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Abstract. The monitoring of properties of complex software systems can 
provide the core functionality for detecting violations of such properties. 
However, the violations detection cannot be always sufficient for the 
preservation of the properties. Except for the detection, the explanations of the 
occurrence of a violation could play significant role for the preservation task. In 
particular, diagnosis can indicate the cause(s) of a violation. Thus, diagnostic 
information is necessary for preserving the properties due to the support that 
can provide for deciding on the appropriate countermeasure against a violation. 
In this paper, we describe a process for diagnosing runtime violations of 
properties that we have developed as part of a runtime monitoring framework. 
The process is based on a combination of abductive, temporal and evidential 
reasoning over violations of process properties expressed in Event Calculus. 

Keywords: Abductive reasoning, temporal constraints problem, Dempster-
Shafer theory of evidence, Event Calculus. 

1   Introduction 

Monitoring properties of software systems at runtime is widely accepted as a 
technique for increasing the resilience to dependability failures and security attacks 
and several approaches have been developed to support it (see [7] for a survey). 
Although basic monitoring provides mechanisms for detecting violations of such 
properties, it cannot always provide the information that is necessary in order to 
understand the reasons that underpin the violation of a property and decide what 
would be an appropriate reaction to it.  

To appreciate the problem, consider the case of an Air Traffic Management System 
(ATMS), which consists of components (radars) that monitor the traffic in different 
air spaces. By monitoring the operations of an ATMS at runtime, the availability and 
integrity of its components (e.g. radars), and the information generated by and/or 
exchanged between them might be ensured. For instance, a property that can be 
monitored in an ATMS is a property requiring that in cases where there are more than 
one radars covering a particular airspace and one of these radars sends a signal 
indicating that an airplane is in the relevant airspace, every other radar that covers the 
same space should also send a signal indicating the presence of the plane in it and this 
should happen within a certain time period after the receipt of the initial signal.  
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In cases where this property is violated, knowing about the occurrence of the 
violation itself is not sufficient for establishing the reasons why some radar has sent a 
signal but the other has not. Clearly getting diagnostic information about these 
reasons would be necessary for taking appropriate action as the violation may have 
been due to different reasons, including the following:  

•  The radar that did not send the expected signal was malfunctioning.  
•  The communication link between the radar that did not send the expected signal 

and the monitor was malfunctioning or an intruder captured the signal and 
prevented it from reaching the monitor.  

•  The radar that sent the expected signal was malfunctioning or its identity was 
faked by an intruder which sent a fake signal to the monitor.  

Thus, identifying the reason for the violation is important for taking actions that could 
restore the integrity of the operation of the ATMS.  

In this paper, we present a diagnosis tool that we have developed as part of the 
monitoring framework described in [16]. This framework has been developed within 
the European integrated research project SERENITY to support the monitoring of 
security and dependability properties in distributed and dynamically evolving 
systems. The implemented monitoring framework supports the specification and 
monitoring of properties expressed in Event Calculus (EC) [15] as rules.  

In particular, we present a newly developed extension of this framework 
supporting the diagnosis of rule violations. The provision of diagnostic information is 
based on is the generation of all the possible alternative explanations of the events 
which are involved in the violations of rules, and the assessment of the plausibility of 
these explanations based on whether their effects correspond to events recorded 
during the operation of the monitored system. The key characteristic of our approach 
is the use of abductive reasoning [2][9][10] for the generation of explanations and 
belief based reasoning [14] for the assessment of explanation plausibility. 

The rest of this paper is structured as follows. In Section 2, we provide a brief 
overview of the monitoring toolkit. In Section 3, we describe the different stages of 
the diagnostic process. In Section 4, we overview related work and, finally, in Section 
5, we present conclusions and directions for future work.  

2   Monitoring framework 

 
The core of our monitoring framework is a generic engine for checking violations 

of properties expressed as EC rules of the form body ⇒ head. The meaning of a rule 
is that if its body evaluates to true, its head must also evaluate to true. EC is a first-
order metric temporal logic language which can be used for representing and 
reasoning about events and their effects on the state of a system over time. Our 
monitoring framework rules are defined in terms of the standard EC predicates. These 

include the predicates (i) Happens(e,t,ℜ(lb,ub)) which denotes that an instantaneous 

event e occurs at some time t within the time range ℜ(lb,ub), (ii) HoldsAt(f,t) which 
denotes that a state (aka fluent) f holds at the start of the execution of a system and at 



time t, respectively, (iii) Initiates(e,f,t) and Terminates(e,f,t) which denote the 
initiation or termination of a fluent f by an event e at time t respectively, and (iv) 
Initially(f) which denotes that a fluent holds at the start of the operation of a system.  

An example of a rule is:  
Rule 1: Happens(signal(_r1, _a, _s),t1,R(t1,t1) ∧  HoldsAt(covers(_r1,_s),t1) ∧  (∃ _r2) 
HoldsAt(covers(_r2,_s), t1) ⇒ Happens(signal(_r2,_a,_s), t2 ,R(t1, t1+5))  
 

This rule expresses the condition about the radars of ATMS that we discussed in 
the introduction and will be violated if there is only a signal event form one of the two 
radars of ATMS that covers a specific airspace but not from the other radar. 

3   Diagnostic process 

As shown in Figure 1, the overall process of diagnosing the causes of rule violations 
includes four stages, namely:  

1. explanation generation in which all the possible explanations for the individual 
events that were reported to the monitor and have caused the violation (referred 
to as “violation observations” henceforth) are generated.  

2. explanation effect identification in which the possible consequences (effects) of 
the explanations of the violation observations are derived by deduction  

3. plausibility assessment in which the effects of explanations are checked against 
the event log of the monitor to see if there are events that match them and could 
provide supportive evidence for the explanations  

4. diagnosis generation in which an overall diagnosis for the violation is generated 
from the individual explanations  

The generation of explanations and their effects in stages (i) and (ii) above is based on 
a incomplete model of the behaviour of the monitored system that is expressed in the 
form of EC formulas called assumptions. In the following, we discuss the stages of 
the diagnostic process in detail.  
 

 



Fig. 1. Diagnostic process 

3.1 Explanation generation  

The generation of explanations for violation observations is based on abductive 
reasoning. More specifically, given a set � of events and fluents that are involved in 
the violation of a monitoring rule, this stage of the diagnostic process tries to find a 
set of explanation formulas Φ which, in conjunction the set of the assumptions about 
the system that is being monitored and the events that are known to the monitor at the 
time when the explanation is required (collectivelly referred to as TH theory in the 
following), entail �. Formally, this is a search for a set of atomic formulas Φ that 
satisfy the conditions:  

(Cnd 1): TH ∪  Φ |- �, and  
(Cnd 2): ∀  f in Φ: predicate (f) ∈  APreds  

where predicate (f) is the predicate of formula f and APreds is a set of abducible 
predicates whose truth value can be established only by abductive reasoning. 

The search for explanations is based on a newly developed algorithm (see [17]) 
which starts from a violation observation P that needs to be explained and tries to find 
all assumptions of the form a: B1 ∧  … ∧  Bn ⇒ H in TH whose head H can be unified 
with P. When such an assumption is found, the algorithm checks: (i) if the unification 
of P with H provides concrete values for all the not time variables of the predicates 
B1, …, Bn in its body, and (ii) if it is possible to derive concrete time ranges for the 
time ranges of all these predicates by using George Dantzig’s classic Simplex method, 
which is revisited in [4]. If these conditions are satisfied, the algorithm instantiates the 
predicates B1, …, Bn and identifies which of these predicates are observable 
predicates (O-preds), deducible predicates (D-preds) or abducible predicates (A-
preds), assuming that these are disjoint categories of predicates.  

Then, the algorithm checks if each of the O-Preds and D-preds in the body of a 
can be matched with some recorded event or derived from the events in the monitor’s 
log and the known system assumptions, respectively. If there are O-preds and D-
preds that cannot be verified via this check, the algorithm tries to find an abduced 
explanation for them recursively. If such explanations are for all the non verified O-
preds and D-preds, these explanations along with the A-preds that were determined in 
the current step of the explanation process are reported as the possible explanation of 
the initial violation observation P. In cases, however, where there are O-Preds or D-
preds in the body of a that can neither be verified nor explained by abduction, the 
explanation generation path using a will fail.  

As an example of explanation generation, consider again Rule 1. This rule would 
be violated by the event (E7) in the event log of Figure 2 
(Happens(signal(R1,A1,S1),7,R(7,7)) and the predicates 
¬Happens(signal(R2,A1,S1),t,R(7,12)), HoldsAt(covers(R1,S1),7) and 
HoldsAt(covers(R2,S1),7) which can be derived from this log. More specifically, the 
predicate ¬Happens(signal(R2,A1,S1),t,R(7,12)), which denotes the absence of a 
signal from radar R2 in the time range from T=7 to T=12, is deduced by the principle 
of negation as failure (NF) from the events (E4) and (E8) that were received from 



radar R2 at T=1 and T=13 as soon as the monitor receives (E8). This is because no 
other event has been received from R2 between these two time points. Also the 
predicates HoldsAt(covers(R1,S1), 7) and HoldsAt(covers(R2,S1), 7) can be deduced 
from events (E1) and (E2) in Figure 2, which denote that radars R1 and R2 cover the 
airspace S1 initially, and the absence of any event signifying the repositioning of any 
of the two radars until the time point T=7 when the monitor receives the signal for the 
presence of aircraft A1 in S1 from R1 (this deduction is based on the axioms of EC 
[12]). To explain the violation, the predicates Happens(signal(R1,A1,S1),7,R(7,7)) 
and ¬Happens(signal(R2,A1,S1),t,R(7,12)) need to be explained individually. 

 

 

Fig. 2. ATMS event log 

Assuming that the following assumptions are known about the ATMS: 
  

(A0) Initiates(_e1,_f),t1,R(t1,t1)) ∧  ¬∃ _e2,t2: Terminates(_e2,_f),t2,R(t1,t2)) ⇒ HoldsAt(_f,t2)  
(A1) Happens(inspace(_a,_s),t1,R(t1,t1)) ∧  HoldsAt(covers(_r,_s),t1) ⇒ Happens(signal(_r,_a,_s),t2,  

              R(t1,t1+5))  
(A2) Happens(inspace(_a,_s),t1, R(t1,t1)) ⇒ Happens(permissionRequest(_a,_s), t2, R(t1-20,t1-1))  
 

the search for an explanation of Happens(signal(R1,A1,S1),7,R(7,7)) will detect that 
this predicate can be unified with the predicate Happens(signal(_r,_a,_s), t2, 
R(t1,t1+5)) in the head of assumption (A1). The unification of these two predicates 
will be {_r/R1, _a/A1, _s/S1} and the linear constraint system generated for the time 
variable t1 in (A1) will include the constraints t1 ≤ 7 and 7 ≤ t1 + 5. Thus, since the 
non time variables in the body of (A1) are covered by the unification and the 
constraints t1 ≤ 7 and 7 ≤ t1 + 5 determine a feasible time range for t1 (i.e., [2,...,7]), 
the conditions of the explanation generation process are satisfied and the predicate 
Happens(inspace(A1,S1),t1,R(2,7)) will be generated as a possible explanation of 
Happens(signal(R1,A1,S1),7,R(7,7)). Subsequently, assuming that 
Happens(inspace(_a,_s),t1,R(t1,t1)) belongs to the set of the abducible predicates 
Apreds, there will be no need for further elaboration of it.  

Note, however, that as Happens(inspace(A1,S1),t1,R(2,7)) has been generated from 
assumption (A1), it can be returned as an explanation only if the other instantiated 
predicate of the body of (A1), namely HoldsAt(covers(R1,S1),7), is True when t1 
takes values in the range R(2,7). The latter predicate, however, can be deduced from 
the log of Figure 2 and assumption (A0). Thus, Happens(inspace(A1,S1),t1,R(2,7)) 
becomes a possible explanation of Happens(signal(R1,A1,S1),7,R(7,7)). 



3.2 Explanation effect identification 

Following the generation of explanations, the next step in the diagnosis process is 
the identification of the expected effects of these explanations. These consequences 
are needed to assess the plausibility of explanations. The assessment of explanation 
plausibility is based on the hypothesis that if the expected effects of an explanation 
match with events which have occurred and recorded during the operation of the 
system that is being monitored, then there is supportive evidence for the explanation. 
This is because the events that match its expected effects might also have been caused 
by it.  

The identification of the expected effects of an explanation is based on deductive 
reasoning. Generally, for an explanation Exp=P1 ∧ …∧  Pn formed as a conjunction of 
abduced atomic predicates, the diagnosis process iterates over the predicates Pi that 
constitute it and, for each of these predicates, finds the system assumptions B1 ∧  … ∧  
Bn ⇒ H which have a predicate Bj in their body that can be unified with Pi and the rest 
of the predicates in its body are also True. For such assumptions, if the predicate H in 
the head of the assumption is fully instantiated and its time range is determined, H is 
derived as a possible consequence of Pi.  

Then, if H is an observable predicate, i.e., a predicate that can be matched with 
recorded events, H is added to the possible effects of Exp. If H, however, is not an 
observable predicate, the effect identification process tries to generate the 
consequences of H recursively and, if it finds any such consequences that correspond 
to observable events, it adds them to the set of the expected effects of Exp. In this 
way, the diagnosis process computes the transitive closure of the effects of Exp.  
As an example of identifying the consequences of explanations, consider again the 
ATMS system and suppose that, in addition to assumptions (A1) and (A2), three more 
assumptions are known for this system, namely:  
 

(A3) Happens(inspace(_a,_s),t1,R(t1,t1)) ⇒ Initiates(inspace(_a,_s), inairspace(_a,_s),t1)  
(A4) Initiates(inspace(_a,_s), inairspace(_a,_s),t1) ∧  HoldsAt(landing_airspace_for(_s,_arpX),t1) ⇒   
Happens(landingRequest(_a, _arpX), t2, R(t1-10,t1))  
(A5)Happens(changeOfLandingApproach(_arpX,_s),t1,R(t1,t1))⇒ 
Initiates(changeOfLandingApproach(_arpX,_s), landing_airspace_for(_s,_arpX),t1)  
 
The formula (A3) above states that when an event that signifies the entrance of an 

aircraft _a in an airspace _s becomes known a fluent called inairspace(_a,_s) should 
be initiated to signify the presence of _a in _s unless this fluent already holds. 
Formula (A4) states that when an aircraft _a enters an airspace _s that is used as the 
final landing route for approaching an airport _arpX then the aircraft _a must have 
made a landing request for the particular airport within the last 10 time units before 
entering _s.  

Using (A3) and (A4), it is possible to determine the expected effects of the 
predicate Happens(inspace(A1,S1),t1,R(2,7))) that was generated as a possible 
explanation of Happens(signal(R1,A1,S1),7,R(7,7)). Specifically, assuming that the 
airspace S1 is the landing airspace of an airport AR-a then the entrance of the aircraft 
A1 into S1 should be preceded some request from A1 to land in AR-a or, equivalently, 
that a runtime event Happens(landingRequest(A1,AR-a), t2, R(0,6)) should have 



occurred. Thus, the latter runtime event would be an expected effect of the 
explanation Happens(inspace(A1,S1),t1,R(2,7)).  

Formally, from Happens(inspace(A1,S1),t1,R(2,7))) and (A3) the predicate 
Initiates(inspace(A1,S1), inairspace(A1,S1), t1) can be deduced for t1 in [2,…,7]. As 
the latter predicate, however, is not an observable predicate, the diagnosis process will 
try to identify whether it has any observable consequences of its own. Whilst 
searching for such conseuqneces, Initiates(inspace(A1,S1), inairspace(A1,S1), t1) can 
be unified with the first predicate in the body of (A4). Furthermore, the other 
predicate in the body of this assumption, namely the predicate 
HoldsAt(landing_airspace_for(S2,AR-a), t) can also be deduced to be True for the 
time range [2,…,7] (i.e., for t in [2,…,7]) from the event (E5) in Figure 2 and 
assumptions (A5) and (A0). Thus, both predicates in the body of (A4) are True and, 
therefore, the predicate Happens(landingRequest(A1,AR-a), t2, R(0,6)) in its head can 
be derived from it. Assuming that landingRequest(_a, _arpX) is an observable event, 
Happens(landingRequest(A1,AR-a), t2, R(0,6)) will be established as an expected 
effect of the explanation Happens(inspace(A1,S1),t1,R(2,7))).  

3.3 Assessment of explanation plausibility 

After deriving the expected effects ΦC={C1,…,CL} of an explanation Φ, the 
diagnosis process searches the event log of the monitoring framework to find events 
that can match these effects. In this search, a match between an event e in the log, 
which has been produced by an event captor Captor(e) and has a timestamp te, and an 
effect Ck (k=1,…,L) is detected only if: (i) e has been produced by the same event 
captor as the captor that Ck is expected to be produced from, (ii) e can be unified with 
Ck , and (iii) the timestamp of e falls within the time range of Ck.  

It should be appreciated, however, that although the presence of a matching event 
for an expected effect of an explanation confirms that the effect has indeed occurred, 
the absence of a matching event for an effect at the time of the search does not 
necessarily mean that such an event has not occurred and, therefore, cannot cast 
negative evidence in the validity of the consequence. This is because there might be 
cases where, although an event that satisfies the conditions (i)−(iii) above may have 
occurred, this event might not have arrived yet at the event log of the monitoring 
framework due to communication delays in the “channel” between the event captor 
that captured the event and the monitoring framework. To cope with this problem, the 
search for events that match an explanation effect Ck establishes that no such events 
have occurred if at the time of the search there is no event e satisfying the conditions 
(i)-(iii) above, and the last known value of the clock of Captor(Ck) (i.e., the timestamp 
of the last event in the log that has arrived at the monitor from this captor) is greater 
than the upper boundary of the time variable of Ck.  

Furthermore, there is a possibility of having effects Ck for which, although no 
matching event satisfying (i)-(iii) can be found at the time of the search, the last 
received event from the relevant captor has a timestamp that is less than or equal to 
the upper time boundary of Ck. Such effects cannot be confirmed or disconfirmed and, 
therefore, cast positive or negative evidence for Φ. To cope with this uncertainty, we 
use the Dempster Shafer (DS) theory of evidence [14] for the assessment of the 



plausibility of an explanation, and define the function that gives the basic probability 
assignment to the validity of an explanation as:  

 
Definition 1: The basic probability of the validity of an explanation is computed by 
the function:  

mE(Valid(Φ)) = |Φ C+ | / |Φ C |  
mE(¬Valid(Φ)) = |Φ C- | / |Φ C |  
mE(Valid(Φ)∨ ¬Valid(Φ))=|Φ C  − (Φ C+  ∪  Φ C-)| / |Φ C |  

where  
•  ΦC+ is the set of confirmed effects of Φ, defined as Φ C+ = {Ck /Ck ∈  ΦC and 

∃ e. (e ∈  Log and Captor(e) = Captor(Ck) and tkLB≤te and te≤ tkUB and 
unifier(e,Ck) ≠ ∅ )}  

•  Φ C- is the set of a set of disconfirmed effects of Φ, defined as Φ C- = { Ck /Ck ∈  
Φ C   and ¬∃ e. (e ∈  Log and Captor(e)=Captor(Ck) and tkLB≤te and te≤ tkUB 

and unifier(e,Ck)≠ ∅ ) and lastTime(Captor(Ck))> tkUB}  
•  tkLB, tkUB are the lower and upper boundaries of the time range of Ck, te is the 

timestamp of the event e, and lastTime(Captor(Ck)) is the timestamp of the 
last event arrived from Captor(Ck) to the monitor.  

According to this definition, the probability of the validity of an explanation Φ is 
measured as the proportion of the effects of Φ that have been confirmed by events in 
the event log at time t. Also the probability of an explanation Φ not being valid is 
measured as the proportion of the effects of Φ that have been disconfirmed by events 
in the event log. Note that, as in general Φ C+ ∪  Φ C- ⊆  Φ C, we will also have that 
mE(Valid(Φ)) + mE(¬Valid(Φ))≤ 1 and, mE is not a classic probability function. As we 
prove in [14], however, mE satisfies the axioms of basic probability assignments in the 
DS theory of evidence and, can therefore, be interpreted as a function of this type.  
Using mE, the basic probability of the explanation Happens(inspace(A1,S1),t1,R(2,7)) 
of the violation observation Happens(signal(R1,A1,S1),7,R(7,7)) of Rule-1 can be 
computed as follows. As discussed in Section 3.2, an expected effect of this 
explanation is Happens(landingRequest(A1,AR-a),t2,R(0,6)). Another expected effect 
of the same explanation is the predicate Happens(permissionRequest(A1,S1), t2, 
R(0,7)). The latter effect can be derived from assumption (A2), according to which an 
aircraft which enters a particular airspace at some time point t1, must have requested 
permission to enter the airspace before its entrance and no more than 20 time units 
prior to it.  

Assuming then that the request for diagnosing the violation of Rule-1 is made at 
T=15, a search in the event log of Figure 2 will identify that the event 
Happens(permissionRequest(A1,S1),3,R(3,3)) provides confirmatory evidence for 
Happens(permissionRequest(A1,S1),t2,R(0,7)) but there is no matching event for 
Happens(landingRequest(A1,AR-a),t2,R(0,6)). 

Furthermore, if Happens(landingRequest(A1,AR-a), t2, R(0,6)) refers to events 
which are captured and transmitted by the event captor captor-AR-a then at the time 
of the search (T=15), it will not be impossible to establish whether an event matching 
Happens(landingRequest(A1,AR-a),t2,R(0,6)) has occurred. This is because, as shown 
in Figure 2, the last event received from captor-AR-a until T=15 is 
Happens(changeOfLandingApproach(AR-a,S1),2,R(2,2)) and, therefore, the latest 
known time for this captor (lastTime(captor-AR-a))) is 2. Thus, the basic probabilities 



in the validity of the explanation Φ=Happens(inspace(A1,S1),t1,R(2,7)) will be: 
mE(Valid(Φ)) = 1/2 = 0.5, mE(¬Valid(Φ)) = 0/2 = 0 and mE(Valid(Φ) ∨  ¬Valid(Φ)) = 
1/2 = 0.5. 

3.4 Diagnosis generation 

Having obtained the basic probability measures in the validity or not of individual 
explanations, the next step in the diagnosis process is to construct an aggregate 
explanation of the S&D rule violation. The construction of such aggregate 
explanations is based on assessing the overall belief in the genuineness of the events 
that are involved in the violation. This assessment is based on the hypothesis that an 
event E, which is involved in a violation of an S&D rule, is genuine if and only if at 
least one of the explanations that have been generated for it is valid. Based on this 
hypothesis, as we show in [17], the belief in the genuineness of E (Gen(E)) is 
measured as:  
 
Bel(Gen(E)) = Bel(∨ i=1,…,n Valid(Φi)) 

       =  ΣI⊆ {1,…,n}and I≠∅(−1)|I|+1{Π i∈ I mE(Valid(Φi))} (F2)  
 
Bel(¬Gen(E)) = Bel(∧ i=1,…,n ¬Valid((Φi)) 
                       = Π i=1,…,n mE(¬Valid(Φi)) (F3)  
whereby Φi (i=1,…,n) are the alternative explanations of E 

The beliefs in the genuineness of E and its negation which are computed by the 
above formulas are used to decide whether or not a violation observation is confirmed 
by its available explanations. In particular, the computation of Bel(Gen(E)) and 
Bel(¬Gen(E)) generates a belief range for the genuineness of E which, according to 
the DS theory [14], is: 

[Bel(Gen(E)),…, Pls(Gen(E))] 
whereby: Pls(Gen(E)) = 1 − Bel(¬Gen(E)) (F4) 
 The lower bound of this range is the belief in the genuineness of E and the upper 

bound of it is the maximum possible value that the belief in the genuineness of E can 
take given the belief in the non genuineness of E. The upper bound for the belief in 
the genuineness of E is called in the DS theory, the “plausibility” of this proposition 
[14]. 

 
Generate_Violation_Explanation(R: Instance of Violated Rule ) 
For each predicate P in R Do 
 If P is negated Then 
  Explanations = explain( ¬P) 
 Else 
  Explanations = explain(P) 
 End If 
 Consequences = GenerateConsequences(Explanations)  
 [Bel(P),…,Pls(P)]=ComputeBeliefRange(Consequences)  
 If 1-Pls(P) < Bel(P) Then 
  If P is negated Then 
   UnconfirmedPredicates = UnconfirmedPredicates ∪  {P} 
  Else 
   ConfirmedPredicates = ConfirmedPredicates ∪  {P} 
  End if 



 End if 
End For 
[Bel A(Body(R)),…,Pls A(Body(R))]= 
  =ComputeBeliefRangeofPredicateConjunction(Body(R) ) 
If 1-Pls A(Body(R) < Bel A(Body(R)  Then 
 If Head(R) in UnconfirmedPredicates Then 
  report the head predicate of the rule as the caus e of violation 
 End if 
Else 
 If Head(R) in ConfirmedPredicates Then 
  report the body predicates of the rule as the cause  of violation 
 End if 
End if 
For all P in ConfirmedPredicates Do report P as a confirmed predicate  
 and provide alternative explanations of P End for 

For all P in UnconfirmedPredicares Do report P as unconfirmed predicate  
  and provide alternative explanations of P End for 
END Generate_Violation_Explanation 

 
According to the Generate_Violation_Explanation algorithm, E is confirmed only 

if Bel(Gen(E)) > Bel(¬Gen(E)) and the final diagnosis of the violation consists of the 
confirmed and unconfirmed events of it and their explanations. It should also be noted 
that if no explanation can be generated for a violation observation, the diagnosis 
process attempts to find an explanation of its negation and, if this is possible, the 
beliefs in the genuineness of the event are calculated by using the (F4) formula and 
the following one:  

Bel(¬Gen(E)) = Bel(Gen(¬E))) (F5)  
Due to (F2)-(F5), the beliefs in the genuineness of the predicates involved in the 

violation of Rule-1 are calculated from the alternative explanations of the relevant 
violation observations. Specifically, for the predicate 
P1=Happens(signal(R1,A1,S1),7,R(7,7))) there is a single explanation 
Φ11=Happens(inspace(A1,S1),t1,R(2,7)) with basic probabilities mE(Valid(Φ11))}=0.5 
and mE (¬Valid(Φ11))}=0 , as we discussed earlier. Thus, Bel(Gen(P1))=mE 
(Valid(Φ11))}=0.5 and Bel(¬Gen(P1))=mE(¬Valid(Φ11))}=0 . The predicates 
P2=HoldsAt(covers(R1,S1),7) and P3=HoldsAt(covers(R2,S1),7) are also confirmed 
without using belief measures, as they are both derived from the runtime events (E1) 
and (E2) in Figure 2. Finally, P4= ¬Happens(signal(R2,A1,S1),t,R(7,12))  is a 
negated predicate and, since no explanation of it can be generated from the 
assumptions of ATMS, the diagnosis process generates explanations of its positive 
form, i.e., Happens(signal(R2,A1,S1),t,R(7,12)). Following the same reasoning 
process as in the case of P1, Φ41=Happens(inspace(A2,S1,t,R(7,17)) will be derived 
as an explanation of ¬P4 with basic probabilities mE(Valid(Φ41))} = 0.5 and mE 
(¬Valid(Φ41))} = 0. Thus, Bel(Gen(¬P4))=0.5 and Bel(¬Gen(¬P4))= 0 and, from (F4) 
and (F5), Bel(¬Gen(P4))=0.5 and Bel(Gen(P4))= 0. Thus, P4 is reported as an 
unconfirmed predicate and, finally, as the cause of the rule violation.  

4   Related work 

In the context of model-based diagnosis, diagnosis focuses on the detection of 
system failures and typically involves the identification of traces of system events that 
have led to a failure (problematic event) using automata that recognise faulty 



behaviour [1][5][8][12][18]. In [5], diagnosis is carried through the synchronization 
of automata modelling the expected behaviour of a monitored system and the events 
captured from it. [8] has a similar but decentralised approach where synchronisation is 
performed for individual system components and then aggregated for the global 
system. In [1][18], the problem of fault diagnosis, concerning time, has been studied 
by using timed automata to model systems.  

Our approach is different from the above, as our focus is not the detection of the 
cause of faulty behaviours (this is the subject of earlier work described in [16]) but the 
explanation of such causes in the presence of incomplete and/or not trusted event 
traces. Another difference between the work in model based diagnosis and our 
abduction based explanation process is that our process is based on Event Calculus for 
modelling not the whole system but only the properties, which should be monitored, 
and assumptions that could provide information related to the monitored properties.  

The generation of abductive explanations considering temporal information is the 
main focus of interest of the research work described in [2] and [13]. In [2], a 
temporal abduction algorithm is described which makes use of temporal constraints 
associated with the observations and the formulation of the underlying domain theory. 
In [13], the time ranges of the generated explanations are calculated by the use of a 
computation method based on linear constraint satisfaction, while uncertainty of the 
explanations is treated by the use of probabilistic assessment scheme based on 
Bayesian inference [6].   

Our approach as well draws upon work on temporal abductive reasoning 
[2][3][10][15] and its applications to diagnosis [3][9], but is based on a newly 
developed algorithm for abductive search with EC that generates all the possible 
alternative explanations of a formula (unlike [2][15]), treats the time constraint 
satisfaction problem as a linear programming problem and computes beliefs in 
explanations using the DS theory. These beliefs are also used in order to rank 
explanations and select some of them as the most plausible. The choice of the DS 
theory of evidence as the framework for calculating the likelihoods of abduced 
explanations has been dictated by the need to represent the uncertainty regarding the 
confirmation of the consequences of these explanations as we discussed in Section 3.3 
and reason in the presence of this uncertainty. Also, by using the DS theory, we avoid 
the need to elicit the a-priori and conditional probability measures which are required 
by Bayesian inference [6]. 

5   Conclusions 

In this paper, we have presented the extension of a framework supporting the 
runtime monitoring of software systems which can provide diagnostic information for 
violations of monitored properties. The provision of diagnostic information is based 
on alternative explanations of events involved in violations of properties which are 
generated by abductive reasoning using a model of the monitored properties 
expressed in Event Calculus. Our approach supports also the computation of beliefs in 
the plausibility of explanations based on evidence about their expected effects that is 
gathered from the event log of the monitored system. A more detailed account of our 



approach and its implementation is given in [17].  Currently, we are conducting an 
experimental evaluation of it in the context of industrial case studies of the 
SERENITY project.   
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