,t,g =
5 5µx,t,g

1 + 2.5 5µx,t,g

, x = 50, 55, . . . , 80.

(b) Select the historical “lookback” period used to estimate the parameters of the

model and select the time horizon over which the forecasts will be made. We

fit the models over the restricted period 1981-2000 and perform forecasts for the

period 2001-2007.

(c) Compare graphically the forecasts against realised outcomes of the metrics of in-

terest. We plot 95% prediction intervals (fan charts) of the metrics of interest

obtained by simulating 10 000 paths of the period indexes of each of the models

with realised outcomes of the metrics superimposed. We note that these prediction

intervals ignore any provision for parameter uncertainty.

We exclude the stratified Lee-Carter model, the common factor model, and the relative

model with Lee-Carter reference from the backtesting exercise as these models show a

poor performance in terms of in-sample-fit. For the independent Lee-Carter model, we

include both the forecasted intervals using independent random walks with drift for each

subpopulation’s period index and using a multivariate random walk with drift. Figure

2.11 shows the comparison of the prediction intervals and the realised outcomes of the

metrics of interest. From this figure we note the following:

• The consistent underestimation of mortality decline by all the models with the

exception of the relative model with an age-period-cohort reference, giving evidence

that the possibility of capturing cohort effects results in substantial improvements

in forecasting performance.

• The exact agreement between prediction intervals of subpopulation mortality rates

of the two alternative forecasting methods for the independent Lee-Carter model,

but the difference in the prediction intervals of the mortality differentials, with

the independent random walk approach resulting in excessively wide prediction

intervals.

• The extremely narrow prediction intervals of mortality differentials produced by

the joint-κ model and the three-way Lee-Carter model, which is a result of the

perfect correlation of subpopulation mortality improvements induced by the use
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Figure 2.11: Predicted and realised outcomes of the backtesting metrics for the period
2001-2007. Left and central frames depict the values for 35q50,t,g and right frames depict

the values for 35q50,t,Q5/35q50,t,Q1 and 35q50,t,Q4/35q50,t,Q2
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of a single mortality driver for all the subpopulations. Therefore, although these

two models show reasonable goodness of fit and provide a transparent framework

for quantifying historical mortality differentials, they are likely to underestimate

the uncertainty associated with the predictions of mortality differentials.

• The relatively poor performance of all the models in the forecasting of mortality

differentials with a consistent underestimation of the widening of mortality dif-

ferentials. Nevertheless, the relative model with an age-period-cohort reference

shows the best performance, with central predictions that deviate the least from

the realised outcomes and predictions intervals that match the observed variability.

In summary, the independent Lee-Carter model, the joint-κ model, the three-way Lee-

Carter model and the relative model with age-period-cohort reference all succeed in

fitting historical mortality differentials in the English male population, with the latter

model outperforming the others according to the BIC criterion. In addition, the relative

model with age-period-cohort reference outperforms the others in terms of ex-post eval-

uation of the model predictions. Equivalent analyses – not shown here – for the female

population lead to similar conclusions. For these reasons, our subsequent discussions on

the differentials in mortality across deprivations quintiles will be based on the relative

model with age-period-cohort reference.

2.3.2 Historical mortality differentials: 1981-2007

We now use the new relative model with age-period-cohort reference to analyse the socio-

economic differentials in mortality observed in the English male and female populations

during the period 1981-2007. Figures 2.7 and 2.8 depict the corresponding parameter

estimates for the male and female populations, respectively.

We first turn our attention to the parameter estimates of the England and Wales refer-

ence populations. The main age-effects plots (α′
x vs. x) for both sexes have the usual

features of static life tables, with a more pronounced accident hump in males and lighter

mortality in females. For both males and females, the period index plot (κ′
x vs. t)

exhibits a steady decline in mortality with a mild curvature. For both genders, the

plot of the age-modulating parameter β′
x reveals that the ages in the range 20-40 have
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experienced the slowest mortality decline, with β′
x being even negative for the male expe-

rience. This result coincides with the pronounced decrease in the rate at which mortality

improved in the last quarter of the past century reported by Renshaw and Haberman

(2003) for both males and females in the age band 20-40. Finally, the plots of the cohort

effect (γ′
t−x vs. t − x) for both sexes are similar and reveal the impact of the 1919

influenza pandemic and the rapid mortality improvement experienced by the generation

born between 1925 and 1945 as reported by Willets (2004). It is worth mentioning that

the cohort effects for the generations born after 1945 need to be interpreted with care

as they only reflect the behaviour of mortality at young and middle ages, and it is not

totally clear whether these effects will still hold at older ages.

The subpopulation parameters reveal very different subpopulation mortality rate levels

as well as very different evolutions of these rates over time. In particular, the plots

of exp(αxg) show a steep increase in mortality rate levels with increasing deprivation.

For instance, during the period 1981-2007 males age 50-54 in the least deprived quintile

experienced 36% lower mortality than the reference population, which contrasts with

the 65% higher mortality experienced by males age 50-54 in the most deprived quintile.

Significant differences in the level of mortality are observed for both genders and all

ages, though with varying magnitudes. Males show higher mortality level differentials

than females. For instance, while for males age 60-64 the ratio between mortality in

the most deprived and the least deprived quintile, exp(αx,Q5)/exp(αx,Q1 ), is 2.25, for

females this ratio reduces to 2.11. In addition, mortality level differentials narrow with

age. At age 50-54 males and females in the most deprived quintile have respectively 2.57

and 2.03 higher mortality than persons of the same sex and age in the least deprived

quintile. By contrast, at age 80-84 males and females in the most deprived quintile have

respectively 1.31 and 1.22 higher mortality than persons of the same sex and age in the

least deprived quintile. This decrease in socio-economic mortality differences with rising

age is commonly reported in mortality research (Hoffmann, 2005).

The plots of κtg indicate that, in spite of the overall decrease in mortality levels, the more

deprived quintiles have experienced slower mortality reductions than the less deprived

ones, evidencing a widening of the mortality gap between the least and the most deprived

areas of England. The sharp deceleration after 1997 in the pace of mortality improvement

of the most deprived quintile of the female population indicated by κt,Q5 is particularly

noticeable. For both males and females, it is also worth noticing the close alignment
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between the period indexes for the two least deprived quintiles, κt,Q1 and κt,Q2, which

contrasts with the marked differences in the corresponding level parameters αx,Q1 and

αx,Q2. This indicates that despite the fact that there are material level differences

between these two subpopulations, improvement differences are negligible.

The plots of βx show that in the male population the highest differentials in the rate

of mortality improvement are observed at ages 50-54 and 60-64, whereas in the female

population the greatest mortality improvement differentials are achieved at ages 70-74

and 75-79. We also notice that at ages 55-59 and 60-64 females from all deprivation

quintiles have experienced more or less the same mortality reduction. For males, we see

a decline in mortality improvement differentials with rising age similar to that observed

in mortality level differentials. Nonetheless, this inverse relationship between age and

mortality improvement differential does not hold for females. In fact, from age group

55-59 until age group 75-79 improvement differences increase with age.

2.3.3 Mortality differential projections

In order to project age-subpopulation-specific mortality rates and examine the possible

future evolution of mortality differentials, we extrapolate the period indexes κ′
t and κtg.

The presence of a mild curvature in κ′
t complicates its forecasting. Although second

order ARIMA models should produce good time series fits, Haberman and Renshaw

(2009) argue against the use of this approach as it tends to produce excessively wide

prediction intervals. Therefore, we instead follow Haberman and Renshaw (2009) and

curtail the time series at a perceived point of departure from linearity. To assist with

this subjective task, we monitor the profile of the R2 linear regression goodness-of-fit

statistic, constructed backwards following the approach proposed by Denuit and Goder-

niaux (2005). For both males and females, the R2 statistic attains a maximum around

1980: thus, we model κ′
t post 1980 using a random walk with drift. The corresponding

residual and time series plots, together with R2 profiles are presented in Figure 2.12.

Since κtg does not show any significant departure from linearity, we use a multivariate

random walk with drift to model its dynamics. We recall from Section 2.2 that this

approach permits the consideration of correlations in the mortality evolution of the

different subpopulations which is a necessary feature for the adequate estimation of

prediction intervals of mortality differentials.
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Figure 2.12: Period index time series for the England and Wales reference population
(modelled post 1980). First row: R2 goodness of fit statistics. Second row: random
walk with drift time series residuals. Third row: time series with predictions and with

95% prediction intervals.

We use the forecasted values of κ′
t and κtg together with the estimated α′

x, β′
x, γ′

t−x,

αxg, and βx to obtain forecasts of subpopulation specific mortality rates for ages 50-84

up to year 2030. We note that forecasts for this period and age range do not require the

extrapolation of the cohort component.

These projected mortality rates are then employed to compute: the ratio between the

mortality rates of the most and least deprived quintiles 5µx,t,Q5/5µx,t,Q1 , the difference

between the mortality rates of the most and least deprived quintiles 5µx,t,Q5 − 5µx,t,Q1 ,

subpopulation specific period life expectancies

e̊xtg = 0.5 +
110−x
∑

h=1

hpxtg, (2.15)

43



Chapter 2. On the Modelling and Forecasting of Socio-economic Mortality Differentials

and the life expectancy gap between the most and least deprived quintiles e̊x,t,Q1−̊ex,t,Q5 ,

where hpxtg = pxtgpx+1,t,g · · · px+h−1,t,g and pxtg = exp(−µxtg).

The implementation of the period life expectancy formula (2.15) requires subpopulation

mortality rates, µxtg, for individual ages x, x+ 1, . . . , 110, which are not available due to

the age-grouped format of our subpopulation dataset and its truncation at age 84. To

tackle this problem, we set µ′
110,t = 0.7 and extrapolate the England and Wales mortality

rates along the age axis up to age 110 using the topping-out by age technique proposed

by Haberman and Renshaw (2009). This technique, which is a variant of the widely

used demographic method introduced by Coale and Kisker (1990), uses the quadratic

differencing formula

uj = log q′
99+j,t+j = a+ bj + cj(j + 1), (2.16)

q′
99+j,2009+j = 1 − exp(−µ′

99+j,2009+j), j = −1, 0, . . . , 11,

which requires u−1 = log q′
98,t−1, u0 = log q′

99,t and u11 = log q′
110,t+11.

These extrapolated mortality rates are then used as a reference to expand the abridged

subpopulation mortality rates under the assumptions that 5µxtg/5µ̄
′
xt ≈ µx+2,t,g/µ

′
x+2,t

and that mortality differences vanish at age 100. More specifically, for ages x ≤ 82

we interpolate log-linearly the mortality ratio µx,t,g/µ
′
x,t after setting µx+2,t,g/µ

′
x+2,t =

5µxtg/5µ̄
′
xt, x ∈ {50, 55, . . . , 80}; for ages 82 < x ≤ 99, which are outside the observable

age range, we modify (2.16) and use the differencing formula

uj = log

∣

∣

∣

∣

∣

log
µ82+j,t,g

µ′
82+j,t

∣

∣

∣

∣

∣

= a+ bj + cj(j + 1), j = −1, 0, . . . , 17,

with u−1 = log
∣

∣

∣log µ81,t,g

/

µ′
81,t

∣

∣

∣, u0 = log
∣

∣

∣log µ82,t,g

/

µ′
82,t

∣

∣

∣ and u17 = log 0.01; and for

ages 100 ≤ x ≤ 110 we set µxtg/µ
′
xt = 1. By way of illustration, Figure 2.13 depicts the

set of mortality rates used to compute period life expectancies in 2015.

Figures 2.14 and 2.15 depict the projected evolution of age-deprivation-specific mortality

rates. A key feature of note is that these projected mortality rates exhibit a coherent

behaviour, in the sense that they are consistent with the England and Wales forecasted

rates and that there are no cross-overs between the subpopulations. This is a major
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Figure 2.13: Projected period mortality rate profiles for year 2015.

characteristic of mortality projections produced using the relative modelling approach

proposed in this chapter. The forecasted fast decline of mortality rates at ages 75-79

and 80-84, especially in the female population, is also particularly noteworthy. This

feature is a reflection of the faster mortality decline experienced by those born between

1925-1945 captured by the cohort parameters of the reference population.

Figures 2.14 and 2.15 suggest a tendency to convergence in the mortality rates of the

deprivation subpopulations. To investigate further this feature, we display in Figure

2.16 the relative mortality difference between the most and least deprived quintiles,

5µx,t,Q5/5µx,t,Q1 , as well as the corresponding absolute mortality difference, 5µx,t,Q5 −

5µx,t,Q1 . In relative terms, we observe a widening of the mortality differences between the

extreme deprivation quintiles, reflecting the slowest mortality improvements experienced

by the most deprived subpopulation. By contrast, in absolute terms, with the exception

of some old ages in the female population, a general narrowing in mortality differences

is observed. Therefore, when drawing conclusions on the widening or narrowing of

mortality differences, the reference measure needs to be clearly stated.

Figure 2.17 presents a closer look at mortality differentials projections at age 65-69:

central predictions are accompanied with 95% prediction intervals (fan charts) obtained

by simulating 10 000 paths of the random walk model of κ′
t and of the multivariate

random walk model of κtg. For both sexes a widening of mortality relative differentials

is projected, although with a steeper trend and slightly wider prediction intervals for

males. Whereas for men the mortality rate at age 65-69 in 2030 of the most deprived

quintile is forecasted to be between 2.5 and 3.2 times the mortality rate of the least
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Figure 2.14: Time series of fitted and forecasted mortality rates 5µxtg for the male
deprivation subpopulations. The lines labelled “EW” correspond to the fitted and

projected values of 5µ̄
′

xt for the England and Wales reference population.

deprived quintile, for women the ratio between the mortality rate at age 65-69 of the

the most deprived quintile and the least deprived quintile is projected to range between

2.3 and 2.9.

Forecasted period life expectancies at age 65 together with the life expectancy gap

between the most and least deprived quintiles are displayed in Figure 2.18. We note that
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Figure 2.15: Time series of fitted and forecasted mortality rates 5µxtg for the female
deprivation subpopulations.

The lines labelled “EW” correspond to the fitted and projected values of 5µ̄
′
xt for the

England and Wales reference population.

despite the overall increase in life expectancy, the most deprived quintile has gained fewer

years in life expectancy than the least deprived quintile. Specifically, the life expectancy

gap between the most and the least deprived quintile increased from 2.9 years for males

and 2.3 for females in 1981 to 3.8 and 3.2 years in 2007, respectively. For males, the life
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Figure 2.16: Time series of mortality rate differentials between the most and least
deprived quintiles of the population. Values prior to 2007 are observed differentials and

values post 2007 are projected differentials.

expectancy gap is projected to reach a value of 4 years in 2030 with a 95% confidence

interval of 3.5-4.5 years. For females, the life expectancy gap is forecasted to remain

practically unchanged at 3.1 years, but with a considerably wide prediction interval of

2.6-3.9 years in 2030.

2.3.4 Implications for life annuities

In order to assess the financial implications of socio-economic mortality differentials,

in this section we investigate the variability of annuities values across deprivation sub-

groups.

A typical practice in the valuation of annuities is to vary the baseline mortality as-

sumptions according to socio-economic characteristics, but to assume the same future

mortality improvements for all individuals, regardless of their socio-economic character-

istics (Madrigal et al., 2011; Lu et al., 2014). Therefore, to examine the extent to which

these assumptions are reasonable, we consider two alternative mortality scenarios. In
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Figure 2.17: Central projections and 95% prediction intervals of mortality rate dif-
ferences at age 65-69.

a first scenario we suppose that there are both level and improvement differences in

mortality and compute projected mortality rates using the full forecasting model:

nµx,2007+j,g = nµ̄
′
x,2007+j exp (αxg + βxκ2007+j,g) , j > 0.

In a second scenario we assume that improvement differentials are non-existent and take

mortality differences as being fixed at their 2007 level. Thus, we project mortality rates

using the expression

nµx,2007+j,g = nµ̄
′
x,2007+j exp (αxg + βxκ2007,g) , j > 0,

which assumes that the mortality improvements of all the subpopulations follow the same

behaviour of the improvements of the England and Wales reference population. Table 2.2

presents for these two mortality scenarios the percentage deviation of the annuity rate

of each deprivation quintile with respect to the comparable England and Wales annuity

rate. The values presented correspond to level immediate annuities for individuals age
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Figure 2.18: Historical and projected period life expectancies and life expectancy
gap at age 65. The lines labelled “EW” correspond to period life expectancies for the
England and Wales reference population. Central projections of the life expectancy in
Q1 and Q5 (middle panels) and of the life expectancy gap e̊x,t,Q1

− e̊x,t,Q5
(bottom

panels) are accompanied by 95% prediction intervals.

50, 55, . . . , 80 in 2007, computed under the cohort trajectory4 and assuming an interest

rate of 4%. Referring to Table 2.2 we note the following:

4As opposed to a period approach, a cohort approach makes full allowance for the future evolution of
mortality rates. Thus, the annuity rate for an individual of subpopulation g age x in year t is computed
using mortality rates µxtg, µx+1,t+1,g, µx+2,t+2,g . . . , µ110,t+110−x,g
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Table 2.2: Percentage increase/decrease in annuity rates relative to the England and
Wales annuity rate

Males

Scenario 1: Scenario 2:
Level and improvement differences Only level differences

Age E&W Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

50 18.71 4.5% 2.7% 0.8% -2.7% -8.8% 4.1% 2.5% 0.8% -2.1% -7.2%
55 17.23 5.3% 3.1% 0.9% -3.1% -9.7% 5.0% 2.9% 1.0% -2.5% -8.2%
60 15.55 6.1% 3.5% 1.0% -3.4% -10.3% 5.8% 3.3% 1.0% -2.8% -8.9%
65 13.53 6.9% 3.9% 1.1% -3.5% -10.4% 6.6% 3.7% 1.1% -3.0% -9.2%
70 11.37 7.4% 3.9% 1.1% -3.4% -10.0% 7.1% 3.8% 1.1% -3.0% -9.1%
75 8.93 7.7% 3.9% 1.1% -3.0% -9.0% 7.4% 3.8% 1.1% -2.7% -8.4%
80 6.58 7.0% 3.4% 1.3% -2.0% -6.8% 6.9% 3.4% 1.3% -1.8% -6.4%

Females

Scenario 1: Scenario 2:
Level and improvement differences Only level differences

Age E&W Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

50 19.23 2.9% 1.7% 0.4% -1.7% -5.4% 2.6% 1.5% 0.5% -1.2% -4.2%
55 17.99 3.4% 1.9% 0.4% -1.9% -6.1% 3.1% 1.7% 0.5% -1.4% -4.9%
60 16.28 4.2% 2.3% 0.6% -2.3% -7.1% 3.9% 2.1% 0.6% -1.7% -5.8%
65 14.59 4.6% 2.5% 0.5% -2.4% -7.6% 4.2% 2.2% 0.5% -1.9% -6.4%
70 12.44 5.1% 2.5% 0.5% -2.4% -7.8% 4.7% 2.3% 0.6% -1.9% -6.8%
75 9.99 5.0% 2.2% 0.5% -2.2% -7.3% 4.8% 2.0% 0.5% -1.8% -6.5%
80 7.42 4.4% 1.6% 0.5% -1.5% -5.7% 4.2% 1.5% 0.4% -1.2% -5.1%

Note: The column “E&W” presents the annuity rate for a person in England and Wales age x in 2007
at a 4% interest rate.

• As expected, annuity values decrease significantly as the level of deprivation in-

creases. For example, under the assumption of both level and improvement dif-

ferentials in mortality, the annuity rate at age 65 for males in the most deprived

quintile is 10.4% less than the corresponding rate for the England and Wales pop-

ulation. This contrasts with a 6.9% excess for males age 65 in the least deprived

quintile compared to the England and Wales population.

• Although mortality differentials decrease with rising age, the impact of these dif-

ferentials on annuity values does not decrease significantly with age, and, in some

cases, can even increase. For instance, at age 80 the annuity rate for males in the

least deprived quintile is 7.0% higher than the corresponding annuity rate for the

whole of the England and Wales population, which is an even greater difference

than the 4.5% observed at age 50.

• The impact of improvement differentials on the valuation of annuities is in general

of second order when compared to that of level differentials. In fact, for most ages

and deprivation subgroups the difference between annuity rates computed under

the two alternative mortality scenarios is less than 0.7%. This difference is only
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significant for the youngest ages of the most deprived quintile, reaching a maximum

of 1.6% at age 50 in the male population. These results suggest that assuming the

absence of improvement differentials in mortality is in principle reasonable for the

valuation of annuities. In contrast, the correct estimation of initial socio-economic

differentials in mortality is critical in the pricing and reserving of annuities and

pensions.

• The variability of annuity rates by socio-economic characteristics can be more sig-

nificant than the variability of annuity rates by gender. For instance, at age 65 the

percentage difference between the annuity rate for females and males in England

and Wales is 14.59/13.53−1 = 7.8%, whereas the percentage difference between the

annuity rate for the two extreme deprivations quintiles is 6.9%−(−10.4%) = 17.3%

and 4.6% − (−7.6%) = 12.2%, for males and females, respectively. Although in

this simple comparison the significance of socio-economic circumstances is exag-

gerated by the fact that deprivation quintile is a multilevel factor while gender is

a binary factor, this result is still interesting in view of the recent European Court

of Justice ruling that insurance premiums and benefits after 21 December 2012

should be gender neutral (Court of Justice of the European Union, 2011), and,

hence, socio-economic characteristics might be a candidate for substituting part of

the role of gender in the pricing of annuities.

2.4 Discussion

In this chapter we have examined a number of alternatives for the modelling and forecast-

ing of socio-economic differentials in mortality, including several existing multipopulation

extensions of the Lee-Carter model and a newly proposed relative model. An application

to deprivation subpopulations in England showed that in the presence of both level and

improvement differentials, the new relative model exhibits the best results in terms of

goodness of fit and forecasting performance. A key feature for the success of this model

is the possibility of relying on the wider mortality experience of a reference population

which enables the consideration of cohort effects and a more reliable estimation of the

long-run mortality trend.
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We note, however, that in other applications with different aims and using datasets

with other characteristics, a different model might be appropriate. For instance, if the

focus of the study is on the assessment of historical mortality differentials rather than

on their forecasting, the joint-κ model and the three-way Lee-Carter model deserve

serious consideration. Given the commonly observed widening of relative mortality

differentials and the decrease in socio-economic mortality differentials with rising age,

models that are not able to capture any of these features, such as the common factor

model and the stratified Lee-Carter, are likely to be too rigid for most applications. In

spite of that, these models may still be applied successfully in situations where there

are data limitations and more parsimonious models are preferred, or in the study of

mortality differentials in populations of a different nature. An example of the latter

is the application of the stratified Lee-Carter in the modelling of mortality in Spanish

regions discussed in Debón et al. (2011).

A noticeable advantage of the Lee-Carter based methods discussed in this chapter is that

they offer a simple methodology for projecting subpopulation-specific mortality rates.

However, since these methods are based on pure extrapolation of past trends, they

assume that socio-economic mortality improvement differentials will remain constant in

the future, ignoring the fact that policy interventions for reducing health inequalities will

likely change the future mortality gradient. Nevertheless, many of the factors behind

health inequalities change very slowly and, hence, the assumption that relative mortality

differentials will not narrow seems a reasonable starting point for forecasting (Wanless

et al., 2012).

A simplifying assumption of the relative model introduced in this chapter is that cohort

effects are the same between socio-economic subpopulations. However, there is some

evidence that cohort effects may vary across socio-economic subgroups. For instance,

it has been reported that the cohort effect for assured lives, who are more likely to

belong to higher socio-economic subgroups, is centred in a slightly earlier generation

than seen in the general population of England and Wales (CMI Bureau Mortality Sub-

Committee, 2002; Willets, 2004). Consequently, the development of models that allow

for socio-economic variations in cohort effects deserves further investigation.

In the second part of this chapter we have applied the new proposed relative model to
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analyse the extent of mortality differentials across deprivation subgroups in England dur-

ing 1981 through 2007. This analysis reveals a clear association between area deprivation

and mortality rates, with people living in more deprived areas having higher mortality

rates than those living in less deprived areas. The mortality differentials found in this

study are substantial. In fact, at some ages the mortality rates of the most deprived

quintile can be more than twice the mortality rates of the least deprived quintile. In ad-

dition, our analysis indicates a widening of the relative mortality gap between more and

less deprived areas of England, mainly as a result of the slower mortality improvements

experienced by the lowest socio-economic subgroups.

It has been shown that socio-economic differences in mortality have a significant impact

on the pricing of life annuities. Moreover, despite the fact that socio-economic differences

in mortality tend to decrease with age, it was found that their financial impact is still

very significant at old ages. These results become more relevant in light of the European

Court of Justice ban on the use of gender as an underwriting variable. With gender

removed from the list of admissible rating factors, socio-economic related rating factors

gain relative importance in the modelling of longevity risk.

Finally, we recognise some data issues that might distort our results on the association

between mortality and deprivation. First, our quintile groups are defined using the

IMD 2007, implicitly assuming that the relative ranking by deprivation of small areas

in England remained unchanged over the 1981-2007 period. Second, it is plausible that

healthier people will tend to move from more deprived areas to less deprived ones and

vice versa, resulting in a potential bias toward higher mortality inequalities. However,

previous studies have shown that the majority of small areas in England have stayed

in the same deprivation quintile over our period of study (Norman, 2009; Lu et al.,

2014), and that selective migration has a negligible impact on the analysis of trends in

mortality inequalities (Norman et al., 2005). A detailed discussion of these two issues

with particular reference to the dataset used in this chapter is provided by Lu et al.

(2014, Appendix A).
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Abstract

It is well known that higher socio-economic groups – whether defined by educational

attainment, occupation, income or area deprivation – have lower mortality rates and

longer lives than lower socio-economic groups. In many cases, affluent subpopulations

also experience faster rates of improvement in mortality. Socio-economic differentials

in mortality and longevity pose important challenges when designing public policies for

tackling social inequalities; and for managing longevity risk in pension funds and annuity

portfolios. The successful addressing of these social and financial challenges requires the

best possible understanding of the drivers of socio-economic mortality differentials. A

key step in achieving this understanding is to investigate how mortality trends for leading

causes of death differ between socio-economic groups. Accordingly, the main purpose

of this chapter is to introduce new modelling techniques that enable the modelling and

projection of mortality trends by cause of death and socio-economic stratification. We

first introduce an extension the Lee-Carter model to allow for the consideration of coding

changes in cause-specific mortality data. We then embed this model into a multiple

population setting to allow for the quantification of socio-economic differences in cause-

specific mortality. Using England mortality data for socio-economic subpopulations

defined using the Index of Multiple Deprivation (IMD 2007), we show that this modelling

approach can be satisfactorily employed both in the assessment of the magnitude of

historical mortality differentials for the main causes of death and in the projection of

the possible future evolution of these differentials.

Keywords: Mortality modelling; multipopulation models; socio-economic circumstances;

causes of death; Lee-Carter model
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3.1 Introduction

It is well known that higher socio-economic groups – whether defined by educational

attainment, occupation, income or area deprivation – have lower mortality rates and

longer lives than lower socio-economic groups. For instance, in England and Wales

workers in different occupational classes not only have different life expectancies, but

have also experienced significantly different mortality improvements. Whilst 65 years

old professional males have gained 4.6 years of life expectancy increasing from a life

expectancy of 14.0 in 1972-1976 to a life expectancy of 18.6 in 2002-06, unskilled manual

workers have only gained 2.9 years increasing from 11.6 in 1972-1976 to 14.5 in 2002-06

(Johnson, 2011).

These socio-economic differences in life expectancy are widely considered to be unaccept-

able in a fair society and policy makers need to take action to reduce the social gradient

in health (The Marmot Review, 2010). Furthermore, actuaries need to recognise mor-

tality heterogeneity as not doing so could result, for instance, in an inadequate funding

of annuity and pension obligations (Meyricke and Sherris, 2013; Villegas and Haberman,

2014). The design of effective policies for tackling social inequalities in health and the

successful management of the financial implications of longevity risk therefore require

the best possible understanding of the drivers of socio-economic mortality differentials.

A key step in achieving this understanding is to investigate how mortality trends for

leading causes of death differ between socio-economic groups.

Moreover, the utility and importance of looking at the twin issues of mortality by cause

of death and by socio-economic stratification has been widely recognised by the actuarial

profession. For instance, in a survey on mortality by cause of death and socio-economic

stratification prepared for the International Actuarial Association, Ridsdale and Gallop

(2010) identify that these would be of interest to actuaries:

• aiming to understand mortality trends and its drivers with the objective of pricing

the mortality elements of insurance, annuity and pensions products, or of reserving

effectively for liabilities;

• involved in the underwriting and in the setting of premium rates for “substandard

lives”; or
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• looking to inform or test the credibility of their assumptions for mortality projec-

tions.

Richards (2009) also acknowledges the close links between socio-economic circumstances

and causes of death and hence argues that to avoid misleading results “cause-of-death

statistics need to be broken down by socio-economic group or deprivation index before

being used for forecasting purposes for actuarial work”.

However, in spite of its many benefits and uses, the analysis of cause-specific mortality

trends faces several theoretical and practical challenges; much of them summarised in

GAD (2001), Continuous Mortality Investigation (2004) and Richards (2009). The main

theoretical problem when considering mortality by cause of death is how to capture the

correlations between causes: causes are not always independent and may be linked

in poorly understood manners. For instance, the same risk factors can affect several

causes as is the case with smoking and numerous forms of cancer and heart diseases. In

addition, even if two causes of death do not share risk factors, reductions in the relative

importance of one cause can lead to further mortality improvements on the other one

as medical research efforts shift from one cause to the other.

In addition, the validity of the analysis and projection of cause-specific mortality trends

can be affected by changes in the diagnosis and in the classification of causes of death.

The World Health Organisation (WHO) has reviewed the International Classification of

Diseases (ICD) regularly in 20th century to reflect new diseases, changes in medical ter-

minology and the development of medical knowledge (Moriyama et al., 2011). Further,

national statistical offices often make adjustments when adopting locally the ICD coding

system (see e.g. Rooney and Devis (1996) for the case of England and Wales). These

data production changes can cause substantial discontinuities in the mortality trends of

some causes of death. This is for instance the case of respiratory diseases in England

and Wales which, as illustrated in Figure 3.1, have seen major trend-breaks due to the

numerous changes in the cause of death classification system.

As summarised by Richards (2009) “when doing projections by cause of death we must

not only take great care with socio-economic differentials, and also worry about project-

ing correlated time series, but we must also take note of uncertainty surrounding the

classification of cause of death itself”.
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Figure 3.1: Age-standardised mortality rate for respiratory diseases for men aged
25-84 in England and Wales for the period 1950-2011.

Accordingly, the main purpose of this chapter is to introduce new modelling techniques

that enable the modelling and projection of mortality trends by cause of death and socio-

economic stratification, paying particular attention to the possible problems induced by

changes in the cause of death coding system. A second purpose is to provide an analysis

of the socio-economic differentials for the leading causes of death in England. This

study is complementary to Chapter 2 where the modelling of socio-economic differences

in all-cause mortality was addressed and which provided an investigation of all-cause

mortality differentials in England across deprivation subgroups.

The chapter is organised as follows. In Section 3.2 we describe the proposed modelling

approach for the quantification and projection of socio-economic mortality differentials

by cause of death. Specifically, in Section 3.2.1 we introduce an extension of the widely-

use model of Lee and Carter (1992) to control for coding changes in cause-specific mortal-

ity data. Then, in Section 3.2.2, we embed this model in to a multiple population setting

to allow for the consideration of socio-economic differences in mortality. In Section 3.3,

we apply the proposed modelling approach in the examination of the relationship be-

tween deprivation and mortality for the leading causes of death in England. Finally, in

Section 3.4, we discuss our main findings and discuss possible limitations and extensions

of our work.
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3.2 Modelling and forecasting mortality by cause of death

and socio-economic stratification

In this section we describe a modelling approach to quantify cause-specific mortality

differentials in population subgroups induced by an additional covariate. Although our

main interest is on population subgroups defined by socio-economic factors (e.g. occu-

pation, level of education, social class), these subgroups could also be associated with

geographical factors (e.g. regions within a country) or other factors such as marital sta-

tus, gender, ethnicity and so on. The proposed approach is based on a newly introduced

extension of the Lee-Carter model (Lee and Carter, 1992) to deal with data produc-

tion changes in cause of death data, combined with the multipopulation Three-way

Lee-Carter model proposed by Russolillo et al. (2011).

3.2.1 Lee-Carter model with cause of death coding adjustments

Assume that the death counts from a given cause of death are independent Poisson

responses

Dxt ∼ Poisson(extµxt)

so that the force of mortality from the given cause at exact age x in time t, µxt, is

given by µxt = E(Dxt)/ext , with ext denoting the population at age x and time t.

Also assume that mortality data are available for consecutive years t0, t1, . . . , tn and let

S = {s1, s2, . . . , sh} be the times at which cause of the coding changes occur with the

convention that s0 = t0. In order to account for data production changes we extend the

widely-used model of Lee and Carter (1992) to assume that the force of mortality from

certain cause is modelled by:

logµxt = αx + βxκt +
h
∑

i=1

δ(i)
x f (i)(t) (3.1)

where, as in the standard Lee-Carter model, αx captures the general age-specific mor-

tality pattern, κt represents the overall level of mortality at time t and βx measures the

age-specific responses to changes in the general level κt. In addition, for i = 1, . . . , h,

f (i)(t) = Isi−1≤t<si
denotes the indicator function taking value 1 if t ∈ [si−1, si) and δ

(i)
x
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are new parameters which measure the magnitude of coding changes at age x due to

the change in coding system which occurred at time si. This model controls for data

production changes by assuming that there are different age-patterns αx + δ
(i)
x for each

subperiod [si−1, si), i = 1, . . . , h, where a particular cause of death coding system is in

force.

In a similar manner to the standard Lee-Carter model, the model defined by Equation

(3.1) is only identifiable up to a set of transformations. Specifically, given constants b1,

b2 6= 0 and ai, i = 1, . . . , h, we can transform the parameters in Equation (3.1) in the

following ways

{α̃x, κ̃t} = {αx + b1βx, κt − b1} (3.2)
{

β̃x, κ̃t

}

=

{

1

b2
βx, b2κt

}

(3.3)

{

δ̃(i)
x , κ̃t

}

=
{

δ(i)
x + aiβx, κt − aif

(i)(t)
}

, i = 1, . . . , h, (3.4)

leaving the fitted mortality rates in Equation (3.1) unchanged. Transformations (3.2)

and (3.3) correspond to the transformations that can be applied to the standard Lee-

Carter model, whilst the new family of transformations defined by (3.4) is induced by

the new parameters δ
(i)
x . This latter set of transformations mean that we are free to

shift mortality levels from δ
(i)
x to κt.

In order to ensure the identifiability of the model, some constraints need to be imposed.

To deal with transformations (3.2) and (3.3) we impose the constraints

∑

x

βx = 1

κtn = 0 (3.5)

Choosing constraint (3.5) as opposed to the more common
∑

t κt = 0 gives the interpre-

tation that αx represents the fitted mortality rates in the last year of observation, tn.

This, coupled with the chosen definition of the set of coding changes times, S, ensures

that the coding system in force in the period [sh, tn] (i.e. the most recent one) is the

reference for the fitted and projected mortality rates.

It is desirable that the underlying coding-adjusted “jump-free” mortality trend from

the cause of death of interest is captured by κt and that parameters δ
(i)
x capture the
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discontinuities in mortality induced by the changes in the cause of death coding system.

This goal can be accomplished by carefully choosing constants ai, i = 1, . . . , h, in the

family of transformations defined by (3.4). To do so, we use a similar approach to the

one introduced by Rey et al. (2011) for the removal of discontinuities in age-specific

mortality rates by cause of death. Specifically, we set the constants ai, i = 1, . . . , h, by

fitting the model

κt = g(t) +
h
∑

i=1

aif
(i)(t) + ǫt, ǫt ∼ N(0, σ) i.i.d., (3.6)

where g(t) is a continuous function and ǫt is a Gaussian error term. Model (3.6) decom-

poses the time trend κt into:

i. a smooth function g(t) representing the underlying “jump-free” mortality trend;

ii. the jumps in mortality
h
∑

i=1
aif

(i)(t) induced by data production changes; and

iii. the noise ǫt around the “jump-free” trend.

In order to estimate the smooth function g(t) we follow Rey et al. (2011) and use a thin

plate penalised regression spline with the smoothness parameter derived automatically

using generalised cross-validation. As noted by Rey et al. (2011), this can be easily

accomplished using the MGCV R package (Wood, 2015).

Finally, given constants ai, i = 1, . . . , h, estimated from model (3.6) and using the family

of transformations defined by Equation (3.4), we can recover the “jump-free” trend using

the expression

κ̃t = g(t) + ǫt = κt −
h
∑

i=1

aif
(i)(t), (3.7)

with revised data production adjustments

δ̃(i)
x = δ(i)

x + aiβx i = 1, . . . , h.

The procedure defined by Equations (3.6) and (3.7) is schematised in Figure 3.2.
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κ̃t = g(t) + ǫt

1960 1970 1980 1990 2000 2010

Figure 3.2: Schematic representation of the decomposition of the mortality trend κt,

3.2.2 Modelling differentials: The Three-way Lee-Carter model with

coding adjustments

In order to allow for the quantification of socio-economic differences in cause-specific

mortality, we now embed under a multipopulation setting the Lee-Carter model with

coding adjustments introduced in the previous section. To this end, we use the Three-

way Lee-Carter model proposed by Russolillo et al. (2011) to deal with mortality data

disaggregated according to a third criterion besides age and time. Specifically, we assume

that the central death rate for a given cause of death for age x at time t in subpopulation

g, denoted µxtg, is given by

logµxtg = αx + αxg + βxλgκt +
h
∑

i=1

δ(i)
x f (i)(t), (3.8)
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where αx captures the general age-specific mortality pattern, αxg captures age-subpopulation-

specific deviations from the general age pattern αx, κt represent the overall level of mor-

tality at time, βx measures the age-specific responses to changes in the general level κt,

λg captures trend mortality differences across subpopulations, and δ
(i)
x and f (i)(t) have

the same interpretation as in model (3.1). We note that in model (3.8) it is assumed that

cause of death coding changes have a uniform impact across subpopulations. Section

3.2.4 elaborates further on the interpretation of the parameters of the model.

3.2.3 Parameter estimation

In order to estimate the parameters of the Three-way Lee-Carter model with coding

adjustments, we resort to a two-stage estimation strategy using data from a reference

population. More specifically, in the first stage the subpopulation independent param-

eters αx, βx, κt and δ
(i)
x are estimated using the reference population data. Then, in a

second stage and conditional on the estimated values of αx, βx, κt and δ
(i)
x , the remaining

subpopulation dependent parameters αxg and λg are estimated. Thus, our estimation

procedure entails the following two steps:

i. Fit the Lee-Carter model with code adjustments defined by Equation (3.1) to the

reference population to obtain parameter estimates α̂x, β̂x, κ̂t and δ̂
(i)
x .

ii. Given parameter estimates α̂x, β̂x, κ̂t and δ̂
(i)
x , obtain parameters estimates α̂xg

and λ̂g by fitting the generalised linear model

Dxtg ∼ Poisson(extgµxtg)

logµxtg = α̂x + αxg + β̂xλgκ̂t +
h
∑

i=1

δ̂(i)
x f (i)(t),

where, Dxtg and extg are, respectively, the number of deaths for the cause of death

of interest and the population at age x and time t for subpopulation g.

Such a two-stage estimation strategy has several advantages when the subpopulations

represent different socio-economic strata of a national population. These advantages

include:
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• National mortality data are normally available for a longer period than mortal-

ity data disaggregated by socio-economic stratification, permitting a more precise

estimation of the long-run mortality trend of the different causes of death.

• Modelling the subpopulations alongside the national population will ensure the

consistency of the subpopulation-specific mortality forecasts with the national mor-

tality forecasts.

3.2.4 Mortality level differential and mortality trend differentials

In general, we can distinguish between two type of mortality differentials among sub-

groups: mortality level differentials and mortality trend differentials. The former refers

to differentials in the average level of mortality, whereas the latter refers to differentials

in the pace of mortality change. In the modelling framework defined by Equation (3.8)

parameters αx and αxg relate to mortality level differentials, whilst parameters βx, λg

and κt determine mortality trend differentials.

The term exp(αx) measures the general level of mortality in the reference population

and the term exp(αxg) quantifies the percentage deviations of each subgroup from this

reference pattern of mortality. That is, if exp(αxg) > 1 then at age x subgroup g has

a higher mortality than the reference population and if exp(αxg) < 1 then at age x

subgroup g has a lower mortality than the reference population.

To understand how our modelling approach assesses trend differentials in mortality we

can compare for each age x the rate of change over t of the log-mortality rates in the

reference population,
d logµxt

dt
= βx

d κt

dt
,

with the rate of change over t of the log-mortality rates in each subpopulation,

d logµxtg

dt
= βxλg

d κt

dt
= λg

d logµxt

dt

From this last equation it is clear that λg can be interpreted as the proportionate de-

viation of mortality change in each subgroup relative to the mortality change in the

reference population. That is, if mortality is improving in the reference population (i.e.

d logµxt/dt < 0) then λg > 1 means that for subpopulation g mortality improves at
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a faster pace than it does in the reference population, whereas λg < 1 means that it

decreases at a slower pace. Similarly, if mortality from a specific cause in the reference

population is worsening (i.e. d logµxt/dt > 0) then λg > 1 means that for subpopula-

tion g mortality is worsening at a faster pace than in the reference and λg < 1 means

that it is worsening at a slower pace.

3.2.5 Forecasting

Under the proposed model the time evolution of mortality and of mortality differentials

is represented by the univariate time index κt. Therefore, forecasts of age-subgroup-

specific mortality rates by cause of death can be obtained by modelling and forecasting

κt using autoregressive moving average (ARIMA) models. In general, we assume that

κt follows an ARIMA(p, q, d) with drift:

∆dκt = θ0 + φ1∆dκt−1 + · · · + φp∆dκt−p + ξt + θ1ξt−1 + · · · + θqξt−q (3.9)

where ∆ is the difference operator; θ0 is the drift parameter, φ1, . . . , φp are the au-

toregressive coefficients with φp 6= 0; θ1, . . . , θq are the moving average coefficients with

θq 6= 0; and ξt is a Gaussian white noise process with variance σξ.

Model (3.9) can then be used to obtain projected values of the time index κ̇tn+r, r =

1, 2, . . ., which are then inserted into equation (3.8), omitting the coding adjustment

terms, to provide forecasted age-group-specific mortality rates corrected for cause of the

coding adjustments:

µ̇x,tn+r,g = exp
(

α̂x + α̂xg + β̂xλ̂gκ̇tn+r

)

3.3 Case study: Mortality by cause of death and depriva-

tion in England

In this section we present an empirical application that illustrates the previous discus-

sion on the modelling of mortality by cause of death and socio-economic stratification.
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Specifically, we examine the relationship between deprivation and mortality for the main

causes of death in England for the period 1981-2007.

3.3.1 Data

In this study we use the English Index of Multiple Deprivation 2007 (IMD 2007) to

measure socio-economic conditions at a small area level (Noble et al., 2007). The IMD

2007 is a composite index of deprivation made up of seven domains with an associated

weight1. The IMD 2007 is based on small geographies called Lower Layer Super Output

Areas (LSOAs). There are 32,482 LSOAs in England with an average population of ap-

proximately 1,500 people. In our analysis LSOAs are grouped into deprivation quintiles

based on their IMD 2007 score, with Q1 denoting the least deprived quintile and Q5 the

most deprived quintile.

Our data comprises death counts for seven major causes of death for the English popu-

lation disaggregated by IMD 2007 quintiles for the period 1981 to 2007 and age groups,

50-54, . . . , 80-84, 85+. We consider six groups of causes of death derived from the Inter-

national Classification of Diseases (ICD) plus a group “Other” including the remaining

deaths. The resulting seven group of causes together with a summary of common causes

included in each group are presented in Table 3.1. In this study, we will only consider

main causes so that problems with a too detailed disaggregation are avoided. To date,

the six selected causes represent around 90% of the total number of deaths for people

aged 50+, with Neoplasms, Circulatory and Respiratory diseases constituting around

80% of the deaths.

As for the reference population, we use matching cause of death data for the England

and Wales population. These data, which is publicly available at the ONS website2,

covers ages 50-54, . . . , 80-84, 85+ and the period 1961-2010. Over this 50 year period

cause of death coding in England and Wales has undergone five major changes which

are summarised in Table 3.2.

1The seven deprivations domains with their percentage participation in the index are: i) Income
deprivation (22.5%), ii) Employment deprivation (22.5%), iii) Health deprivation and disability (13.5%),
iv) Education, skills and training deprivation (13.5%), v) Barriers to housing and services (9.3%), vi)
Crime (9.3%), and vii) Living Environment deprivation (13.5%).

2See http://www.ons.gov.uk/ons/rel/subnational-health1/the-21st-century-mortality-files/

deaths-dataset--2001-2013/index.html and http://www.ons.gov.uk/ons/rel/

subnational-health1/the-20th-century-mortality-files/20th-century-deaths/index.html
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Table 3.1: Common causes of death under each ICD Chapter group

ICD Chapter
Deaths in 2010

(age 50+)
Common causes ICD-9 code ICD-10 code

Circulatory 30%
Ischemic heart disease, Cerebrovascu-
lar disease

390-459 I00-I99

Neoplasms (Cancer) 38%
Lung (trachea,bronchus), Colon (rec-
tum, anus) , Breast, Prostate

140-239 C00-D48

Respiratory 12%

Influenza and pneumonia, Chronic ob-
structive respiratory disease (bron-
chitis, emphysema, asthma, other
chronic)

460-519 J00-J99

Digestive 5%
Peptic ulcer, Cirrhosis and chronic liver
disease, Hernia

520-579 K00-K93

Mental and Behavioural 2% Dementia, Substance abuse 290-319 F00-F99

External 2%
Non-transport accidents, Intentional
self-harm, Motor vehicle accidents

E800-E999 V01-Y89

Other 10%
Diabetes mellitus, Renal failure,
Parkinson’s, Alzheimer’s disease

- -
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Table 3.2: Changes in cause of death coding implemented in England and Wales over
the period 1961-2010

Change ICD-8 ICD-9 Rule 3 ACCS ICD-10

Year 1968 1979 1984 1993 2001

In order to examine the magnitude and trends of socio-economic differentials in mortality

for the main causes of death, for each cause we have fitted the The Three-way Lee-Carter

model with coding adjustments introduced in Section 3.2.2 to England mortality data

for period 1981-2007 with IMD 2007 quintile as covariate and England and Wales data

for the period 1961-2010 as reference population data. We have excluded age category

85+ from the analysis as it groups many ages into a single category, having a distorting

effect on the results. In addition, we have assumed that mortality trends need to be

adjusted for cause of death coding changes in years s1 = 1968 , s2 = 1979, s3 = 1984

and s4 = 1993, corresponding to the introduction of ICD-8, ICD-9, the changes in

the application of Rule 3 and the introduction of the automated cause coding system

(ACCS), respectively. Finally, prior to the fitting of the models, death counts for the

period 1993-2000 have been adjusted using a suitable bridge coding algorithm to account

for changes in cause of death coding between ICD-9 and ICD-10 (Cook et al., 2002).

Figures 3.7 to 3.13 present for the seven groups of causes of death the estimated param-

eters for the England Wales reference population, while Figures 3.14 and 3.15 depict the

mortality differential parameters for the deprivation subpopulations. We defer, however,

the analysis of these fitted parameters until Sections 3.3.4 and 3.3.5 and concentrate first

on the quality of the model fits and of the correction for coding adjustments performed

by the models.

3.3.2 Goodness-of-fit

The goodness of fit of the models can be assessed by inspecting the standardised deviance

residuals of the fitted models: regular patterns in the residuals are a sign of the inability

of the model to describe all of the phenomena appropriately.

Figure 3.3 plots for each of the seven causes death the standardised residuals of the

Lee-Carter model with coding adjustments defined by Equation (3.1) fitted to the male

and female England and Wales reference populations. Similarly, Figures 3.4 and 3.5
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(b) Women

Figure 3.3: Deviance residuals for the Lee-Carter model with coding adjustments
fitted to the main causes of deaths in England and Wales.

depict, for men and women respectively, the corresponding deviance residuals for the

deprivation subpopulations. From these plots we note the the following:

• There are distinctive diagonal patterns for Circulatory diseases, Neoplasms and,

to a lesser extent, Respiratory diseases, suggesting the presence of a cohort effect

for these causes of death. We also note that the diagonal clustering of residuals

are stronger for the female population with the patterns observed for Neoplasms

in the two most deprived quintiles of England being particularly strong.
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Figure 3.4: Deviance residuals for the Three-way Lee-Carter model with coding ad-
justments fitted to the main causes of deaths in the male deprivation subpopulations

of England.

• In spite of some localised concentration of large residual (e.g. for Digestive causes in

England and Wales for the most recent years), the residuals for Digestive diseases,

Mental and Behavioural diseases, External and “Other” causes show a reasonably

random pattern, indicating a satisfactory fit to the data.
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Figure 3.5: Deviance residuals for the Three-way Lee-Carter model with coding ad-
justments fitted to the main causes of deaths in the female deprivation subpopulations

of England.

• There are generally more colourful residuals at older ages which suggest variable

dispersion of mortality with age.

• There are notably higher residuals for the most deprived quintile of England. This

may suggest the presence of different underlying risk factors driving causes of death
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Figure 3.6: Age standardised death rates (ASDR) for the age range 50-84 for the
main causes of death in England and Wales reference population. Dots show observed
ASDRs, solid lines fitted ASDRs and dashed lines coding-adjusted ASDRs. Vertical

dashed lines indicate coding-adjustment years.

in this subpopulation.

Overall, we see that the fit of the Lee-Carter model with coding adjustments is rea-

sonable, particularly after 1981 which is the period of main interest for the analysis of

mortality differentials.

3.3.3 Evaluation of coding adjustments

In order to examine the performance of the fitted models with regards to the quality of

the coding adjustments, we plot in Figure 3.6 observed, fitted and code-adjusted cause-

specific age standardised death rates (ASDR) in England and Wales for the age range
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50-84. These ASDRs have been computed using the expression

ASDRt =

∑

x ωxµxt
∑

x ωx

where ωx represents the 1976 European Standard Population (Ahmad et al., 2001) and

µxt corresponds to

• dxt/ext , in the case of the observed ASDRs, with dxt being the observed number

of deaths from a given cause;

• exp

(

α̂x + β̂xκ̂t +
4
∑

i=1
δ̂

(i)
x f (i)(t)

)

in the case of the fitted ASDRs; and

• exp
(

α̂x + β̂xκ̂t

)

in the case of the code-adjusted ASDRs.

Referring to Figure 3.6 we highlight the following important features:

• The reassuringly close alignment of the fitted and observed ASDRs for all causes

and both genders, with only minor deviations for Digestive diseases in the most

recent and most distant years.

• The satisfactory adjustment for the marked trend breaks induced by the broad-

ening in the application of Rule 3 of the ICD-9 introduced in England after 1984.

The change in the application of Rule 3 meant that some “terminal conditions”

were not coded as the underlying cause of death if some other “major condition”

was reported in the death certificate (Rooney and Devis, 1996; Brock et al., 2006;

Goldacre et al., 2003). One of the main effects of this was a sudden fall in the

numbers of deaths from Respiratory diseases with Mental and Behavioural condi-

tions (among other diseases) being the other side of the change in the application

of Rule 3 and experiencing a sudden increase in the numbers of deaths (Rooney

and Devis, 1996; Griffiths and Rooney, 2006).

• The noticeable improvement in consistency observed in the adjusted trends for

Mental and Behavioural diseases. However, the nature of the Lee-Carter model

with code adjustments means that it can only correct for sustained jumps and

cannot remove gradual changes in coding as those that seem to have affected

Mental and Behavioural diseases in the period 1984-1993. In fact, Rooney and
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Devis (1996) and Griffiths and Rooney (2006) report that for this period there was

a gradual drift in certification from terms such as senile dementia, coded under

Mental and Behavioural causes, to more specific conditions such as Alzheimer’s

disease, coded under diseases of the nervous system which belong to the “Other”

group of causes used in this chapter (see Table 3.1).

• The possible “false-positive” trend adjustment performed by the model in 1994 for

Digestive diseases in men, where an apparent genuine change in trend may have

been mistakenly confused with a change in coding.

Overall, the proposed Lee-Carter model with cause of death coding adjustments performs

very well in recovering the underlying trend of mortality for the different causes of death.

This will be crucial for the satisfactory forecasting of these trends as performed in Section

3.3.6.

3.3.4 Historical cause-specific mortality patterns: England and Wales

1961-2010

Having seen that the Three-way Lee-Carter model with coding adjustments shows a

reasonable goodness-of-fit and performs a satisfactory adjustment for cause of death

coding changes, we now use this model to analyse the historical pattern of cause-specific

mortality for the period 1961-2010 in the England and Wales population and to analyse

the differentials in mortality across deprivation quintiles in England for the period 1981-

2007.

Figures 3.7 to 3.13 depict for the seven groups of causes of death the parameter estimates

of the Lee-Carter model with coding adjustments fitted to mortality data for men and

women in the England and Wales reference population. From these figures we note the

following important features:

• The approximately linear increase with age in log death rates captured by pa-

rameters αx for the three main causes Neoplasms, Circulatory and Respiratory

diseases. Due to the importance of these causes in the total number of deaths,

their age patterns determine the exponential growth of mortality with rising age

which characterises all-cause mortality.
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Figure 3.7: Fitted parameters for the Lee-Carter model with code adjustments fitted
to Circulatory causes of death in England for the period 1961-2010.
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Figure 3.8: Fitted parameters for the Lee-Carter model with code adjustments fitted
to Neoplasms in England for the period 1961-2010.

• The contrasting age patterns evidenced by the αx parameters in Mental and Be-

havioural causes and External causes, with death rates staying approximately con-

stant from age 50 to age 60 in men and increasing very slowly in women.

• The steady and significant decline in death rates from Circulatory diseases cap-

tured by the κt parameters, with mortality improvements peaking at age 65-69

as shown by the βx parameters (see Figure 3.7). This considerable reduction in

mortality has resulted in Circulatory causes passing from being the main cause of
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Figure 3.9: Fitted parameters for the Lee-Carter model with code adjustments fitted
to Respiratory diseases in England for the period 1961-2010.
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Figure 3.10: Fitted parameters for the Lee-Carter model with code adjustments fitted
to Digestive diseases in England for the period 1961-2010.

death in 1961 to being in 2010 the second cause of death after Neoplasms for both

sexes.

• The evident changes in trend in the κt parameters for Neoplasms, showing a no-

ticeable faster improvement of cancer mortality from 1993 onwards (see Figure

3.8). It is also worth noticing that while cancer mortality for men started to de-

cline in the late 1970s, for women the decline in cancer mortality was delayed until

the end of the 1980s. These gender differentials in cancer mortality can be partly

attributed to gender differences in smoking behaviour with cigarette consumption
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Figure 3.11: Fitted parameters for the Lee-Carter model with code adjustments fitted
to mental & behavioural diseases in England for the period 1961-2010.
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Figure 3.12: Fitted parameters for the Lee-Carter model with code adjustments fitted
to External causes of death in England for the period 1961-2010.

peaking in the 1950s for men and in the 1960s for women (Willets, 2004; Di Cesare

and Murphy, 2009).

• The contrasting trends by gender observed in κt for Respiratory diseases, with

men showing a steady decline in mortality while women show a stagnation of the

mortality rates (see Figure 3.9). These differentials in trends among men and

women can also be partly attributed to gender differences in smoking prevalence

trends and offer a possible explanation for the recent gender convergence in life

expectancy reported in Mayhew and Smith (2014).
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Figure 3.13: Fitted parameters for the Lee-Carter model with code adjustments fitted
to “Other” causes of death in England for the period 1961-2010.

• The sharp increase in mortality rates from Digestive causes after 1994 indicated

by the trends in κt for both genders (see Figure 3.10). As a result of this increase,

Digestive diseases now represent a significant proportion of the total death rates.

We note however that the increase of mortality rates from Digestive causes appears

to be reverting in the most recent years.

• The complex patterns observed in κt and βx for Mental and Behavioural causes (see

Figure 3.11). As pointed out by Griffiths and Rooney (2006), trends in mortality

from mental conditions have been strongly affected by changes in cause of death

coding rules; hence trends from these conditions need to be analysed with care.

For instance, as discussed before, the decline in mortality observed between 1984

and 1993 appears to be the result of a gradual transfer of deaths from dementia

to Alzheimer’s disease.

3.3.5 Historical cause-specific mortality differentials: England 1981-

2007

In the Three-Way Lee-Carter model we can assess level and trend differentials in mortal-

ity by examining parameters αxg and λg, respectively. Figure 3.14 plots the estimated

values of exp(αxg) for the different causes of death in the England deprivation subpopula-

tions. Recalling the discussion in Section 3.2.4 and since in we are using year 2010 as the
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Table 3.3: Relative mortality level differentials for the different causes of death be-
tween the most and least deprived quintiles of England (exp(αx,Q5)/exp(αx,Q1) ).

Men
50-54 55-59 60-64 65-69 70-74 75-79 80-84

Circulatory 3.21 3.25 2.96 2.68 2.29 1.87 1.49
Neoplasms 1.85 1.97 1.85 1.74 1.57 1.41 1.24

Respiratory 6.14 5.67 4.59 3.90 3.17 2.50 1.92
Digestive 6.54 5.09 3.66 2.73 1.99 1.71 1.36

Mental & Behavioural 4.75 3.19 1.74 1.38 1.22 1.06 1.00
External causes 2.22 2.15 2.13 2.01 1.80 1.63 1.49

Other 2.94 2.74 2.33 2.01 1.70 1.46 1.25

Women
50-54 55-59 60-64 65-69 70-74 75-79 80-84

Circulatory 4.05 4.12 3.71 3.07 2.42 1.81 1.41
Neoplasms 1.50 1.61 1.61 1.61 1.48 1.30 1.16

Respiratory 4.41 4.54 4.01 3.55 2.87 2.06 1.58
Digestive 3.82 3.18 2.67 2.27 1.88 1.69 1.37

Mental & Behavioural 3.20 2.23 1.96 1.30 1.33 1.23 1.13
External causes 1.73 1.66 1.64 1.60 1.54 1.42 1.28

Other 2.26 2.31 2.06 1.81 1.60 1.35 1.15

reference year in our modelling (i.e. κ2010 = 0), exp(αxg) can be interpreted as the esti-

mated percentage deviation in 2010 of mortality at age x in subpopulation g relative the

England and Wales reference population. Similarly, the values of exp(αx,Q5)/exp(αx,Q1) ,

which are reported in Table 3.3, represent the estimated mortality rate ratio at age x

between the most and least deprived quintiles of England. These quantities give an in-

dication of relative mortality differentials for the different causes of death. From Figure

3.14 and Table 3.3 we note the following:

• There is consistency in level differentials in mortality for all seven groups of causes,

with more deprived quintiles showing significantly higher death rates than less

deprived quintiles. However, these differentials show important variations across

causes, sexes and ages.

• Circulatory, Respiratory and Digestive causes show the most marked relative mor-

tality differentials while Neoplasms and External causes show the smallest differen-

tials across deprivation quintiles. In particular, the relative mortality differentials

for Respiratory and Digestive causes in the male population are substantial. For

example, men aged 50-54 in the most deprived quintile have for these two causes

of death more than six times the mortality of men aged 50-54 in the least deprived

quintile.

• In terms of age, there is a general decrease in relative mortality differentials as

people get older. For instance, men and women aged 50-54 in the most deprived
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Figure 3.14: Mortality level differentials for the different causes of death across de-
privation quintiles of England (exp(αxg))

quintile have, respectively, 3.21 and 4.05 higher mortality from Circulatory diseases

than persons of the same sex and age in the least deprived quintile. By contrast, at

age 80-84 the mortality ratio from Circulatory causes between the most deprived

quintile and the least deprived quintile reduces to 1.49 and 1.41 for men and

women, respectively.
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Table 3.4: Mortality trend differentials for the different causes of death for the de-
privation quintiles of England (λg). AI: average percentage annual improvement in

England and Wales.

Men
Cause λQ1 λQ2 λQ3 λQ4 λQ5 AI1981−2010 AI1994−2010

Circulatory 1.10 1.08 1.02 0.92 0.81 4.21 5.25
Neoplasms 0.82 0.90 0.94 0.96 0.97 1.42 1.96
Respiratory 1.09 1.06 0.98 0.84 0.77 2.62 2.10
Digestive 0.62 0.71 0.94 1.17 1.48 -0.56 -1.34
Mental & Behavioural 1.70 1.86 1.45 0.32 -0.09 -0.16 -1.22
External causes 1.08 1.07 1.02 0.94 0.76 1.29 0.69
Other 1.09 1.23 1.11 0.75 0.61 0.90 0.59

Women
Cause λQ1 λQ2 λQ3 λQ4 λQ5 AI1981−2010 AI1994−2010

Circulatory 1.09 1.08 0.99 0.92 0.85 4.26 5.35
Neoplasms 0.92 0.98 0.98 0.91 0.83 0.83 1.33
Respiratory 1.31 0.95 1.01 1.00 0.86 0.42 0.50
Digestive 0.31 0.80 0.93 1.37 1.72 -0.08 -0.86
Mental & Behavioural 0.71 0.45 0.85 1.46 1.50 -1.39 -1.94
External causes 1.00 0.97 1.02 0.95 0.96 2.44 0.79
Other 1.06 1.09 0.98 0.69 0.85 0.55 0.10

• In terms of gender, there are bigger mortality differences in men than in women for

all causes with the notable exception of Circulatory diseases, where women show

slightly higher differentials than men.

Figure 3.15 depicts 95% confidence intervals of parameters λg for the different causes

of deaths. The corresponding central estimates are reported in Table 3.4. Since the

interpretation of λg is closely linked to the direction and pace of mortality change for a

specific cause (see Section 3.2.4), Table 3.4 also includes average annual cause-specific

improvement rates in England and Wales for the periods 1981-2010 and 1994-2010.

This latter period is of interest as several causes of death seem to have experienced a

trend change after 1994. The average improvement (AI) rates have been computed as

AI1981−2010 = 1
k

× κ1981
2010−1981 and AI1994−2010 = 1

k
× κ1994

2010−1994 , where k = 7 is the number

of age bands used in the fitting of the models.

Figure 3.15 and Table 3.4 reveal the following in relation to mortality trend differentials

across deprivation quintiles of England:

• Trend differentials are not as clear and consistent as level differentials, with the

plots of λg showing a variety of patterns for the different causes of death.
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Figure 3.15: Mortality trend differentials for the different causes of death for the
deprivation quintiles of England (λg).

• For Circulatory causes, for instance, there is a clear socio-economic gradient in

mortality improvements for both genders, with least deprived quintiles experi-

encing significantly faster mortality improvements than most deprived quintiles.
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Since Circulatory diseases were the main cause of death over the 1981-2007 pe-

riod, improvement differentials from this cause are the main determinant of trend

differentials in all-cause mortality. Therefore, it is not surprising to see that the

magnitude of improvement differentials in mortality from Circulatory diseases is in

close agreement with the all-cause trend differentials across deprivations quintiles

reported in Chapter 2.

• In contrast, Neoplasms show less clear-cut mortality trend differences. Whilst the

least deprived quintile, Q1, has experienced the slowest cancer mortality improve-

ments in the male population, it is the most deprived quintile, Q5, which shows the

slowest improvements among women. This suggests that relative differentials in

cancer mortality are decreasing for males, but are widening, although very weakly,

for females.

• The contrasting patterns in mortality improvement differences across genders for

Respiratory diseases is noteworthy. While the mortality improvement gradient

among men is very clear with men in the most deprived quintile of England showing

a significantly slower reduction in mortality from Respiratory causes than men in

less deprived areas, the differences in mortality improvements for the different

deprivation quintiles of the female population are not statistically significant (i.e.

error bars for λg crossing 1).

• The marked increase in mortality from Digestive causes seen by both sexes after

1994 has been accompanied by very marked socio-economic differences, with mor-

tality for the most deprived quintiles worsening at a much faster pace than for the

least deprived quintiles. This mortality improvement gradient is substantial. For

instance, mortality for the most deprived quintile has worsened 2.4 and 5.5 times

faster than in the least deprived quintile for men and women, respectively. We

note, however, that these stark trend differences also mean that Digestive diseases

have the highest potential for reducing inequalities: if the overall increase in di-

gestive mortality starts to reverse as seen in the most recent years, it will be the

most deprived parts of England which will benefit the most from this mortality

reduction.
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• There appears to be a very pronounced mortality trend gradient for Mental and

Behavioural causes, but with opposite directions for men and women. While rela-

tive mortality differences in the male population seem to be reducing with men in

most deprived areas worsening at a slower pace than men in least deprived areas,

relative differences in the female population appear to be widening with women

in most deprived areas worsening at a faster pace than women in least deprived

areas. These apparent strong differentials need to be analysed carefully though.

As discussed before, mortality trends for Mental conditions are complex due to

the important impact that changes in cause of death coding have had on these

diseases. Moreover, the observed big relative differences in improvements do not

necessarily imply big differences in absolute terms because the increases of mor-

tality rates from Mental and Behavioural causes seems to be decelerating in recent

years as indicated by κt in Figure 3.11.

• Improvement differences in mortality are in general less clear in women than in

men. In the male population all the seven groups of causes of death show statis-

tically significant improvement differences. By contrast, in the female population

Neoplasms, Respiratory diseases, External causes and “Other” causes of death

show non-significant improvement differences (i.e. error bars for λg crossing 1).

This in agreement with the less clear differences in all-cause mortality by depriva-

tion observed in Chapter 2 for the English female population.

• The very small differences between the λg values for two least deprived quintiles, Q1

and Q2, for most causes of death indicate that these two quintiles have experienced

similar mortality improvements. This fact was previously noticed in Chapter 2

where it was found that improvement differences in all-cause mortality for these

two quintiles over the 1981-2007 period were negligible.

3.3.6 Cause-specific mortality differential projections: England 2008-

2030

In order to project cause-specific mortality rates and examine the possible trend of

mortality differentials, we use ARIMA models to extrapolate the time index κt for

each cause of death. Table 3.5 specifies the ARIMA(p, d, q) model used for each of

the seven causes of death. These specifications have been selected among all possible
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Table 3.5: ARIMA model used to forecast the time index κt for the different causes
of death.

ICD Chapter Men Women

Circulatory ARIMA(0, 2, 2) ARIMA(2, 2, 1)

Neoplasms ARIMA(1, 2, 1) ARIMA(1, 2, 1)

Respiratory ARIMA(2, 1, 0) with drift ARIMA(2, 1, 2) with drift

Digestive ARIMA(0, 1, 0) ARIMA(0, 1, 0)

Mental Behavioural ARIMA(0, 1, 1) with drift ARIMA(0, 1, 0) with drift

External ARIMA(1, 1, 0) with drift ARIMA(0, 1, 0) with drift

Other ARIMA(0, 2, 2) ARIMA(0, 2, 2)

combinations of p, d, q ∈ {0, 1, 2} so to optimise the BIC of the model coupled with some

subjective judgement to ensure consistence between genders. In particular, even though

an ARIMA(0, 2, 1) was the optimal model for Digestive causes in the male population,

we have decided to use instead an ARIMA(0, 1, 0), the optimal model of order d = 1

of integration, so that the models for both sexes have the same order of differencing.

For similar reasons, we have chosen to use an ARIMA(0, 2, 2) to forecast mortality from

“Other” causes of death in the female position as opposed to the ARIMA(0, 1, 0) with

drift dictated by the BIC criterion.

Figures 3.16 and 3.17 show fancharts depicting 50%, 80% and 95% prediction intervals

of age-specific mortality rates for the different causes of death at selected ages in the

England and Wales male and female reference populations. These figures show that fore-

casts for most causes of death an age groups look visually consistent with the historical

evolution of mortality, both in terms of central projections and of forecasted variabil-

ity. A noticeable exception is mortality from Digestive diseases for men aged 75-79 and

women aged 65-69, where the forecasted levels of uncertainty look very low relative to

the historical variability.
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Figure 3.16: Fan charts for mortality rates µxt at selected ages for the different causes of death in the England and Wales male population. The
dots show historical mortality rates for 1961-2010. Shades in the fan represent prediction intervals at the 50%, 80% and 95% level.
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Figure 3.17: Fan charts for mortality rates µxt at selected ages for the different causes of death in the England and Wales female population. The
dots show historical mortality rates for 1961-2010. Shades in the fan represent prediction intervals at the 50%, 80% and 95% level.
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Figure 3.18: Time series of fitted and forecasted cause-specific mortality rates µxtg

for the deprivation subpopulation of England males.The dots show observed rates for
the period 1981-2007.
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Figure 3.19: Time series of fitted and forecasted cause-specific mortality rates µxtg

for the deprivation subpopulation of England females.The dots show observed rates for
the period 1981-2007.
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The exceptional performance of the Lee-Carter model with code adjustments in cap-

turing the variety of mortality trends observed among the different causes of death is

noteworthy, especially in light of the work of Di Cesare and Murphy (2009) who suggest

that different modelling approaches may be required for different causes of death. In par-

ticular, Di Cesare and Murphy (2009) have found that the traditional Lee-Carter model

was unable to capture the inverted U-Shape observed in cancer mortality. The contrast-

ing good performance of the Lee-Carter with code adjustments in this case is explained

by an unexpected side effect of the inclusion of the coding adjustments parameters, δ
(i)
x ,

which are capturing some of the cohort effects inherent to cancer mortality.

Figures 3.18 and 3.19 depict for men and women in England, respectively, the project

evolution of deprivation-specific mortality rates at selected ages for the the different

causes of death. Both figures clearly show that the Three-way Lee-Carter model with

code-adjustments is in general able to fit and forecast satisfactorily the mortality trends

across deprivation subgroups and causes of death. We note, however, that Mental and

Behavioural causes are a noticeable exception with the forecasted deprivation-specific

mortality trends looking clearly implausible.

In order to examine the possible future evolution of mortality differentials, we plot

in Figure 3.20 historical trends and projections of the relative age-specific mortality

differences between the most and least deprived quintiles, µx,t,Q5/µx,t,Q1 , for the seven

groups of causes of death. Matching absolute differences, µx,t,Q5 −µx,t,Q1, are plotted in

Figure 3.21. These two figures also present differences in cause-specific ASDRs (thicker

black lines), whose values for selected years are tabulated in Tables 3.6 and 3.7 for relative

and absolute differences, respectively. In Figures 3.20 and 3.21 we can distinguish four

main patterns in the trends of mortality differentials among the different causes:

• First, Circulatory and Respiratory diseases show a reduction of absolute mortal-

ity differentials while at the same time, due to the faster mortality improvement

experienced by the least deprived subpopulation, experiencing a widening of mor-

tality differentials in relative terms. For instance, the ASDR for Circulatory causes

among men in the most deprived quintile passed from being 1.37 times the ASDR

of men in the least deprived quintile in 1981, to being 1.74 times in 2005. In ad-

dition, if this widening were to continue at the same pace observed between 1981

and 2007, the ratio between the ASDR from Circulatory causes among men in the
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Figure 3.20: Time series of cause-specific relative mortality differentials between the
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observed differentials and values post 2007 are projected differentials. The thicker black

lines represent differentials in age standardised death rates.
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most and least deprived quintiles of the English population. Values prior to 2007 are
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Table 3.6: Ratio of age standardised mortality rates between the most and least
deprived populations for the different causes of death. Values up to 2005 are observed

ratios and post 2005 are projected ratios.

Men
1981 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030

Circulatory 1.37 1.46 1.50 1.53 1.57 1.74 1.90 2.05 2.20 2.34 2.48
Neoplasms 1.59 1.60 1.57 1.53 1.49 1.47 1.47 1.45 1.43 1.41 1.40

Respiratory 1.93 2.28 2.24 2.17 2.03 2.57 2.43 2.49 2.56 2.63 2.70
Digestive 1.70 1.63 1.79 1.68 2.01 2.30 2.11 2.13 2.15 2.17 2.20

Mental & Behavioural 0.99 1.05 1.12 1.38 1.31 1.71 1.10 0.95 0.83 0.72 0.63
External causes 1.57 1.74 1.68 1.57 1.58 1.86 1.78 1.84 1.90 1.96 2.02

Other 1.37 1.41 1.39 1.36 1.40 1.56 1.52 1.54 1.57 1.58 1.57

Women
1981 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030

Circulatory 1.41 1.47 1.47 1.51 1.54 1.68 1.80 1.91 2.03 2.14 2.25
Neoplasms 1.32 1.38 1.33 1.39 1.35 1.43 1.37 1.37 1.37 1.37 1.37

Respiratory 1.67 1.90 2.04 1.83 1.93 2.42 2.08 2.10 2.14 2.17 2.20
Digestive 1.56 1.64 1.53 1.73 1.69 1.88 1.77 1.79 1.81 1.82 1.84

Mental & Behavioural 1.12 0.83 0.86 1.09 0.85 1.17 1.19 1.32 1.47 1.64 1.82
External causes 1.56 1.49 1.35 1.36 1.40 1.48 1.44 1.45 1.46 1.46 1.47

Other 1.42 1.40 1.35 1.26 1.31 1.51 1.38 1.38 1.39 1.39 1.39

Table 3.7: Absolute difference in age standardised mortality rates between the most
and least deprived populations for the different causes of death. Values are reported in
deaths per 1000 persons. Values up to 2005 are observed differences and post 2005 are

projected differences..

Men
1981 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030

Circulatory 7.88 9.14 8.32 7.92 6.68 6.28 5.63 4.81 4.13 3.53 3.02
Neoplasms 5.69 5.99 5.55 5.14 4.20 3.81 3.61 3.23 2.90 2.60 2.35

Respiratory 5.57 5.08 4.08 3.85 3.26 3.88 3.22 3.03 2.83 2.64 2.47
Digestive 0.64 0.63 0.71 0.63 0.89 1.10 0.99 1.00 1.02 1.04 1.06

Mental & Behavioural -0.00 0.03 0.08 0.15 0.12 0.22 0.04 -0.02 -0.10 -0.19 -0.28
External causes 0.39 0.41 0.36 0.25 0.26 0.37 0.33 0.32 0.31 0.30 0.29

Other 0.68 1.00 0.90 0.80 0.82 1.09 0.98 0.98 0.98 0.98 0.95

Women
1981 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030

Circulatory 5.28 5.44 4.66 4.50 3.82 3.62 3.01 2.48 2.04 1.68 1.38
Neoplasms 1.89 2.27 2.03 2.34 2.03 2.32 1.97 1.89 1.82 1.75 1.68

Respiratory 1.94 1.61 1.64 1.63 1.85 2.46 1.69 1.66 1.60 1.57 1.52
Digestive 0.43 0.49 0.40 0.51 0.55 0.68 0.59 0.60 0.61 0.62 0.64

Mental & Behavioural 0.02 -0.11 -0.09 0.03 -0.07 0.07 0.09 0.17 0.27 0.39 0.54
External causes 0.27 0.22 0.12 0.11 0.12 0.15 0.12 0.11 0.10 0.09 0.08

Other 0.59 0.76 0.64 0.47 0.53 0.86 0.62 0.62 0.61 0.60 0.59

most deprived quintile and the least deprived quintile could reach a value of 2.48

in 2030.

• Second, Neoplasms show a decrease of mortality differentials among men both in

absolute and relative terms and a fairly constant evolution of both relative and

absolute differentials among women. For example, as a result of the faster mortality

improvements in cancer mortality seen by the the most deprived quintile of the

English male population, the relative difference in the ASDR among men for this
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cause decreased from 1.59 in 1981 to 1.47 in 2005 and is forecasted to continue

reducing to 1.4 in 2030.

• Third, Digestive and “Other” causes of death experienced a widening of differen-

tials both in absolute and relative terms over the 1992-2007 period, but with these

differentials forecasted to stay constant around their 2010 levels. For Digestive

causes in particular, the increase in differentials was very significant. For instance,

at age 60-64 the ratio of mortality from Digestive causes among the men in the

most and least deprived areas of England increased steadily from 2.23 in 1992 to a

maximum of 4.74 in 2007 and is forecasted to stay around 3.66 from 2010 onwards.

• Finally, Mental and Behavioural diseases and External causes show very erratic

historical trends in differentials, partly due to the fact that these two causes of

death account for the smallest proportion of the total number of deaths for people

over age 50.

3.4 Discussion

In this chapter we have introduced new Lee-Carter based techniques for the modelling

of mortality by cause of death and socio-economic stratification. An application to

mortality data for deprivation subpopulations in England showed that these modelling

techniques offer a simple, yet effective, approach for the assessment of the magnitude of

historical mortality differentials for the main causes of death and for the projection of

the possible future evolution of these differentials. Key to the success of our approach

was the introduction of new modelling tools to control for data production changes in

cause of death data which, if not taken into account appropriately, could hinder the

validity of any analysis of trends in cause-specific mortality.

The empirical part of this chapter revealed a clear association between area deprivation

and mortality rates, with people living in more deprived areas of England consistently

having higher mortality rates for the leading causes of death than those living in less

deprived areas. The mortality differentials shown in this study are substantial although

with varying magnitude across causes, sexes and ages. Circulatory, Respiratory and

Digestive causes of death showed the highest differences over the 1981-2007 period of

study, with mortality in the most deprived quintile for some ages and causes of death
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being more than six times the mortality rates of the least deprived quintile. Neoplasms

and External causes, by contrast, showed the smallest relative mortality differences.

In Chapter 2 it was found that all-cause relative mortality differentials in England by

deprivation widened over the 1981-2007 period, mainly due to the slower mortality im-

provements experienced by the most deprived socio-economic subgroups. However, this

present study shows a variety of patterns in the evolution of relative differentials by

cause of death. While relative differentials for Circulatory, Respiratory, Digestive and

“Other” causes widened for both sexes over the 1981-2007 period, differentials for Neo-

plasms narrowed slightly for men and remained mainly unchanged for women. Moreover,

whereas the increase of relative differentials for Circulatory, Respiratory and “Other”

causes was associated with the faster improvement of mortality amongst the least de-

prived quintiles, for Digestive causes the widening of differentials was due to a significant

increase of mortality amongst the most deprived quintiles of England. Digestive causes,

however, offer the greatest potential for reduction in mortality differentials and greater

attention needs to be given to alcohol consumption which is a predominant factor in the

mortality increase seen for this cause (Ashton et al., 2010).

With the noticeable exception of Circulatory diseases, we have also found that mortality

differentials are higher among men than among women. Furthermore, clearer trend

mortality differentials were observed in the male population. These results are consistent

with previous studies using area-based deprivation measures in the UK (Romeri et al.,

2006; Villegas and Haberman, 2014) and other developed countries (Singh, 2003; Turrell

and Mathers, 2001; Windenberger et al., 2011) and with other UK (White et al., 2003)

and international (Saurel-Cubizolles et al., 2009) studies using alternative markers of

socio-economic conditions (e.g. occupation and educational attainment).

There are a number of possible limitations with the modelling approach introduced in

this chapter. The first and most important one is that, both in the fitting and forecasting

of the models, we have assumed independence among the different causes of death. This

is clearly an unrealistic assumption as, for instance, the same risk factors can affect

several causes at the same time. An alternative approach to allow for the dependence

between the causes of death is offered by Vector Autoregression (VAR) and Vector Error

Correction Models (VECMs) as suggested by Arnold (-Gaille) and Sherris (2013, 2015).

Hence, one could use such multivariate time series techniques to model and forecast
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simultaneously the time series indices, κt, for the different causes of death, as opposed

to the independent univariate ARIMA models used in this chapter.

Second, our modelling approach is an age-period model which assumes that the mortality

evolution for each cause of death is driven exclusively by a single period index, κt.

Although this has proven to be sufficient for the restricted age range we have considered

in this study, additional period factors may be required if looking at a wider age range

encompassing younger ages whose mortality change may be driven by different risk

factors. Furthermore, some causes of death characterised by clear cohort effects may

require the inclusion of a cohort term and could be better modelled using an age-period-

cohort approach (Di Cesare and Murphy, 2009). We note, however, that in spite of the

lack of an explicit cohort term, the Lee-Carter model with coding adjustment showed a

reasonable goodness-of-fit and forecasting performance for Neoplasms and Circulatory

diseases, causes of death for which Willets (2004) has reported clear cohort effects among

the England and Wales population. The surprising good performance of the Lee-Carter

with code adjustments when applied to these two groups of causes is explained by an

unexpected side effect of the inclusion of the coding adjustments parameters, δ
(i)
x , which

seem to be partially capturing some of the cohort effects associated to these causes of

death. These encouraging results also suggests that the piece-wise technique we have

introduced to account for coding adjustments may be useful in other settings not related

to cause-specific mortality, such as when modelling all-cause mortality in populations

which have undergone structural changes in their mortality trend (see e.g. Renshaw and

Haberman (2003) and van Berkum et al. (2014)).

Finally, the Three-way Lee-Carter model used to capture socio-economic differences

in mortality assumes, for the sake of parsimony, that mortality trend differentials are

constant across ages. This is despite the fact that trend differentials may show important

variations by age as reported, for instance, in Bajekal et al. (2013) for coronary heart

diseases. Hence, a subject of further investigation is the development of modelling

approaches which allow for a more complex age-structure of mortality trend differentials.

We also recognise additional limitations of our study stemming from the dataset used in

the analysis of socio-economic difference in cause-specific mortality in England. First,

we have used an ecological measure of socio-economic deprivation instead of individual

level socio-economic measures. This leads to the usual problem of any ecological study
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whereby outcomes obtained at the group level do not necessarily apply at the individual

level (Greenland, 2001). This ecological design also limits the ability of associating a

causal pathway between socio-economic conditions and mortality, for which individual

level information would be required.

Second, we note that our data measure mortality rates for those living in a particular

area at a particular point in time, ignoring any past exposure to risk factors whilst

living in other areas. It is plausible that healthier people will tend to migrate from more

deprived areas to less deprived ones and that less healthy people are less likely to move,

resulting in a potential bias towards higher mortality inequalities (Norman et al., 2005).

Finally, our analysis is based on quintile classification of LSOAs using the IMD 2007

which refers to area indicators in 2005. Thus, we have assumed time stability in the

membership of the LSOAs in the deprivation subgroups. However, Norman (2009) and

Lu et al. (2014) have shown that the majority of small areas in England have remained

in the same deprivation quintile over the past three decades.
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4
A Comparative Study of Two-population

Models for the Assessment of Basis Risk

in Longevity Hedges

The majority of this chapter has been carried out within the framework of a joint research

project between Cass Business School and Hymans Robertson LLP. This project was

commissioned by the Longevity Basis Risk Working Group of the Institute & Faculty of

Actuaries and the Life & Longevity Markets Association with the objective of developing

a practical methodology for assessing basis risk for longevity transactions. Therefore,

part of this chapter draws from the report documenting this research. The full reference

of this report follows:

– Haberman, S., Kaishev, V. K., Millossovich, P., Villegas, A. M., Baxter, S., Gaches,

A., Gunnlaugsson, S., Sison, M., 2014. Longevity Basis Risk: A methodology for

assessing basis risk. Institute and Faculty of Actuaries Sessional Research Paper.
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A Comparative Study of Two-population Models for the

Assessment of Basis Risk in Longevity Hedges

Andrés M. Villegas, Steven Haberman, Vladimir Kaishev, Pietro Millossovich
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Abstract

Longevity swaps have been one of the major success stories of pension scheme de-risking

in recent years. However, with some few exceptions, all of the transactions to date

have been bespoke longevity swaps based upon the mortality experience of a portfolio

of named lives. In order for this market to start to meet its true potential, solutions

will ultimately be needed that provide protection for all types of members, are cost

effective for large and smaller schemes, are tradable, and enable access to the wider

capital markets. Index-based solutions have the potential to meet this need; however

concerns remain with these solutions. In particular, the lack of a well-established

approach for assessing the basis risk emerging from the potential mismatch between

the underlying forces of mortality for the index reference portfolio and the pension

fund/annuity book being hedged is the stand out issue that has, to date, prevented

many schemes progressing their consideration of index-based solutions. Two-population

stochastic mortality models offer an alternative to overcome this obstacle as they allow

market participants to compare and project the mortality experience for the reference

and target populations and thus assess the amount of demographic basis risk involved in

an index-based longevity hedge. In this chapter, we systematically assess the suitability

of several multi-population stochastic mortality models for assessing basis risks and

provide guidelines on how to use these models in practical situations, paying particular

attention to the data requirements for the appropriate calibration and forecasting of

such models.

Keywords: Two-population model; basis risk; mortality-linked derivatives

113



Chapter 4. A Comparative Study of Two-population Models for Basis Risk

4.1 Introduction

Recent years have seen a huge growth in longevity risk transfer, both in the insurer

to reinsurer market, and from pension schemes to the insurance market. For example

during 2014 in the UK £36.6bn of longevity risk liabilities were transferred from pension

schemes to insurers and reinsurers via buy-ins, buy-outs and longevity swaps. Of this,

£25.4bn related to longevity only transactions (longevity swaps), more than double the

volume written in the preceding 3 years (Hymans Robertson LLP, 2015). An effective,

growing market with sufficient capacity to meet demand would be to the benefit of all

participants, whether to enable business to be done, or to manage risk.

To date most transactions have been “bespoke” deals, with the payouts linked directly

to the actual experience or lifespans of the individuals being covered. But index-based

solutions – where the payouts are linked to a longevity index or metric based on an ex-

ternal reference population – are possible. They have the potential to provide important

benefits: lower costs, faster execution, potential for liquidity, and greater transparency.

In its simplest form an index based longevity swap involves a payment to the pension

scheme or insurer that is based on the longevity experience of a reference index. An

index-based swap provides a means to obtain (partial) protection from longevity risk

both for pensioners but also deferred pensioners who are generally not covered by the

“bespoke” transactions. In the case of life insurers they offer a potentially flexible way

to manage exposure to longevity risk, or to facilitate a more capitally optimal balance

between longevity and mortality risk. However, index-based swaps do not provide a

perfect risk reduction due to the presence of basis risk, which arises from the differences

in the mortality experiences of the reference population of the index and of the target

population being hedged. As a result, the index based payments will not exactly match

the actual annuity payments being made by the insurer or pension scheme.

There are three primary sources of basis risk driving the mismatch between the insurer

or pension scheme liabilities and the longevity index hedge (LLMA, 2012):

• Structuring risk due to the payoff of the hedging instruments being different to

that of the portfolio: for example the hedging instrument making annual payments
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whereas the portfolio pays annuities or pensions monthly, or the hedge may be of

shorter duration than the liabilities.

• Sampling risk arising from the random outcomes of the individual lives within the

portfolio and the index population meaning the actual mortality experienced by

the two populations will not be the same, other than by chance.

• Demographic risk owing to demographic and socio-economic differences in the com-

position of the actual portfolio being hedged and the index population referenced

in the hedge, leading to different underlying mortality rates now – and in the

future.

Well-established approaches for modelling the first two of these exist. Structuring risk

can be assessed by simulating the cashflows under the portfolio and the payoffs under

the instrument, whilst sampling risk can be modelled by simulating the outcomes for

the respective populations.

In contrast there is no well-established approach for assessing demographic basis risk.

Yet it is this risk which worries (re)insurers and pension schemes when they consider en-

tering index-based longevity transactions (LLMA, 2012). The absence of an appropriate

approach for quantifying such risk makes it very difficult to assess whether such a trans-

action looks good value for money, or what impact the transaction would have on the

insurer’s or pension scheme’s overall risk profile and hence capital/funding requirements.

In the academic literature there have been a few contributions setting out possible ap-

proaches for quantifying longevity basis risk. Coughlan et al. (2011) propose a compre-

hensive framework for assessing the effectiveness of a longevity hedge, in which the first

and key step entails a careful analysis of the historical experiences of the reference and

target population to get an informed understanding of the mortality differences between

the two populations. Li and Hardy (2011) investigate the use of a number of multipop-

ulation extension of the Lee-Carter model (Lee and Carter, 1992) for the assessment

of basis risk and use the Augmented Common Factor model of Li and Lee (2005) to

quantify the hedge effectiveness of an index-based q-forward longevity hedge. Li et al.

(2015) propose a systematic approach for the construction of two-population mortality

models that can be used for the quantification of the population basis risk in a standard-

ised longevity hedge. In addition, recent years have seen a boom in the actuarial and
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demographic literature looking at the modelling of mortality in two (or more) related

populations (e.g. Li and Lee (2005); Jarner and Kryger (2011); Plat (2009b); Cairns

et al. (2011a); Dowd et al. (2011)). These two-population models, although not always

proposed with the specific aim of assessing longevity basis risk, have the potential for

allowing market participants to compare and project the mortality experience for the

reference and target populations and thus assess the amount of demographic basis risk

involved in an index-based longevity hedge. However, often the portfolio experience

data will be sparse posing a challenge for the accurate calibration and projection of the

two-population model.

In light of the increasing attention that two(multi)-population mortality models are

receiving and their potential for assessing the basis risk and hedge effectiveness of stan-

dardised longevity transactions, in this chapter we aim to systematically assess the

suitability for assessing basis risks of existing multipopulation mortality models and

provide guidelines on the use of these models in practical situations. The results from

these investigations set the theoretical grounds for the longevity basis risk assessment

methodology described in Haberman et al. (2014b,a).

In this chapter we proceed as follows. In Section 4.2 we introduce our notation. In

Section 4.3 we provide an overview of the multipopulation mortality models that have

been proposed in the literature. Then, to facilitate the comparison of models, we discuss

in Section 4.4 a general modelling framework under which most two-population mortality

models can be accommodated. In Section 4.5 we draw from the literature comparing

single population mortality models to introduce a number of criteria that a good and

practical two-population model for basis risk assessment should satisfy. We use these

criteria in Section 4.6 to systematically evaluate the appropriateness of the possible

two-population models for basis risk assessment. First, in Section 4.6.1, we evaluate the

models against those criteria which are theoretical properties of a model and can be

evaluated without reference to a specific dataset. Then, in Section 4.6.2, we focus on

those criteria which can only be evaluated after a model has been fitted to data. This

systematic evaluation of the models will allow us to identify the main features of a good

model for basis risk assessment and discuss the data requirements for the appropriate

calibration and forecasting of such a model. Having identified some reasonable models

for basis risk assessment, we examine in Section 4.7 the performance of these model

in some illustrative hedge-effectiveness evaluation exercises, paying particular attention
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to the impact that different volumes of data may have on the assessment of basis risk.

Finally, we conclude in Section 4.8 with a discussion of our main findings and future

areas of research.

4.2 Notation

We denote by R the reference population backing the hedging instrument and by B the

book population whose longevity risk is to be hedged. We assume that the following

data are available. For the reference population,

• DR
xt number of deaths aged x last birthday in calendar year t.

• ER
xt initial exposed to risk for age x and calendar year t.

The corresponding 1-year death rate for an individual in the reference population aged

x and in calendar year t, denoted qR
xt, can be estimated as q̂R

xt = DR
xt

/

ER
xt . Simi-

larly, the corresponding quantities for the book population are denoted DB
xt, E

B
xt and

q̂B
xt = DB

xt

/

EB
xt . We assume that these data are available for a given set of ages and

given numbers of years that can differ in the reference and the book. More precisely,

we assume that DR
xt, E

R
xt are available for consecutive ages x = xR

1 , . . . , x
R
kR

and con-

secutive calendar years t = tR1 , . . . , t
R
nR

, while in the book they are available for ages

x = xB
1 , . . . , x

B
kB

and calendar years t = tB1 , . . . , t
B
nB

. Typically, data for the reference

population will be available over a longer horizon than in the book (i.e. tR1 ≤ tB1 ,

tRnR
≥ tBnB

) and the ages available within the book may be a subset of those available in

the reference (i.e. xR
1 ≤ xB

1 , xR
kR

≥ xB
kB

).

4.3 Overview of available two-population mortality models

In order to be able to assess basis risk, we need a model that is able to capture the

mortality trends in the reference population backing the hedging instrument and in the

book population whose risk is to be hedged. That is to find a suitable two-population

model for qR
xt and qB

xt which produces consistent stochastic forecasts of future mortality.
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Figure 4.1: Overview of the multipopulation mortality modelling literature.
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Many models have been proposed in the literature to represent the mortality evolution

of two or more related populations. The majority of such models extend known single

population models by specifying the correlation and interaction between the involved

populations. Figure 4.1 contains a schematic representation of the multi-population

models currently available in the published literature, broadly grouped according to

three main categories concerning the single population model they extend.

Although most of the academic contributions to the modelling of multi-populations are

fairly recent, the first ideas go back to the seminal paper by Carter and Lee (1992),

which suggested three possible ways of extending their single population model (Lee

and Carter, 1992) in order to forecast differentials in US mortality between men and

women. The first and simplest approach suggested by Carter and Lee (1992) is to

use independent Lee-Carter models for each population, and, if desired, to study in

a later stage the dependence between the population-specific period effects. A second

approach, the Joint-κ model, assumes that a single period component κt drives the

mortality change for all the populations. The third approach estimates the populations

jointly using co-integration techniques.

Under the Joint-κ model the overall level of mortality is assumed to be common to all

of the populations, but the age-specific mortality pattern and the age-specific responses

to changes in the level of mortality are population-specific. Formally, the Joint-κ model

assumes that the central death rate at time t for age x in population i, mi
xt, is given by

logmi
xt = αi

x + βi
xκt (4.1)

Delwarde et al. (2006) have implemented a slightly modified version of this model in the

analysis of the patterns of mortality decline in five developed countries, while Wilmoth

and Valkonen (2001) have considered a similar model in order to describe mortality

differentials across socio-economic groups within a country.

Russolillo et al. (2011) have proposed a three-way extension of the Lee-Carter model

to deal with mortality data disaggregated according to a third criterion (e.g. gender,

country or ethnicity) besides age and time. The proposed model, which can be thought

of as a restricted version of the Joint-κ model, is given by:

logmi
xt = αi

x + βxλ
iκt (4.2)
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where λi captures the variability in mortality improvements across populations.

A related modification of the Lee-Carter model was introduced by Li and Lee (2005) in

the so-called Common Factor model. As compared to the Joint-κ model, the Common

Factor model assumes that βi
x = βx, that is

logmi
xt = αi

x + βxκt (4.3)

Butt and Haberman (2009) consider a restricted version of (4.3), named the stratified

Lee-Carter model, in which the population-specific effects are additive and constant

across ages, i.e., αi
x = αx + αi for all x and all i. This same structure has been

employed successfully by Debón et al. (2011) in the modelling of mortality in Spanish

regions.

The structure of the Common Factor model implies the same mortality improvements

for all population at all times. However, this is an unrealistic assumption for most

datasets. To tackle this problem, Li and Lee (2005) add a population specific factor to

equation (4.3), obtaining the Augmented Common Factor model:

logmi
xt = αi

x + βxκt + βi
xκ

i
t

where the term βi
xκ

i
t captures the deviations of the rate of mortality change of popu-

lation i from the long-term trend in mortality change implied by the Common Factor,

βxκt. In order to avoid divergence in the projected mortality mortality the κi
t factors are

assumed to be stationary processes such as a first order autoregressive process (AR(1)).

Under this assumption the mortality rates of the different populations may wander apart

in the short and medium terms, but tend to converge in the long-run. The Augmented

Common Factor has spawned several variants and extensions. Hyndman et al. (2013)

have introduced the product-ratio method which extends the Augmented Common Fac-

tor model by adopting a functional data approach and allowing more than one period

index for the modelling of both the common factor and of the population-specific factors.

Li (2012), who also considers multiple period indexes, uses a Poisson setting to estimate

the parameters of the Augmented Common Factor models instead of the singular value

decomposition approach originally employed by Li and Lee (2005). Recently, Yang et al.
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(2014) have extended the Poisson Augmented Common Factor to allow for possible co-

hort effects. Villegas and Haberman (2014) have considered a similar cohort variant of

the Augmented Common Factor for the purpose of studying socio-economic differences

in mortality.

Li and Hardy (2011) have investigated the performance of several multipopulation ex-

tension of the Lee-Carter model for the purpose of measuring the basis risk implied in

standardised longevity hedges. Specifically, they compare the independent modelling

approach, the Joint-κ model, the co-integrated Lee-Carter, the Common Factor model,

and the Augmented Common Factor model. In an application to data from the female

populations of Canada and US, Li and Hardy (2011) conclude that the Augmented Com-

mon Factor model has the best performance in terms of historical goodness of fit and

forecasting performance.

An important contribution of Li and Hardy (2011) is the elaboration of the use of co-

integration as suggested by Carter and Lee (1992). In the two-population version of the

co-integrated Lee-Carter model two independent single population Lee-Carter models

are first fitted to each of the populations,

logmi
xt = αi

x + βi
xκ

i
t, i = 1, 2, (4.4)

and then the period effects of the populations, κ1
t and κ2

t , are modelled jointly as a co-

integrated bivariate process, assuming the existence of a common stochastic long-term

trend linking the mortality of the two populations. In the same vein, Yang and Wang

(2013) fit independent single population Lee-Carter models to multiple populations and

then model simultaneously the period effects of the different populations using a Vector

Error Correction Model (VECM). In order to impose further consistency in the forecast

of the two-populations, Zhou et al. (2014) assume in (4.4) that both population share

the same age-sensitivity term, i.e. βi
x = βx. For modelling the period indexes κ1

t and κ2
t ,

Zhou et al. (2014) consider three methods: a random walk with drift for κ1
t plus an AR(1)

for κ2
t − κ1

t (abbreviated RWAR by the authors), a vector autoregressive model (VAR);

and a VECM. Similarly to Zhou et al. (2014), Kleinow (2015) has proposed a multiple

population Common-Age-Effect model in which the age-sensitivity terms (age-effects)

are common to all the populations.
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In two closely linked studies looking at the mortality dynamics of a pair of related

populations, Cairns et al. (2011a) and Dowd et al. (2011) have proposed the use of a

two-population version of the Age-Period-Cohort (APC) model:

logmi
xt = αi

x + κi
t + γi

t−x, i = 1, 2 (4.5)

In both studies, the spreads between the state variables underlying the mortality models

of each population are modelled as mean-reverting processes (e.g. an AR(1)) allowing

different short-run trends in the mortality rates, but parallel long-run improvements.

Cairns et al. (2011a) employ a Bayesian framework permitting a single stage estimation

of the unobservable state variables and the parameters of the stochastic process driving

them. Dowd et al. (2011) use a planetary analogy in which the mortality of the two

populations are attracted to each other by a gravitational force dependent on the relative

size of the populations. Although both papers use the APC model as an illustrating

example, the proposed methodologies can be extended to other stochastic mortality

models.

Another alternative for modelling multi-population mortality is to extend the widely

used single-population Cairns-Blake-Dowd (CBD) model of mortality (Cairns et al.,

2006). This approach has recently been considered by Li et al. (2015) who introduce

two-population versions of the CBD model and its variants. For instance, in a full two-

population version of the M7 model (the CBD model with cohort and quadratic effects

proposed in Cairns et al. (2009)), the one-year death rate at for a person aged x at time

t in population i, qi
xt, is given by:

logit qi
xt = κ

(i,1)
t + (x− x̄)κ

(i,2)
t +

(

(x− x̄)2 − σ̂2
x

)

κ
(i,3)
t + γi

t−x, i = 1, 2, (4.6)

where x̄ is the average age in the data and σ̂2
x is the average value of (x − x̄)2. Li

et al. (2015) also set out a systematic top-down procedure to evaluate if some of the

stochastic factors in the two-population model can be shared by the two populations

(e.g. by assuming in (4.6) that κ
(1,j)
t = κ

(2,j)
t for some j ∈ {1, 2, 3} or that γ1

t−x = γ2
t−x).

For model forecasting Li et al. (2015) consider the same three approaches used by Zhou

et al. (2014).

There are other studies examining the joint modelling of two populations which do not
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lie under the category of pure extensions of the Lee-Carter or CBD models. Several of

these studies pursue a relative approach whereby a single-population model is first fitted

to one of the populations and then a separate model is fitted to the ratio of the mortality

rates in the two populations. For instance, Jarner and Kryger (2011) have proposed a

methodology for modelling the mortality experience of a small population in conjunction

with the mortality experience of a much larger reference population. They assume that

the reference population follows a deterministic long-run trend which is shared with the

small population, and then model short term deviations of the small population from that

trend using a multivariate stationary time series. Similarly, Wan and Bertschi (2015)

model the larger population using the multi-factor single population model proposed by

Plat (2009a) and then model the spread between the larger population and the smaller

population with a three factor Lee-Carter model. In a related study, Plat (2009b)

introduces a model for forecasting portfolio specific mortality alongside the relevant

national population. In this model, portfolio specific mortality forecasts are obtained

by combining national mortality projections derived from a standard single-population

CBD model, with forecasts of the ratio between portfolio mortality rates and national

population mortality rates. It is worth noting that Jarner and Kryger (2011), Wan and

Bertschi (2015) and Plat (2009b) adopt the same approach for modelling the factors

driving the dynamics of the mortality ratios and use a vector autoregressive model of

order 1, VAR(1), so to avoid any long-term divergence of the mortality in the two

populations.

Some authors have considered the use in a multipopulation setting of other well-known

single population modelling approaches. For instance, Biatat and Currie (2010) extend

to two populations the P-spline methodology (Currie et al., 2004) that has been success-

fully applied in the single population case, while Hatzopoulos and Haberman (2013) and

Ahmadi and Li (2014) use the framework of generalised linear models (GLM) to obtain

coherent mortality forecasts for multiple populations. Finally, instead of applying the

co-integration methodology to the state variables of the Lee-Carter model as done by

Li and Hardy (2011), Salhi and Loisel (2012) have applied the co-integration approach

directly to the age-specific mortality rates of the England and Wales national population

and the CMI assured lives’ population.
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4.4 Modelling the reference and the book population: A

general formulation

Along the same lines of the general formulation of single population models considered

in Chapter 5, we have identified a general framework under which most two population

models that have been introduced in the literature can be accommodated. However, in

order to facilitate this comparison between models, the way such models are proposed

here may slightly differ from their original formulation.

As in Jarner and Kryger (2011) we choose a relative approach where the reference

population is modelled first, and then the book mortality dynamics are specified so as

to incorporate features from the reference population. This relative approach has some

interesting features:

• It allows data mismatch between the reference and the book.

• It is well suited to the usual situation of the reference population being considerably

larger than the book population.

• Single population models for the reference population are readily available and

extensively studied, so this part of the model may be well established; allowing

the focus to be on making an informed decision for the book part of the model,

whilst retaining a good fit to the reference population.

• It provides consistency of approach when modelling several books using the same

reference population.
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4.4.1 Reference population

Following the discussion in Chapter 5, a general model for the reference population can

be written as1

DR
xt ∼ Bin(ER

xt, q
R
xt)

logit qR
xt = αR

x +
N
∑

j=1

β(j,R)
x κ

(j,R)
t + γR

t−x (4.7)

Here:

• The term αR
x determines the reference mortality level for age group x.

• N is an integer indicating the number of age-period terms describing the mortality

trend for the reference population.

• Each time index κ
(j,R)
t contributes in specifying the reference mortality trend.

• Each coefficient β
(j,R)
x dictates how mortality in the corresponding age group x

reacts to a change in the time index κ
(j,R)
t .

• The term γR
t−x accounts for the cohort effect in the reference population.

4.4.2 Book population

Given the reference population model, the mortality of the book population is then

specified through

DB
xt ∼ Bin(EB

xt, q
B
xt)

logit qB
xt − logit qR

xt = αB
x +

M
∑

j=1

β(j,B)
x κ

(j,B)
t + γB

t−x (4.8)

Note that we are modelling the difference in the (logit of) mortality in the book and the

reference populations. Therefore:

1Here, we have chosen to work with one-year death probabilities, qxt. Therefore, it is most natural
to use the logit function and model deaths using a Binomial distribution. However, if one is interested
in central death rates, mxt, or the force of mortality, µxt, then the general modelling framework can be
easily reformulated using a log link function and a Poisson Distribution. Moreover, we do not expect
to see any material differences in our analysis if central death rates, mxt, or the force of mortality, µxt,
were considered instead.

125



Chapter 4. A Comparative Study of Two-population Models for Basis Risk

• The term αB
x determines the mortality level differences of the book population

compared to the reference population for age group x. Hence the mortality level

in the book is αR
x + αB

x

• M is an integer (generally less than or equal to N) indicating the number of

age-period terms describing the mortality trend differences between the book pop-

ulation and the reference population.

• Each time index κ
(j,B)
t contributes in shaping the difference in mortality trends.

• Each coefficient β
(j,B)
x dictates how mortality differences for age group x react to

a change in the time index κ
(j,B)
t .

• The term γB
t−x accounts for the differences in cohort effect in the two populations.

Hence the cohort effect in the book is γR
t−x + γB

t−x.

Depending on how the model is specified, identification constraints may have to be added

to (4.7) and (4.8) to ensure uniqueness of the parameters estimates. The estimation

of the parameters of the model is performed using maximum likelihood in two stages

whereby the reference population part of the model is estimated in a first stage and

then, conditional on the reference population parameters, the book population part of

the model is estimated in a second stage2.

4.4.3 Time series dynamics

The modelling is completed by specifying the dynamics of the period indices and the

cohort terms which are needed for forecasting and simulating future mortality. Although

alternatives have been explored by some authors (see e.g. Zhou et al. (2014)) for the

choice of the time series used in the dynamics, we stick to those commonly used in the

literature.

2An alternative approach would be to estimate simultaneously the parameters in the reference and
book populations along the lines of the estimation approach used in Chapter 2. This would in principle
not materially change the fitted parameters as it is expected that book population has a small size
relative to the reference population. Furthermore, for some models such as the two-population APC,
CBD, M5 and M7 where the log-likelihood is separable, a two-stage estimation approach results in
exactly the same parameter estimates as a joint estimation approach
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Starting with the reference population, we assume that the period index is modelled as

a multivariate random walk with drift (MRWD)

κR
t = d + κR

t−1 + ξR
t , ξR

t ∼ N(0,ΣR), κR
t =













κ
(1,R)
t

...

κ
(N,R)
t













,

and that the cohort index is modelled as an integrated auto-regressive process ARIMA(1,

1, 0)

∆γR
c = φ0 + φ1∆γR

c−1 + ǫRc , ǫRc ∼ N(0, σ2
R),

where ∆γR
c denotes γR

c −γR
c−1; d is an N -dimensional drift vector; φ0, φ1 are constants;

and ΣR is an N ×N variance-covariance matrix of the multivariate white noise ξR
t .

As for the book population, we follow the assumption commonly made in the literature

(Li and Lee, 2005; Plat, 2009b; Cairns et al., 2011a; Jarner and Kryger, 2011; Li and

Hardy, 2011; Wan and Bertschi, 2015). More precisely we assume that in the long-run

the two populations experience similar improvements and therefore model the spread in

the time indexes and in the cohort effects as stationary processes:

κB
t = Φ0 + Φ1κB

t−1 + ξB
t , ξB

t ∼ N(0,ΣB), κB
t =













κ
(1,B)
t

...

κ
(M,B)
t













(4.9)

γR
c = ψ0 + ψ1γ

R
c−1 + ǫRc , ǫRc ∼ N(0, σ2

B)

where Φ0 is an M -dimension vector; Φ1 is an M ×M matrix; ψ0, ψ1 are constants; and

ΣB is an M ×M variance-covariance matrix of the multivariate white noise ξB
t . Thus:

• The time indices κB
t are then modelled as a vector auto-regressive process of order

1 (VAR(1)), for which we assume that the eigenvalues of the matrix Φ1 are smaller

than 1 in absolute value.

• The cohort difference γB
c follows an AR(1) process for which we assume that

ψ1 < 1.
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• We are assuming independence of the time series determining the reference pop-

ulation and those determining the difference between the reference and the book

populations. Considering correlations between ξR
t and ξB

t or between ǫRc and ǫBc

is in principle possible, as has been done e.g. in Cairns et al. (2011a) and in Li

et al. (2015). However, we refrain from considering this due to the fact that the

estimation of the appropriate covariance matrix may not be straightforward. This

is the case when the models involve multiple period effects; for example if the two-

population M7 model defined in Equation (4.6) is used, then the covariance matrix

is particularly large, containing up to 21 distinct elements associated with 6 period

factors (see Li et al. (2015)). In addition, the estimation of the covariance matrix

would be further complicated in the case when the time series for the reference

and the book have different lengths, which is very frequent in practice.

Overall, the time series dynamics approach considered here corresponds to the RWAR

approach discussed in Zhou et al. (2014) and Li et al. (2015).

4.5 Model selection criteria

With over 20 two-population models proposed in the literature at the time of writing

(see Figure 4.1), our main goal is then to identify which model(s) are most likely to

provide a satisfactory solution for assessing basis risk. To provide structure to this

analysis, it is useful to test each model against certain criteria that a good and practical

two-population model for basis risk assessment should satisfy.

Building on the literature comparing single population models (e.g. Continuous Mor-

tality Investigation (2007); Cairns et al. (2008, 2009, 2011b); Haberman and Renshaw

(2011)), we consider the following criteria:

(a) The model should produce a non-perfect correlation between mortality rates in the

two populations.

(b) The model should produce a non-perfect correlation between year-on-year changes

in mortality at different ages.

(c) The model should permit the generation of sample paths and the calculation of

prediction intervals.
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(d) The structure of the model should allow the incorporation of parameter uncertainty

in simulations.

(e) The model should permit the consideration of a cohort effect if necessary.

(f) The model should be compatible with the data that is likely to be available when

performing basis risk assessment exercises.

(g) The model should be straightforward to implement using standard statistical meth-

ods likely to be available to practitioners.

(h) The model should be transparent enough so that the model assumptions, limi-

tations and outputs are understood by the users and can be easily explained to

non-experts.

(i) The model should show a reasonable goodness-of-fit to historical data in both the

reference population and the book population for a wide range of book populations.

(j) The model should show a reasonable goodness-of-fit for metrics involving the two

populations such as differences or ratios in mortality rates or life expectancies for

a wide range of book populations.

(k) The model should be relatively parsimonious.

(l) The model should produce plausible and reasonable central projections of both

single-population and of two-population metrics.

(m) The model should produce plausible and reasonable forecast level of uncertainty in

projections of both single-population and of two-population metrics, which are in

line with historical levels of variability.

(n) The parameter estimates and model forecasts should be robust relative to the

period of data and range of ages employed.

Most of the above criteria coincide with the criteria that a good single population model

should satisfy; we thus refer the reader to Continuous Mortality Investigation (2007,

Section 8) and Cairns et al. (2008, Section 3) for a detailed discussion of their relevance.

By contrast, criteria (a), (j), (l) and (m), referring to correlations between the mortality

rates in the two populations and to the performance of the models in relation to two-

population metrics, are new criteria which are of prime importance to the application of
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two-population models in the assessment of basis risk in standardised longevity hedges.

On the one hand, if a model assumes a perfect correlation between mortality rates in

the two populations then it will imply that the reference population provides a perfect

match for the book population, trivially leading to no (or very little) demographic basis

risk. On the other hand, since demographic basis risk emerges from the mismatch in the

mortality of the reference and the book population, it is critical that the two-population

model shows a good fit to metrics involving the two populations, and that forecast levels

of uncertainty and central trajectories for these metrics are plausible and consistent with

historical differences between the populations.

We note, however, that a two-population model which might not be suitable for basis

risk assessment, may be an appropriate model for other applications in which some of

the above criteria would be superfluous. For example, consider the case of valuing the

liabilities of a pension book with sparse data, where we may consider a two-population

model to borrow information from a larger reference population with the objective of

improving the accuracy in the projections of the pension schemes’ mortality. In this

situation having a non-perfect correlation between the mortality of the two populations

would be irrelevant for the problem and the performance of the model relative to two-

population metrics would be of lesser importance.

4.6 Identifying an appropriate two-population model

Given the wealth of models available and the large number of criteria, we have followed a

two-stage filtering process to identify the model structures likely to be suitable for basis

risk assessment. In a first stage, we focus on criteria (a) to (h) which are theoretical

properties of a model and can be evaluated without reference to a specific dataset. Then,

in a second stage, we focus on criteria (i) to (n) which can only be evaluated after a model

has been fitted to data. More specifically, in the second stage of filtering we evaluate

the goodness of fit, the reasonableness of the output, the forecasting performance, and

the robustness of those models which pass the first stage of filtering.
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4.6.1 Stage 1 of filtering: Criteria requiring no data to assess

We first evaluate all the candidate models against those criteria that can be assessed

independently of data or the actual fitting of the models. This process permits the iden-

tification of a number of models which could be rejected, either because their theoretical

properties are not suitable for basis risk assessment or because they are unlikely to be

accessible to the wider industry.

4.6.1.1 Non-perfect correlation between mortality rates in the two popula-

tions

A perfect correlation between the mortality rates qB
xt and qR

xt implies that the two popu-

lations move in tandem, with changes in the mortality of the book population matched

by changes in the mortality of the reference population3. This will result in the model

spuriously suggesting that there is no (or very little) demographic basis risk. This is

the case for those Lee-Carter based models with a single common period effect for both

populations, leading us to view the Stratified Lee-Carter, the Common Factor Model,

the Three-way Lee-Carter, and the Joint-κ model as inadequate models for assessing

demographic basis risk.

4.6.1.2 Non-perfect correlation between year-on-year changes in mortality

at different ages

This criterion refers to the correlation between qR
x,t+1 − qR

x,t and qR
y,t+1 − qR

y,t (or between

qB
x,t+1 − qB

x,t and qB
y,t+1 − qB

y,t) for x 6= y. As noted by Cairns et al. (2008), a model that

assumes a perfect correlation between changes in mortality at different ages would incor-

rectly suggest that holding a derivative instruments linked to a single age would provide

just as good a hedge as holding instruments linked to a range of different ages. Disre-

garding this issue can result in a misassessment of the structuring basis risk underlying

a longevity hedge.

3Note that the correlation between the mortality rates qB
xt and qR

xt may not be perfect, although it
will be close to one, even when correlation is perfect on the logit scale used by the models introduced
in section 4.4. Also note that having a perfect correlation between the populations does not necessarily
imply that the two populations experience exactly the same mortality improvements. For instance, the
Joint-κ model in Equation (4.1) and the Three-way Lee-Carter in Equation (4.2) allow for improvement
rate differentials, but imply a perfect correlation between the populations.
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Lee-Carter type models with a single period effect and no cohort effect, such as the

Co-integrated Lee-Carter and the Lee-Carter+VAR/VECM, have a trivial age correla-

tion structure. In addition, the two-population APC model in Equation (4.5) implies

that there is perfect correlation at all ages except at the youngest ages, where there is

potentially additional randomness arising from the arrival of new cohorts with an un-

known cohort effect (see Cairns et al. (2009)). In contrast, two-population extensions of

the CBD model allow for imperfect correlations between annual changes in mortality at

different ages due to the presence of multiple period factors.

However, we do not discard any model due to its poor age correlation structure for

two reasons. In many instances it may only be required to perform an indicative as-

sessment of the demographic basis risk associated with an index-based hedge, without

necessarily considering in detail the precise structuring of the hedge. Further, in order

to assess model risk, it may be useful to consider an alternative model to the one used

in structuring the hedge.

4.6.1.3 Generation of sample paths

Mortality sample paths are required for the assessment of the uncertainty in the cash-

flows of a mortality-linked security as well as for the pricing and structuring of a longevity

hedge. A distinguishing feature of the P-Spline model of Biatat and Currie (2010) and

the multipopulation GLM of Ahmadi and Li (2014) is that they assume that mortality

follows a deterministic time trend, meaning that these models cannot generate sample

paths. Hence, we do not consider these two models any further.

4.6.1.4 Parameter uncertainty

Given that most book populations have a limited amount of data, the parameters of the

models may be subject to significant estimation error. It is thus important to be able to

consider the impact that parameter risk can have on forecasts levels of uncertainty and on

hedge effectiveness. With the exception of the Bayesian two-population model of Cairns

et al. (2011a) which naturally accounts for parameter uncertainty, none of the studies

we have reviewed considers explicitly parameter uncertainty. Nevertheless, for most
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of the models it is possible to incorporate parameter uncertainty using bootstrapping

techniques such as the ones proposed in Brouhns et al. (2005) and Koissi et al. (2006).

4.6.1.5 Cohort effect

For some countries, including England and Wales, it is important that models allow for

the now well-accepted cohort effect, separating out general improvements over time to

those specific to a given birth cohort. Although not all the models include a cohort

effect, they can in principle be extended to include such an effect.

4.6.1.6 Compatibility with available data

The data requirements of some of the models are incompatible with the likely available

data. For instance, it is unlikely that the history length in the book population will be

as long as that in the reference population, hindering the application of models which

cannot easily deal with such a scenario. In particular, this requirement leads to the

rejection of two further Lee-Carter based models, namely the Lee-Carter VAR/VECM

and the Co-integrated Lee-Carter, as well as of the Co-integration approach of Salhi

and Loisel (2012). In addition, models which use several book-specific period terms are

poorly rated against the data compatibility criterion, as the more period terms a model

has, the longer the data history that is required to estimate appropriately the time series

processes needed for forecasting.

4.6.1.7 Ease of implementation and transparency

Ease of implementation and transparency are essential for a model to be of general

use by practitioners. Accordingly, these two criteria lead to the rejection of several

other models. In particular, the Co-integration approach of Salhi and Loisel (2012) and

the Multipopulation GLM of Hatzopoulos and Haberman (2013) are considered to be

impractical for basis risk assessment as they are complex models which are computa-

tionally involved to implement and may be difficult to communicate to non-experts. In

addition, we disregard the Plat+Lee-Carter model of Wan and Bertschi (2015) (apart

from other reasons discussed later) because it combines a parametric structure for the

reference with a non-parametric structure for the book, and we believe that for the
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sake of interpretability of the parameters both parts of the model should be within the

same class of models. Finally, although the Bayesian two-population APC model of

Cairns et al. (2011a) is particularly amenable to the short history and modest exposures

sizes of most book datasets, the implementation and transparency issues related to the

underlying Bayesian approach have led us to reject this model. However, some of the

features of the approach of Cairns et al. (2011a) will still be investigated subsequently in

this chapter through a maximum-likelihood implementation of the two-population APC

model.

4.6.2 Stage 2 of filtering: Criteria requiring data to assess

After carrying out the initial data-independent assessment, 10 models can be identified

as candidates which are worth testing against the data dependent criteria. These models

are: the Augmented Common Factor model and its cohort extension, the Relative Lee-

Carter model with cohorts, the Common Age Effect Model, the two-population APC

(Gravity model), the two-population M5, the two-population M6, the two-population

M7, the Saint model, and the Plat relative model.

In the second stage of filtering we focus on those model criteria requiring data to be

assessed. This involves the evaluation of the historical goodness-of-fit, the (subjective)

evaluation of the reasonableness of the forecast level of uncertainty produced by the

models, and the evaluation of the forecasting performance and robustness of the models.

4.6.2.1 Data

The evaluation of the criteria in this stage requires data for model fitting. We have used

as the reference population data the England and Wales male mortality experience as

obtained from the Human Mortality Database (2013). For the purposes of our analysis

we have focused on a subset of these data covering calendar years 1961-2010 and those

older ages most relevant to longevity hedging, namely ages 60-89.
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For the book population we use synthetic datasets generated based on England mortality

data by quintiles of the Index of Multiple Deprivation 2007 (IMD 2007)4 and the socio-

economic composition observed within individual occupational pension schemes of the

Club Vita dataset5. Specifically, the synthetic datasets used throughout this chapter

have been generated by randomly sampling from the national IMD data to obtain a

dataset of exposure size, history length, and IMD profile desired. The technical details

of this data sampling process are described in Appendix 4.A.

The use of synthetic data as opposed to actual pension scheme data facilitates a more

thorough assessment of the models. Concretely, synthetic datasets permit us to control

some key characteristics of the book population data while changing others. For instance,

it allows us to vary the history length and exposure size of the book data whilst keeping

the socio-economic and age composition constant. Moreover, synthetic datasets let us

rely on the longer history of the national IMD mortality data to perform backtesting

exercises such us those described in Section 4.6.2.7.

For the assessment of the goodness-of-fit of the models, we consider four different syn-

thetic datasets to reflect the variety of socio-economic mixes observed in real pension

schemes and annuity books. In each case, the socio-economic splits are informed by

the profiles seen within the Club Vita dataset. Table 4.1 describes the socio-economic

profiles of these datasets. In all cases we use sample books with historical exposures

of 100,000 male lives per year, which we believe is the largest exposure any scheme or

insurer is likely to have. We also assume that book data are available for the period

1981-2010 and ages 60 to 89. Finally, we use the age distribution of the English popula-

tion to split by age the total exposure of each of the sample schemes. Figure 4.2 depicts

the average age distribution of the exposure for the period 1981-2010.

Figure 4.3 depicts the ratio of the mortality in each of the four datasets to the mortality

in England and Wales. From this we note that:

4A detailed analysis of the mortality data used in this chapter can be found in Chapter 2 or in Lu
et al. (2014). Further information on the Index of Multiple Deprivation see Noble et al. (2007).

5Club Vita is an organisation which provides longevity analytics to pension schemes. The schemes
in the Club Vita dataset span a wide range of sizes including some of the largest DB schemes in the UK
and (as at September 2014) consists of nearly 6 million member records.

135



Chapter 4. A Comparative Study of Two-population Models for Basis Risk

Table 4.1: Description of the book datasets used for model testing. Q1 represents the
least deprived quintile of England and Q5 the most deprived quintile.

Percentage of exposure
Dataset Description by IMD quintile

Q1 Q2 Q3 Q4 Q5

Typical Lives
This is the typical IMD split we would
expect to see in a book population
weighted by lives (head-count)

23% 22% 21% 20% 14%

Typical Amounts

This uses the same split as the typical
(lives) but weighted by individual pen-
sion amounts to approximate the effect
of a typical portfolio’s liability distri-
bution amongst the IMDs

30% 25% 20% 15% 10%

Extreme Wealthy

This reflects the split by IMD (on an
amounts weighted basis) that we would
expect to see in a very affluent book
population

45% 30% 20% 5% 0%

Extreme Deprived

This reflects the split by IMD (on a
lives weighted basis) that we would ex-
pect to see in a book skewed towards
lower socio-economic groups

10% 15% 15% 25% 35%
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Figure 4.2: Average age distribution of total exposure for England males in the period
1981-2010.

• The ordering of the ratios in the four data sets is consistent with their socio-

economic mixes, with the “Extreme Wealthy” dataset having below average mor-

tality (ratio < 1) and the “Extreme Deprived” dataset having above average mor-

tality (ratio > 1).

• The mortality ratios for both the “Typical Lives” and “Typical Amounts” dataset

are close to 1 reflecting the socio-economic mix of these datasets being close to the

average in England and Wales.

136



Chapter 4. A Comparative Study of Two-population Models for Basis Risk

●

● ●

●

●

●

●

●

●

●
●

●

● ● ●
●

●

●

●
● ●

●

●
●

●
●

●

●

●

●

0.8

0.9

1.0

1.1

1.2

60 70 80 90
age

B
oo

k 
/ E

ng
la

nd
 a

nd
 W

al
es

● Typical Lives

Typical Amounts

Extreme Wealthy

Extreme Deprived

Mortality ratio to England and Wales by age

● ●

●

● ●

●
●

● ●
● ●

● ●

●

●
●

●

●

●

●
●

●

●
● ●

●

●

●

●
●

0.9

1.0

1.1

1980 1990 2000 2010
year

B
oo

k 
/ E

ng
la

nd
 a

nd
 W

al
es

Mortality ratio to England and Wales by year

Figure 4.3: Ratio of the mortality in each of the four synthetic book datasets to the
mortality in England and Wales. The top graph shows this ratio by age while the one

on the bottom presents the time evolution of this ratio.

• In all of the datasets the mortality ratios converge with rising age. This is consis-

tent with the commonly reported decrease in socio-economic mortality differences

as people age (Hoffmann, 2005).

• None of the datasets shows any very marked increasing or decreasing time trend

in the mortality ratios, albeit there is a slight upward trend in the “Extreme

Deprived” dataset. This is consistent with the slower mortality improvements for

the two most deprived quintiles of England reported in Chapter 2.

4.6.2.2 Model fitting

To facilitate the fitting of the 10 models that passed our first-stage filtering, we have

followed the general modelling framework described in Section 4.4 whereby each model

can be viewed as a model for the reference population combined with a model for the
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book population (or perhaps more accurately, a model for the mortality ratio between

reference and book). As such, the fitting and the assessment of the goodness-of-fit of a

model can be carried out in two stages: fitting and assessing the goodness-of-fit of the

reference model, followed by the fitting and the assessment of the goodness-of-fit of the

book part of the model. All the model fitting performed in this chapter has been carried

out using the R package StMoMo introduced in Chapter 5, which facilitates the im-

plementation of stochastic mortality models using the unifying framework of generalised

(non)-linear models.

We note that conclusions regarding the goodness-of-fit of the model to the reference

may lead us to slightly modify the original formulation of certain of the two-population

models before assessing the goodness-of-fit of the book part of the model. The specific

modifications for each particular two-population model are described later in this section.

4.6.2.3 Goodness-of-fit for reference population

For the reference population we concentrate on the eight models described in Table 4.2

which are labelled LC, LC2, LC+Cohorts, LC2+Cohorts, APC, M5, M6 and M7. LC is

the Lee and Carter (1992) model and LC2 is the two-factor extension proposed in Ren-

shaw and Haberman (2003). The LC+Cohorts is one of the Renshaw and Haberman

(2006) cohort extensions of the original Lee-Carter model while LC2+Cohorts is the

LC2 model with a cohort effect6. The APC model is a special case of the LC+Cohorts.

Models M6 and M7 are extensions of the original CBD model (M5) and were proposed

in Cairns et al. (2009). These models encompass the reference population models un-

derlying the models that passed our first stage filtering with the exception of the Saint

model. For the Saint model, instead of the frailty-type model considered originally by

Jarner and Kryger (2011) which we believe is too complex to be accessible to practi-

tioners and does not permit the generation of sample paths, we will use M7 to model

the mortality of the England and Wales reference population. The constraints used in

fitting the models are described in Appendix 4.B.

6It is well known that cohort extensions of the Lee-Carter model have robustness and stability issues
(see e.g. Cairns et al. (2009)) with models being very sensitive to changes in the data or the fitting
algorithm. Therefore, when implementing the LC+Cohorts model we follow the approach discussed in
in Chapter 6 which helps resolve many of the stability issues. Similarly, for the LC2+Cohorts model
we follow the approach employed by Yang et al. (2014) and first fit the LC2 model without cohorts and
then, taking the parameters of the LC2 as given, estimate the cohort effect.
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Table 4.2: Mathematical description of the eight models considered for the reference
population.

Model Formula

LC logit qR
xt = αR

x + βR
x κ

R
t

LC2 logit qR
xt = αR

x + β
(1,R)
x κ

(1,R)
t + β

(2,R)
x κ

(2,R)
t

LC + Cohorts logit qR
xt = αR

x + βR
x κ

R
t + γR

t−x

LC2 + Cohorts logit qR
xt = αR

x + β
(1,R)
x κ

(1,R)
t + β

(2,R)
x κ

(2,R)
t + γR

t−x

APC logit qR
xt = αR

x + κR
t + γR

t−x

M5 logit qR
xt = κ

(1,R)
t + (x− x̄)κ

(2,R)
t

M6 logit qR
xt = κ

(1,R)
t + (x− x̄)κ

(2,R)
t + γR

t−x

M7 logit qR
xt = κ

(1,R)
t + (x− x̄)κ

(2,R)
t +

(

(x− x̄)2 − σ̂2
x

)

κ
(3,R)
t + γR

t−x

We assess the goodness-of-fit of the candidate reference population models by examining

sign plots of deviance residuals. Regular patterns in the residuals are an indication of

the inability of the model to describe all of the features of the data appropriately. Figure

4.4 plots the sign of the residuals in an age-period grid for the eight reference population

models. From this figure we note the following:

• Models LC, LC2 and M5, which do not incorporate a cohort effect, show diagonal

clusters of positive and negative residuals. This provides evidence for the need

of including a cohort effect when modelling mortality in the England and Wales

reference population.

• The APC model shows a strong clustering of positive and negative residuals. This

is due to its inability to allow for varying improvement rates with age.

• The LC+Cohorts, LC2+Cohorts and M6 look reasonably random, but still with

some clustering of positive and negative residuals. Closer inspection of scatterplot

of the residuals of these three models (see Figure 4.5) reveals that the LC+Cohorts

and LC2+Cohorts do not show any clear pattern while model M6 shows a strong

pattern by age. This latter pattern reflects the lack of a quadratic age term in

model M6 which may be necessary to capture the commonly observed curvature

of the mortality rates on a logit scale.

• The M7 look reasonably random, indicating a satisfactory fit to the data.
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Figure 4.4: Sign plots of deviance residuals for the England and Wales males reference
population. Positive residuals in grey and negative residuals in black.
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Figure 4.5: Scatterplots of deviance residuals for the England and Wales male population for models LC+Cohorts, LC2+Cohorts and M6.
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Chapter 4. A Comparative Study of Two-population Models for Basis Risk

Table 4.3: Effective number of parameters, and AIC for different models fitted to the
England and Wales reference population. AIC rankings across models are presented in

brackets

Model
Number of
parameters

AIC (rank)

LC 108 24516 (7)
LC2 184 22125 (4)
LC+Cohorts 185 18590 (2)
LC2+Cohorts 262 18817 (4)
APC 156 20379 (5)
M5 100 25516 (8)
M6 177 18709 (3)
M7 226 18256 (1)

In order to assess more formally the goodness of fit of the eight reference population

models, we present in Table 4.3 the Akaike Information Criterion (AIC), defined as

2νR − 2LR, where LR is the log-likelihood of the reference model and νR is the number

of parameters of the models. The AIC provides a way of assessing the balance between

quality of fit and parsimony. In general, a lower value of AIC is preferable. We note

that the LC+Cohorts and M7 are the best fitting models.

The previous observations are consistent with the existing literature comparing single

population mortality models (e.g. Cairns et al. (2009) and Haberman and Renshaw

(2011)), where the LC+Cohorts and M7 have been identified as appropriate models

for modelling mortality in the England and Wales population. Accordingly, in our

subsequent evaluation of two-population extensions of the Lee-Carter model, we will

assume that the reference population is modelled using a LC+Cohorts. Similarly, when

assessing the two-population extensions of the CBD model, we will assume that the

reference population is modelled using an M7 model.

4.6.2.4 Goodness-of-fit for book population

To correct some of the goodness-fit issues discussed above, we have adapted several of the

candidate two-population models before carrying out further goodness-of-fit assessments.

Specifically, we have made the following adaptations:

• The Common Age Effect model, as proposed in Kleinow (2015), does not include

a cohort effect. Therefore, given that there is strong evidence of a cohort effect in
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Chapter 4. A Comparative Study of Two-population Models for Basis Risk

England and Wales, in our testing we extend this model to include such an effect.

The reference population model is then a LC+Cohorts model in the terminology

of Section 4.6.2.3.

• Similarly, for the Augmented Common Factor model we should consider a cohort

effect, but doing so would turn the model into the Relative Lee-Carter model with

cohorts. Consequently, the Augmented Common Factor model is not considered

further in the analysis.

• In the two-population M5 and the two-population M6 models we replace the cor-

responding M5 and M6 models for the reference population with an M7 model.

• For the Relative Plat model we assume an M7 model for the reference population

as opposed to the M5 model originally assumed by Plat (2009b). In addition, while

Plat (2009b) models directly the mortality ratio between the reference and the book

population, qB
xt

/

qR
xt , we model the logit difference in mortality, logit qB

xt − logit qR
xt.

• For the Saint model we assume an M7 model for the reference population instead

of the frailty-type model originally used by Jarner and Kryger (2011).

For comparison purposes, in some of our additional goodness-of-fit and reasonableness

testing we will consider the Common Factor Model with added cohorts. This model,

which was previously deemed inappropriate as it unrealistically implies zero basis risk,

is useful for illustrating some of the undesired characteristics in a model.

Table 4.4 summarises the models whose goodness-of-fit will be investigated further. The

parameter constraints associated with these model structures are described in Appendix

4.B. The Common Factor models with cohorts (CF+Cohorts), the Common Age Effect

model with cohorts (CAE+Cohorts), and the relative Lee-Carter model with cohorts

(RelLC+Cohorts) belong to the Lee-Carter family of models. The CF+Cohorts only

allows for level differences between the reference and the book population, whilst the

CAE+Cohorts and the RelLC+Cohorts also allow for improvement differences. Never-

theless, the latter two models differ in the specification of the age-modulating factor βB
x

accompanying the book-specific time index κB
t : in the RelLC+Cohorts βB

x is estimated

directly from the observed logit difference of mortality between the book and reference

data while in the CAE+Cohorts βB
x is borrowed from the reference population model,

i.e., βB
x ≡ βR

x .
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Table 4.4: Mathematical description of the two-population models considered for goodness-of-fit assessment.

Original
Model

Model tested logit qR
xt logit qB

xt − logit qR
xt

Common
Factor

CF+Cohorts αR
x + βR

x κ
R
t + γR

t−x αB
x

Common Age
Effect

CAE+Cohorts αR
x + βR

x κ
R
t + γR

t−x αB
x + βR

x κ
B
t

Relative
Lee-Carter
with cohorts

RelLC+Cohorts αR
x + βR

x κ
R
t + γR

t−x αB
x + βB

x κ
B
t

Gravity Gravity (APC) αR
x + κR

t + γR
t−x αB

x + κB
t + γB

t−x

Two-
population
M5

M7-M5 κ
(1,R)
t + (x− x̄)κ

(2,R)
t +

(

(x− x̄)2 − σ̂2
x

)

κ
(3,R)
t + γR

t−x κ
(1,B)
t + (x− x̄)κ

(2,B)
t

Two-
population
M6

M7-M6 κ
(1,R)
t + (x− x̄)κ

(2,R)
t +

(

(x− x̄)2 − σ̂2
x

)

κ
(3,R)
t + γR

t−x κ
(1,B)
t + (x− x̄)κ

(2,B)
t + γB

t−x

Two-
population
M7

M7-M7 κ
(1,R)
t + (x− x̄)κ

(2,R)
t +

(

(x− x̄)2 − σ̂2
x

)

κ
(3,R)
t + γR

t−x κ
(1,B)
t + (x− x̄)κ

(2,B)
t +

(

(x− x̄)2 − σ̂2
x

)

κ
(3,B)
t + γB

t−x

Saint model M7-Saint κ
(1,R)
t + (x− x̄)κ

(2,R)
t +

(

(x− x̄)2 − σ̂2
x

)

κ
(3,R)
t + γR

t−x κ
(1,B)
t + (x− x̄)κ

(2,B)
t +

(

(x− x̄)2 − σ̂2
x

)

κ
(3,B)
t

Plat relative
model

M7-Plat κ
(1,R)
t + (x− x̄)κ

(2,R)
t +

(

(x− x̄)2 − σ̂2
x

)

κ
(3,R)
t + γR

t−x

100 − x

100 − x̄
κ

(1,B)
t
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The Gravity model corresponds to a Binomial-logit version of the two-population APC

introduced before in Equation (4.5).

Models M7-M5, M7-M6, M7-M7, M7-Saint, and M7-Plat (which are the implemented

versions of the two-population CBD, the two-population M6, the two-population M7, the

Saint model, and the Relative Plat model, respectively) all belong to the CBD family

of models. These models differ in the type of differences between the book and the

reference population that are allowed for in the parametric age functions:

• M7-M5 and M7-M6 allow only for level and slope differences with M6 also allowing

for cohort differences;

• M7-Saint, M7-M7 allow for level, slope and curvature differences with M7 also

allowing for cohort differences; and

• M7-PLAT is a constrained version of M7-M5 assuming that at age 100 there is no

difference between the reference and the book.

A good two-population model should show a reasonable fit to the historical mortality

rates in both the reference population and the book population. In addition, the model

should show a good fit to metrics involving the two populations such as differences or

ratios of mortality rates. This last criterion is very relevant as demographic basis risk

emerges from the mismatch in the mortality of the reference and the book population.

When assessing the quality of the fit of the models with respect to the book population

and with respect to two-population metrics, we have found that the inspection of residual

sign plots is not very informative. In principle, this can be attributed to the fact that

cohort and age patterns in the book residuals may be confounded with the sampling noise

in the book data. As an alternative, the examination of plots of fitted vs. observed period

survival probabilities in the book and the corresponding plots for ratios of period survival

probabilities in the book and the reference can give useful insight into the goodness-of-fit

of the models. As an illustration, Figure 4.6 depicts the fitted and observed 30 years

period survival probabilities at age 60 for the “Extreme Wealthy” and the “Extreme

Deprived” sample schemes using several models. Figure 4.7 plots the corresponding

fitted and observed ratios of period survival probabilities between both sample schemes

and the England and Wales reference population. Figures 4.6 and 4.7 are representative
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(c) RelLC+Cohorts
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(d) Gravity
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(e) M7-M5
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(f) M7-M6
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(g) M7-M7
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(h) M7-Saint
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(i) M7-Plat

Figure 4.6: Fitted vs. observed 30 year period survival probabilities at age 60 for the
“Extreme Wealthy” and the “Extreme Deprived” sample schemes.

of the detailed analyses we have carried out and which have helped with our assessment

of the performance of the different models under consideration.

Figure 4.6 shows that, with the exception of the M7-Plat model which shows a slight

underestimation in the later years when fitted to the “Extreme Deprived” scheme (see

Figure 4.6i), all the models show a similar and reasonable fit to the period survival

probabilities in the book. By contrast, when considering ratios of survival probabilities

the models show very different performances. In particular, from Figure 4.7 we note:

• For the “Extreme Deprived” dataset the M7-Plat model shows a stark bias in
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(b) CAE+Cohorts
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(c) RelLC+Cohorts
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(d) Gravity

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

● ●

● ● ●
●

●

●

● ● ●
●

●

●
●

●
●

●

1.0

1.2

1.4

1980 1990 2000 2010
calendar year

●

●

Extreme Wealthy

Extreme Deprived

 30p60,t
B  30p60,t

R  vs. t

(e) M7-M5
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(f) M7-M6
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(g) M7-M7
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(h) M7-Saint
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(i) M7-Plat

Figure 4.7: Fitted vs. observed ratio of 30 year period survival probabilities at age
60 for the “Extreme Wealthy” and the “Extreme Deprived” sample schemes.

the fitted ratios (see Figure 4.7i) consistent with the underestimation seen in the

period survival probabilities in the book population. In an attempt to improve the

fit of the M7-Plat model, instead of assuming that crossing of mortality between

the reference and book population occurs at the prefixed age 100, we have treated

the age of crossing as an additional parameter that needs to be estimated from

the data. However, this has not eliminated the bias issues suggesting that the

M7-Plat model might be too restrictive for some datasets. Therefore we do not

consider the M7-Plat model further as a candidate for basis risk assessment.

• The CF+cohort and the RelLC+Cohort models produce very smooth ratios of
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Figure 4.8: Fitted age modulating parameter βB
x for the RelLC+Cohorts fitted to

the “Extreme Wealthy” scheme.

survival probabilities which seem to understate the observed volatility in the ratios

(see Figures 4.7a and 4.7c). Whilst the poor performance of the CF+cohort model

was expected due to the perfect correlation between populations assumed by this

model, that of the RelLC+Cohort was not.

• Further investigation of the parameters of the RelLC +Cohort indicates that the

over-smoothed fitted ratios can be linked to the presence of a book-specific non-

parametric βB
x which needs to be estimated from the book data. The estimation

of this term requires large amounts of data, and, hence, with the relatively small

population sizes of the book populations, the estimated βB
x values tend to be

erratic and lack robustness. In particular, the possibility that βB
x fluctuates

around 0 (see Figure 4.8) results in mortality differentials between the book and

the reference cancelling out when aggregated measures of mortality such as survival

probabilities and life expectancies are calculated. Given that this over fitting of the

βB
x may result in an inappropriate perfect correlation between the reference and

the book populations, we consider that the RelLC+Cohort is inadequate for basis

risk assessment. This conclusion extends to other models with non-parametric

βB
x parameters such as the Augmented Common Factor model and the Plat+Lee-

Carter model.

• Some models, such as M7-Saint and M7-M7 show signs of potential over-fitting to

the data.

The graphic testing of the goodness-of-fit of the models leaves us with six potential

candidate models for basis risk assessment. These models are: CAE+Cohorts, Gravity,
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M7-M5, M7-M6, M7-M7, and M7-Saint. The balance between goodness-of-fit and par-

simony of these models is investigated in Table 4.5 where we show the AIC values7 for

the book part of each model when applied to the four sample schemes, together with

the corresponding ranking across models (in brackets). From Table 4.5 we note the

following:

• The CF+Cohorts, which is the simplest model among all the models fitted, tops

the AIC ranking for three out of four datasets. However, as noted before, this

model is not suitable for basis risk assessment since it assumes that the reference

and book populations are perfectly correlated. One may nevertheless consider this

model for other applications where the correlation between the populations is not

important.

• Among all other models, the CAE+Cohort and M7-M5 show the best compromise

between goodness-of-fit and parsimony, consistently ranking in the top three places

and with very similar performances.

• M7-Saint and M7-M7, which have a quadratic age term in the book model, are

always outperformed by the M7-M5 models. This suggests that when considering

models from the CBD-Family it is necessary to allow for differences in level of mor-

tality and a gradient by age, but that an additional parameter for a curvature by

age is not necessary, i.e., it is sufficient to inherit the curvature from the reference

population. Thus, we eliminate the M7-M7 and M7-Saint models from our list of

candidate models.

• The Gravity model, M7-M6 and M7-M7, which have a book-specific cohort effect,

have the worst trade-off between goodness-of-fit and parsimony. This suggests

that we should generally reject models with a book cohort effect on grounds of

parsimony. However, for the moment, we shall retain the Gravity model (two-

population APC) which, among models with book-specific cohort effect, shows

the best compromise between goodness-of-fit and parsimony. This will enable us

to investigate how forecasts levels of uncertainty and hedge effectiveness may be

impacted by allowing for a book-specific cohort effect.

7Recall, the AIC value is computed as AIC = 2νB − 2LB where LB is the Binomial log-likelihood of
the book part of the model under the assumption that the reference population is treated as a known
offset and νB is the number of book-specific parameters of the models
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Table 4.5: Effective number of parameters and AIC for the book part of different
two-population models fitted to the four test books.

Model
Reference
parame-

ters

Book pa-
rameters

Typical
Lives

Typical
Amounts

Extreme
Wealthy

Extreme
Deprived

CF+Cohorts 185 30 7008 (1) 7001 (1) 6921 (1) 7146 (4)
CAE+Cohorts 185 59 7036 (2) 7026 (2) 6950 (2) 7130 (3)
Gravity 156 116 7090 (5) 7077 (5) 7010 (5) 7182 (6)
M7-M5 226 60 7043 (3) 7049 (3) 6971 (3) 7102 (1)
M7-M6 226 117 7106 (6) 7099 (6) 7033 (6) 7166 (5)
M7-M7 226 146 7123 (7) 7128 (7) 7052 (7) 7188 (7)
M7-Saint 226 90 7069 (4) 7074 (4) 6991 (4) 7117 (2)

4.6.2.5 Plausibility of forecast central trends and levels of uncertainty

So far, we have shortlisted the CAE+Cohorts, Gravity and M7-M5 based on their the-

oretical properties, practicality and goodness-of-fit performance. However, the outcome

of a basis risk assessment exercise will be strongly driven by the expected level of uncer-

tainty around the central forecast of the demographic and financial quantities underlying

the index-based hedge. It is then crucial to check that these models produce reasonable

forecast for both single and two-population metrics. This entails judging whether or not

the forecasted central trajectories and patterns of uncertainty look plausible and are in

line with historical variability.

Following Cairns et al. (2011b), we assess this property by examining fan charts of

the forecasts produced by the models. Fan charts allow us to examine any distinctive

visual feature of the forecasts of the models, as well as the differences between models.

Each fan chart presents 95% prediction intervals and depicts the forecast output from

the stochastic mortality models by also presenting 80% and 50% prediction intervals.

In producing the model simulations underlying the fan charts, we have considered the

following sources of uncertainty (risk):

• Process risk (PR) arising from the possible future trajectories of the time series of

the period and cohort indices and

• Parameter uncertainty (PU) arising from the estimation of the parameters of the

model.
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Process risk is taken into account by simulating trajectories of the period and cohort

indices8, while parameter uncertainty is allowed for by using a Binomial adaptation of the

residual bootstrapping approach proposed by Koissi et al. (2006)9. We note that due to

the considerable exposure of the England and Wales population (chosen as the reference

population), we deliberately ignore parameter uncertainty in the reference population.

Rather than analysing forecasts of mortality rates, we concentrate on the forecast of life

expectancies and survival rates. According to Coughlan et al. (2011), these two aggregate

quantities are more appropriate than individual mortality rates for gaining insight into

the basis risk associated with longevity hedges. On the one hand, life expectancies

and survival rates are more closely related to the hedge effectiveness objective than

mortality rates, as, for instance, in a pensioner population life expectancy corresponds

to the number of years over which a pension needs to be paid while survival rates

correspond to the fraction of pensioners who are still alive to receive pension. On

the other hand, these aggregate metrics smooth out most of the noise associated with

individual mortality rates.

Figure 4.9 presents fan charts of 30 year curtailed period life expectancies at age 60 for

the England and Wales reference population,

↑
eR

60,30(t) =
30
∑

h=1

h−1
∏

i=0

(1 − qR
60+i,t).

Figure 4.10 shows equivalent fan charts of 30 year curtailed period life expectancies

at age 60 for the “Extreme Wealthy” test book,
↑
eB

60,30
(t), together with fan charts of

the difference between the life expectancies in the book and the reference population,
↑
eB

60,30
(t) −

↑
eR

60,30
(t). The mean and variance of the forecasted period life expectancies in

2020,
↑
eR

60,30
(2020) and

↑
eB

60,30
(2020), are presented in Table 4.6.

From Table 4.6 and Figures 4.9 and 4.10 we can conclude that:

• For all the models the central forecast and their levels of uncertainty for life

expectancies in the reference and the book are reasonable and consistent. We

8To model process risk we use a multivariate adaptation of Algorithm 2 in Haberman and Renshaw
(2009) without provision for parameter error. We note that Algorithm 2 in Haberman and Renshaw
(2009) is itself an adaptation of the prediction interval approach of Cairns et al. (2006).

9We note that in adapting the bootstrap we follow Renshaw and Haberman (2008) and solve for the
observed numbered of deaths instead of the fitted number of deaths as done by Koissi et al. (2006). The
details of the residual bootstrapping approach under a Binomial framework are described in Debón et al.
(2010, Section 3).
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Figure 4.9: Fan charts of 30 year period curtailed life expectancy at age 60 for the
England and Wales male reference population using different mortality models.
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Figure 4.10: Fan charts of 30 year period curtailed life expectancy at age 60 for the
“Extreme Wealthy” test book using different mortality models and different sources of
risk (PR=process risk; PU=parameter uncertainty). Left panels present life expectan-
cies for the book population and right panels results for the difference in curtailed

period life expectancies in the book and the reference populations.

note however that there are noticeable differences between the models with the

CAE+cohorts and CF+cohorts projecting longer life expectancies with slightly
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Table 4.6: Forecasted mean and variance of 30 year period curtailed life expectancy
at age 60 in 2020 for the England and Wales male reference population and for the
“Extreme Wealthy” test book using different mortality models and different sources of

risk (PR=process risk; PU=parameter uncertainty).

Mean of period life expectancy at age 60 in 2020

Book Difference
Model Reference PR PR+PU PR PR+PU

CF+Cohorts 22.82 23.67 23.68 0.85 0.86
CAE+Cohorts 22.82 23.68 23.68 0.86 0.86
Gravity 22.12 23.14 23.13 1.02 1.01
M7-M5 22.33 23.19 23.19 0.86 0.86

Variance of period life expectancy at age 60 in 2020

Book Difference
Model Reference PR PR+PU PR PR+PU

CF+Cohorts 0.2040 0.1719 0.1718 0.0014 0.0017
CAE+Cohorts 0.2040 0.1804 0.1878 0.0073 0.0135
Gravity 0.2251 0.1957 0.2065 0.0093 0.0206
M7-M5 0.2403 0.2161 0.2230 0.0091 0.0169

smaller uncertainty (narrower fan widths and smaller variances) than the other

two models.

• The levels of uncertainty in the difference in life expectancy vary considerably

across models and are on the low side when only process risk is contemplated. In

particular, the unreasonably tight fan widths of the CF+cohorts confirm the issues

with models assuming a perfect correlation between the reference and the book

populations.

• The impact of parameter uncertainty on the life expectancies of the book pop-

ulation is minimal and almost unnoticeable to the eye. By contrast, parameter

uncertainty increases significantly the levels of uncertainty of the life expectancy

differences between the book and the reference populations and makes the pre-

diction intervals start to look in-line with the historical volatility.

• In order to investigate the extent to which our conclusions generalise to the other

test datasets, we show in Figure 4.11 fan charts of the difference in period life

expectancies with respect to the England and Wales reference for the “Typical

Lives”, “Typical Amounts” and “Extreme Deprived” books. While the forecasts

for the “Typical Lives” and “Typical Amounts” books look plausible, the forecasts

for the ‘Extreme Deprived” book look completely unreasonable, with the models
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(a) Typical Lives
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(b) Typical Amounts
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(c) Extreme Deprived

Figure 4.11: Fan charts of 30 year period curtailed life expectancy differences at age
60 between the different test books and the reference population including process risk

(PR) and parameter uncertainty (PU).

failing to project the increase in life expectancy differences observed over the 1981-

2010 period. Recalling Table 4.1, 60% of the “Extreme Deprived” population

belong to the two most deprived quintiles of England which have seen a significant

increase in relative mortality differentials with respect to England and Wales (see

Chapter 2). This suggests that the non-divergence assumption embedded in the

(vector) autoregressive process of order 1 used for forecasting the period index

in the book κB
t (recall Equation (4.9)) may be inappropriate for the “Extreme

Deprived” book.

Figure 4.12 presents the fan charts produced by each of the models for the value of a

cohort survivor index,

SR(65, t) =
t−1
∏

i=0

(1 − qR
65+i,2011+i),
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Figure 4.12: Fan charts of SR(65, t) for the cohort age 65 at the start of 2011 in the
England and Wales male reference population using different mortality models.
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Figure 4.13: Fan charts of SB(65, t) for the cohort age 65 at the start of 2011 in the
“Extreme Wealthy” test book using different mortality models and different sources of
risk (PR=process risk; PU=parameter uncertainty). Left panels present the survivor
index for the book population, SB(65, t), and right panels present results for the ratio
of the survivor index in the book and the reference populations, SB(65, t)/SR(65, t).
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(a) 30 year curtailed period life expectancy at age 60 in 2020
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(b) 25 year curtailed cohort life expectancy at age 65 in 2011

Figure 4.14: Cumulative distribution function of the curtailed period and cohort life
expectancy in the “Extreme Wealthy” test book and cumulative distribution function
of the corresponding difference in period and cohort life expectancies between the book
and reference populations. The cumulative distribution functions account for both

process and parameter risk.

computed using the forecasted mortality rates of the reference population. This index

measures the proportion from a group of males aged 65 at the start of 2011 who are still

alive at the start of year 2011 + t. We note that SR(65, t) does not involve any forecasts

of the cohort effect as the relevant cohort effect, γ1946, is known at the start of 2011.

Figure 4.13 shows matching fan charts of the survivor index, SB(65, t), computed using

mortality rates from the “Extreme Wealthy” test book, along with fan charts of the

ratio of the book and reference population survivor indexes, SB(65, t)/SR(65, t). From

Figures 4.12 and 4.13, we note the following

• As with life expectancies, there are some differences in the trends and in the uncer-

tainty levels of the survivor index of each of the two populations. Notably, M7-M5

produce wider fans than the other three models. This reflects the existence of
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Table 4.7: Forecasted mean and variance of 25 year cohort curtailed life expectancy
for the cohort aged 65 in 2011 for the England and Wales male reference population
and for the “Extreme Wealthy” test book using different mortality models and different

sources of risk (PR=process risk; PU=parameter uncertainty).

Mean of cohort life expectancy for the cohort aged 65 in 2011

Book Difference
Model Reference PU PU+PR PU PU+PR

CF+Cohorts 20.36 21.05 21.05 0.68 0.69
CAE+Cohorts 20.36 21.06 21.06 0.69 0.70
Gravity 19.47 20.35 20.34 0.88 0.87
M7-M5 19.54 20.27 20.27 0.73 0.73

Variance of cohort life expectancy for the cohort aged 65 in 2011

Book Difference
Model Reference PU PU+PR PU PU+PR

CF+Cohorts 0.1229 0.1062 0.1062 0.0007 0.0008
CAE+Cohorts 0.1229 0.1066 0.1066 0.0009 0.0014
Gravity 0.1252 0.1072 0.2027 0.0011 0.0905
M7-M5 0.1830 0.1670 0.1677 0.0009 0.0015

more random period effects in M7-M5 than in the CAE+cohorts, the CF+cohorts

and the APC (Gravity) model.

• Parameter uncertainty has little impact on the level of uncertainty of the survivor

index in the book. By contrast, parameter uncertainty can have a significant

impact on the level of uncertainty observed in the ratio of survivor indexes. In

particular, the right bottom panel of Figure 4.13 shows that for the APC, which is

the only model that allows for a book specific cohort effect, the fans look completely

unreasonable. This suggests that, unless there is strong reason to believe in the

existence of a different cohort effect in the book to the reference population, the

parameter uncertainty in fitting a book-specific cohort term will greatly outweigh

any benefits in terms of goodness-of-fit to historical experience.

• The close alignment between the fans of models CF+cohorts and CAE+cohorts

deserves further investigation. For these two models, which share the same refer-

ence population model, we plot in Figure 4.14 the simulated empirical distribution

considering both process risk and parameter risk for the 30 year period curtailed

life expectancy at age 60 in 2020,
↑
eB

60,30
(2020), and for the 25 year cohort life

expectancy for someone aged 65 in 2011 in the book population,

ր
eB

65,25(2011) =
25
∑

t=1

SB(65, t) =
25
∑

t=1

t−1
∏

i=0

(1 − qB
65+i,2011+i),
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together with the corresponding simulated empirical distribution of the difference

in period and cohort life expectancies between the book and the reference popula-

tions. The associated means and variances are reported in Table 4.6 for the period

life expectancies and in Table 4.7 for the cohorts life expectancies. While for the

book population the empirical distributions are practically indistinguishable, there

are notable dissimilarities in the empirical distributions for the difference in both

period and cohort life expectancies, suggesting that the uncertainty in the book

survivor index is dominated by the uncertainty in the reference part of the model.

Furthermore, the discrepancies in the mean and variances of the life expectancy

for the book population forecasted by both models are immaterial. These results

allows us to conclude that although model CF+cohorts is unsuitable for basis risk

assessment due to its implicit perfect correlation between the book and reference

populations, this model might by a reasonable alternative in applications where

only single population metrics are of interest such as when valuing pension liabil-

ities or pricing annuities.

Overall, although all the models produce plausible trends and forecast levels of uncer-

tainty for single population metrics, for two-population metrics only models CAE+Cohorts

and M7-M5 produce plausible results. In addition, there are large enough differences

between the models for us to acknowledge model risk as an important issue.

4.6.2.6 Forecast levels of uncertainty by book size

The analysis of the plausibility of the forecasted levels of uncertainty performed so far

has been based on a fairly large book population with 100,000 exposed lives per year

between ages 60 and 89. However, for smaller exposures of the book population the

sampling noise in the data is bigger, leading to more uncertainty in the estimates of the

parameters of the models. This additional variability arising from a smaller population

size can potentially have a material impact on the plausibility of the forecasted levels

of uncertainty. To explore this phenomenon, we investigate how the contribution of the

different sources of uncertainty to the total level of risk varies by population size. Figure

4.15 shows for models CAE + Cohort and M7-M5 the variation by book size of:
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Figure 4.15: Variance by population size of the curtailed period and cohort life ex-
pectancy in the “Extreme Wealthy” test book and variance by population size of the
corresponding difference in period and cohort life expectancies between the book and
reference populations using different models and considering different sources of risk.

• the variance of the 30 year period curtailed life expectancy at age 60 in 2020 for

the “Extreme Wealthy” test book,
↑
eB

60,30
(2020) (top-left panel); and

• the variance of the corresponding differences in period life expectancies with re-

spect to the England and Wales reference population,
↑
eB

60,30
(2020) −

↑
eR

60,30
(2020)

(top-right panel);

• the variance of the 25 year cohort curtailed life expectancy at age 65 in 2011 for

the “Extreme Wealthy” test book,
ր
eB

65,25
(2011) (bottom-left panel); and

• the variance of the corresponding differences in cohort life expectancies with re-

spect to the England and Wales reference population,
ր
eB

65,25
(2011) −

ր
eR

65,25
(2011)

(bottom-right panel);

From this figure we can see how:
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• The differences in the levels of uncertainty produced by the models are evident,

with the M7-M5 producing higher variance than the CAE+Cohorts. These differ-

ences are particularly notable for cohort life expectancies in the book population.

• The magnitude of the variance of both period and cohort life expectancies starts

to stabilise around a book size of 25,000 lives. This is particularly noticeable when

considering only process risk.

• For book sizes smaller than 15,000 lives, process risk is unrealistic producing arti-

ficially high variances.

These observations suggest that to avoid a distorted assessment of the levels of uncer-

tainty, models CAE+Cohorts and M7-M5 should only be used when the book exposure

is higher than 20,000-25,000 lives. Furthermore, as we show in section 4.7, insisting on

using the models with modest exposure numbers may result in a misstated assessment

of demographic basis risk.

4.6.2.7 Forecasting performance and robustness

A good mortality model should not only produce forecasts that appear reasonable

ex-ante, but should also provide good ex-post forecast, that is forecast that do not

deviated significantly from realised outcomes. In addition, these forecasts should be

robust relative to the choice of period for the data employed in producing the forecasts.

To assess the forecasting accuracy of the models, we first carry out a backtesting exercise

in the spirit of Booth et al. (2006) and Jarner and Kryger (2011, Section 4). This exercise

entails the fitting and forecasting of the models using data for the period 1981 to 2010

for different history lengths, book sizes, and IMD compositions in the book population;

and the evaluation of different metrics of forecasting performance.

Specifically, the different models were fitted to history lengths ranging from 5 years to

20 years10, book sizes ranging from 5,000 lives to 100,000 exposed lives between ages 60

to 89 and the four test IMD compositions described before in Table 4.1. The forecasting

10For instance when considering a history length of 5 years the models were fitted using data for the
book population covering the periods 1981-1985, 1982-1986, . . ., 2004-2008, 2005-2009. In all cases, the
reference population data was assumed to start in 1961 and end in the same year as the book population
data.
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performance of the models is evaluated by comparing the actual 30 year curtailed period

life expectancies at age 60 in the book population,
↑
eB

60,30
(t), and the actual differences in

30 year curtailed period life expectancies at age 60 between the book and the reference

population,
↑
eB

60,30
(t)−

↑
eR

60,30
(t), with their corresponding predicted counterparts over the

rest of the period until 2010. Forecast bias (actual-fitted) is summarised by averaging

across years, book sizes and forecasting horizon. The matching absolute errors are also

averaged to provide a measure of forecast accuracy.

The forecast bias (mean errors) and the forecast accuracy (mean absolute error) for both

period life expectancy in the book and differences in period life expectancy between the

book and the reference, plotted against history length are shown in Figure 4.16. We

note the following:

• Models CAE+cohorts and CF+Cohorts stand out as the best models for fore-

casting period life expectancies in the book with the smallest bias and with the

smallest mean absolute error. The close alignment between the mean errors and

mean absolute errors of these two models reflects the fact that they share the same

reference population model.

• History length has a material impact on the out-of-sample performance of the

models. With the exception of model CF+Cohorts which does not require the

forecasting of any book specific time index, the forecasting performance of the

models for history lengths shorter than 8 years is poor. The noticeably poorer

performance of model M7-M5 for the shorter history lengths is explained by the

fact that this model has two period indices for the book, implying a more complex

and data demanding time series process for the forecasting.

• For differences in life expectancies and when we have more than 8 years of history,

the models perform very similarly both in terms of bias and accuracy.

• The bias in forecasting differences between the “Extreme Deprived” population

and the England and Wales reference population is considerably higher than the

bias for the other three test book compositions. This higher bias gives further

evidence for concluding that the non-divergence assumption may be inadequate

for the “Extreme Deprived” book.

161



Chapter 4. A Comparative Study of Two-population Models for Basis Risk

● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ●
●

●

●
●

● ● ● ● ● ● ● ● ●

●
● ● ● ● ●

● ● ●
●

Typical Lives Typical Amounts Extreme Wealthy Extreme Deprived

−0.25

0.00

0.25

0.50

0.75

1.00

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
history length

m
ea

n 
er

ro
r 

in
 li

fe
 e

xp
ec

ta
nc

y

●

CF + Cohorts

CAE + Cohorts

Gravity

M7−M5

Book

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ● ●

Typical Lives Typical Amounts Extreme Wealthy Extreme Deprived

−0.2

0.0

0.2

0.4

0.6

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
history lengthm

ea
n 

er
ro

r 
in

 li
fe

 e
xp

ec
ta

nc
y 

di
ff.

●

CF + Cohorts

CAE + Cohorts

Gravity

M7−M5

Book−Reference

●
● ●

● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ●

●

●
●

● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

Typical Lives Typical Amounts Extreme Wealthy Extreme Deprived

0.5

1.0

1.5

2.0

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
history lengthm

ea
n 

ab
s.

 e
rr

or
 in

 li
fe

 e
xp

ec
ta

nc
y

●

CF + Cohorts

CAE + Cohorts

Gravity

M7−M5

Book

●

● ●
● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ●

●

●
●

● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

Typical Lives Typical Amounts Extreme Wealthy Extreme Deprived

0.5

1.0

1.5

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
history length

m
ea

n 
ab

s.
 e

rr
or

 in
 li

fe
 e

xp
ec

ta
nc

y 
di

ff.

●

CF + Cohorts

CAE + Cohorts

Gravity

M7−M5

Book−Reference

Figure 4.16: Mean error (actual - fitted) and mean absolute error in the forecast of
30 year period curtailed life expectancy at age 60 in the book and in differences in 30
year period curtailed life expectancy at age 60 between the book and the reference.
The results are averaged across years, book sizes and forecast horizons ranging from 1

year to 15 years ahead.

In order to check the robustness of the models we will examine the stability of forecasts

towards the inclusion of additional years at the right end of the data window, using a

contracting horizon backtest as proposed by Dowd et al. (2010). Figure 4.17 shows plots
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Figure 4.17: Forecast of the 30 year period curtailed life expectancy at age 60 in 2010
for the four different book populations using different fitting periods. The stepping-off
year is the final year used in fitting the models. The realised life expectancy for 2010

is represented by a star.

of forecasts of the 30 year period curtailed life expectancy at age 60 in 2010,
↑
eB

60,30
(2010),

for the four test book populations with 100,000 exposed lives, made in 1985, 1986, . . .,

2009. Equivalent plots for the difference between the book and reference population,
↑
eB

60,30
(2010) −

↑
eR

60,30
(2010), are also included. For all book populations and models, we

see that the forecasts for the book population are well-behaved, in the sense that they

converge in a stable manner towards the realised outcome. For forecasts of differences

in life expectancy we see a similar stable behaviour, albeit the discrepancies in the

forecasts for the “Extreme Deprived” population are noticeable and consistent with our

previous findings regarding the unsuitability of the non-divergence assumption for this

book (recall Figure 4.11c). Similar analysis for other book sizes show that the models

are robust, provided that the length of the fitting period is longer than 10 years (i.e. for

stepping off years after 1990).
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4.6.2.8 Summary of assessment

The main conclusions of our systematic assessment of the candidate two-population

mortality models for basis risk assessment can be summarised as follows:

• We should not expect any single model to satisfy all possible desirable criteria of

a practical solution to assessing basis risk.

• However, models M7-M5 and CAE+Cohorts stand out as the models which provide

the most suitable balance between flexibility, simplicity, parsimony, goodness-of-fit

to data, forecasting performance and robustness.

• Both M7-M5 and CAE+Cohorts produce reasonable best estimate projections with

plausible levels of uncertainty, but with sufficient differences which suggests that

we need to recognise model risk as an important issue.

• The paucity of book data means that it is difficult to estimate the age modu-

lating terms β
(j,B)
x without resulting in non-robust and erratic parameter esti-

mates. Thus, any parameter which moderates the sensitivity of the book to time

trends at different ages should be inherited from the reference population (i.e.

β
(j,B)
x ≡ β

(j,R)
x )

• Unless there is strong reason to believe in the existence of a different cohort effect

in the book to the reference population, the parameter uncertainty in fitting a

(non-parametric) book-specific cohort term will greatly outweigh any benefits in

terms of goodness-of-fit to historical experience.

• The fitting of two-population models should in principle only be pursued when:

– the book annual exposure is over 20,000-25,000 lives– for smaller exposures,

the impact of parameter uncertainty may result in a distorted assessment of

basis risk;

– there are at least 8-10 years of reliable book data- for shorter history lengths,

the quality of the forecasts is likely to be poor.

The above conclusions are underpinned by this analysis based on England and Wales

population data and the profile of sample schemes drawn from the Club Vita database.
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We would expect many of the key conclusions to hold for other populations, although

specific results (such as AIC rankings) are necessarily dependent on the choice of data.

4.7 Quantifying basis risk

In this section we examine the performance of the models when used for assessing basis

risk. We also discuss the impact that different volumes of data may have on the parame-

ter uncertainty and on the assessment of basis risk. In presenting the basis risk analysis

we follow the five-step hedge effectiveness framework proposed in Coughlan et al. (2011).

4.7.1 Steps 1 and 2: Hedging objectives and hedging instruments

Most hedging exercises will either be cash flow hedges or value hedges aiming, respec-

tively, to mitigate the variability of the cash flows or the variability of the value of these

cash flows. We consider thus two separate simple examples reflecting the objectives of

a value hedge and of a cash flow hedge:

Value hedge example. Noting that period life expectancy corresponds to an annuity

value using a zero percent interest rate and no mortality improvements, for the value

hedge case we assume that the quantity at risk to be hedged is the 30 year curtailed

period life expectancy at age 60 in 2020,
↑
eB

60,30
(2020), i.e. over a horizon of 10 years.

The hedging instrument to reduce the liability risk is the 30 year curtailed period life

expectancy at age 60 in 2020 for the England and Wales population.
↑
eR

60,30
(2020). This

exercise is similar in spirit to the hedge effectiveness analysis performed in Cairns (2013)

and Cairns et al. (2014).

Cash flow hedge example. To reflect a cash flow hedge situation we consider that

the quantity at risk to be hedged is the 25 year curtailed cohort life expectancy at age 65

in 2011,
ր
eB

65,25
(2011), which can be interpreted as the arithmetic sum of the cash flows

payable in 25 years to a pensioner aged 65 in 2011 and who belongs to a pension plan

that pays £1 at the end of each year. The hedging instrument to reduce the liability

risk is the 25 year curtailed cohort life expectancy at age 65 in 2011 for the England

and Wales population.
ր
eR

65,25
(2011). This exercise is similar in spirit to the hedge

effectiveness analysis performed in Li and Hardy (2011).
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Although very simple, these two examples should be informative of the performance of

the models for hedge effectiveness assessment while avoiding the idiosyncrasies of specific

pension benefit structures or more realistic hedging instruments.

4.7.2 Step 3: Method for hedge effectiveness assessment

Following Li and Hardy (2011), Cairns (2013) and Cairns et al. (2014), we use the

variance as our measure of risk. Therefore, if L denotes the random unhedged liability

and H represent the value of the index-linked hedging instrument, we assume that the

hedger wishes to minimise the variance of L−hH, where h is the number of units (hedge

ratio) held of the hedging instrument. We define thus the relative risk reduction (hedge

effectiveness) as

R2(h) = 1 −
var(L− hH)

var(L)

It can be proved (see, for example, Cairns et al. (2014)) that the optimal hedge ratio is

h∗ =
cov(L,H)

var(H)

with optimal relative risk reduction

R2(h∗) = 1 −
var(L− h∗H)

var(L)
= ρ2,

where ρ is the correlation between L and H.

For our examples, it will thus suffice to analyse the correlation between L and H, i.e., the

correlation between
↑
eB

60,30
(2020) and

↑
eR

60,30
(2020) for the value-hedging example and the

correlation between
ր
eB

65,25
(2011) and

ր
eR

65,25
(2011) for the cash flow-hedging example.

4.7.3 Step 4: Calculation of hedge effectiveness

For each stochastic two-population model under consideration we compute the correla-

tions between L and H based on 1,000 simulated mortality scenarios. In the analysis

that follows, we contemplate three cases concerning the sources of risks considered in

the simulations: i) only process risk (PR); ii) process risk and parameter uncertainty

(PR+PU); and iii) process risk, parameter uncertainty and sampling risk (PR+PU+SR).
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Process risk and parameter risk are considered using the techniques described before in

Section 4.6.2.5, while sampling risk is considered by randomly sampling the number of

deaths from a Binomial distribution once parameter uncertainty and process risk have

been taken into account.

Specifically, for the value-hedging example, we assume that the future exposuresEB
x,2010+t,

t = 1, .., 10, are equal to the average age-specific book exposure over the data period

used in fitting the mortality model and then simulate the number of deaths using the

conditional Binomial assumption:

DB
x,2010+t|q

B
x,2010+t ∼ Bin(EB

x,2010+t, q
B
x,2010+t), t = 1, . . . , 10

For the cash-flow hedge example, we take sampling risk into account by treating the co-

hort of pensioners as a random survivorship group. Thus, if lx denotes the number of pen-

sioners who survive to age x and given a simulated mortality scenario {qB
65,2011, q

B
66,2012, . . . , q

B
89,2035},

we model sampling risk with the following Binomial death process:

l65+t ∼ Bin(l65+t−1, 1 − qB
65+t−1,2010+t), t = 1, . . . , 25,

with l65 equal to 5% of the total exposure in the book between ages 60 to 89 (e.g. if the

total book exposure is 100,000 lives we take l65 = 5, 000). We have chosen 5% as from

the total English male population aged 60 to 89 broadly 5% is aged 65 (see Figure 4.2).

4.7.4 Step 5: Interpretation of results

We concentrate on hedge effectiveness results for models CAE+Cohorts and M7-M5

which where identified as the best performing models after the systematic model assess-

ment carried out in section 4.6. However, in spite of the implausible projections produced

by models CF+Cohorts and APC (gravity) model, we shall also compute hedge effec-

tiveness metrics for these two models to illustrate the issues that may arise if we insist

on using them for basis risk assessment.
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Figure 4.18: Squared correlation, ρ2, between the liability L and the hedging instru-
ment H, as a function of book population size. All values correspond to the “Extreme
Wealthy” socio-economic composition and using data for the period 1981-2010 to fit

the models.

4.7.4.1 Hedge effectiveness by book population size

As discussed in section 4.6.2.5, population size has a material impact in the param-

eter uncertainty of the models. In addition, it is expected that the higher sampling

risk associated with smaller populations will reduce the effectiveness of a standardised

longevity-hedge. To investigate this phenomenon, we present in Figure 4.18 hedge effec-

tiveness results (ρ2) for the “Extreme Wealthy” test book considering population sizes

ranging from 5,000 to 100,000 exposed lives between ages 60 to 89, and considering dif-

ferent sources of risk. In all cases, data for the period 1981-2010 (i.e. a history length

of 30 years) is used for fitting the models. From Figure 4.18 we note the following:

• As expected the inherent perfect correlation of the CF+Cohorts results in an

unrealistic zero or close to zero basis risk when sampling risk is ignored.

• The previously raised issues in relation to the parameter uncertainty in the estima-

tion of book-specific cohort parameters become evident, with the APC (Gravity)
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model showing implausibly low hedge-effectiveness once parameter risk is taken

into account. This is especially noticeable for the cash flow-hedge example which

involves cohort-type quantities. In this case, even for populations as big as 100,000

lives, the hedge effectiveness produced by the model are below 60% while other

models produce hedge-effectiveness of more than 85%.

• For book sizes smaller than 15,000 lives, process risk is unrealistically high (recall

Figure 4.15) distorting the assessment of basis risk and producing artificially low

hedge effectiveness for the value-hedge example.

• The impact of sampling risk on correlations is material, with hedge effectiveness

values for both the value-hedge and the cash flow-hedge falling rapidly for pop-

ulations below 10,000 lives. We also note that for the cash flow-hedge example,

sampling risk is the main determinant of basis risk. In fact, the CF+Cohorts

model which implies zero basis risk before accounting for sampling risk, results

in virtually the same risk reductions as models CAE+Cohort and M7-M5 once

sampling risk is accounted for.

• Although models M7-M5 and CAE+Cohorts can give rather different mortality

forecasts, these differences seem to attenuate in applications, with the two models

producing very similar hedge effectiveness values once all risks have been taken

into account.

4.7.4.2 Hedge effectiveness by history length

We now investigate how the number of years of available data in the book population

impacts the evaluation of hedge effectiveness. Figure 4.19 presents hedge effectiveness

results (ρ2) for the “Extreme Wealthy” test book considering history lengths ranging

from 5 years to 30 years, and considering different sources of risk. In all cases a book

populations size of 100,000 lives is used for fitting the models. In this figure we can see

how history length has a significant impact on hedge effectiveness assessment. For history

lengths shorter than 10-12 years and once parameter uncertainty has been considered,

risk reductions fall rapidly for model CAE+Cohorts, M7-M5 and APC (Gravity). This

reinforces the previously discussed issues of fitting time series models when historical

data are scarce.
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(b) Cash flow hedge example: 25 year curtailed cohort life expectancy at age 65 in 2011

Figure 4.19: Squared correlation, ρ2, between the liability L and the hedging instru-
ment H, as a function of history length of the book population data used to fit the
models. All values correspond to the “Extreme Wealthy” socio-economic composition

with a book size of 100,000 annual exposed lives between ages 60 to 89.

4.7.4.3 Interaction between book size and history length

We end this section by investigating the interaction between book size and history length

in the assessment of hedge effectiveness. To do so, we have fitted the CAE+Cohort and

M7-M5 model to the “Extreme Wealthy” test book considering all possible combinations

between book sizes 5000, 7500, 10000, 15000, 20000, 25000, 30000, 40000, 50000, 75000,

and 100000 and history lengths 5, 6, 7, 8, 9, 10, 12, 15, 20, 25 and 30 years. Figure 4.20

presents heatmaps depicting for both the value-hedge and cash-flow hedge examples the

resulting hedge effectiveness values (ρ2) once all sources of risks have been considered.

To ease the identification of patterns, correlations have been smoothed along the book

size and history length dimensions11. From Figure 4.20 we note the following:

11Smoothing has been performed using a generalised additive model of the form logit ρ = s(size) +
s(length), where, s denotes a penalised spline. For smoothing we have used the R package mgcv (Wood,
2015).
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(b) Cash flow hedge example: 25 year curtailed cohort life expectancy at age 65 in 2011

Figure 4.20: Smoothed squared correlation, ρ2, between the liability L and the hedg-
ing instrument H, as a function of the book size and history length of the book popu-
lation. All values correspond to the “Extreme Wealthy” socio-economic composition.

• The interaction between history length and book size is minimal, with hedge effec-

tiveness falling rapidly for history lengths shorter than 10-12 years and book sizes

smaller than 15,000-25,000 exposed lives above age 60.

• While for model M7-M5 correlations start to fall significantly for history length

below 12 years, for the the CAE+cohorts correlations only start to show a material

decline for history length below 10 years. This suggest that when historical data

are limited, models with fewer book specific period indexes should be preferred

over models with multiple period book specific period terms. However, in all cases

the fitting of two-populations models should only be pursued when book data

exceeds 8-10 years of history.
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• For a book size over 25,000 lives and history length above 12 years, the hedge

effectiveness reductions for both the value-hedge and the cash-flow hedge examples

are above 70%, suggesting that index-based hedges can be a meaningful alternative

for hedging longevity risk.

4.8 Discussion

We end this chapter by looking at a number of general comments arising from our

investigations.

Our previous sections have suggested that M7-M5 or the CAE+cohorts are appropriate

models when undertaking the modelling of the mortality of the reference and the book

populations in a basis risk assessment exercise. However, this need not preclude the

consideration of additional models. Indeed, the modeller may wish to look at alternative

models as part of sensitivity testing; or in order to gain a better understanding of model

risk; or to err on the side of adding more features into the model than historic back-

testing alone might suggest –these features may be needed as part of a personal belief on

the complexity of mortality. Further as time goes on new models will enter the actuarial

literature and our work can help integrate those models into a basis risk assessment

context. Therefore, we next provide some general guidelines for the construction of

two-population models for basis risk assessment.

When building a two-population model for assessing longevity basis risk, it is usual to

find that the reference population is considerably larger and has a longer back history of

data than the book population. It is therefore natural to start by selecting an appropriate

model for the reference population. Once the reference population model is chosen a

reasonable approach would be to select the book part of the model from within the same

model family of the reference part. This will ensure a correspondence between the model

parameters in the book and the reference populations which facilitates interpretation of

the parameters of the models and makes the subsequent analysis more comprehensive

and consistent in both populations. Our research on different models has also identified

that:

• it is in general enough to include at most two book-specific time-dependent terms;

172



Chapter 4. A Comparative Study of Two-population Models for Basis Risk

• any parameter which moderates the sensitivity of the book to these time trends

at different ages should be inherited from the reference book (i.e. β
(j,B)
x ≡ β

(j,R)
x );

and

• it is generally appropriate not to include a book specific cohort effect.

In mathematical terms, if the preferred reference population model is given by

logit qR
xt = αR

x +
N
∑

j=1

β(j,R)
x κ

(j,R)
t + γR

t−x,

then a good starting point for the book model would in general be of the form:

logit qB
xt − logit qR

xt = αB
x +

M
∑

j=1

β(j,R)
x κ

(j,B)
t

We would usually expect M to be at most two as it is unlikely that the book population

can support more than two time series i.e. M ≤ min(2, N).12 By way of example, if we

choose to model the reference population using the single population model described

in Börger et al. (2013):

logit qR
xt = αR

x + κ
(1,R)
t + (x− x̄)κ

(2,R)
t + (xyoung − x)+κ

(3,R)
t + (x− xold)+κ

(4,R)
t + γR

t−x

where xyoung and xold are predefined constant, then a suitable starting point for the

book model would be

logit qB
xt − logit qR

xt = αB
x + κ

(1,B)
t + (x− x̄)κ

(2,B)
t

Our systematic analysis of the two-population mortality literature has focused exclu-

sively on the use of these models for the assessment of basis risk in longevity hedges.

Furthermore, we have implicitly assumed that the target book population is a subset or

is closely related to the reference population on which the index is based. Hence, our

conclusions may not necessarily extend directly to other applications of two-population

mortality models and the evaluation of the suitability of a model will largely depend

12Note that the M7-M5 model and the CAE+cohorts can be derived from this form by applying the
previous rules if we start by modelling the reference population using a M7 model or a LC+Cohorts
model, respectively.

173



Chapter 4. A Comparative Study of Two-population Models for Basis Risk

on the task at hand (e.g whether it is a basis risk assessment exercises or not) and on

the nature of the relationship between the two populations being modelled. As we have

repeatedly discussed in this chapter, simpler models that are not suitable for basis risk

assessment (e.g, because of their implied perfect correlation between the populations)

may be suitable for other applications such us when valuing pension liabilities or pricing

annuities. In addition, the use of two-population mortality models for assessing the basis

risk in longevity hedges where the mortality in one country is hedged with the mortality

of another country13 would require a deep understanding of the differences between the

two countries’ mortality. Such differences may not be captured by the structure of the

two-population models we have proposed and the relative approach we have pursued

may have to be substituted by a simultaneous modelling of the two countries’ mortal-

ity, for instance along the lines of the work of Li et al. (2015) or the GLM modelling

approach of Hatzopoulos and Haberman (2013).

In all our mortality projections and simulations we have employed the usual assumption

that the spread between the mortality in the reference and the book will conform to

the non-divergence hypothesis in the long run, i.e., that the ratio of qB
xt/q

R
xt will tend

to a constant value as t → ∞. We have captured this non-divergence constraint via

the use of a (vector) autoregressive process for the time series indices (κB
t ) in the book

part of the model, implying that in the long-run the spread between the logit of mor-

tality for the book and the reference population will revert from the current level to the

historical mean. Although the investigation of the appropriateness of this assumption

is out of the scope of this chapter, the unsatisfactory results we have obtained when

modelling the “Extreme Deprived” book population suggest that such an assumption

may not be appropriate in all cases. In addition, the non-divergence assumption im-

plies that the variance of the difference in (logit) mortality between the book and the

reference population is bounded, potentially understating demographic basis risk and

hence overstating the hedge effectiveness. We thus encourage further research looking

at alternative choices of times series model and at the implications that such choices

may have on hedge-effectiveness.

Our investigations indicate that the accurate calibration and projection of a two-population

model requires that the annual exposure in the book population is over 20,000-25,000

13An example of this is the Kortis bond where UK mortality is hedged using US mortality, see Hunt
and Blake (2015)
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lives and that there are at least 10-12 years of reliable book data. However, in prac-

tice a large proportion of pension scheme books and life company portfolios will not

meet these data requirements leaving open the question of how to assess longevity basis

risk and hedge effectiveness for such populations. If book size is the main issue, then

a Bayesian approach such as those considered in Cairns et al. (2011a) and in Antonio

et al. (2015) may offer an alternative. By contrast, if the problem is the lack of suffi-

ciently long historical data, indirect approaches where the book is modelled indirectly

by reference to a bigger population with a more reliable and longer mortality experience

could be the way through. Such approaches have recently been considered in the “mix-

ing” approach proposed by Ahcan et al. (2014) and in the “characterisation” approach

introduced in Haberman et al. (2014b), and we believe that this line of research deserves

further consideration.

Finally, although we have only considered very stylised longevity hedges, our hedge-

effectiveness results show that index-based hedge have the potential to provide an effec-

tive and flexible solution to mitigate longevity risk. We hope that our research has shed

light on the assessment of basis risk and contributes to moving forward the market of

standardised longevity transactions.
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Appendix 4.A Generation of synthetic data

In this appendix we present a procedure for generating, based on a reference dataset,

synthetic mortality datasets which have a given exposure size with a given distribution

of this exposure across population subgroups.

Assume that we have a reference dataset containing observed number of deaths Dxtg

in year t for people age x in subgroup g with matching central exposures Extg and

matching death rates µxtg = Dxtg/Extg . Let C
′

t be the target total exposure for year t

in the synthetic dataset and (w
′

tg1
, . . . , w

′

tgm
) be a vector of weights adding to one which

represents the desired splitting in year t of this exposure among the subgroups.

The synthetic central exposures E
′

xtg in year t for people age x in subgroup g are obtained

as

E
′

xtg = C
′

t

∑

g Extg
∑

x

∑

g Extg

w
′

tg = C
′

t

Ext

Et

w
′

tg,

where Ext =
∑

g Extg are the total exposed to risk at age x in year t across all groups

and Et =
∑

x

∑

g Extg are the total exposed to risk in year t across all groups and ages.

Hence the exposure for the reference dataset is being used to obtain the split by age

for a particular year and group. The corresponding synthetic number of deaths D
′

xtg is

generated by drawing a random sample from a Poisson distribution with mean E
′

xtgµxtg.

Appendix 4.B Model fitting constraints

Some of the models require parameter constraints to ensure identifiability of the param-

eters. Table 4.8 presents the parameter constraints imposed to the reference population

models and Table 4.9 shows the parameter constraints imposed to the book part of the

two-population models.
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Table 4.8: Parameter constraints for the reference population models.

Model Constraints

LC
∑

x β
R
x = 1,

∑

t κ
R
t = 0

LC2
∑

x β
(1,R)
x = 1,

∑

t κ
(1,R)
t = 0,

∑

x β
(2,R)
x = 1,

∑

t κ
(2,R)
t = 0

LC2+Cohorts
∑

x β
(1,R)
x = 1,

∑

t κ
(1,R)
t = 0,

∑

x β
(2,R)
x = 1,

∑

t κ
(2,R)
t = 0

LC+Cohorts
∑

x β
R
x = 1,

∑

t κ
R
t = 0,

∑

c γ
R
c = 0,

∑

c cγ
R
c = 0

APC
∑

t κ
R
t = 0,

∑

c γ
R
c = 0,

∑

c cγ
R
c = 0

M5 -

M6
∑

c γ
R
c = 0,

∑

c cγ
R
c = 0

M7
∑

c γ
R
c = 0,

∑

c cγ
R
c = 0,

∑

c c
2γR

c = 0

Table 4.9: Parameter constraints for the book part of the models.

Model Constraints

CF+Cohorts -

CAE+Cohorts
∑

t κ
B
t = 0

RelLC+Cohorts
∑

x β
B
x = 1,

∑

t κ
B
t = 0

Gravity (APC)
∑

t κ
B
t = 0,

∑

c γ
B
c = 0,

∑

c cγ
B
c = 0

M7-M5 -

M7-M6
∑

c γ
B
c = 0,

∑

c cγ
B
c = 0

M7-M7
∑

c γ
B
c = 0,

∑

c cγ
B
c = 0,

∑

c c
2γB

c = 0

M7-Saint -

M7-PLAT -
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5
StMoMo: An R Package for Stochastic

Mortality Modelling

A stable version of the R package documented in this chapter is available on CRAN

(the main repository for R packages) at:.

https://cran.r-project.org/package=StMoMo

In addition the associated source code is publicly available at:

https://github.com/amvillegas/StMoMo
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Abstract

In this chapter we mirror the framework of generalised (non-) linear models to define

the family of generalised Age-Period-Cohort stochastic mortality models which encom-

passes the vast majority of stochastic mortality projection models proposed to date,

including the well-known Lee-Carter and Cairns-Blake-Dowd models. We also intro-

duce the R package StMoMo which exploits the unifying framework of the generalised

Age-Period-Cohort family to provide tools for fitting stochastic mortality models, assess-

ing their goodness of fit and performing mortality projections. We illustrate some of the

capabilities of the package by performing a comparison of several stochastic mortality

models applied to the England and Wales population.

Keywords: Mortality modelling; mortality forecasting; generalised linear models; gener-

alised non-linear models

5.1 Introduction

During the last two centuries developed countries experienced a persistent increase in

life expectancy. For instance, Oeppen and Vaupel (2002) estimate that during the

last 160 years the world record in female life expectancy at birth has increased at an

approximate steady pace of 3 months per year. This increase in life expectancy, though

a sign of social progress, poses a challenge to governments, private pension plans and life

insurers because of its impact on pension and health costs. Actuaries and demographers

have recognised the problems caused by an ageing population and rising longevity and

have thus devoted significant attention to the development of statistical techniques for

the modelling and projection of mortality rates.
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One of the most influential approaches to the stochastic modelling of mortality rates

is the parsimonious mortality model proposed by Lee and Carter (1992). This model

uses principal component analysis to decompose the age-time matrix of mortality rates

into a bilinear combination of age and period parameters, with the latter being treated

as time series to produce mortality projections. The Lee-Carter model has inspired

numerous variants and extensions. For instance, Lee and Miller (2001), Booth et al.

(2002), and Brouhns et al. (2002) have proposed alternative estimation approaches in

order to improve the goodness-of-fit and the forecasting properties of the model. In

particular, Brouhns et al. (2002) propose a more formal statistical approach to estimating

the parameters by embedding the Lee-Carter model into a Poisson regression setting.

Other authors have extended the Lee-Carter model by including additional terms, such

as multiple bilinear age-period components (Renshaw and Haberman, 2003; Hyndman

and Ullah, 2007), or a cohort effect term (Renshaw and Haberman, 2006; Currie, 2006).

The two factor Cairns-Blake-Dowd (CBD) model introduced by Cairns et al. (2006) is

one of the most prominent variants of the Lee-Carter model. The CBD model relies

on the linearity of the logit of one-year death probabilities at older ages. Specifically,

it assumes that for a given year the logit of the one-year death probability is a linear

function of age, and treats the intercept and slope parameters across years as stochastic

processes. Cairns et al. (2009) consider three extensions to the original CBD model

by incorporating combinations of a quadratic age term and a cohort effect term. Plat

(2009) has combined features of the CBD and the Lee-Carter models to produce a model

that is suitable for full age ranges and captures the cohort effect.

Given the abundance and rapid increase in the number of stochastic mortality models

proposed in the literature, there have been some recent attempts to find the common-

alities among these models. Hunt and Blake (2015) review the structure of mortality

models and describe an Age-Period-Cohort model structure which encompasses the vast

majority of stochastic mortality models. Currie (2014) shows that many mortality mod-

els can be expressed in terms of generalised linear models or generalised non-linear

models.

In this chapter, we build upon the works of Hunt and Blake (2015) and Currie (2014)

to define the family of Generalised Age-Period-Cohort stochastic mortality models by
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mirroring the terminology of generalised linear models. We also introduce the R pack-

age StMoMo1 which exploits the unifying framework of the Generalised Age-Period-

Cohort family to provide computational tools for implementing many of the stochas-

tic mortality models proposed to date. The StMoMo package is available at https:

//cran.r-project.org/package=StMoMo. Version 0.2 has been used for this chapter.

Several packages for mortality modelling are available in the R environment (R Core

Team, 2014). The package demography (Hyndman, 2014), whose usage is explained in

detail in Booth et al. (2014), implements the original Lee-Carter model along with the

Lee and Miller (2001), Booth et al. (2002), and Hyndman and Ullah (2007) variants. The

ilc package (Butt et al., 2014) implements the Renshaw and Haberman (2006) cohort

extension of the Lee-Carter model together with the Lee-Carter model under a Poisson

regression framework. The LifeMetrics R functions implement the original CBD model

and the three extended CBD models considered in Cairns et al. (2009), along with the

Lee-Carter model (using Poisson maximum likelihood), the Age-Period-Cohort model

of Currie (2006) and the Renshaw and Haberman (2006) model. This package, which is

not on CRAN, is available at http://www.macs.hw.ac.uk/~andrewc/lifemetrics/.

There are however several drawbacks of the existing packages which our package StMoMo

seeks to overcome. First, the existing packages are based on model-specific fitting al-

gorithms limiting the models available to those already predefined in the packages. By

contrast, StMoMo allows users to easily expand the number of models available. In

addition, whilst StMoMo provides forecasting and simulation functions for any model

within the Generalised Age-Period-Cohort family, the existing packages only provide

such functions for a limited number of models. For instance, the package ilc only in-

cludes forecasting functions for the Lee-Carter model. Similarly, simulation with the

package LifeMetrics is limited to the Lee-Carter and the standard CBD models. Fi-

nally, StMoMo provides functions which are not available in existing packages, such as

tools for analysing the goodness-of-fit2 and evaluating the impact of parameter uncer-

tainty using bootstrapping techniques.

StMoMo comes with a set of functions for defining an abstract model — specifying for

instance the number of period terms, whether coefficients are parametric or not — and

1The acronym StMoMo, pronounced Saint Momo, stands for Stochastic Mortality Modelling. Momo
is the king of Carnivals in numerous Latin American festivities (Wikipedia, 2014).

2We note that ilc also provides some graphical tools for assessing the goodness of fit of the models
implemented in that package.
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for fitting a given model. This is particularly useful when estimating several models on

a given dataset or a given model to different datasets. The package also provides preset

functions for defining the most common models available in the mortality forecasting

literature. In addition, other models preferred by the user can be created in a very simple

fashion, see Section 5.4 where several examples are given. Therefore, the flexibility of

the package allows a user to quickly build up a battery of different models, and this

is particularly useful when seeking the most appropriate mortality model, comparing

different models or assessing model risk. StMoMo is particularly appealing for actuaries

managing life and pensions portfolios exposed to longevity risk. The code backing most

functions implemented in the package has been extensively used and tested in Chapter

4, where we have carried out a comparison of multipopulation mortality models in the

context of assessing basis risk in longevity transactions.

In this chapter we describe the statistical framework underlying StMoMo and illus-

trate its usage. For this purpose, we use as a running example a comparison of several

stochastic mortality models fitted to the England and Wales population. This example

is in the spirit of the comparison exercises of Cairns et al. (2009, 2011), Haberman and

Renshaw (2011) and Lovász (2011), allowing us to show how several of the analysis

performed in these papers can easily be replicated using StMoMo. The structure of

the chapter is as follows. In Section 5.2 we introduce our notation. In Section 5.3, we

mirror the framework of generalised linear models to define the family of Generalised

Age-Period-Cohort (GAPC) stochastic mortality models and demonstrate that many of

the mortality models discussed in the literature can be framed within this family. In

Section 5.4 we explain how the GAPC family of models is implemented in StMoMo.

In Section 5.5, we describe the fitting of GAPC mortality models and illustrate how

this can be accomplished using StMoMo. In Section 5.6 we consider the evaluation

of the goodness-of-fit of GAPC models. In Section 5.7 we discuss the forecasting and

simulation of GAPC models using time series techniques. Section 5.8 describes the

use of bootstrapping techniques to incorporate parameter uncertainty in the estimation

and forecasting of GAPC mortality models. Finally, in Section 5.9 we provide some

conclusions and discuss possible extensions of the StMoMo package.
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5.2 Notation and Data

Let the random variable Dxt denote the number of deaths in a population at age x last

birthday during calendar year t. Also let dxt denote the observed number of deaths,

Ec
xt the central exposed to risk at age x in year t, and E0

xt the corresponding initial

exposed to risk. The one-year mortality rate for an individual aged x last birthday

and in calendar year t, denoted qxt, can be estimated as q̂xt = dxt

/

E0
xt . The force of

mortality and central death rates are denoted by µxt and mxt, respectively, with the

empirical estimate of the latter being m̂xt = dxt/E
c
xt . Under the assumption that the

force of mortality is constant over each year of age and calendar year, i.e. from age x to

age x+ 1 and t to t+ 1, then the force of mortality µxt and the death rate mxt coincide.

We assume that this is the case throughout.

In StMoMo and throughout this chapter we assume that deaths, dxt, and either central

exposures, Ec
xt, or initial exposures, E0

xt, are available in a rectangular array format

comprising ages (on the rows) x = x1, x2, . . . , xk, and calendar years (on the columns)

t = t1, t2, . . . , tn, When only central exposures are available and initial exposures are

required (or vice-versa), one can approximate the initial exposures by adding half the

matching reported numbers of deaths to the central exposures, i.e, E0
xt ≈ Ec

xt + 1
2dxt.

When the context is clear, we may write Ext to refer to E0
xt or Ec

xt.

5.3 Generalised Age-Period-Cohort stochastic mortality mod-

els

Some authors have recently sought to identify the similarities amongst stochastic mor-

tality models. For instance, Hunt and Blake (2015) describe an Age-Period-Cohort

model structure which encompasses the vast majority of stochastic mortality models.

In another interesting contribution, Currie (2014) shows that many common mortality

models can be expressed in the standard terminology of generalised linear or non-linear

models. In this section, we build upon the aforementioned papers to define the family

of Generalised Age-Period-Cohort (GAPC) stochastic mortality models.

Akin to generalised linear models (see e.g. McCullagh and Nelder (1989)), a GAPC

stochastic mortality model is comprised of four components:
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i. The random component: the numbers of deaths Dxt follow a Poisson distribution

or a Binomial distribution3, so that

Dxt ∼ Poisson(Ec
xtµxt)

or

Dxt ∼ Binomial(E0
xt, qxt),

with E (Dxt/E
c
xt ) = µxt and E

(

Dxt

/

E0
xt

)

= qxt, respectively.

ii. The systematic component: following Hunt and Blake (2015) the effects of age

x, calendar year t and year-of-birth (cohort) c = t − x are captured through a

predictor ηxt given by:

ηxt = αx +
N
∑

i=1

β(i)
x κ

(i)
t + β(0)

x γt−x.

Here:

– The term αx is a static age function capturing the general shape of mortality

by age.

– N ≥ 0 is an integer indicating the number of age-period terms describing

the mortality trends, with each time index κ
(i)
t , i = 1, . . . , N , contributing in

specifying the mortality trend and β
(i)
x modulating its effect across ages.

– The term γt−x accounts for the cohort effect with β
(0)
x modulating its effect

across ages.

The age modulating terms β
(i)
x , i = 0, 1, . . . , N , can be either pre-specified func-

tions of age, i.e. β
(i)
x ≡ f i(x), as in CBD type models, or non-parametric terms

without any prior structure and which need to be estimated as in the Lee-Carter

model. In the GAPC family we assume that the period indexes κ
(i)
t , i = 1, . . . , N ,

and the cohort index γt−x are stochastic processes rather than smooth functions

of time or cohort. This is the key feature that allows the stochastic projection of

GAPC models and thus the generation of probabilistic forecasts of future mortality

rates.

3More precisely, conditionally on (µxt), the numbers of deaths are independent and follow a Poisson
distribution. Similarly, in the Binomial case, the numbers of deaths are independent conditionally on
(qxt).
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iii. The link function g associating the random component and the systematic com-

ponent so that

g

(

E

(

Dxt

Ext

))

= ηxt.

Although a number of link functions would be possible it is convenient to use the

so-called canonical link and pair the Poisson distribution with the log link function

and the Binomial distribution with the logit link function (see e.g. Currie (2014)

for a discussion of this in the context of mortality models and McCullagh and

Nelder (1989) in the wider context of GLMs).

iv. The set of parameter constraints: most stochastic mortality models are only iden-

tifiable up to a transformation and thus require parameter constraints to ensure

unique parameter estimates. These parameter constraints are applied through a

constraint function v which maps an arbitrary vector of parameters

θ :=
(

αx, β
(1)
x , ..., β(N)

x , κ
(1)
t , ..., κ

(N)
t , β(0)

x , γt−x

)

into a vector of transformed parameters

v(θ) = θ̃ =
(

α̃x, β̃
(1)
x , ..., β̃(N)

x , κ̃
(1)
t , ..., κ̃

(N)
t , β̃(0)

x , γ̃t−x

)

satisfying the model constraints with no effect on the predictor ηxt (i.e. θ and θ̃

result in the same ηxt).

Most stochastic mortality models proposed in the literature belong to the GAPC family.

This includes the original Lee-Carter model, the extensions of the Lee-Carter proposed

in Renshaw and Haberman (2003, 2006), the original CBD model, and the extended

CBD models of Cairns et al. (2009). In addition, all the model structures considered in

Haberman and Renshaw (2011), Lovász (2011) and van Berkum et al. (2014), as well

as the models of Plat (2009), Aro and Pennanen (2011), O’Hare and Li (2012), Börger

et al. (2013) and Alai and Sherris (2014), are part of the GAPC class of models.4

Next, we describe in detail some of these models highlighting how they can be framed

within the GAPC family.

4We note however that models which rely on the smoothness of mortality over both age and time,
such as the graduation approach of Renshaw et al. (1996) and the P-Spline model of Currie (2006),
do not belong to the GAPC family. The P-Spline approach is implemented in the MortalitySmooth

(Camarda, 2012) R package.
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5.3.1 Lee-Carter model under a Poisson setting

The Lee Carter model as implemented by Brouhns et al. (2002) assumes a Poisson

distribution of the deaths using a log link function to target the force of mortality µxt.

The predictor structure proposed by Lee and Carter (1992) assumes that there is a static

age function, αx, a unique non-parametric age-period term (N = 1), and no cohort effect.

Thus, the predictor is given by:

ηxt = αx + β(1)
x κ

(1)
t (5.1)

In order to project mortality, the time index κ
(1)
t is modelled and forecasted using

ARIMA processes. Typically, a random walk with drift has been shown to provide

a reasonable fit, that is,

κ
(1)
t = δ + κ

(1)
t−1 + ξt, ξt ∼ N(0, σκ),

where δ is the drift parameter and ξt is Gaussian white noise process with variance σκ.

The Lee-Carter model is only identifiable up to a transformation, as for arbitrary real

constants c1 and c2 6= 0 the parameters in Equation (5.1) can be transformed in the

following way

(

αx, β
(1)
x , κ

(1)
t

)

→

(

αx + c1β
(1)
x ,

1

c2
β(1)

x , c2(κ
(1)
t − c1)

)

, (5.2)

leaving ηxt unchanged. To ensure identifiability of the model Lee and Carter (1992)

suggest the following set of parameter constraints

∑

x

β(1)
x = 1,

∑

t

κ
(1)
t = 0, (5.3)

which can be imposed by choosing

c1 =
1

n

∑

t

κ
(1)
t , c2 =

∑

x

β(1)
x (5.4)

in transformation (5.2).
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5.3.2 Renshaw and Haberman model: Lee-Carter with cohort effects

Renshaw and Haberman (2006) generalise the Lee-Carter model by incorporating a

cohort effect to obtain the predictor:

ηxt = αx + β(1)
x κ

(1)
t + β(0)

x γt−x (5.5)

Mortality projections for this model are derived using time series forecast of the esti-

mated κ
(1)
t and γt−x, generated using univariate ARIMA processes under the assumption

of independence between the period and the cohort effects.

To estimate the model Renshaw and Haberman (2006) assume a Poisson distribution of

deaths (random component) and use a log link function targeting the force of mortality

µxt. As with the Lee-Carter model, the predictor ηxt is invariant to the transformation:

(

αx, β
(1)
x , κ

(1)
t , β(0)

x , γt−x

)

→

(

αx + c1β
(1)
x + c2β

(1)
x ,

1

c3
β(1)

x ,

c3(κ
(1)
t − c1),

1

c4
β(0)

x , c4(γt−x − c2)

)

, (5.6)

where c1, c2, c3 6= 0 and c4 6= 0 are real constants. Identifiability of the model can be

ensured using the following set of parameter constraints:

∑

x

β(1)
x = 1,

∑

t

κ
(1)
t = 0,

∑

x

β(0)
x = 1,

tn−x1
∑

c=t1−xk

γc = 0,

which can be imposed by setting

c1 =
1

n

∑

t

κ
(1)
t , c2 =

1

n+ k − 1

tn−x1
∑

c=t1−xk

γc, ci =
∑

x

β(i)
x , i = 3, 4,

in transformation (5.6).

Renshaw and Haberman (2006) also consider several substructures of the predictor (5.5)

obtained by setting to a constant one or both of the age modulating terms. Of particular

interest is the substructure obtained by setting β
(0)
x = 1,

ηxt = αx + β(1)
x κ

(1)
t + γt−x, (5.7)

195



Chapter 5. StMoMo: An R Package for Stochastic Mortality Modelling

which has been suggested by Haberman and Renshaw (2011) as a simpler structure that

resolves some stability issues of the original model.

5.3.3 Age-Period-Cohort model

Another commonly used substructure of the Renshaw and Haberman model is the so-

called Age-Period-Cohort (APC) model, corresponding to β
(1)
x = 1, β

(0)
x = 1,

ηxt = αx + κ
(1)
t + γt−x,

which has a long-standing tradition in the fields of medicine and demography (see, e.g.,

Clayton and Schifflers (1987) and Hobcraft et al. (1982)), but has not been widely used

in the actuarial literature until it was considered by Currie (2006). The APC model is

known to be invariant with respect to the following two transformations:

(

αx, κ
(1)
t , γt−x

)

→
(

αx + φ1 − φ2x, κ
(1)
t + φ2t, γt−x − φ1 − φ2(t− x)

)

(5.8)
(

αx, κ
(1)
t , γt−x

)

→
(

αx + c1, κ
(1)
t − c1, γt−x

)

, (5.9)

where c1, φ1, and φ2 are real constants. However, we can ensure identifiability of the

model by imposing the set of constraints:

∑

t

κ
(1)
t = 0,

tn−x1
∑

c=t1−xk

γc = 0,
tn−x1
∑

c=t1−xk

cγc = 0,

where the last two constraints imply that the cohort effect fluctuates around zero with

no discernible linear trend. Following Haberman and Renshaw (2011, Appendix A), the

constraints on the cohort effect can be imposed by applying transformation (5.8) with

constants φ1 and φ2 obtained by regressing γt−x on t− x, so that

γt−x = φ1 + φ2(t− x) + ǫt−x, ǫt−x ∼ N(0, σ2) i.i.d.

The constraint on the period index can then be imposed by applying transformation

(5.9) with

c1 =
1

n

∑

t

κ
(1)
t .
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5.3.4 CBD model

Cairns et al. (2006) propose a predictor structure with two age-period terms (N = 2)

with pre-specified age-modulating parameters β
(1)
x = 1 and β

(2)
x = x − x̄, no static age

function and no cohort effect. Thus, the predictor of the CBD model is given by:

ηxt = κ
(1)
t + (x− x̄)κ

(2)
t ,

where x̄ is the average age in the data. Cairns et al. (2006) obtain mortality forecasts

by projecting the period effects κ
(1)
t and κ

(2)
t using a bivariate random walk with drift.

The CBD model does not have identifiability issues and hence the set of parameter

constraints is empty. In order to estimate the parameter of the CBD model we can

follow Haberman and Renshaw (2011) and assume a Binomial distribution of deaths

using a logit link function targeting the one-year death probabilities qxt.

5.3.5 M7: Quadratic CBD model with cohort effects

Cairns et al. (2009) extend the original CBD model by adding a cohort effect and a

quadratic age effect to obtain the predictor:

ηxt = κ
(1)
t + (x− x̄)κ

(2)
t + κ

(3)
t

(

(x− x̄)2 − σ̂2
x

)

+ γt−x, (5.10)

where σ̂2
x is the average value of (x− x̄)2. This model, usually referred to as model M7,

is not identifiable as the transformation

(

κ
(1)
t , κ

(3)
t , κ

(3)
t , γt−x

)

→

(

κ
(1)
t + φ1 + φ2(t− x̄) + φ3

(

(t− x̄)2 + σ̂2
)

,

κ
(2)
t − φ2 − 2φ3(t− x̄), κ

(3)
t + φ3,

γt−x − φ1 − φ2(t− x) − φ3(t− x)2
)

, (5.11)

for real constants φ1, φ2 and φ3, leave the predictor unchanged. To identify the model

Cairns et al. (2009) impose the set of constraints:

tn−x1
∑

c=t1−xk

γc = 0,
tn−x1
∑

c=t1−xk

cγc = 0,
tn−x1
∑

c=t1−xk

c2γc = 0,
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which ensure that the cohort effect fluctuates around zero and has no discernible linear

or quadratic trend. Following Haberman and Renshaw (2011, Appendix A), these con-

straints can be imposed by applying transformation (5.11) with constants φ1, φ2 and φ3

obtained by regressing γt−x on t− x and (t− x)2, so that

γt−x = φ1 + φ2(t− x) + φ3(t− x)2 + ǫt−x, ǫt−x ∼ N(0, σ2) i.i.d.

Cairns et al. (2009) also consider the simpler predictor structures

ηxt = κ
(1)
t + (x− x̄)κ

(2)
t + γt−x,

ηxt = κ
(1)
t + (x− x̄)κ

(2)
t + (xc − x)γt−x,

where xc is a constant parameter to be estimated. These structures are typically referred

to as models M6 and M8, respectively.

5.3.6 Plat model

Plat (2009) combines the CBD model with some features of the Lee-Carter model to

produce a model that is suitable for full age ranges and captures the cohort effect. The

proposed predictor structure assumes that there is a static age function, αx, three age-

period terms (N = 3) with pre-specified age-modulating parameters β
(1)
x = 1, β

(2)
x =

x̄ − x, β
(3)
x = (x̄ − x)+ = max(0, x̄ − x), and a cohort effect with pre-specified age-

modulating parameters β
(0)
x = 1. Thus, the predictor is given by:

ηxt = αx + κ
(1)
t + (x̄− x)κ

(2)
t + (x̄− x)+κ

(3)
t + γt−x. (5.12)

Plat (2009) targets the force of mortality µxt with the log link and estimates the pa-

rameters of the model by assuming a Poisson distribution of the deaths. The following
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parameter transformations leave the predictor in (5.12) unchanged:

(

αx, κ
(1)
t , κ

(2)
t , κ

(3)
t , γ̃t−x

)

→
(

αx + φ1 − φ2x+ φ3x
2,

κ
(1)
t + φ2t+ φ3(t2 − 2x̄t), κ

(2)
t + 2φ3t, κ

(3)
t ,

γt−x − φ1 − φ2(t− x) − φ3(t− x)2
)

(5.13)

(

αx, κ
(1)
t , κ

(2)
t , κ

(3)
t , γt−x

)

→
(

αx + c1 + c2(x̄− x) + c3(x̄− x)+,

κ
(1)
t − c1, κ

(2)
t − c2, κ

(3)
t − c3, γt−x

)

, (5.14)

where c1, c2, c3, φ1, φ2, and φ3 are any real constants. The following set of parameter

constraints can be imposed to ensure identifiability:

∑

t

κ
(1)
t = 0,

∑

t

κ
(2)
t = 0,

∑

t

κ
(3)
t = 0,

tn−x1
∑

c=t1−xk

γc = 0,
tn−x1
∑

c=t1−xk

cγc = 0,
tn−x1
∑

c=t1−xk

c2γc = 0 (5.15)

The first three constraints ensure that the period indexes are centred around zero, while

the last three constraints ensure that the cohort effect fluctuates around zero and has

no linear or quadratic trend. Following Haberman and Renshaw (2011, Appendix A),

the constraints on the cohort effect can be imposed by applying transformation (5.13)

with constants φ1, φ2, and φ3 obtained by regressing γt−x on t− x and (t− x)2, so that

γt−x = φ1 + φ2(t− x) + φ3(t− x)2 + ǫt−x, ǫt−x ∼ N(0, σ2) i.i.d. . (5.16)

The constraints on the period indexes can then be imposed by applying transformation

(5.14) with

ci =
1

n

∑

t

κ
(i)
t , i = 1, 2, 3. (5.17)

In the cases where only older ages are of interest, Plat (2009) suggests dropping the

third period term from predictor (5.12)5:

ηxt = αx + κ
(1)
t + (x̄− x)κ

(2)
t + γt−x. (5.18)

5Note that the reduced Plat model is essentially the M6 model of Cairns et al. (2009) with an added
static age term αx.
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We note that this reduced Plat model has the same identifiability issues as the complete

model with the omission of the transformations and constraints involving κ
(3)
t and c3.

5.4 GAPC stochastic mortality models with StMoMo

The StMoMo package provides an R implementation of the GAPC family of stochas-

tic mortality models using the standard S3 object-oriented system. StMoMo can be

installed with the code:

install.packages("StMoMo")

The package is loaded within R as follows:

library(StMoMo)

In package StMoMo, GAPC stochastic mortality models are constructed using the

StMoMo function. This function takes as input information on the link function (and the

associated distributional assumption), the predictor structure, and the set of parameter

constraints to create an object of the type "StMoMo" representing a GAPC mortality

model:

• The argument link defines the link function and the random component associated

with the mortality model. Setting link = "log" assumes that deaths follow a

Poisson distribution and uses a log link targeting the force of mortality µxt, while

setting link = "logit" assumes that deaths follow a Binomial distribution and

uses a logit link targeting one-year mortality rates qxt.

• The predictor of the model is defined via arguments staticAgeFun, periodAgeFun

and cohortAgeFun. Argument staticAgeFun is a logical variable indicating whether

the model has a static age function αx or not. Argument periodAgeFun is a list of

length N containing the definitions of the period age-modulating parameters β
(i)
x ,

i = 1, . . . , N , with each entry being either "NP" for non-parametric age terms, "1"

for β
(i)
x = 1, or a predefined parametric function of age6. Argument cohortAgeFun

6Note that we can define a model with no age-period terms (N = 0) by making periodAgeFun =

NULL.

200



Chapter 5. StMoMo: An R Package for Stochastic Mortality Modelling

Table 5.1: Model structures considered in this chapter.

Model Predictor

LC ηxt = αx + β
(1)
x κ

(1)
t

CBD ηxt = κ
(1)
t + (x− x̄)κ

(2)
t

APC ηxt = αx + κ
(1)
t + γt−x

RH ηxt = αx + β
(1)
x κ

(1)
t + γt−x

M7 ηxt = κ
(1)
t + (x− x̄)κ

(2)
t +

(

(x− x̄)2 − σ̂2
x

)

κ
(3)
t + γt−x

PLAT ηxt = αx + κ
(1)
t + (x̄− x)κ

(2)
t + γt−x

defines the cohort age modulating parameter β
(0)
x and can take values "NP" for non-

parametric age terms, "1" for β
(0)
x = 1, a predefined parametric function of age,

or NULL if the model does not have a cohort effect.

• The set of parameter constraints are defined via the argument constFun which is

a user-defined implementation of the constraint function v mapping an arbitrary

vector of parameters to a vector of transformed parameters satisfying the model

constraints.

We note that due to limitations of the R functions used for fitting "StMoMo" objects to

data (see Section 5.5), the current version StMoMo does not support models combining

parametric and non-parametric age-modulating functions, β
(i)
x , 0 = 1, . . . , N . However,

such model are not typically considered and the majority of models proposed in the

literature are either extension of the Lee-Carter model with all age-modulating terms

being non-parametric or extension of the CBD model with all age-modulating terms

being parametric.7

In order to illustrate the creation of particular GAPC mortality models and other capa-

bilities of StMoMo, in the rest of this chapter we will focus on the models summarised

in Table 5.1. From now onwards, LC stands for the Lee-Carter model; CBD for the

original Cairns-Blake-Dowd model; APC for the Age-Period-Cohort model of Currie

(2006); RH for the cohort extension of the Lee-Carter model defined in equation (5.7)

and proposed by Renshaw and Haberman (2006); M7 for the quadratic CBD model

7For instance, a model with predictor structure ηxt = αx + (x − x̄)κ
(1)
t + β

(2)
x κ

(1)
t , corresponding

to StMoMo(staticAgeFun = TRUE, periodAgeFun = c(f1, "NP")), with f1 <- function(x, ages) x

- mean(ages), is not supported.
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defined in equation (5.10); and PLAT for the reduced Plat model defined previously in

equation (5.18). For the sake of comparability, in all cases we will assume a Binomial

distribution of deaths and use the logit function to link qxt to the predictor structure

ηxt.

Below, we show how to define each of the models in Table 5.1 using the package

StMoMo.

Lee-Carter model. The LC model under a Binomial setting can be defined using the

following code:

constLC <- function(ax, bx, kt, b0x, gc, wxt, ages){

c1 <- mean(kt[1, ], na.rm = TRUE)

c2 <- sum(bx[, 1], na.rm = TRUE)

list(ax = ax + c1 * bx, bx = bx / c2, kt = c2 * (kt - c1))

}

LC <- StMoMo(link = "logit", staticAgeFun = TRUE, periodAgeFun = "NP",

constFun = constLC)

Recalling Section 5.3.1, we note that the constraint function constLC is the R imple-

mentation of transformation (5.2) with constants c1 and c2 calculated using Equation

(5.4) to impose the constraints defined in equation (5.3). The StMoMo package also

contains the function lc to facilitate the definition of Lee-Carter models. Hence, we

could define the LC model using the much simpler predefined command:

LC <- lc(link = "logit")

CBD model. To define the CBD model we use the following commands:

f2 <- function(x, ages) x - mean(ages)

CBD <- StMoMo(link = "logit", staticAgeFun = FALSE,

periodAgeFun = c("1", f2))

Here, we note that function f2 defines the second age-modulating parameter β
(2)
x = x−x̄

and that a constFUN argument needs not be provided since the CBD model does not have
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identifiability issues. Alternatively, we can define the CBD model using the predefined

function cbd:

CBD <- cbd()

APC model, RH model and model M7. These three models could be defined

by implementing explicitly the discussions in Sections 5.3.2, 5.3.3 and 5.3.5. However,

StMoMo includes predefined functions apc, rh, m7 that facilitate the definition of the

APC model, the RH model and model M7, respectively8. Thus, these models are defined

with the code:

RH <- rh(link = "logit", cohortAgeFun = "1")

APC <- apc(link = "logit")

M7 <- m7()

PLAT model. Package StMoMo does not include a predefined function for the Plat

model. Nevertheless, recalling Section 5.3.6, we can define the reduced Plat model using

the code:

f2 <- function(x, ages) mean(ages) - x

constPlat <- function(ax, bx, kt, b0x, gc, wxt, ages){

nYears <- dim(wxt)[2]

x <- ages

t <- 1:nYears

c <- (1 - tail(ages, 1)):(nYears - ages[1])

xbar <- mean(x)

#\sum g(c)=0, \sum cg(c)=0, \sum c^2g(c)=0

phiReg <- lm(gc ~ 1 + c + I(c^2), na.action = na.omit)

phi <- coef(phiReg)

gc <- gc - phi[1] - phi[2] * c - phi[3] * c^2

kt[2, ] <- kt[2, ] + 2 * phi[3] * t

kt[1, ] <- kt[1, ] + phi[2] * t + phi[3] * (t^2 - 2 * xbar * t)

ax <- ax + phi[1] - phi[2] * x + phi[3] * x^2

8The StMoMo package also includes functions m6 and m8 for defining models M6 and M8. We also
note that the Renshaw and Haberman (2006) cohort extension of the Lee-Carter in Equation (5.5) can
be defined using function rh with argument cohortAgeFun = "NP".
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#\sum kt[i, ] = 0

ci <- rowMeans(kt, na.rm = TRUE)

ax <- ax + ci[1] + ci[2] * (xbar - x)

kt[1, ] <- kt[1, ] - ci[1]

kt[2, ] <- kt[2, ] - ci[2]

list(ax = ax, bx = bx, kt = kt, b0x = b0x, gc = gc)

}

PLAT <- StMoMo(link = "logit", staticAgeFun = TRUE,

periodAgeFun = c("1", f2), cohortAgeFun = "1",

constFun = constPlat)

We note that the constraint function constPlat is the R implementation of transforma-

tions (5.13) and (5.14) omitting the terms involving κ(3) and c3, and with constants φ1,

φ2, φ3 obtained via the linear regression defined in (5.16) and constant c1 and c2 as in

Equation (5.17). Function constPlat imposes the constraints in Equation (5.15).

5.5 Model fitting

Parameter estimates of GAPC stochastic mortality models can be obtained by maximis-

ing the model log-likelihood, which is given by

L(dxt, d̂xt) =
∑

x

∑

t

ωxt

{

dxt log d̂xt − d̂xt − log dxt!
}

in the case of a Poisson distribution of deaths, and by

L(dxt, d̂xt) =
∑

x

∑

t

ωxt

{

dxt log

(

d̂xt

E0
xt

)

+ (E0
xt − dxt) log

(

E0
xt − d̂xt

E0
xt

)

+

(

E0
xt

dxt

)}

in the case of a Binomial distribution of deaths. In both cases, ωxt are weights taking

the value 0 if a particular (x, t) data cell is omitted or 1 if the cell is included, and

d̂xt = Ext g
−1

(

αx +
N
∑

i=1

β(i)
x κ

(i)
t + β(0)

x γt−x

)

is the expected number of deaths predicted by the model, with g−1 denoting the inverse

of the link function g.
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In the mortality literature, maximisation of the log-likelihood is typically performed

using the Newton-Raphson iterative procedure tailored for each model (see e.g. Brouhns

et al. (2002), Renshaw and Haberman (2006) and Cairns et al. (2009)). This is in

fact the approach implemented in the packages ilc and LifeMetrics. Nonetheless, as

discussed extensively by Currie (2014), many stochastic mortality models are examples

of generalised linear models or generalised non-linear model, which facilitates their fitting

using standard statistical software9. Currie (2014) exemplifies this fact by fitting several

stochastic mortality models in R using the standard function glm or the function gnm

of the package gnm (Turner and Firth, 2012)10.

StMoMo provides the generic function fit for estimating the parameters of GAPC

mortality models. In line with the remarks of Currie (2014), the corresponding S3

method for objects of the class "StMoMo" relies on function gnm of the package gnm

to estimate the parameters of a GAPC model11. Internally, this is accomplished by

constructing the equivalent gnm formulation of the GAPC mortality model12. For

instance, the gnm formula of the Binomial LC model created before is

LC$gnmFormula

## [1] "D/E ~ -1 + offset(o) + factor(x) + Mult(factor(x), factor(t),

inst = 1)"

while the gnm formula of the Binomial CBD model defined before is

CBD$gnmFormula

## [1] "D/E ~ -1 + offset(o) + factor(t) + B2:factor(t)"

We now illustrate the usage of the function fit of the package StMoMo by fitting the

six models defined before to England and Wales mortality data. The object EWMaleData

9Haberman and Renshaw (2011) have also noticed this fact and profit from GLM facilities in standard
statistical packages when fitting CBD type models.

10Debón et al. (2010) also discuss the use of the package gnm for fitting Lee-Carter type models.
11The current version of StMoMo only includes the S3 method fit.StMoMo for objects of class

"StMoMo", but future versions may provide tailored fit methods for particular stochastic mortality
models.

12We note that when all the β
(i)
x are parametric functions of age, the model is a GLM and therefore

gnm by default resorts to the glm function of R when fitting the parameter of the model.
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included in the package StMoMo contains data on deaths and central exposures for

England and Wales males for the period 1961-2011 and for ages 0-100 obtained from the

Human Mortality Database (2014). However, in our examples we concentrate on ages 55

to 89 as the CBD model and the M7 model have been particularly designed to fit higher

ages. Additionally, since some models include cohort effects and in agreement with the

usual practice (see e.g Cairns et al. (2009) and Haberman and Renshaw (2011)), we

exclude (by setting ωxt = 0) all cohorts that have fewer than three observations.

Models LC, APC, CBD, M7 and PLAT can be fitted to England and Wales male mor-

tality data for ages 55 to 89 using the code:

Dxt <- EWMaleData$Dxt

Ext <- EWMaleData$Ext + 0.5 * EWMaleData$Dxt

ages <- EWMaleData$ages

years <- EWMaleData$years

ages.fit <- 55:89

wxt <- genWeightMat(ages = ages.fit, years = years, clip = 3)

LCfit <- fit(LC, Dxt = Dxt, Ext = Ext, ages = ages, years = years,

ages.fit = ages.fit, wxt = wxt)

APCfit <- fit(APC, Dxt = Dxt, Ext = Ext, ages = ages, years = years,

ages.fit = ages.fit, wxt = wxt)

CBDfit <- fit(CBD, Dxt = Dxt, Ext = Ext, ages = ages, years = years,

ages.fit = ages.fit, wxt = wxt)

M7fit <- fit(M7, Dxt = Dxt, Ext = Ext, ages = ages, years = years,

ages.fit = ages.fit, wxt = wxt)

PLATfit <- fit(PLAT, Dxt = Dxt, Ext = Ext, ages = ages, years = years,

ages.fit = ages.fit, wxt = wxt)

From this code we note the following:

• In order to match the logit-Binomial setting used before in the definition of the

mortality models, initial exposures are approximated by transforming the available

central exposures.
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• The first and last three cohorts years are excluded from the fitting via argument

wxt. The appropriate 0-1 weighting matrix, wxt, is constructed using the utility

function genWeightMat of package StMoMo.

As discussed in Chapter 6, the fitting of the RH model requires some care as it is

well known that fitting cohort extensions of the Lee-Carter models is problematic. In

particular, Currie (2014) has encountered convergence issues when using package gnm to

fit the RH model. As a possible way to circumvent these issues, Currie (2014) suggests

the use of appropriate starting values when fitting model RH. This can be achieved

in function fit via input arguments start.ax, start.bx, start.kt, start.b0x, and

start.gc. Using the parameters of the Lee-Carter model as starting values, model RH

can be fitted with the code:

RHfit <- fit(RH, Dxt = Dxt, Ext = Ext, ages = ages, years = years,

ages.fit = ages.fit, wxt = wxt, start.ax = LCfit$ax,

start.bx = LCfit$bx, start.kt = LCfit$kt)

The output from the function fit is an object of the class "fitStMoMo" including, among

other things, the following information:

• model: the "StMoMo" object defining the underlying GAPC stochastic mortality

model;

• ax, bx, kt, b0x, gc: the estimated parameters;

• loglik: the log-likelihood of the model;

• deviance: the model deviance;

• nobs: the number of observations in the data;

• npar: the effective number of parameters of the model;

• fittingModel: the output of the gnm call used to fit the model.

There are print, plot, fitted, and residuals methods for the "fitStMoMo" class.

For instance, Figures 5.1, 5.2 and 5.3 depicting the fitted parameters of the LC model,

the CBD model and the APC model, respectively, were produced with the code:
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Figure 5.1: Parameters for the Lee-Carter (LC) model fitted to the England and
Wales male population for ages 55-89 and the period 1961-2011.
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Figure 5.2: Parameters for the CBD model fitted to the England and Wales male
population for ages 55-89 and the period 1961-2011.
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Figure 5.3: Parameters for the APC model fitted to the England and Wales male
population for ages 55-89 and the period 1961-2011.

plot(LCfit, nCol = 3)

plot(CBDfit, parametricbx = FALSE)

plot(APCfit, parametricbx = FALSE, nCol = 3)
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5.6 Goodness-of-fit analysis

The goodness-of-fit of mortality models is typically analysed by inspecting the residuals

of the fitted model. Regular patterns in the residuals indicate the inability of the model

to describe all the features of the data appropriately. With a Poisson or Binomial random

component, it is appropriate to look at the scaled deviance residuals defined as:

rxt = sign(dxt − d̂xt)

√

dev(x, t)

φ̂
, φ̂ =

D(dxt, d̂xt)

K − ν
,

where

dev(x, t) = 2dxt log

(

dxt

d̂xt

)

− (dxt − d̂xt)

for a Poisson random component, or

dev(x, t) = 2dxt log

(

dxt

d̂xt

)

+ (E0
xt − dxt) log

(

E0
xt − dxt

E0
xt − d̂xt

)

for a Binomial random component. Further,

D(dxt, d̂xt) =
∑

x

∑

t

ωxtdev(x, t)

is the total deviance of the model, K =
∑

x

∑

t ωxt is the number of observations in the

data and ν is the effective number of parameters in the model.

In StMoMo standardised deviance residuals can be obtained with the generic function

residuals applied to a fitted stochastic mortality model of the class "fitStMoMo". For

example, to obtain the residuals of the LC model and of the CBD model fitted before

we use the commands:

LCres <- residuals(LCfit)

CBDres <- residuals(CBDfit)

Graphs of these residuals can be produced using the generic function plot. This function

supports, via argument type, three types of plots:

• scatter plots of residuals by age, period and cohort such as those extensively used

in Haberman and Renshaw (2011);
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• black and white sign-plots of the residuals such as those used in Cairns et al. (2009)

and Lovász (2011); and

• colour maps (heat-maps) of the residuals.

Figure 5.4 presents heat-maps of the deviance residuals for the six models fitted to

the England and Wales male mortality experience. These charts were produced using

function plot with option type = "colourmap". For instance, Figure 5.4b was obtained

with the code:

plot(CBDres, type = "colourmap", reslim = c(-3.5, 3.5))

From Figure 5.4 we see that models LC, CBD and APC display strong residual patterns

while the residuals of models RH, M7 and PLAT look reasonably random. The APC

model shows a strong clustering of residuals due to its inability to allow for varying

improvement rates with age. The LC and CBD models, which do not incorporate a

cohort effect, show very marked diagonals patterns indicating the inability of these

models to capture the well-known cohort effect observed in the England and Wales

population (Willets, 2004). The issues with the fit of the LC and CBD models become

more evident when looking at scatter plots of the residuals by age, period and cohort.

Such plots for the LC model (Figure 5.5a) and the CBD model (Figure 5.5b) can be

produced using argument type = "scatter" of function plot via the commands:

plot(LCres, type = "scatter", reslim = c(-3.5, 3.5))

plot(CBDres, type = "scatter", reslim = c(-3.5, 3.5))

The right panels in Figure 5.5 clearly show that the LC and CBD models are unable to

capture the cohort effect. In addition, the left panel in Figure 5.5b reveals some strong

patterns by age, reflecting the the lack of a quadratic age term in the CBD which may

be necessary to capture the commonly observed curvature of the mortality rates in a

logit scale.

When evaluating the goodness-of-fit of different models, it is generally anticipated that

models with more parameters provide a better fit to the data. To rule out the possibility

that the better fit observed in a model is the result of over-parametrisation and compare

the relative performance of several models, it has become common in the mortality
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Figure 5.4: Heat-maps of deviance residuals for different model fitted to the England
and Wales males population for ages 55-89 and the period 1961-2011.

literature to use information criteria which modify the maximum likelihood criterion

by penalising models with more parameters13. Two of these criteria are the Akaike

Information Criteria (AIC) and the Bayesian Information Criteria (BIC), defined as

AIC = 2ν − 2L and BIC = ν logK − 2L, respectively, with a lower value of AIC and

13For examples of such analysis see Cairns et al. (2009, Section 6.1.1), Haberman and Renshaw (2011,
Section 3.3), and Lovász (2011, Section 4.1).
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Figure 5.5: Scatter plots of deviance residuals for models LC and CBD fitted to the
England and Wales males population for ages 55-89 and the period 1961-2011.

BIC being preferable. In R these information criteria can be computed using the generic

functions AIC and BIC. For example, we can get the AIC and BIC of the CBD model as

follows:

AIC(CBDfit)

## [1] 34697.82

BIC(CBDfit)

## [1] 35256.83

Table 5.2 presents AIC and BIC values for the six models fitted to the England and

Wales male data. We note that both criteria lead to the same ranking of models with M7,

PLAT, and RH being the best performing models. Overall, these results are consistent

with the existing literature comparing single population models, where the Renshaw-

Haberman extension of the Lee-Carter model and the M7 model have been identified as
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good candidates for modelling mortality in the England and Wales population (Cairns

et al., 2009; Haberman and Renshaw, 2011).

Table 5.2: Number of parameters, AIC and BIC values for different model fitted to
the England and Wales males population for ages 55-89 and the period 1961-2011

LC CBD APC RH M7 PLAT

Number of Parameters 119 102 162 197 229 211
AIC 29866 34698 24469 21779 21406 21624
BIC 30518 35257 25357 22859 22661 22780

5.7 Forecasting and simulation with stochastic mortality

models

In the family of GAPC stochastic mortality models the dynamics of mortality are driven

by the period indexes κ
(i)
t , i = 1, . . . , N , and the cohort index γt−x. Therefore, the

forecasting and simulation of mortality rates requires the modelling of these indexes

using time series techniques.

For the period indexes we follow the standard approach (Cairns et al., 2006, 2011;

Haberman and Renshaw, 2011; Lovász, 2011) and use a multivariate random walk with

drift. Specifically, we assume that

κt = δ + κt−1 + ξκ
t , κt =













κ
(1)
t

...

κ
(N)
t













, ξκ
t ∼ N(0,Σ), (5.19)

where δ is an N -dimension vector of drift parameters and Σ is the N × N variance-

covariance matrix of the multivariate white noise ξκ
t .

As pointed out by Currie (2014), the main challenge when forecasting stochastic mor-

tality models is specifying the dynamics of the cohort effect. To have a simple starting

point, we follow previous studies (Renshaw and Haberman, 2006; Cairns et al., 2011;

Lovász, 2011) and assume that the cohort index, γt−x, follows a univariate ARIMA

process which is independent of the the period index, κt. In general, we assume that

γc ≡ γt−x follows an ARIMA(p, q, d) with drift, so that

∆dγc = δ0 + φ1∆dγc−1 + · · · + φp∆dγc−p + ǫc + δ1ǫc−1 + · · · + δqǫc−q, (5.20)
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Table 5.3: ARIMA Models for the cohort effect for models APC, RH, M7 and PLAT.

Mortality Model Model for γt−x

APC ARIMA(1, 1, 0) with drift

RH ARIMA(1, 1, 0) with drift

M7 ARIMA(2, 0, 0) with non-zero intercept

PLAT ARIMA(2, 0, 0) with non-zero intercept

where ∆ is the difference operator, δ0 is the drift parameter, φ1, . . . , φp are the au-

toregressive coefficients with φp 6= 0, δ1, . . . , δq are the moving average coefficients with

δq 6= 0 and ǫc is a Gaussian white noise process with variance σǫ.

The time series models in (5.19) and (5.20) can be used to obtain projected (simulated)

values of the period index κ̇tn+s :=
(

κ̇
(1)
tn+s, . . . , κ̇

(N)
tn+s

)′
and cohort index γ̇tn+s−x1 , s =

1, . . . , h, respectively, to derive forecasted (simulated) values of the predictor

η̇x,tn+s = αx +
N
∑

i=1

β(i)
x κ̇

(i)
tn+s + β(0)

x γ̇tn+s−x,

which can in turn be used to obtain forecasted (simulated) age-specific central mortality

rates, µ̇x,tn+s or age-specific one-year mortality rates, q̇x,tn+s.

In the package StMoMo the forecasting of GAPC stochastic mortality models is im-

plemented via the generic method forecast. This function estimates and forecasts the

multivariate random walk with drift in Equation (5.19) using the approach described

in Haberman and Renshaw (2011, Appendix B)14 and uses function Arima of package

forecast (Hyndman and Khandakar, 2008) to estimate and forecast the ARIMA pro-

cess of Equation (5.20). For instance, if we assume that the cohort indexes of the APC,

RH, M7, and PLAT model follow the ARIMA processes specified in Table 5.3, 50-year

ahead (h = 50) central projections of the period indexes, cohort index, and one-year

death probabilities for the England and Wales mortality experience can be obtain with

the code:

LCfor <- forecast(LCfit, h = 50)

CBDfor <- forecast(CBDfit, h = 50)

14This is implemented in function mrwd of the package StMoMo.
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APCfor <- forecast(APCfit, h = 50, gc.order = c(1, 1, 0))

RHfor <- forecast(RHfit, h = 50, gc.order = c(1, 1, 0))

M7for <- forecast(M7fit, h = 50, gc.order = c(2, 0, 0))

PLATfor <- forecast(PLATfit, h = 50, gc.order = c(2, 0, 0))

The output from the function forecast is an object of the class "forStMoMo" including,

among other things, the following information:

• rates: a matrix with the central projection of the mortality rates, µ̇x,tn+s or

q̇x,tn+s, s = 1, . . . , h;

• kt.f: a list containing information on the multivariate random walk with drift

fitted to the period index κt; and

• gc.f: a list containing information on the ARIMA model fitted to the cohort index

γt−x.

There are print and plot methods for the "forStMoMo" class. For instance, plots of

the forecast of the period indexes of models RH, M7 and PLAT (see Figure 5.6) can be

produced using the code:

plot(RHfor, only.kt = TRUE)

plot(M7for, only.kt = TRUE, nCol = 3)

plot(PLATfor, only.kt = TRUE)

Similarly, plots of the forecast of the cohort indexes of the APC, RH, M7 and PLAT

models (see Figure 5.7) can be obtained with the commands:

plot(APCfor, only.gc = TRUE)

plot(RHfor, only.gc = TRUE)

plot(M7for, only.gc = TRUE)

plot(PLATfor, only.gc = TRUE)
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Figure 5.6: Forecast of the period indexes of the RH, M7 and PLAT models applied to the England and Wales males population for ages 55-89
and the period 1961-2011. Dashed lines represent central forecast and dotted lines represent 95% prediction intervals.
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Figure 5.7: Forecast of the cohort indexes of the APC, RH, M7 and PLAT models
applied to the England and Wales males population for ages 55-89 and the period 1961-
2011. Dashed lines represent central forecast and dotted lines represent 95% prediction

intervals.

Package StMoMo also provides the function simulate for simulating trajectories from

GAPC stochastic mortality models. To simulate the period index, κt, StMoMo im-

plements a multivariate adaptation of Algorithm 2 in Haberman and Renshaw (2009)

without provision for parameter error15, while to simulate the cohort index, γt−x, func-

tion simulate uses the equivalent S3 method for objects of class "Arima" provided by

the package forecast. For example, the code below produces 5000 simulated trajecto-

ries for the next 50 years of the six stochastic mortality models fitted previously to the

England and Wales male mortality experience:

set.seed(1234)

nsim <- 5000

LCsim <- simulate(LCfit, nsim = nsim, h = 50)

CBDsim <- simulate(CBDfit, nsim = nsim, h = 50)

15We note that Algorithm 2 in Haberman and Renshaw (2009) is itself an adaptation of the prediction
interval approach of Cairns et al. (2006).
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APCsim <- simulate(APCfit, nsim = nsim, h = 50, gc.order= c(1, 1, 0))

RHsim <- simulate(RHfit, nsim = nsim, h = 50, gc.order= c(1, 1, 0))

M7sim <- simulate(M7fit, nsim = nsim, h = 50, gc.order= c(2, 0, 0))

PLATsim <- simulate(PLATfit, nsim = nsim, h = 50, gc.order= c(2, 0, 0))

The output from the function simulate is an object of the class "simStMoMo" including,

among other things, the following information:

• rates: a three dimensional array with the future simulated mortality rates;

• kt.s: a list containing information on the simulated paths of the period index κt;

and

• gc.s: a list containing information on the simulated paths of the cohort index

γt−x.

This output can be used to extract sample trajectories from a model. For instance,

Figure 5.8, which depicts 20 trajectories of the period index, cohort index and one-year

death rates at age 65 from model RH, was produced with the code:

#Plot period index

par(mfrow = c(1, 3))

plot(RHfit$years, RHfit$kt[1, ],

xlim = range(RHfit$years, RHsim$kt.s$years),

ylim = range(RHfit$kt, RHsim$kt.s$sim[1, , 1:20]),

type = "l", xlab = "year", ylab = "kt", main = "Period index")

matlines(RHsim$kt.s$years, RHsim$kt.s$sim[1, , 1:20], type = "l",

lty = 1)

#Plot cohort index

plot(RHfit$cohorts, RHfit$gc,

xlim = range(RHfit$cohorts, RHsim$gc.s$cohorts),

ylim = range(RHfit$gc, RHsim$gc.s$sim[, 1:20], na.rm = TRUE),

type = "l", xlab = "year", ylab = "kt",

main = "Cohort index (ARIMA(1,1,0) with drift)")

matlines(RHsim$gc.s$cohorts, RHsim$gc.s$sim[, 1:20], type = "l", lty = 1)
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Figure 5.8: 20 simulated trajectories of the period index κ
(1)
t , cohort index γt−x and

one-year death rates at age 65 qxt for model RH fitted to the England and Wales males
population for ages 55-89 and the period 1961-2011.

#Plot rates at age 65

qxt <- Dxt / Ext

plot(RHfit$years, qxt["65", ], xlim = range(RHfit$years, RHsim$years),

ylim = range(qxt["65", ], RHsim$rates["65", , 1:20]), type = "l",

xlab = "year", ylab = "rate", main = "Mortality rates at age 65")

matlines(RHsim$years, RHsim$rates["65", , 1:20], type = "l", lty = 1)

We can also use the output from function simulate to produce fan charts depicting the

uncertainty associated with a model forecast. According to Cairns et al. (2011), such

plots are central to the analysis of the plausibility of the forecast from a model, and can

be used as a criterion when deciding upon what is the most appropriate model amongst

a group of possible stochastic mortality models. Figure 5.9 shows fan charts depicting

50%, 80% and 95% prediction intervals for mortality rates at ages 65, 75 and 85 for each

of the six models fitted to the England and Wales experience. Figure 5.9b, for instance,

was produced with the code:

library(fanplot)

probs = c(2.5, 10, 25, 50, 75, 90, 97.5)

qxt <- Dxt / Ext

#age 65

plot(CBDfit$years, qxt["65", ], xlim = c(1960, 2061),

ylim = c(0.0025, 0.2), xlab = "year",

ylab = "mortality rate (log scale)", pch = 20, log = "y")
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fan(t(CBDsim$rates["65", , ]), start = 2012, probs = probs, n.fan = 4,

fan.col = colorRampPalette(c("black", "white")), ln = NULL)

#age 75

points(CBDfit$years, qxt["75", ], pch = 20)

fan(t(CBDsim$rates["75", , ]), start = 2012, probs = probs, n.fan = 4,

fan.col = colorRampPalette(c("red", "white")), ln = NULL)

#age 75

points(CBDfit$years, qxt["85", ], pch = 20)

fan(t(CBDsim$rates["85", , ]), start = 2012, probs = probs, n.fan = 4,

fan.col = colorRampPalette(c("blue", "white")), ln = NULL)

#labels

text(1965, qxt[c("65", "75", "85"), "1990"],

labels = c("x = 65", "x = 75", "x = 85"))

From Figure 5.9 we note the following:

• Whilst for models CBD, RH, M7 and PLAT the fans at age 85 are wider than at

age 65 in accordance with historical evidence (see Cairns et al. (2011, Appendix

B)), for models LC and APC the fans at age 85 are narrower than at age 65. This

suggest that forecasts from models LC and APC are not plausible for the dataset

used in this chapter.

• Forecasts for the PLAT model show an implausible increase of mortality rates.

This is because the central trend is linked to the estimated cohort effect γt−x for

the PLAT model (see Figure 5.7d) which shows a steep upward trend between

1935 and 1955.

• The central trend and uncertainty levels produced by the each of the models have

noticeably differences. This highlights the importance of recognising model risk as

a significant issue when modelling mortality (Cairns et al., 2011).

5.8 Parameter uncertainty and bootstrapping

When analysing the uncertainty in mortality projections in an actuarial context it is

important to consider all sources of risk. However, the prediction intervals (fan charts)
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Figure 5.9: Fan charts for mortality rates qxt at ages x = 65 (bottom fan), x = 75
(middle fan) and x = 85 (top fan) from the six models fitted to the England and Wales
males population for ages 55-89 and the period 1961-2011. The dots show historical
mortality rates for 1961-2011. Shades in the fan represent prediction intervals at the

50%, 80% and 95% level.

obtained in the previous section only account for the uncertainty arising from the error

in the forecast of the period and cohort indexes and ignore the uncertainty arising from

the estimation of the parameters of the GAPC model.

Due to the analytical intractability of many stochastic mortality models, parameter

uncertainty is typically accounted for using the bootstrap procedure. This procedure

yields B samples αb
x, β

(1),b
x , . . . , β

(N),b
x , κ

(1),b
t , . . . , κ

(N),b
t , β

(0),b
x , γb

t−x, b = 1, . . . , B, of the

parameters of the GAPC model which can then be used to produce confidence and

prediction intervals of demographic and actuarial quantities. To sample the parameters

of GAPC models we consider the semiparametric bootstrap proposed by Brouhns et al.

(2005) and the residual bootstrap first considered in Koissi et al. (2006):
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• Semiparametric bootstrap. Brouhns et al. (2005) propose a semiparametric

bootstrap where first B samples of the number of deaths db
xt, b = 1, . . . , B, are

generated by sampling from the Poisson Distribution with mean dxt. Each boot-

strapped sample db
xt, b = 1, . . . , B, is then used to re-estimate the model to obtain

B bootstrapped parameter estimates

αb
x, β

(1),b
x , . . . , β(N),b

x , κ
(1),b
t , . . . , κ

(N),b
t , β(0),b

x , γb
t−x, b = 1, . . . , B.

Renshaw and Haberman (2008) use the fitted number of death d̂xt (instead of

the observed deaths dxt) to perform the sampling from the Poisson distribution.

Wang and Lu (2005) consider a similar semiparametric approach using a Binomial

distribution of deaths.

• Residual bootstrap. Another possibility is to bootstrap the residuals of the

model as suggested by Koissi et al. (2006). Under this approach the deviance

residuals rxt are resampled with replacement to generate B replications rb
xt, b =

1, . . . , B, which are mapped to the corresponding resampled death counts db
xt,

b = 1, . . . , B, using the inverse formula. The model is then re-fitted using these

resampled number of deaths to produce B sets of estimated parameters

αb
x, β

(1),b
x , . . . , β(N),b

x , κ
(1),b
t , . . . , κ

(N),b
t , β(0),b

x , γb
t−x, b = 1, . . . , B.

We refer to Koissi et al. (2006) and Renshaw and Haberman (2008) for details

on the inverse formula under a Poisson distribution of deaths and to Debón et al.

(2010) for the inverse formula under a Binomial framework. Finally, we note that

in implementing the residual bootstrap we follow Renshaw and Haberman (2008)

and apply the inverse formula to produce samples of the observed number of deaths

rather than samples of the fitted number of deaths as originally done by Koissi

et al. (2006).

In what follows we illustrate the assessment of the parameter uncertainty using the

package StMoMo. In doing so we deviate from the England and Wales example we

have used so far and use instead New Zealand mortality data. This new example follows

closely the work of Li (2014) who uses New Zealand mortality data to compare several
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simulation strategies for assessing the risk in mortality projections with a Poisson Lee-

Carter model. The main rationale for the change of dataset is that parameter uncertainty

is particularly important when analysing the mortality of smaller populations such as

smaller countries or pension plans16. This new example also serves as a means for

illustrating the use of the StMoMo package with other datasets.

Mortality data for New Zealand can be extracted from the Human Mortality Database

(2014) using function hmd.mx of the demography package with the code:

library(demography)

NZdata <- hmd.mx(country = "NZL_NP", username = username,

password = password)

We note that the username and password above are for the Human Mortality Database

and should be replaced appropriately. Following Li (2014), we fit a Poisson Lee-Carter

model to New Zealand male data for ages 0 to 89 and for the period 1985 to 2008. This

can be carried out with the commands:

Ext_NZ <- NZdata$pop$male

Dxt_NZ <- NZdata$rate$male * Ext_NZ

LCfit_NZ <- fit(lc(), Dxt = Dxt_NZ, Ext = Ext_NZ, ages = NZdata$age,

years = NZdata$year, ages.fit = 0:89, years.fit = 1985:2008)

In the StMoMo package the bootstrap of GAPC stochastic mortality models is imple-

mented with the generic function bootstrap. This functions supports both the semi-

parametric bootstrap and the residual bootstrap. For instance, 5000 semiparametric

bootstrap samples of the Lee-Carter model can be obtained with the code17:

LCboot_NZ <- bootstrap(LCfit_NZ, nBoot = 5000, type = "semiparametric")

16While the population of England and Wales in 2008 was 54.8 million, the population of New Zealand
in 2008 was 4.3 million.

17We note that the bootstrap is a computer intensive procedure. In particular, the 5000 semiparametric
bootstrap samples of the Lee-Carter model took about two hours to run in a computer with an Intel
Core i5-3320m processor running at 2.60 GHz under Windows 7 Home Premium Edition (64 bits) with
8 GB of RAM.
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Figure 5.10: Bootstrapped parameters for the Poisson Lee-Carter model fitted to the
New Zealand male population for ages 0-89 and the period 1985-2008. Shades in the

fan represent confidence intervals at the 50%, 80% and 95% level.

The output from function bootstrap is an object of the class "bootStMoMo" in which

the component bootParameters contains the nBoot replications of the bootstrap pa-

rameters. A fan chart depicting the 50%, 80% and 95% confidence intervals of the

bootstrapped Lee-Carter model (Figure 5.10) can be obtained with the command:

plot(LCboot_NZ)

From Figure 5.10 we note that whilst the parameter uncertainty in the static age function

αx and the period index κ
(1)
t is modest, the uncertainty in the age-modulating parameters

β
(1)
x is more significant.

Once a stochastic mortality model has been bootstrapped we can simulate it forward

to obtain simulated trajectories which account for both the forecast error in the period

and cohort indexes and the error in the model fitting. In StMoMo we can accomplish

this using the function simulate applied to an object of class "bootStMoMo". Thus, to

obtain 5000 simulated trajectories of the Lee-Carter model for the next 24 years taking

into account parameter uncertainty we use the instruction:

LCsimPU_NZ <- simulate(LCboot_NZ, h = 24)

To highlight the impact of parameter risk on mortality rate projections it is instructive to

compare prediction intervals with and without the allowance of parameter uncertainty.

24-year ahead central forecast together with 5000 trajectories of the Lee-Carter model

allowing only for forecast error in the random walk with drift and ignoring the model

fitting error can be obtained with the code:
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LCfor_NZ <- forecast(LCfit_NZ, h = 24)

LCsim_NZ <- simulate(LCfit_NZ, nsim = 5000, h = 24)

Figure 5.11 depicts 95% prediction intervals for mortality rates at age 40, 60 and 80

with and without allowance for parameter uncertainty. This graph was produced with

the code:

#Observed, fitted and central forecasts

mxt <- LCfit_NZ$Dxt / LCfit_NZ$Ext

mxtHat <- fitted(LCfit_NZ, type = "rates")

mxtCentral <- LCfor_NZ$rates

#95% Prediction intervals without parameter uncertainty

mxtPred2.5 <- apply(LCsim_NZ$rates, c(1, 2), quantile, probs = 0.025)

mxtPred97.5 <- apply(LCsim_NZ$rates, c(1, 2), quantile, probs = 0.975)

#95% intervals with parameter uncertainty (in sample, and predictions)

mxtHatPU2.5 <- apply(LCsimPU_NZ$fitted, c(1, 2), quantile, probs = 0.025)

mxtHatPU97.5 <- apply(LCsimPU_NZ$fitted, c(1, 2), quantile,

probs = 0.975)

mxtPredPU2.5 <- apply(LCsimPU_NZ$rates, c(1, 2), quantile, probs = 0.025)

mxtPredPU97.5 <- apply(LCsimPU_NZ$rates, c(1, 2), quantile,

probs = 0.975)

#Plot

x <- c("40", "60", "80")

matplot(LCfit_NZ$years, t(mxt[x, ]),

xlim = range(LCfit_NZ$years, LCfor_NZ$years),

ylim = range(mxtHatPU97.5[x, ], mxtPredPU2.5[x, ], mxt[x, ]),

type = "p", xlab = "years", ylab = "mortality rates (log scale)",

log = "y", pch = 20, col = "black")

matlines(LCfit_NZ$years, t(mxtHat[x, ]), lty = 1, col = "black")

matlines(LCfit_NZ$years, t(mxtHatPU2.5[x, ]), lty = 5, col = "red")

matlines(LCfit_NZ$years, t(mxtHatPU97.5[x, ]), lty = 5, col = "red")

matlines(LCfor_NZ$years, t(mxtCentral[x, ]), lty = 4, col = "black")

matlines(LCsim_NZ$years, t(mxtPred2.5[x, ]), lty = 3, col = "black")

matlines(LCsim_NZ$years, t(mxtPred97.5[x, ]), lty = 3, col = "black")
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Figure 5.11: 95% Prediction intervals for mortality rates qxt at ages x = 40 (bot-
tom lines), x = 60 (middle lines) and x = 80 (top lines) for the Poisson Lee-Carter
model fitted to the New Zealand male population for ages 0-89 and the period 1985-
2008. Dots show historical mortality rates for 1985-2008 and solid black lines show the
corresponding fitted rates. Dashed lines represent central forecast, black dotted lines
represent 95% prediction intervals excluding parameter uncertainty and dot-dashed red
lines depict 95% confidence and prediction intervals including parameter uncertainty.

matlines(LCsimPU_NZ$years, t(mxtPredPU2.5[x, ]), lty = 5, col = "red")

matlines(LCsimPU_NZ$years, t(mxtPredPU97.5[x, ]), lty = 5, col = "red")

text(1986, mxtHatPU2.5[x, "1995"], labels = c("x=40", "x=60", "x=80"))

In Figure 5.11 we can clearly see that parameter uncertainty has an important impact

on the prediction intervals. This is particularly notable at age 40 where in year 2030,

for instance, the width of the prediction interval with parameter uncertainty is around

3 times bigger than that without parameter uncertainty. These results are in line with

the results obtained by Li (2014) using the same dataset.18

5.9 Conclusion

In this chapter we have introduced the family of Generalised Age-Period-Cohort stochas-

tic mortality models by paralleling the standard framework of generalised linear models.

In addition, we have presented the R package StMoMo which takes advantage of the

18We note that our prediction intervals without and with parameter uncertainty correspond to methods
(I) and (IVa) in Li (2014), respectively.

226



Chapter 5. StMoMo: An R Package for Stochastic Mortality Modelling

unifying framework of the GAPC family to provide tools for fitting a diverse number of

stochastic mortality models, assessing their goodness of fit and also performing mortality

projections. A key feature of the GAPC family and of StMoMo is that they not only

encompass models from the Lee-Carter and CBD families, but can also accommodate

possible new models. Furthermore, model risk is a prevalent issue when forecasting mor-

tality and we therefore believe that the possibility of easily implementing and comparing

a wide range of models makes StMoMo a valuable addition to the toolkit for measuring

and managing longevity risk.

Our package can be expanded in several directions. The current version of StMoMo

only allows the use of a log link with a Poisson distribution of deaths or a logit link with a

Binomial distribution of deaths. However, we plan to expand the possible combinations

of error distribution and link function to include, for instance, Binomial errors with a

complementary log-log link as suggested by Currie (2014).

In agreement with the standard in the literature, the StMoMo package assumes a mul-

tivariate random walk with drift for the dynamics of the period index κt. Nevertheless,

the package could be expanded to accommodate more general time series models which

might be more appropriate for some datasets or some models. For instance, Renshaw

and Haberman (2006) use an ARIMA(2, 1, 0) for κ
(1)
t when forecasting mortality for

England and Wales males with the Lee-Carter model with cohorts, while Plat (2009)

uses general univariate ARIMA(p, d, q) for each κ
(i)
t , i = 1, . . . , N , fitted using seemingly

unrelated regressions to allow for correlations between the different period indexes.

In the GAPC family it is assumed that the age-modulating terms β
(i)
x , i = 0, . . . , N ,

are either non-parametric functions of age which need to be estimated or parametric

functions of age with a pre-specified functional form f (i)(x). This latter case could be

extended to include the more general case of a pre-specified functional form with a set

of parameters that need to be estimated, that is, β
(i)
x = f (i)(x; θi) with θi being some

model parameters. This generalisation would allow the implementation of the family of

models considered in Hunt and Blake (2014).

Finally, the increasing attention that multiple population mortality models are receiving

in the mortality forecasting literature provides an avenue for a wealth of extensions of our

package. In particular, we are considering the development of a two-population version
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of StMoMo that implements the class of relative two-population models considered in

Chapter 4.
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Interest in cohort effects in mortality data has increased dramatically in recent years,

with much of the research focused on extensions of the Lee-Carter model incorporating

cohort parameters. However, some studies find that these models are not robust to

changes in the data or fitting algorithm, which limits their suitability for many purposes.

It has been suggested that these robustness problems may be the result of an unresolved

identifiability issue. In this chapter, after investigating systemically the robustness of

cohort extensions of the Lee-Carter model and the convergence of the algorithms used to

fit it to data, we demonstrate the existence of such an identifiability issue and propose

an additional approximate identifiability constraint which solves many of the problems

found.

Keywords: Lee-Carter model; cohort-effects; mortality modelling; Robustness; conver-

gence

6.1 Introduction

For many decades, actuaries and demographers have studied changing mortality rates

across the dimensions of age, period and cohort, for instance in Hobcraft et al. (1982)

or Wilmoth (1990). These can often be thought of relating to the biological effects of

ageing, the influence of contemporaneous factors and the impact of past history on an

individual’s mortality, as discussed in Hobcraft et al. (1982). However, for just as long,

it has been known that this decomposition was problematic, as the relationship cohort

= period − age makes it difficult to clearly separate the mutually dependent changes

across the three dimensions. Often, the effect of cohort was relegated to a secondary

role with the dimensions of age and period being assumed to be dominant, for instance

in the classic model of Lee and Carter (1992).
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Interest in the cohort dimension has increased dramatically in recent years, as the fi-

nancial implications of longevity risk have become more apparent. This has been most

notable in the UK, largely due to the work of Willets (1999, 2004) and the Continuous

Mortality Investigation (2002). These studies revealed the dramatic improvements in

mortality rates experienced by the so-called “golden generation”, born in the UK be-

tween 1920 and 1940. However, the importance of allowing for cohort effects has also

been found in other European countries, such as Sweden and Finland in Lovász (2011)

and Belgium and the Netherlands in van Berkum et al. (2014). These striking increases

in life expectancy have been attributed to a number of factors, such as the introduction

of universal healthcare and the reduction in the prevalence in smoking. Although subse-

quent studies, such as Murphy (2009, 2010), have cast doubt on the true importance of

the “golden generation” in improving life expectancies, the idea and salience of a cohort

effect entered the consciousness of the actuarial community. As the fastest increases in

life expectancy have been concentrated in generations who have now started to retire,

the presence of cohort effects had enormous financial consequences, pushing up the costs

of providing benefits for many governments, pension schemes and annuity providers.

The need to understand and project cohort effects consequently spurred the development

of mortality models capable of analysing such features in the historical data. The most

natural method of achieving this was to extend the widely used Lee-Carter model by

introducing a set of cohort parameters in a similar method to the model of Hobcraft

et al. (1982). This was first done by Renshaw and Haberman (2006) and later developed

in Haberman and Renshaw (2009), and this model has subsequently become widely

adopted.

However, during tests comparing the Renshaw and Haberman (2006) model with a

number of comparators, the model has come in for criticism. Much of this, for instance

in Continuous Mortality Investigation (2007), Cairns et al. (2009, 2011) and Currie

(2014), finds that the model was slow to converge to an optimum solution and was not

robust to changes in the data. Cairns et al. (2009) conjecture that these problems may

be the result of an unresolved identifiability issue. The criticisms of Cairns et al. (2009,

2011) in particular were disputed by Haberman and Renshaw (2011), who suggest that

the issues observed in these studies were a result of the fitting procedure used to obtain

parameter estimates.
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In this chapter, we review the differences in the fitting procedures used in Renshaw and

Haberman (2006), Haberman and Renshaw (2009, 2011) and that in Cairns et al. (2009,

2011) and discuss the issues with robustness and convergence found. We perform a bat-

tery of tests to investigate systematically these phenomena for the model in Renshaw

and Haberman (2006) and a widely used simplification of this model, to test the sensi-

tivity of the fitted parameters to features of the fitting algorithm and the range of data

used. In doing so, we find many of the same robustness issues observed in Continuous

Mortality Investigation (2007) and Cairns et al. (2009, 2011).

Based on this analysis, we demonstrate mathematically the existence of an additional

identifiability issue in models extending the Lee-Carter model with cohort effects, as

suggested by Cairns et al. (2009), and quantify its impact on the fit to data. This issue

can be resolved by imposing an additional constraint on the parameters of the model,

with the effect of improving the robustness and convergence rate of the model and

ensuring that the parameters fit with our subjective interpretation of their significance.

The structure of this chapter is as follows. Section 6.2 describes the data and notation

used in this study, which has been selected for ease of comparability with the previous

work in this field. Section 6.3 discusses the mathematical framework of the models used

in this chapter and the known issues with the identifiability of the parameters in them.

In Section 6.4, we implement the two-stage fitting procedure originally used in Renshaw

and Haberman (2006) to fit the model to data and discuss the problems with such an

approach. In Section 6.5, we implement an alternative one-stage fitting procedure, used

in Cairns et al. (2009) and other studies, and consider the advantages and drawbacks

of this technique. Based on these results, in Section 6.6 we isolate the additional ap-

proximate identifiability issue which causes many of the problems experienced in the

previous sections, and solve this by imposing an additional constraint on the parameters

of the model. In Section 6.7, we summarise the results of similar tests performed on

other datasets in order to check the generalisability of these findings. Finally, Section 6.8

summarises our findings and offers some conclusions about the practical use of models

extending the Lee-Carter approach to allow for cohort effects.
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6.2 Data and notation

In order to ease the comparison with previous studies considering the Lee-Carter model

with cohort effects, we illustrate our discussions with historical mortality data for the

England and Wales male population covering calendar years 1961-2007 and ages 0-89, as

compiled by the UK Government Actuary Department (GAD) and as used by Haberman

and Renshaw (2009, 2011). In general, we assume that the available data comprise a

cross classified mortality experience containing observed numbers of deaths dxt with

matching central exposures ext. We further assume, consistent with Brouhns et al.

(2002), that the random number of deaths, Dxt, at age x and for period t is a Poisson

distributed random variable, with distribution

Dxt ∼ Poisson(extµxt)

and, hence, that µxt = E(Dxt)/ext .

The data cover k ages, x ∈ [x1, xk], and n calendar years, t ∈ [t1, tn]. Year of birth or

cohort year, defined as y = t − x, is therefore in the range y ∈ [t1 − xk, tn − x1]. In

common with Haberman and Renshaw (2009), we exclude from our model fittings the

three earliest and most recent cohorts, along with the 1886 cohort, for which Renshaw

and Haberman (2006) have noted some issues with the corresponding exposures.

In Section 6.7, we also consider data for other populations including women in England

and Wales, both sexes in the USA, men in the Netherlands, and men in Spain. The

data for these populations are in a similar format to that for men in England and Wales,

with the female England and Wales data compiled by GAD and the data for the USA,

the Netherlands and Spain taken from the Human Mortality Database (2014).

6.3 Age/period/cohort mortality models

The first widely used stochastic mortality model was introduced by Lee and Carter

(1992) and proposes that mortality rates µxt at age x and time t obey the relationship

logµxt = αx + βxκt (6.1)
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In this model (referred to subsequently as the LC model), αx gives the shape of the

mortality curve across ages, κt controls the rate at which mortality changes with time,

and βx modulates this change across the age range.

A key feature of many stochastic mortality models is that their parameters are not

uniquely identified. For the LC model in particular, the parameters in Equation (6.1)

can be transformed in the following two ways

{α̃x, β̃x, κ̃t} =

{

αx,
1

a
βx, aκt

}

(6.2)

{α̃x, β̃x, κ̃t} = {αx − bβx, βx, κt + b} (6.3)

leaving the fitted mortality rates unchanged. The first transformation implies that the

“scale” of βx and κt can be chosen freely, whilst the latter implies that the “level” of αx

and κt can also be freely chosen. To overcome this lack of identifiability, Lee and Carter

(1992) impose additional constraints on the parameters, namely

∑

x

βx = 1

∑

t

κt = 0 (6.4)

These identifiability constraints are not unique, however. Alternatives, such as κt1 = 0

in place of Equation (6.4), as done by Renshaw and Haberman (2003b), can also be used

to obtain alternative parameters which give an identical fit to the data.

A consequence of the constraint in Equation (6.4) is that the least squares estimator for

αx is 1
n

∑

t log
(

dxt

ext

)

, leading to the natural interpretation of αx as the average level of

mortality across the period of the data. However, it is important to note that this result

is dependent upon the constraint in Equation (6.4) and the use of least squares, and will

not be true with other constraints or for other estimation approaches. For instance, in

Renshaw and Haberman (2003b), the constraint κt1 = 0 gives the interpretation that

αx represents the fitted mortality rates in the first year of the data.

As discussed in Section 6.1, it is often desirable to include cohort effects in a model

to allow for systematic differences between cohorts born in different years. In order to

achieve this, Renshaw and Haberman (2006) propose to extend the structure of the LC
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model by incorporating an additional bi-linear age/cohort interaction to give

logµxt = αx + β(1)
x κt + β(0)

x ιt−x (6.5)

where parameters αx, β
(1)
x , and κt have the same interpretation as their equivalents in

the LC model, whilst new parameter ιt−x controls the specific features of mortality for

individuals from the same cohort with β
(0)
x modulating its effect across the age range.

This model is referred to as the M2 model in Cairns et al. (2009, 2011) and as model

M in Renshaw and Haberman (2006), Haberman and Renshaw (2011), and throughout

this chapter.

There exist four transformations of the parameters of model M which leave the mortality

rates in Equation (6.5) unchanged, namely

{α̃x, β̃
(1)
x , κ̃t, β̃

(0)
x , ι̃y} =

{

αx, aβ
(1)
x ,

1

a
κt, β

(0)
x , ιy

}

(6.6)

{α̃x, β̃
(1)
x , κ̃t, β̃

(0)
x , ι̃y} =

{

αx, β
(1)
x , κt, bβ

(0)
x ,

1

b
ιy

}

(6.7)

{α̃x, β̃
(1)
x , κ̃t, β̃

(0)
x , ι̃y} =

{

αx − cβ(1)
x , β(1)

x , κt + c, β(0)
x , ιy

}

(6.8)

{α̃x, β̃
(1)
x , κ̃t, β̃

(0)
x , ι̃y} = {αx − dβ(0)

x , β(1)
x , κt, β

(0)
x , ιy + d} (6.9)

Transformations (6.6) and (6.7) are similar to that in Equation (6.2), while transforma-

tions (6.8) and (6.9) are similar to that in Equation (6.3).

Renshaw and Haberman (2006) also discuss several nested models for model M obtained

by setting to a constant one or both of the age adjustments associated with the period

index κt and the cohort effect ιy. Of particular interest are the sub-models

logµxt = αx + β(1)
x κt +

1

k
ιt−x

and

logµxt = αx +
1

k
κt +

1

k
ιt−x,

obtained by setting β
(0)
x = 1/k and β

(1)
x = β

(0)
x = 1/k, respectively. The first sub-model,

called model H1 in Renshaw and Haberman (2006), Haberman and Renshaw (2011)

and within this chapter, has been suggested by Haberman and Renshaw (2011) as an
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alternative simpler structure that resolves some of the reported criticisms of model M.

The second sub-model defines the so-called age-period-cohort (APC) model which has a

long history in the fields of medicine and sociology (see, e,g„ Clayton and Schifflers (1987)

and Hobcraft et al. (1982)), but has not been widely used in the actuarial mortality

literature until considered by Currie (2006).1

6.4 The two-stage fitting approach

Motivated by “the central role played by mortality reduction factors in generating mor-

tality projections”, Renshaw and Haberman (2006) chose to partition model M as

µxt = exp(αx)F (x, t)

logF (x, t) = β(1)
x κt + β(0)

x ιt−x (6.10)

where F (x, t) are a set of reduction factors, as discussed in Renshaw and Haberman

(2003b). This in turn motivates a two-stage approach to fitting the model:

• first, the main age effects, αx, are set to be αx = 1
n

∑

t log
(

dxt

ext

)

,

• then the other parameters are found using an iterative approach which minimises

the total deviance (or equivalently maximises the log-likelihood), without updating

the αx.

It is important to note that this two-stage approach will generally lead to poorer fits

to the available data than a one-stage approach where all the parameters are estimated

together, and are therefore not true maximum likelihood estimates. This is because αx

has not been chosen explicitly to maximise the goodness of fit in conjunction with the

other parameters in the model, i.e., the other parameter estimates are conditional on our

assumption regarding αx. This may impact the suitability of any tests of the goodness

of fit of the model in comparison with others, such as those performed in Haberman and

Renshaw (2011), for instance. This explicit hierarchy in the parameters will also bias

any estimation of parameter uncertainty in the model, since αx is assumed to be known

1Renshaw and Haberman (2006) originally derived model H1 by setting β
(0)
x = 1 and the APC model

by also setting β
(1)
x = 1. To facilitate graphical comparison between the different models, we choose to

set β
(1)
x = β

(0)
x = 1/k so that

∑

x
β

(1)
x =

∑

x
β

(0)
x = 1 and the scales of parameters κt and ιt−x in models

M, H1 and the APC model are of comparable magnitude.
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and therefore all the parameter uncertainty in the model is allocated to the other terms

in the model. However, as discussed in Haberman and Renshaw (2009, Section 2.5), the

potential loss of goodness of fit may be justified if it gives a model which is more robust

to changes in the data, simpler to fit and whose terms are more explainable in terms of

their demographic significance.2

6.4.1 Original identifiability constraints

In order to obtain a unique set of parameter estimates, Renshaw and Haberman (2006)

impose the constraints

∑

x

β(1)
x = 1 (6.11)

∑

x

β(0)
x = 1 (6.12)

κt1 = 0 (6.13)

The first two of these constraints set the “scales” of the age functions consistent with

the formulation of the original LC model, whilst the third sets the “level” for the period

function κt at zero at the start of the data period, with negative values of κt representing

falls from this initial baseline level.3

Equations (6.11) and (6.12) are imposed using transformations (6.6) and (6.7) with

specific values of the constants a and b, as described in Appendix 6.A. However, under a

two-stage fitting approach, Equation (6.13) is not necessary in order to uniquely identify

the parameters in the model. More specifically, since the static age function, αx, is fixed

in the first stage, transformations (6.8) and (6.9) which involve αx are no longer valid,

eliminating the need for any additional identifiability constraints. The constraint in

Equation (6.13) therefore represents an additional, exogenous constraint on the model,

which will reduce the goodness of fit to data when imposed.

It is also worth noting that this constraint also appears inconsistent with how the main

age effects were set. As discussed above, the estimator αx = 1
n

∑

t log
(

dxt

ext

)

was a

2Defined in Hunt and Blake (2015) as the interpretation of the components of a model in terms of
the underlying biological, medical or socio-economic causes of changes in mortality rates which generate
them.

3Renshaw and Haberman (2006) suggest ιt1−x1
= 0 as an alternative constraint to Equation (6.13).

However, it appears from the graphs shown in their paper that Equation (6.13) has been used in practice.
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Figure 6.1: Fitted log mortality rates at age 25 for model M for different constraints
on κt fitted using the two-stage approach..

Table 6.1: Poisson log-likelihood for model M for different constraints on κt fitted
using the two-stage approach.

Constraint Log-Likelihood

κt1 = 0 -22,764
κtn = 0 -23,071
∑

t κt = 0 -23,068

consequence of the constraint
∑

t κt = 0 in the LC model using least squares estimation

methods. If we impose αx = 1
n

∑

t log
(

dxt

ext

)

on models which nest the LC model, we

would therefore expect
∑

t κt ≈ 0 to emerge naturally as a consequence.

The imposition of the additional constraint in Equation (6.13) has practical conse-

quences. A true identifiability constraint should not change the fit to data, merely

select one out of a range of equivalent parameter sets which give the same fitted mortal-

ity rates. However, we can see from Figure 6.1 and Table 6.1 that for alternative (and

equally reasonable) choices of a constraint for κt we obtain different predicted mortality

rates and very different fits to the same data. Not only is the goodness of fit different,

but we obtain very different patterns for the parameters, as shown in Figure 6.2. In

particular, we note that the apparent impact of the “golden generations” born between

1920 and 1940 and the appropriateness of projecting κt in a linear fashion would depend

upon the identifiability constraint imposed.

Similar issues have also been found by other users of the two-stage fitting approach. For

instance, in an application of model M to a dataset of UK Assured Lives, the Continuous

Mortality Investigation (2007) reported that the robustness of the model parameters is

affected when different constraints are used. In addition to this lack of robustness

of the model to changes in the identifiability constraints, the Continuous Mortality
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Figure 6.2: Parameters for model M for different constraints on κt fitted using the
two-stage approach.

Investigation (2007) found that they “were unable to get the model to converge for certain

subsets of the data”, and that “fitted [parameter] values could differ materially” when

different starting values for the estimation process were used. Similarly, in an application

to Spanish mortality data Debón et al. (2010) comment that “the choice of period or

origin cohort influences the convergence of the algorithm.”

Haberman and Renshaw (2011) suggest that some of the problems with model M are

resolved using the simpler model H1. However, we have also encountered very similar

robustness issues when fitting model H1 using the two-stage procedure of Renshaw and

Haberman (2006).

6.4.2 Modifying the two-stage approach

In principle, one obvious solution to the problems of the two-stage method developed in

Renshaw and Haberman (2006) would be to fit the model without the unnecessary con-

straint in Equation (6.13). However, the parameter values obtained using this modified

approach are very sensitive to changes in the data used to fit the model. For instance,

Figure 6.3 shows that the parameters obtained using data for the periods 1961-2007,
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Figure 6.3: Parameters for model M for different data periods fitted using the modified
two-stage approach.

1971-2007, and 1981-2007 differ significantly. This is specially noticeable for parameters

β
(0)
x and ιy which define the age/cohort interaction.

The fitted parameters for the period 1961-2007 are particularly interesting. It would be

easy to conclude that the model has failed to converge to a viable solution. However,

observing the fitted mortality rates rather than the parameters shows a different inter-

pretation. What appears to have happened is that the age function β
(0)
x has been used

to “switch off” the cohort parameters below age 35 for much of the data, i.e., β
(0)
x ≈ 0

for x < 35. For the most recent years of birth, however, where individuals have yet to

reach age 35, the cohort parameters are being used to capture genuine features of data.

In order to do so, they must be sufficiently large to give reasonable sized cohort effects

when multiplied by the very small values of β
(0)
x . The combined age/cohort interaction

term is shown in Figure 6.4.

The model can do this due to the absence of any constraints on ιy, so there is no

mathematical reason why cohort parameters for different years of birth should be of

the same order of magnitude, making it very difficult for the model to assign structure

in the data as either an age/period or and age/cohort interaction. Doing this however,
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Figure 6.4: Combined age/cohort interaction term β
(0)
x ιt−x for model M fitted to

data for the period 1961-2007 using the modified two-stage approach.

complicates the demographic interpretation of the cohort parameters as they can only be

seen in the context of the combined age/cohort term. It will also lead to serious problems

when projecting the model, as the extremely large cohort parameters for recent years

of birth will be “switched on” at age 35 resulting in them dominating the evolution of

mortality rates. For these reasons, such a pattern of cohort parameters is extremely

undesirable, even if it gives a plausible fit to the historic data.

We also find that using the simplified model H1 does not solve these robustness issues.

Due to this, we do not consider the modified two-stage approach to be a viable fitting

procedure for models M and H1. Furthermore, the motives for using a two-stage fitting

approach stated by Haberman and Renshaw (2009), namely, obtaining age-effects with

interpretable demographic significance and avoiding slow convergence rates for the fitting

algorithm, are satisfied in a more theoretically sound way by the approach proposed in

Section 6.6 of this chapter.

6.5 The one-stage approach

In their tests of various mortality models, Cairns et al. (2009) adopt an alternative one-

stage method to fitting model M. This does not use the reduction factor partition in

Equation (6.10) and a two-stage fitting approach, and instead attempts to fit all the
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parameters in Equation (6.5) simultaneously using a Poisson likelihood maximisation

method. Using this approach should give improved fits to data compared with the two-

stage approach, as all the parameters in the model are explicitly chosen to maximise

the fit, rather than the main age effects being fixed a priori. It therefore avoids the

issues with tests of the goodness of fit and parameter uncertainty that are present in the

two-stage approach.

Cairns et al. (2009) also recognise that the model requires additional constraints to be

imposed upon the parameters in order to identify them uniquely. They choose to adopt

tn
∑

t=t1

κt = 0 (6.14)

tn
∑

t=t1

xk
∑

x=x1

ιt−x = 0 (6.15)

in order to set the levels of κt and ιy, along with the constraints in Equations (6.11) and

(6.12).

These four constraints are required due to the four parameter transformations in Equa-

tions (6.6)-(6.9) which leave the fitted mortality rates in Equation (6.5) unchanged.4

We note that, as opposed to the two-stage approach in Section 6.4 where constraints

(6.11) and (6.12) sufficed, in a one-stage approach the constraints in Equations (6.14)

and (6.15) are also required as transformations (6.8) and (6.9) explicitly involve making

adjustments to αx, which is allowable now that the main age effects, αx, are not fixed

in advance.

In our implementation, we use a variation of Equation (6.15) and impose

tn−x1
∑

y=t1−xk

ιy = 0 (6.16)

Using this constraint gives an identical fit to the data, but gives the interpretation that

the average level of the cohort parameters fitted by the model should be zero.5 This

constraint also generalises naturally to more complicated constraints for other models.

4These transformations are then used to impose the constraints during the fitting process, as described
in Appendix 6.A.

5Specifically, we note that Equation (6.15) implies that
∑tn−x1

y=t1−xk

nyιy = 0, where ny is the number
of observations of each cohort, and so represents a weighted average compared to the arithmetic average
in Equation (6.16). However, in practice, the difference between the parameter values fitted using these
two different constraints is very small.
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However, the one-stage approach has been found to lack robustness to changes in the data

and take a long time to converge to the solution. For example, Cairns et al. (2009) found

that “parameter values converge very slowly to their maximum likelihood estimates” and

“the parameter estimates jump to a qualitatively quite different solution when we use less

data”. In Dowd et al. (2010), it was found that “the forecasts are clearly unstable, . . .

these projections reflect estimates of the cohort state variables that are sometimes very

unstable and highly implausible as we move from one sample to the next”. Similarly,

in Cairns et al. (2011), the authors note that “the fitting algorithm is generally slow to

converge, . . . Occasionally, we see that the parameter values jump to a set of values that

are qualitatively quite different from the previous year’s estimates”. In Haberman and

Renshaw (2009) it was found that with the one-stage approach “the already slow rate of

convergence is made appreciably slower”. In Currie (2014), it is reported that depending

on the choice of identifiability constraints “convergence could be very fast, very slow or

even fail completely”. Lovász (2011) also finds a lack of robustness with model M, in

common with some other models in their study.

In order to investigate systematically the findings of these other studies, in this section

we perform tests for convergence and robustness in the M and H1 models. In particular,

we test for

• the sensitivity of the fitted parameters to the initial parameter estimates used by

the fitting algorithm in Section 6.5.1;

• the sensitivity of the fitted parameters with different convergence criteria for the

fitting algorithm in Section 6.5.2;

• the robustness of the fitted parameters to changes in the range of years in the data

in Section 6.5.3; and

• the robustness of the fitted parameters to changes in the range of ages in the data

in Section 6.5.4.

6.5.1 Sensitivity to initial parameter estimates

We fit the parameters of the model using the maximum likelihood procedure described

in Appendix 6.A. This iterative fitting algorithm requires us to have an initial estimate
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for the parameters in order to start the iterations. Throughout this chapter we use

α̂x = 1/n
∑

t log (dxt/ext), β̂
(1)
x = 1/k, κ̂t = 0, β̂

(0)
x = 1/k, and ι̂y = 0 as initial parameter

estimates. However, for any reasonable choice of these initial parameter estimates, our

choice should not affect the final parameter values found, as these should be the unique

set which maximises the log-likelihood.

In order to test this in models M and H1, we rely on the unidentifiability of the pa-

rameters of the APC model to generate alternative sets of initial parameters. The APC

model is known to be unidentified under the following transformations

{α̃x, κ̃t, ι̃y} =

{

αx −
c

k
, κt + c, ιy

}

{α̃x, κ̃t, ι̃y} =

{

αx −
d

k
, κt, ιy + d

}

{α̃x, κ̃t, ι̃y} =

{

αx +
e

k
(x− x̄), κt − e(t− t̄), ιy + e(y − ȳ)

}

(6.17)

The first two of these are similar to the transformations in Equations (6.8) and (6.9) for

model M, and so are used to impose the same constraints in Equations (6.14) and (6.15)

on the APC model as used in Cairns et al. (2009).

Equation (6.17) is unlike any of the transformations described previously. Using it

allows us to tilt the parameters αx, κt and ιy around the midpoints of their ranges as we

vary the constant, e. We use this transformation to obtain different sets of parameters

from the APC model with different degrees of titling to use as our initial parameter

estimates for fitting model M and model H1. These different APC parameter estimates

are depicted in Figure 6.5 and the corresponding log-likelihoods are shown in Table 6.2.

It is important to note that the different initial parameters are equivalent, in the sense

that they produce exactly the same fitted mortality rates and the same goodness of fit

when using the APC model. The APC model is a simplification of models M and H1

and so the parameter estimates from it are likely to be qualitatively similar to those

fitted to the more complex models.

Using these initial parameter estimates to fit model M,6 we find the parameters shown in

Figure 6.6. The set of parameters labelled “tilt 3” is closest to what we would typically

consider reasonable from the model. As we deviate from this we see that

6With a convergence criteria of 10−4 here and for the remainder of this chapter unless stated otherwise.
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Figure 6.5: Parameters for the APC model with different degrees of tilting used as
initial parameters estimates.

Table 6.2: Poisson log-likelihood for the different models under alternative initial
parameter estimates using the one-stage approach.

Log-likelihood

Initial parameters APC Model Model M Model H1

tilt 1 -27,997 -21,987 -22,397
tilt 2 -27,997 -21,985 -22,395
tilt 3 -27,997 -21,992 -22,400
tilt 4 -27,997 -22,025 -22,441
tilt 5 -27,997 -22,008 -22,426

• κt and ιy both exhibit similar tilts to the initial parameter estimates. In addition,

some sets of κt parameters show significant curvature, which may present a problem

when projecting the model.

• αx shows a similar tilt to the initial parameter estimate. It also becomes signifi-

cantly less smooth, and displays some of the same features as β
(0)
x (e.g., the spikes

around ages 18 and 29).

• β
(1)
x also starts showing many of the same features as β

(0)
x in a far more prominent

fashion than αx.
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Figure 6.6: Parameters for model M with different initial parameters estimates fitted
using the one-stage approach.

• β
(0)
x appears to be robust to changes in the initial parameter estimates using this

procedure (although in all cases, our initial parameter estimates were β
(0)
x = 1

k
).

Table 6.2 shows that using alternative initial parameter estimates in the fitting algorithm

gives final parameters with different log-likelihoods. This may indicate that the algo-

rithm has not found a global maximum of the likelihood function, but has instead found

the local maximum of the function closest to the initial parameter estimates. Alterna-

tively, it may be that the fitting algorithm has stopped without finding the maximum of

the log-likelihood, since the likelihood function is flat in a region around its maximum

value.

Figure 6.7 shows the results of a similar analysis for model H1. In this we see many of

the same features as observed for model M, with the notable exception of the changes

in the smoothness of αx and β
(1)
x as the initial parameters are tilted.

These results on the sensitivity to the initial parameters estimates are strongly indicative

that models M and H1 can be transformed in a similar manner to the transformation of

the APC model in Equation (6.17). This is discussed in Section 6.6.
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Figure 6.7: Parameters for model H1 with different initial parameters estimates fitted
using the one-stage approach.

6.5.2 Sensitivity to convergence criteria

The iterative fitting algorithm described in Appendix 6.A stops once the changes in the

fitted log-likelihood become smaller than a pre-set tolerance value. Using a smaller value

for this convergence criterion should result in more accurately estimated parameters but

require the algorithm to run for longer. While the parameter estimates found using a

smaller convergence criterion should be more accurate, they should not, however, show

significantly different patterns to those observed for higher criteria, but merely be more

refined estimates.

Figure 6.8 shows the fitted parameters for model M with different convergence criteria

(i.e., the algorithm ceases when the change in log-likelihood in each iteration becomes

smaller than 10−3, 10−4, 10−5, 10−6 and 10−7). Table 6.3 shows the corresponding

fitted log-likelihoods and computing times for models M and H1 using these convergence

criteria. As can be seen, allowing for a smaller convergence criterion improves the fitted

log-likelihood marginally. However, this is at the expense of far longer times needed to
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Figure 6.8: Parameters for model M for different tolerance levels fitted using the
one-stage approach.

fit the model.7 We note that long fitting times limit the practicality of techniques such as

those proposed in Brouhns et al. (2005) and Koissi et al. (2006) for measuring parameter

uncertainty, as these involve refitting the model multiple times to randomly generated

data. We also see from Figure 6.8 that the estimated parameter values for model M

change by more than would be expected for such small improvements in the fit to the

data.8 In particular, we note that many of the issues observed with the parameters are

similar to those described in Section 6.5.1 and Figure 6.6. However, it is also interesting

to note that β
(0)
x , in spite of its erratic behaviour at younger ages, does not change

significantly when we change the convergence criteria. We also observe broadly similar

behaviour for model H1 when the convergence criteria of the fitting algorithm is changed.

The fact that the significant changes in the fitted parameters observed are not matched

by equivalent increases in the log-likelihood suggests that the likelihood functions of

models M and H1 are approximately flat in certain dimensions. This fact, which was

7For these model fittings, we implemented in MATLAB the iterative fitting algorithm described in
Appendix 6.A using a computer with an Intel Core i5-3320m processor running at 2.60 GHz under
Windows 7 Home Premium Edition (64 bits) with 8 GB of RAM.

8Similar results are reported by Currie (2014, Figure 3 and Table 9) using USA data, who finds that
the deviance of Model M hardly changes after thousands of iterations but the coefficients show no sign
of convergence.
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Table 6.3: Poisson log-likelihood and computing time in seconds for models M and
H1 for different tolerance levels using the one-stage approach.

Model M Model H1

Tolerance Log-Likelihood Computing time (s) Log-Likelihood Computing time (s)

10−3 -22,006 22 -22,410 13
10−4 -21,991 115 -22,400 67
10−5 -21,986 437 -22,396 234
10−6 -21,984 1,393 -22,395 643
10−7 -21,984 2,377 -22,395 1,228

previously noted in Cairns et al. (2009, 2011), Haberman and Renshaw (2011) and Currie

(2014), is explored further in Section 6.6.

6.5.3 Robustness to changes of the period range

The range of years in the data used to fit mortality models is often a subjective choice.

In particular, as Booth et al. (2002) point out, the model user often has a choice between

only looking at more recent data or using a longer period of data extending further back

in time, which might be less relevant to current mortality but provides better estimates

of the time series for the κt. We would therefore like the parameters estimated by the

model to be robust to this choice.

Figure 6.9 shows the parameters fitted for model M when the start date of the data

is increased by five-year increments (i.e., the data starts in 1961, 1966, 1971, 1976 and

1981). As can be seen, the model is mostly stable except for the last (and smallest) data

range, where a very different pattern for αx and ιy is observed. It is interesting to note

that these changes do not cancel each other out directly: the cohort parameters for the

most recent years of birth change most, whilst the biggest changes in αx occur at high

ages which these cohorts have yet to reach.

Figure 6.10 shows the parameters fitted for the same data for model H1. Here we see

a similar phenomenon, with the cohort parameters for the most recent years of birth

changing significantly when only data since 1981 is used. However, for model H1, it is

the values of β
(1)
x which change rather than αx in model M.

We have also tested the stability of the models with respect to changing the end year of

the data, and obtain broadly consistent results.
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Figure 6.9: Parameters for model M for different start years fitted using the one-stage
approach.
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Figure 6.10: Parameters for model H1 for different start years fitted using the one-
stage approach.
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Figure 6.11: Parameters for model M for different start ages fitted using the one-stage
approach.

6.5.4 Robustness to changes of the age range

The choice of age range to fit the models to is also somewhat subjective, as we may

prefer to omit mortality data at very young ages due to the very different causes of

death operating for these individuals. Therefore, we also test for the models’ robustness

when the age range of the data is increased in five-year increments from age zero (i.e.,

the data starts at ages 0, 5, 10, 15, 20 and 25).

Figure 6.11 shows the estimated parameters from model M fitted to different age ranges.

The model failed to converge for data starting at age 5, which dramatically illustrates

the lack of robustness of the model to different age ranges. The parameters estimated

by the model also show significant dependence to the age range of the data included,

with the pattern of the age functions β
(1)
x and β

(0)
x changing for different age ranges.9

Figure 6.12 shows the parameters estimated for model H1 using the same procedure.

Here we observe that the model is considerably more stable, with the fitted parameters

changing very little as the age range of the data is curtailed.

9Some of this variation however is attributable to the scaling of the parameters changing in order to
maintain the constraints

∑

x
β

(1)
x = 1 and

∑

x
β

(0)
x = 1.
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Figure 6.12: Parameters for model H1 for different start ages fitted using the one-
stage approach.

6.5.5 Summary

In summary, we observe many of the phenomena reported in the previous studies by

Cairns et al. (2009, 2011), Dowd et al. (2010) and Currie (2014) when using the one-stage

fitting procedure and agree with their findings. Models M and H1 show considerable

sensitivity to both the convergence criteria and the initial parameter estimates used by

the algorithm used to fit the data, which is highly undesirable in a model. In addition,

model M shows considerable lack of robustness to changes in the range of the data,

although this is mitigated significantly by simplifying the model by fixing β
(0)
x = 1/k

and using model H1.

6.6 An approximate identifiability constraint

In Sections 6.5.1 and 6.5.2, we saw that the one-stage fitting approach suffers from a

number of convergence and robustness issues. These meant that models M and H1 could

show large changes in the patterns of the fitted parameters for relatively small changes

in the fit to data. Typically, these parameter changes were of the form:
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• a tilting of the cohort parameters, ιy, around the midpoint of the range;

• a tilting of the period parameters, κt, around the midpoint of the range;

• some tilting of the static age function, αx, with it becoming considerably less

smooth as the tilt in ιy increases in model M;

• a lack of robustness in the age function, β
(1)
x , with it picking up some of the features

of β
(0)
x in some cases (for instance, Figures 6.6 and 6.8); and

• the age function, β
(0)
x , remaining largely unchanged.

The issues with the robustness of the models to changes in the data ranges also possess

many of these features. However, these changes do not entirely explain the failure of the

models to converge in certain circumstances (for example, in Figure 6.11) or the abrupt

changes in the form of the fitted parameters in others.

In Cairns et al. (2009), the authors comment that the issues with the robustness of

model M may be due to an approximate identification issue which means that “the

likelihood function will be close to flat in certain dimensions” making estimation slow,

giving a number of different parameter values which could be selected by the algorithm

and making the ones chosen dependent on the initial conditions specified. Such an

identification issue would be caused by a transformation of the parameters which left the

fit to data approximately unchanged. We agree with the Cairns et al. (2009) conjecture

and, based on the parameter changes noted above and in Sections 6.5.1 and 6.5.2 and

on the exact identifiability issue present in the classic APC model, have found the

identification issue in question.

6.6.1 An approximate transformation and its impact

We start by rewriting κt as

κt = K(t− t̄) + δt (6.18)

where t̄ = 0.5(t1 + tn). K(t − t̄) represents the linear trend in the period parameters,

whilst δt represent the deviations of κt from this trend. Equation (6.18) is consistent

with the constraint in Equation (6.14) if
∑

t δt = 0, which would be the case if the value

258



Chapter 6. Robustness and Convergence in the Lee-Carter Model with Cohort Effects

of K is found by linear regression. For most datasets, κt is approximately linear.10 In

these cases, we would expect δt to be small relative to κt: however, it is important to

note that κt can always be written in the form of Equation (6.18). Using this, model M

has the form

logµxt = αx + β(1)
x (K(t− t̄) + δt) + β(0)

x ιt−x

This revised form of the model then permits transformations of the form

{α̃x, β̃
(1)
x , κ̃t, β̃

(0)
x , ι̃y} =

{

αx + eβ(0)
x (x− x̄),

K

K − e
β(1)

x −
e

K − e
β(0)

x ,

K − e

K
κt, β

(0)
x , ιy + e(y − ȳ)

}

(6.19)

with similar definitions for x̄ and ȳ as for t̄ above. This transformation preserves the

other constraints in the model, i.e.,
∑xk

x=x1
β̃

(1)
x = 1,

∑tn
t=t1

κ̃t = 0,
∑xk

x=x1
β̃

(0)
x = 1, and

∑tn−x1
y=t1−xk

ι̃y = 0 by construction.

We see that this transformation affects the parameters in the manner described at the

start of Section 6.6. Specifically, variations of the constant e will result in:

• a tilt of ιy around its midpoint;

• a change in the gradient (i.e., tilt) of κt;

• a tilt of αx around the midpoint and a change in its smoothness, depending upon

the smoothness of β
(0)
x ;

• the revised β
(1)
x being a weighted average of the old β

(1)
x and β

(0)
x ; and

• no change in β
(0)
x .

However, the transformation in Equation (6.19) is approximate rather than exact, i.e.

the fitted mortality rates in Equation (6.5) are only approximately the same. This is

because the transformed fitted mortality rates, µ̃xt are related to the original mortality

rates fitted by model M by

log µ̃xt = logµxt − ǫxt

10See, for instance, Tuljapurkar et al. (2000) who go so far as to call this the “universal pattern of

mortality decline” in the context of the LC model.
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where ǫxt = e
K
β

(0)
x δt.

In order to quantify what impact this has on our fit to data, we can Taylor expand the

form of the Poisson log-likelihood shown in Equation (6.22) in Appendix 6.A for the

death counts using the transformed mortality rates, d̃xt, around the original fitted death

counts, d̂xt, to give

L(dxt, d̃xt) = L(dxt, d̂xt)−
∑

x

∑

t

ωxt

(

dxt − d̂xt

)

ǫxt−

1

2

∑

x

∑

t

ωxtd̂xtǫ
2
xt + o(ǫ∗2) (6.20)

where ǫ∗ = maxxt |ǫxt|.
11 The use of maximum likelihood techniques to fit the model

ensures that dxt ≈ d̂xt (i.e., the expected death counts are close to those observed) and

consequently that locally, the likelihood is approximately unchanged to second order.

This effectively defines a dimension where the log-likelihood is close to flat. However,

the impact of this on the fitted mortality rates and the log-likelihood, will depend upon

the magnitudes of the ǫxt. In particular, we find that the transformation will leave the

fitted mortality rates approximately unchanged if either of the following two cases hold:

(a) e is small, i.e., we are not tilting the cohort parameters significantly from their

original values; or

(b) δt is small, i.e., κt is approximately linear.

This theoretical result is born out in the results of the tests performed in Sections 6.6.3

and 6.7.

Since we can always make e smaller, Case (a) (e is small) will occur independently

of the linearity of κt. Hence, around any set of parameters there will always be a

small neighbourhood defined by varying e where the log-likelihood is approximately flat.

This explains the behaviour of the fitted parameters and the slow convergence of the

iterative maximum likelihood estimation algorithm observed in Section 6.5.2. As the

convergence criterion was made smaller (and the number of fitting iteration increased),

the algorithm could move slowly along the parameter space defined by small variations of

e. This resulted in the significant changes in the parameter estimates shown in Figure 6.8

11If the model is fitted using a binomial setting with the logit link function, as in Haberman and
Renshaw (2011), a similar expansion for the log-likelihood can be obtained.
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which were not matched by equivalent increases in the log-likelihood (recall Table 6.3).

Furthermore, this case explains the findings of Currie (2014) where fitting algorithms

with stopping criteria based on the log-likelihood converge, while those with stopping

criteria based on changes in the parameters (e.g., the score vector) sometimes fail to

converge. This also means that the fitting algorithm performs numerous additional

iterations, which substantially increase the time taken to converge but do not result in

significant improvements in the fit to data. This explains the long fitting times shown

in Table 6.3 and the slow convergence reported by Currie (2014, Figure 3 and Table 9)

when fitting model M to data for the US population.

In contrast, the validity of Case (b) (δt is small), will depend on how well κt can be

approximated by a straight line. For example, we find that for the fitted values of

κt shown in Figure 6.6 using different initial values, the regression of κt on t − t̄ in

order to find K in Equation (6.18) have R2 values of over 98%. This indicates that δt

is comparatively small for this dataset and, hence, that the fitted mortality rates will

be close to invariant under the transformation in Equation (6.19). For some datasets,

however, κt will not be approximately linear and, hence, the transformation in Equation

(6.19) can result in substantial changes in the fitted mortality rates and the log-likelihood

as ιy is tilted. An example of this is found in Section 6.7 using data for the USA.

Consequently, we see that the transformation in Equation (6.19) can always be applied

approximately. In fact, it will give identical fitted mortality rates for the alternative

model

logµxt = αx + β(1)
x K(t− t̄) + β(0)

x ιt−x

This model is similar to the models considered in Renshaw and Haberman (2003a) and

Callot et al. (2014), albeit with a cohort term.

Furthermore, the transformation in Equation (6.19) does not depend on the form of β
(0)
x .

In particular, making the simplifying assumption that β
(0)
x = 1/k , as is done in model

H1, does not change the form of the transformation. Therefore, for model H1 we have

a similar approximate transformation of the form

{α̃x, β̃
(1)
x , κ̃t, ι̃y} =

{

αx +
e

k
(x− x̄),

K

K − e
β(1)

x −
e

k(K − e)
,
K − e

K
κt, ιy + e(y − ȳ)

}
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The form of this transformation, however, explains why the smoothness of αx does not

change for model H1 when it tilts, unlike for model M where a multiple of β
(0)
x is added

to it.

6.6.2 An additional constraint

Having identified the transformation in Equation (6.19), we can use this to impose an

additional constraint on the parameters of the model. The analysis above shows that, if

κt is well approximated by a straight line, this constraint will have minimal impact on

the fit to data obtained by the model. In our implementation, we choose to impose the

additional constraint

tn−x1
∑

y=t1−xk

(y − ȳ)ιy = 0, (6.21)

which is the natural extension of the constraint on the level of ιy in Equation (6.16) and

ensures that the cohort function does not possess a linear trend over the range of the

data. This imposes the demographic significance in Section 6 of Hunt and Blake (2015)

that the cohort parameters should be close to trendless and that systematic changes in

time should be controlled by the period functions. In addition, this constraint coupled

with constraints (6.4) and (6.16) will allow us to interpret αx as the average level of

mortality across the period of the data. However, the choice of this constraint is arbitrary

and depends upon our subjective interpretation of the meaning of the parameters, and

other identifiability constraints could be imposed with equal justification.12 The steps

required for incorporating the constraint in Equation (6.21) in the fitting of model M

are described in Appendix 6.A.

6.6.3 Testing the models with the additional constraint

As applying the transformation in Equation (6.19) will change the static age function,

αx, it can only be used when the models are fitted using the one-stage procedure dis-

cussed in Section 6.5. Since the additional constraint restrains the freedom of model

the parameters to vary in the dimension where the likelihood function is approximately

12An alternative constraint could be to impose minx β
(1)
x = 0, which would ensure that mortality rates

across all ages are positively correlated with the period function κt. This may be desirable for some
purposes, as discussed in Haberman and Renshaw (2009).
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flat, we expect that models M and H1 will be considerably more robust, more stable and

faster to converge than observed previously without the additional constraint. More-

over, since κt is linear to close approximation in the figures in Section 6.5, the analysis

above indicates that the transformation in Equation (6.19) will leave the fitted mortality

rates approximately unchanged and adding the constraint in Equation (6.21) will have

a minimal impact on the model log-likelihood. To test this, we apply the same tests to

the models with the approximate identifiability constraint as were performed in Section

6.5.

With the additional constraint, both models M and H1 show almost no sensitivity to the

initial parameter estimates used to fit them using the same procedure as in Section 6.5.1.

This is understandable, given the similarity between the approximate transformation in

Equation (6.19) for model M and that in Equation (6.17) in the APC model.

We also find that models M and H1 are considerably faster to converge and less sensitive

to changes in the convergence criteria. For instance, Figure 6.13 shows the fitted param-

eters from model M with the approximate constraint for different convergence criteria in

the same manner as performed in Section 6.5.2. We can see that there is no appreciable

difference between the parameter sets, and only very slight improvements in the fitted

log-likelihood for smaller convergence criteria. Model H1 shows the same lack of sensi-

tivity to the convergence criteria. Comparing Tables 6.3 and 6.4, we also note that, as

predicted by the Taylor expansion in Equation (6.20), the additional identifiability con-

straint has only marginally worsened the goodness of fit of the models. By contrast, the

convergence of the model has been dramatically speeded up, which is desirable for many

purposes such as testing for parameter uncertainty using the bootstrapping techniques

proposed in Brouhns et al. (2005) and Koissi et al. (2006) which involve repeatedly re-

fitting the model. For instance, while without the additional identifiability constraint

model H1 took about four minutes to converge for a tolerance level of 10−5, with the

additional constraint this time was reduced to 13 seconds.

Nevertheless, introducing the approximate identifiability constraint does not appear to

solve the lack of robustness shown by model M to changes in the range of the data used

to fit the model. For example, Figure 6.14 shows the estimated parameters for model

M with the approximate identifiability constraint when the start year of the data is
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Figure 6.13: Parameters for model M for different tolerance levels fitted using the
one-stage approach with the approximate identifiability constraint.

Table 6.4: Poisson log-likelihood and computing time in seconds for models M and
H1 for different tolerance levels obtained using the one-stage approach with the approx-

imate identifiability constraint.

Model M Model H1

Tolerance Log-Likelihood Computing time (s) Log-Likelihood Computing time (s)

10−3 -22,007 10 -22,408 5
10−4 -22,005 20 -22,407 8
10−5 -22,005 31 -22,407 13
10−6 -22,005 43 -22,407 17
10−7 -22,005 53 -22,407 21

changed in the same fashion as in Section 6.5.3. This shows very similar instability as

before, shown in Figure 6.9.

In a similar fashion, we find that using the approximate identifiability constraint does

not change the lack of robustness of model H1 to using only data from 1981 onwards

to fit the model, although the fitted parameters are still robust to the other changes as

found in Sections 6.5.3 and 6.5.4.

This is not entirely surprising, as the parameter changes exhibited in Sections 6.5.3 and

6.5.4 were not entirely consistent with the form of the transformation in Equation (6.19),
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Figure 6.14: Parameters for model M for different start years fitted using the one-
stage approach with the approximate identifiability constraint.

unlike those in Sections 6.5.1 and 6.5.2. This indicates that it may not be possible to

assign structure in the data to an age/period or age/cohort interaction uniquely in these

models. Alternatively, it may be that the assumption that the shape of the age functions

β
(1)
x and β

(0)
x is not constant, as assumed, over the full range of the data but changes

as the underlying drivers of improving mortality change. This phenomenon has been

observed for the LC model by Carter and Prskawetz (2001), Booth et al. (2002) and

others. However, it is noticeable that model H1 is considerably more robust to changes

in the data ranges due to the simplification of the age/cohort term.

6.7 Other datasets

The results presented so far in this study are based on the analysis of data for men

in England and Wales for ages 0 to 89. This has been consistent with the primary

data used in other similar studies such as Renshaw and Haberman (2006), Haberman

and Renshaw (2009, 2011) and Cairns et al. (2009, 2011). As a robustness check on the
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reasonableness of our results, we have performed a similar analysis for a number of other

datasets,13 including

• female data for England and Wales for ages 0 to 89,

• male and female data for England and Wales for ages 60 to 89,

• male and female data for the USA for ages 0 to 89,

• male data for the Netherlands for ages 0 to 89, and

• male data for Spain for ages 0 to 89.

These alternative datasets have been chosen because they are either direct comple-

ments to the primary dataset used in this study (i.e., the alternative England and Wales

datasets), or because they have been used in other studies which have encountered ro-

bustness and stability issues with the models (data for the USA in Cairns et al. (2009)

and Currie (2014), the Netherlands in van Berkum et al. (2014) and Spain in Debón

et al. (2010)). Furthermore, van Berkum et al. (2014) shows that there is consider-

able non-linearity to the first period function for mortality models fitted to data for the

Netherlands, which makes this a useful test of the approximate transformation described

in Section 6.6.

For these alternative datasets we find broadly similar results as those found for male

data for England and Wales in the rest of this study. In particular, we note that, for all

the datasets used, applying the additional identifiability constraint helps resolve the lack

of robustness the models have to the initial parameter estimates and the convergence

criteria of the fitting algorithm. Table 6.5 shows the impact on the goodness of fit of

applying the additional identifiability constraint for different datasets, which is relatively

small in most cases. In particular, we note that in the case of using model M for

women aged 0-89, the imposition of the approximate constraint actually increases the

goodness of fit of the model, which we believe is due to the greater efficiency of the

fitting algorithm. We thus discuss only briefly the main highlights of these results, but

further details are available on request from the authors.

For the England and Wales female data for the full age range, we find very similar results

to those presented for men, i.e., that the additional identifiability constraint significantly

13All data for the period 1961 to 2007.
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Table 6.5: Poisson log-likelihood for models M and H1 without and with the additional
identifiability constraint for different datasets.

Log-likelihood

Dataset Model M Model H1

Country Sex Age Range
Without With Without With

Constraint Constraint Constraint Constraint

E&W Male 0-89 -21,992 -22,005 -22,400 -22,407
E&W Male 60-89 -8,847 -8,847 -8,999 -9,003
E&W Female 0-89 -20,499 -20,497 -20,797 -20,799
E&W Female 60-89 -8,448 -8,448 -8,642 -8,649
USA Male 0-89 -38,096 -39,510 -41,467 -43,706
USA Female 0-89 -28,691 -29,085 -30,323 -30,489
NL Male 0-89 -17,514 -17,522 -17,698 -17,721

Spain Male 0-89 -23,370 -23,410 -25,517 -26,530

improves the robustness of the model to different choices of the initial parameter values

and the tolerance level used by the fitting algorithm, but model M still lacks robustness

to changes in the age and period range of the data. However, as seen in the men dataset,

most of these robustness issues are resolved by using model H1 with the same notable

exception of the lack of robustness when using only data from 1981 onwards (recall

Figure 6.10).

The results for the more limited range of data in England and Wales are in general

consistent with the results obtained for the full age range. However, we highlight that

for both men and women, model H1 with the additional identifiability constraint is now

robust to changes in the period range of the data, including even when using data for

the period 1981 to 2007. It therefore seems likely that these issues are related to the

behaviour of mortality rates at low ages.

For the USA data, we note the following features.

• The values of κt fitted for model M are less linear (R2 values for the regression

in Equation (6.18) of approximately 95%) and, hence, the using transformation

in Equation (6.19) results in larger changes in the fitted mortality rates and log-

likelihoods compared with the England and Wales data.

• The fitted parameters for model M without the additional identifiability constraint

for both men and women lack demographic significance, in the sense that it is

difficult to associate any sensible interpretation to the parameters. In particular,
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Figure 6.15: αx parameters for model M for for USA male data for ages 0-89 and
period 1961-2007 fitted using the one-stage approach without and with the approximate

identifiability constraint.

we find that αx lacks smoothness for both sexes (as shown in Figure 6.15 for

men) and does not show the familiar pattern of mortality across ages. This is

especially important, since the desire for demographically significant αx was cited

as a large motivation of the two-stage fitting approach in Haberman and Renshaw

(2009). However, these issues are resolved by using the approximate identifiability

constraint. These results may be in part attributed to the weaker cohort structure

of USA mortality, as suggested by Tuljapurkar (2013), which means that the model

has difficulty uniquely estimating the cohort parameters.

• Similar to the England and Wales data, model M exhibits a lack of robustness to

changes in the range of the data being used even with the additional identifiability

constraint. However, using model H1 in preference substantially improves this.

We find that, for the Dutch and Spanish datasets, the models perform have very similar

issues to England and Wales. However, we do not find the same non-linear behaviour for

κt for models M and H1 for the Netherlands that was found in van Berkum et al. (2014),

which means that the approximate invariant transformation gives smaller reductions in

the goodness of fit than were expected.
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In summary, we find that the other datasets tested show many of the same issues with

robustness and stability when using models M and H1 as the England and Wales male

data. As with this dataset, using the additional identifiability constraint partially re-

solves these issues, especially in conjunction with using the simplified model H1, which

makes the model substantially more stable to changes in the data range. These results

are, therefore, strongly indicative that the issues and solutions are general features of

models M and H1 and are not specific just to the data used in Section 6.5

6.8 Conclusions

In this chapter, we have investigated the robustness of models M and H1 using both the

two-stage fitting approach pioneered in Renshaw and Haberman (2006) and the one-

stage approach in Cairns et al. (2009). We broadly agree with the findings of both of

these studies and agree with the conclusions of Haberman and Renshaw (2011) that the

difference in robustness found are explained by the different fitting procedures.

However, we find in Section 6.4 that the two-stage implementation procedure proposed

in Renshaw and Haberman (2006) and used subsequently in Haberman and Renshaw

(2009, 2011) introduces an additional constraint which is not theoretically justified and

worsens the fit to data considerably. Using alternative constraints, which are equally or

sometimes more justifiable, gives parameter estimates which are substantially different.

This is not desirable and should be avoided. However, simply omitting the additional

constraint whilst retaining the two-stage fitting procedure in Section 6.4.2 gives a model

which is highly unstable, even more than when using the one-stage procedure. Coupled

with the fact that fixing the static age function, αx, a priori worsens the fit to data in

all eventualities, we therefore recommend the use of a one-stage procedure when fitting

models M or H1 to data.

Despite being more justifiable theoretically, the results of Section 6.5 show that the one-

stage procedure has considerable convergence and robustness problems. These make the

results of the model very sensitive to both the specific details of the fitting algorithm

used (such as the initial parameter estimates and the tolerance levels for the algorithm to

converge) and the data the model is fitted to. This is clearly undesirable. The maximum

likelihood algorithms used to fit the models also take a relatively long time to converge to
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the optimum solution, which limits the practicality of the models in many circumstances.

However, we find that model H1, which simplifies the age/cohort interaction in model

M, is both more robust to changes in the data and faster to converge, which may make

it more suitable for many purposes.

In Cairns et al. (2009), it was conjectured that many of the robustness problems with

model M (and, by extension, H1) were due to an additional, approximate identifiability

issue present in the model. In Section 6.6, we find the transformation of the parameters

in the model which generates this approximate identifiability model and determine its

impact on the fit to data. This transformation is then used to impose an additional

constraint on the cohort function, ιy, in the model. In Section 6.6.3, we then show that

including this additional constraint resolves many of the robustness issues discussed in

Section 6.5 using the one-stage procedure.

However, the model is still unstable to changes in the data even with the additional

constraint. This may be due to it being difficult to allocate structure in the data between

the age/period and age/cohort interactions, or due to the shape of the age functions

β
(1)
x and β

(0)
x changing over the period of the data, as discussed in Carter and Prskawetz

(2001) and Booth et al. (2002) in the context of the LC model. If so, this may explain

why model H1 is generally more robust to changes in the data range than model M.

We have also found broadly similar results for other populations in Section 6.7, indicating

that our findings are general features of the models rather than specific to the data for

men in England and Wales. We also find that model H1 with the additional constraint

is more appropriate for populations with a weak cohort effect and a period index with

bigger deviations from linearity, such as in the USA.

In conclusion, we recommend using a one-stage procedure with an additional constraint

of the form discussed in Section 6.6.2 to fit model H1. This has the advantage of the

greater theoretical justification and improved fit to data of the one-stage procedure of

Cairns et al. (2009) whilst obtaining the faster convergence speeds, robustness and in-

terpretability of the parameters of the two-stage procedure of Renshaw and Haberman

(2006). The use of model H1 as opposed to model M also improves the robustness of the

model with respect to changes in the underlying data and gives a simpler subjective in-

terpretation of the demographic significance of the age/cohort interaction. We therefore
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believe that this approach combines the best of all worlds and helps resolve many of the

outstanding issues regarding extensions of the LC model incorporating cohort effects.
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Appendix 6.A One-stage fitting procedure

To fit model M we consider that death counts are independent Poisson responses Dxt ∼

Poisson(extµxt) and derive parameter estimates by maximising the log-likelihood

L(dxt, d̂xt) =
∑

x

∑

t

ωxt

{

dxt log d̂xt − d̂xt − log dxt!
}

(6.22)

where d̂xt = ext exp
(

αx + β
(1)
x κt + β

(0)
x ιt−x

)

and ωxt are 0-1 weights indicating empty

or omitted data cells.

In order to maximise the log-likelihood function we employ a straightforward extension of

the Newton-Raphson iterative procedure used by Brouhns et al. (2002) in the estimation

of the Lee-Carter model. In iteration h+ 1, a typical parameter θ is updated using the

updating relationship

θ̂{h+1} = θ̂{h} −
∂L/∂θ

∂2L/∂θ2

Starting with appropriate initial parameters, we apply iteratively the updating relation-

ships until the log-likelihood of the model converges to a desired tolerance. Table 6.6

shows the updating relationships for model M and Algorithm 1 presents the detailed

parameter estimation procedure.

We note that if the additional approximate identifiability constraint of Section 6.6.2 is

being used, then Step 7 in Algorithm 1 imposes constraint (6.21) by applying transfor-

mation (6.19) with particular values of constants K and e. Specifically, K is found by
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Table 6.6: Updating relationships for the maximum likelihood estimation of the pa-
rameters of model M.

Parameter Updating formula

αx α̂
{h+1}
x = α̂

{h}
x +

∑

t
ωxt(dxt − d̂xt)

∑

t
ωxtd̂xt

β
(1)
x β̂

(1){h+1}
x = β̂

(1){h}
x +

∑

t
ωxtκ̂t(dxt − d̂xt)

∑

t
ωxtκ̂2

t d̂xt

κt κ̂
{h+1}
t = κ̂

{h}
t +

∑

x
ωxtβ

(1)
x (dxt − d̂xt)

∑

x
ωxt

(

β
(1)
x

)2
d̂xt

β
(0)
x β̂

(0){h+1}
x = β̂

(0){h}
x +

∑

t
ωxtι̂t−x(dxt − d̂xt)

∑

t
ωxtι̂2t−xd̂xt

ιy ι̂
{h+1}
y = ι̂

{h}
t +

∑

x,t
y=t−x

ωxtβ
(0)
x (dxt − d̂xt)

∑

x,t
y=t−x

ωxt

(

β
(0)
x

)2
d̂xt

Algorithm 1 Maximum likelihood parameter estimation procedure for model M

1: set initial values α̂x, β̂
(1)
x , κ̂t, β̂

(0)
x , ι̂y; compute d̂xt; and compute L(dxt, d̂xt)

2: update α̂x and compute d̂xt

3: update κ̂t; set c := 1
n

∑

t κ̂t, κ̂t := κ̂t − c, α̂x := α̂x + cβ̂
(1)
x to ensure

∑

t κ̂t = 0; and

compute d̂xt

4: update β̂
(1)
x ; set a := 1

/

∑

x β̂
(1)
x , β̂

(1)
x := aβ̂

(1)
x , κ̂t := 1

a
κ̂t to ensure

∑

x β̂
(1)
x = 1;

and compute d̂xt

5: update ι̂y; set d := 1
n+k−1

∑

y ι̂y, ι̂y := ι̂y −d, α̂x := α̂x +dβ̂
(0)
x to ensure

∑

y ι̂y = 0;

and compute d̂xt

6: update β̂
(0)
x ; set b := 1

/

∑

x β̂
(0)
x , β̂

(0)
x := bβ̂

(0)
x , ι̂y := 1

b
ι̂y to ensure

∑

x β̂
(0)
x = 1;

and compute d̂xt

7: if constraint in Equation (6.21) is imposed using Equation (6.19); set K :=
∑

t(t− t̄)κ̂t

/
∑

t(t− t̄)2 , e := −
∑

y(y − ȳ)ι̂y
/

∑

y(y − ȳ)2 , α̂x := α̂x + eβ̂
(0)
x (x − x̄),

β̂
(1)
x := K

K−e
β̂

(1)
x − e

K−e
β̂

(0)
x , κ̂t := K−e

K
κ̂t, ι̂y := ι̂y +e(y−ȳ) to ensure

∑

y(y−ȳ)ι̂y = 0;

and compute d̂xt

8: compute L(dxt, d̂xt)
9: if L(dxt, d̂xt) has not converged go to 2

10: return α̂x, β̂
(1)
x , κ̂t, β̂

(0)
x , ι̂y

regressing κt on (t− t̄), so that κt = K(t− t̄) + δt, δt ∼ N(0, σ2
κ) i.i.d.; and e is found by

regressing ιy on −(y − ȳ), so that ιy = −e(y − ȳ) + ξy, ξy ∼ N(0, σ2
ι ) i.i.d.
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7
General Conclusions

The central topic of this thesis has been the understating of the trends and financial

consequences of socio-economic differences in mortality. We have developed modelling

techniques for the quantification of socio-economic mortality differentials in aggregate

and cause-specific mortality, which we have applied in the study of the relationship

between mortality and deprivation in the English population. Furthermore, stemming

from the use of stochastic mortality models in the investigation of mortality differentials,

we have also made contributions to the assessment of longevity basis risk and to the

general use of stochastic mortality models.

In Chapter 2 we have developed an extension of the Lee-Carter model especially de-

signed to take into consideration the characteristics of socio-economic subpopulations

as well as some of the typical issues of mortality data disaggregated by socio-economic

circumstances. This newly introduced model allows a clear separation of mortality level

differentials and mortality improvement differentials among socio-economic subpopula-

tions, and produces subpopulation-specific mortality forecasts which are consistent with

mortality forecasts for the national population. Using this model, we have found that

people living in more deprived areas of England not only have significantly lower life

expectancies than those living in less deprived areas, but have also experienced slower

mortality improvement rates.

In order to shed light on the drivers behind socio-economic mortality differentials, in

Chapter 3 we have investigated how mortality trends for the leading causes of death

differ between socio-economic groups. To do this, we have introduced an extension of
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the Lee-Carter model to allow for the consideration of coding changes in cause-specific

mortality data, which we then have embedded into a multiple population setting to

enable the quantification of socio-economic differences in cause-specific mortality. The

application of this approach to English data has revealed that for the leading causes of

death people living in more deprived areas have significantly higher mortality rates than

those living in less deprived areas, with circulatory, digestive, and respiratory diseases

showing the strongest socio-economic gradient. Furthermore, with the exception of

neoplasms, we have found that for the leading causes of death there is a widening of the

relative mortality gap between more and less deprived areas of England.

The persistency and general widening of mortality inequalities has implications for the

managing of longevity risk in pension funds and annuity portfolios. In particular, the

basis risk emerging from the mis-match between the socio-economic characteristics of

annuitants and those of the national population is one of the key obstacles preventing

many pension schemes and insurers from considering index based longevity transactions

as a legitimate alternative for the management of their longevity risk. In order to

contribute to the development of the market of standardised longevity transactions, in

Chapter 4 we have systematically evaluated the suitability of several multi-population

stochastic mortality models for assessing basis risks and provided guidelines on how to

use these models in practical situations. Our investigations show that two-populations

models can offer market participants an appropriate approach to assess the amount of

demographic basis risk involved in an index-based longevity hedge. Moreover, our results

suggests that standardised hedges have the potential to provide an effective and flexible

solution to mitigate longevity risk.

As a by-product of our research on socio-economic differences and basis risk assessment,

we have also developed new modelling tools that allow a more effective and widespread

use of stochastic mortality models. Specifically, in Chapter 5 we have introduced a new

R package for modelling and forecasting mortality. This package provides a general

framework for implementing many of the stochastic mortality models proposed in the

demographic and actuarial literature and includes tools for fitting, analysing goodness of

fit, evaluating parameter uncertainty, and performing mortality projections. We believe

that this new R package is a valuable addition to the actuarial toolkit for measuring

and managing longevity risk.
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Finally, in Chapter 6 we have systematically investigated the well-known robustness and

stability issues of cohort-extensions of the Lee-Carter model. As a result of this inves-

tigation, we have proposed a new fitting approach which solves many of the prevalent

problems with this type of models.

There are a number of areas where the work of this thesis can be extended. The socio-

economic differences in life expectancy and mortality that we have evidenced in Chapters

2 and 3 are unacceptable in a fair society. Therefore, with the aim of providing policy

advice for reducing mortality inequalities, it is worth working in developing methods

for identifying which causes of death are most influential in shaping socio-economic

difference in mortality.

The forecasts of cause-specific mortality rates carried in Chapter 3 were made using

independent univariate ARIMA models for each cause, implicitly assuming independence

among the the different causes of death. This is clearly unrealistic as, for instance, the

same risk factors can affect several causes at the same time. It is thus worth exploring

the use of multivariate time series models such as Vector Autoregression (VAR) and

Vector Error Correction Models (VECMs) so to explicitly allow in the forecasts for the

possible dependence among the different causes of deaths.

In accordance with the standard practice in the multiple population mortality litera-

ture, the investigations on the assessment of basis risk carried out in Chapter 4 relied

on the assumption that in the long-run the index reference portfolio and the pension

fund/annuity book being hedged share the same mortality improvements. This so-called

non-divergence assumption was captured through the use of autoregressive time series

to model the mortality spread between the reference and book populations. However,

in Chapters 2 and 3 we saw that over the past three decades the most affluent areas of

England have consistently experienced faster mortality improvements than less affluent

areas, suggesting that the non-divergence assumption might not be appropriate in all

cases. Therefore, we believe that there is a need for further research considering alterna-

tive times series models beyond the autoregressive model and evaluating the implication

for basis risk assessment of a departure from the non-divergence assumption.

In Chapter 4 we found that the accurate calibration of two-population models for basis

risk assessment requires that the pension fund/annuity book has an annual exposure of

over 20,000-25,000 lives and at least 10-12 years of reliable data. However, in practice
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a large proportion of pension scheme books and life company portfolios will not meet

these data requirements. Thus, there is a need for research looking at the assessment of

longevity basis risk when the available mortality data is scarce.

Finally, the market of longevity risk transfers would benefit from computational tools

which make two-population mortality models easily accessible to practitioners and fa-

cilitate the assessment of longevity basis risk. We thus encourage the development of a

multiple population extension of the R package StMoMo introduced in Chapter 5.
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