
Kroll, M. & Schnell, R. (2016). Anonymisation of geographical distance matrices via Lipschitz 

embedding. International Journal of Health Geographics, 15(1), doi: 10.1186/s12942-015-0031-7 

City Research Online

Original citation: Kroll, M. & Schnell, R. (2016). Anonymisation of geographical distance matrices 

via Lipschitz embedding. International Journal of Health Geographics, 15(1), doi: 10.1186/s12942-

015-0031-7 

Permanent City Research Online URL: http://openaccess.city.ac.uk/13221/

 

Copyright & reuse

City University London has developed City Research Online so that its users may access the 

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are 

retained by the individual author(s) and/ or other copyright holders.  All material in City Research 

Online is checked for eligibility for copyright before being made available in the live archive. URLs 

from City Research Online may be freely distributed and linked to from other web pages. 

Versions of research

The version in City Research Online may differ from the final published version. Users are advised 

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact 

with the author(s) of this paper, please email the team at publications@city.ac.uk.

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Kroll and Schnell  Int J Health Geogr  (2016) 15:1 

DOI 10.1186/s12942-015-0031-7

METHODOLOGY

Anonymisation of geographical distance 
matrices via Lipschitz embedding
Martin Kroll1 and Rainer Schnell1,2*

Abstract 

Background: Anonymisation of spatially referenced data has received increasing attention in recent years. Whereas 
the research focus has been on the anonymisation of point locations, the disclosure risk arising from the publishing of 
inter-point distances and corresponding anonymisation methods have not been studied systematically.

Methods: We propose a new anonymisation method for the release of geographical distances between records of 
a microdata file—for example patients in a medical database. We discuss a data release scheme in which microdata 
without coordinates and an additional distance matrix between the corresponding rows of the microdata set are 
released. In contrast to most other approaches this method preserves small distances better than larger distances. The 
distances are modified by a variant of Lipschitz embedding.

Results: The effects of the embedding parameters on the risk of data disclosure are evaluated by linkage experi-
ments using simulated data. The results indicate small disclosure risks for appropriate embedding parameters.

Conclusion: The proposed method is useful if published distance information might be misused for the re-identifica-
tion of records. The method can be used for publishing scientific-use-files and as an additional tool for record-linkage 
studies.
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Background

he amount of microdata gathered by governmental, 

research, and other institutions has increased consid-

erably within the last decades. Due to laws such as the 

American Freedom of Information Act and the princi-

ples of good scientiic practice, more and more of these 

datasets are available for secondary analyses. In many 

research ields such as medicine or social research, 

microdata iles contain information about individuals. 

But the units of observation in a microdata ile might also 

be hospitals and other health care providers, schools or 

households. Today, many data sets available for second-

ary analyses already contain location information for the 

units of observation. Given such data, techniques from 

spatial statistics can be used to approach research prob-

lems such as disease clustering and their causes [1].

Anonymity of spatial data

In principle, the anonymity of research data on individu-

als and organisations should be guaranteed. herefore, 

the release of microdata is strongly regulated in most 

countries. In general, it is required that the re-identiica-

tion risk of anonymised records should be very small. Of 

course, the technical details to comply with national legal 

requirements vary between countries and may be open to 

interpretation, as for example in the case of the American 

HIPAA rules [2].

he re-identiication problem of anonymised records is 

discussed in the technical literature on statistical disclo-

sure control. here, a distinction between attribute and 

identity disclosure is made [3]. As in the majority of pub-

lished papers, we will focus on identity disclosure: We 

consider the risk of re-identiication of at least some of 

the sampling units whose data are published.

Re-identiication is much easier if spatial information 

for the observational units is available in the published 

data. El Emam and Arbuckle point out that location is 
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often one of the critical pieces of information for a success-

ful re-identification attack (see [4], p. 127). his issue has 

been addressed in various research papers (see “Previous 

work” section below). Most of these contributions attempt 

to preserve the spatial distribution of units within the cor-

responding geographical areas and the underlying areas 

themselves. Although attacking a ile containing geo-

masked coordinates is more diicult than attacking an 

unmasked ile, all masking methods for coordinates per-

mit the computation of a (approximate) distance matrix. 

his distance matrix can also be used for an attack, for 

example by the attack described in the “A graph theoretic 

linkage attack” section. herefore, encrypting coordi-

nates as, for example, by the method described in [5], may 

not be suicient. It should be mentioned, that a distance 

based attack can also be successful (for small iles) if no 

additional information for a person (for example, age or 

sex) is available: Only a ile with identiiers and a corre-

sponding distance matrix are needed.

We focus on the preservation of distances only, for 

example the geographic distances between the occur-

rences of a given disease in a population. It is intuitively 

appealing that dispensing with the underlying geographi-

cal area for anonymisation might permit the release of 

more accurate distance information.

Since the distance matrix can be computed from the 

geographical coordinates, it is evident that releasing 

even perturbed location data ofers a potential attacker 

more information than the release of an approximate 

distance matrix. Given any extra information (e.g., per-

turbed coordinates), our attack can still be performed or 

even improved. Although the release of distance matri-

ces instead of coordinates makes re-identiication attacks 

more diicult, releasing the exact distance matrix D 

might give a potential attacker suicient information 

for an attack. herefore, releasing a modiied version 

D̃ of the original distance matrix D will hopefully make 

re-identiication unreasonably diicult. he proposal of 

a new modiication method for the release of distance 

matrices accompanied by microdata and the empirical 

study of its privacy are the topics of this paper.

Previous work

Anonymisation of spatial data has been addressed in 

many research contexts (for example, see  [6]). Compre-

hensive reviews of the available methods have been given 

by Armstrong et al. [7] and O’Keefe [8].

Following  [9], the methods sketched in  [7] can be 

sorted into three categories: (1) methods that aggregate 

spatial points, (2) methods that modify coordinates, and 

(3) methods that release contextual data only. Examples 

of the irst category include point and areal aggregation. 

Translation, rotation, scaling and random perturbation 

belong to the second group, whereas the release of the 

distances to nearest neighbours provides an example of 

the third category.

Due to its simplicity, aggregation is the most popular 

method for releasing administrative or health data con-

taining spatial references. Using areal aggregation, a sui-

cient level of conidentiality can often be achieved. For 

example, the US HIPAA rules 45 CFR 164.514 demand 

aggregation of ZIP codes. However, the protective efect of 

aggregation is coupled with a massive loss of precision in 

the calculation of distances, especially for entities in close 

proximity. herefore, the problem of choosing suitable 

aggregation units has received a lot of attention [10, 11].1

A special case of random perturbation is proposed 

in  [12]. In that paper the authors suggest moving each 

point into the area of an annulus centered at this point. 

Both the inner and the outer radius of the annulus are 

determined as dependent on the relative population 

density such that the chosen anonymity requirement 

(k-anonymity in this case) is satisied. he authors show 

that their approach outperforms aggregation concern-

ing cluster detection under the privacy requirement of 

k-anonymity. Moreover, they show that their approach 

sufers from a minimal loss in cluster detection perfor-

mance compared with random perturbation but yields a 

considerably higher degree of privacy protection.

Another innovative strategy for the anonymisation of 

spatial point data is due to Wieland et al. [13] who devel-

oped a method based on linear programming which moves 

each point in the data set as little as possible under a given 

quantitative risk of re-identiication. A modiication of this 

technique for small data sets was suggested in [14].

However, this approach also intends to preserve the 

spatial distribution of the sampling units, whereas our 

focus is on releasing spatial information only through 

the distance matrix (in addition to microdata without 

coordinates).

In the literature, the preservation of distances has been 

mentioned only in passing. A notable exception is the 

paper by Kerschbaum [15] which focuses exclusively on 

distance preservation. In that paper, a regular grid of ref-

erence points is generated and a hash value is assigned 

to each of these grid points. For a given point location 

hash values of adjacent grid points and further numerical 

measurements (for example, distances to adjacent grid 

points) are stored. From this information the distance 

between two points can be exactly recovered if their dis-

tance is smaller than a threshold d which depends on the 

acuteness of the grid. If the distance is greater than 2d no 

distance can be computed.

1 In  [43], a method using Monte Carlo simulations is proposed for this 
problem. Nevertheless, the distance approximations resulting from this 
method will impede clustering procedures.
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Our method does not use a regular grid but makes use 

of reference sets whose elements are randomly sampled 

points. Moreover, even small distances are preserved 

only approximately by our method rather than exactly 

which contributes to the resilience of our method against 

attacks.

Examples of statistical procedures compatible with the 

new anonymisation method

If the intended analysis requires the computation of dis-

tances, the necessary information is given by the distance 

matrix D containing the pairwise geographic distances 

between the units of observation. Using this kind of 

information is suicient for statistical analyses of many 

research problems. For example, methods for the detec-

tion of spatial clusters of infectious diseases are impor-

tant in epidemiology. In this context, the article  [16] 

introduces a test whose test statistic does only depend on 

the interpoint distances and thus can be calculated from 

the distance matrix only.

In general, the new method described in this article is 

intended for statistical analyses of inter-record distance 

matrices in combination with additional attributes. Such 

data are widely available in infectious disease modeling, 

environmental epidemiology and socio-geographics. We 

discuss a data release scheme in which the microdata 

without coordinates and an additional distance matrix 

between the rows of the microdata set are released. We 

assume that the one-to-one correspondence between the 

rows of the microdata set and the rows/columns of the 

distance matrix is known. Examples of applicable meth-

ods are agglomerative clustering algorithms (see [17], 

ch. 4) and nearest neighbour imputation (see [18], p. 52). 

Another example is geographically weighted regression 

(GWR) since the computation of GWR requires only 

microdata and a weight matrix. Since the weight matrix 

can be computed from the distance matrix (see [19],  p. 

123, eq. (5.35)), our method can be used along with GWR 

as well. Furthermore, methods based on truncated dis-

tance matrices such as PCNM [20] can be used with our 

anonymisation procedure. he same is true for indices 

of spatial autocorrelation such as Moran’s I or Geary’s C. 

Concerning spatial information, the computation of such 

quantities is based on a spatial weight matrix which can 

be computed from the distance matrix (see [21], ch. 7.4). 

If the deinition of the weight matrix is based on contigu-

ity, it can be shown empirically that spatial autocorrela-

tion indices will be approximated well.

Methods

We introduce a new technique for generating an 

anonymised version D̃ of a spatial distance matrix D to 

be released in addition to corresponding microdata. 

After the description of the technique in the “Contractive 

anonymisation of spatial point data” section, the accuracy 

of the resulting distance approximations is discussed ana-

lytically and using examples in the “Accuracy of the pro-

posed method” section.

Contractive anonymisation of spatial point data

We assume the following situation: A data holder Alice is 

willing to release microdata including geocodes that per-

mit useful distance approximations between the observa-

tional units. hus the published data should be available 

to any researcher (for example, Bob) who wants to per-

form analyses based on this data. Hence, the data must 

be suiciently anonymised by Alice such that re-identii-

cation of the observational units by a malicious adversary 

Eve is only a remote risk.

We assume that Alice has already created a suiciently 

anonymised version T free from any spatial reference of 

the original database T0 by using the variety of prevail-

ing methods for this purpose. Furthermore, we assume 

that for each record ti of T a geographic point datum pi 

is known to Alice. For instance, the original database T0 

could have contained the household addresses of patients 

and their corresponding geographic coordinates.

Let N ∈ N denote the number of rows in T. he 

exact distances between the entities in T are stored in 

an N × N-matrix D = (dij) where dij is the distance 

between the i-th and the j-th record in T. he output 

of our method consists of an N × N  distance matrix D̃ , 

which is an approximate version of D more suitable for 

being released in addition to T.

Our algorithm depends on two embedding parameters: 

d ∈ N (the dimension parameter) and k ∈ N (the size 

parameter). he efect of these parameters on the accu-

racy and the provided anonymity will be studied below. 

he algorithm consists of the following steps:

1. Choose the embedding parameters d and k.

2. Create d random reference sets R1, . . . ,Rd of size k, 

i.e. Ri = {ri1, . . . , rik} for i = 1, . . . , d. he elements 

rij of the reference sets shall be drawn independently 

and uniformly from a geographical area A. For the 

rest of this paper we assume that A coincides with 

the geographical area from which the spatial point 

data considered are taken, although other choices are 

possible.

3. In this intermediate step each point location p is 

mapped to Rd via 

 where the coordinate functions fi are deined by 

p �→ f (p) := (f1(p), . . . , fd(p)) ∈ R
d

(1)
fi(p) := min

j=1,...,k
d(p, rij)
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 and d(p, r) is the distance between pi and r. his step 

is illustrated in Fig. 1.

4. he approximate distance d̃(p, q) between two point 

locations p and q is computed as the ℓ∞-distance 

between the embedded points f(p) and f(q) in Rd, i.e. 

5. he output is the pair (T , D̃) where D̃ = (d̃ij) and the 

d̃ij are deined through d̃ij := d̃(pi, pj).

An exemplary implementation of the above algorithm 

in the programming language R [22] is provided in Addi-

tional ile 1: Appendix of this article.

Remark he embedding into R
d applied in step 3 

above is a variant of a technique which is commonly 

denoted as Lipschitz embedding  [23]. Lipschitz embed-

dings have been used in other scientiic areas, for exam-

ple to reduce the number of dimensions (for example 

in biochemistry [24]) or to provide a vector-based rep-

resentation of non-vectorial data [25]. Note that in our 

proposal, Lipschitz embedding is not used to obtain a 

simpliied representation of the given data, but as a 

technique for distance modiication. In particular, the 

Lipschitz coordinates fi(p) generated in step 3 of the 

algorithm are not released at all and therefore cannot be 

used by an attacker to re-identify entities from the pair 

(T , D̃).

In the ield of data privacy, the use of Lipschitz embed-

ding has been suggested for privacy-preserving string 

(2)

d̃(p, q) := �f (p) − f (q)�∞ = max
i=1,...,d

|fi(p) − fi(q)|.

comparisons  [26]. Furthermore, other embedding tech-

niques such as the Johnson-Lindenstrauss embedding 

have been studied in other settings  [27] where data pri-

vacy is essential.

Accuracy of the proposed method

In general, accuracy of distance computations is linked 

with the provided degree of anonymity and vice versa. 

More accurate released distances will give more informa-

tion to the adversary. herefore, the attacker will study 

the amount of error in distance calculations caused by 

the embedding technique.

Before considering the efect of the embedding param-

eters d and k, we state a fundamental property of Lip-

schitz embeddings.

Proposition 1 (Contractivity of Lipschitz embedding) 

We have d̃(p, q) ≤ d(p, q) for all p, q, so that the approxi-

mate distance d̃(p, q) never exceeds the original distance 

d(p, q).

For a proof of Proposition 1 we refer the reader to [28]. 

he contractivity of Lipschitz embedding is a well-known 

fact and of importance because it is a desirable property 

for data analysis techniques such as clustering  [24]. he 

results of cluster analysis are only slightly afected by the 

embedding, because the metric space formed by the rel-

evant points is compressed, not distorted. Most other 

geo-masking methods such as aggregation, random per-

tubation or donut-transformation do not have this con-

tractivity property.

he statement of Proposition  1 is rather imprecise 

because it does not describe to what extent distances 

between pairs of points are transformed in depend-

ence on the embedding parameters d and k. Hence, it is 

important for the adversary Eve to study the efect of d 

and k on the accuracy of the transformed distances.

he dependence of the accuracy of transformed dis-

tances on the dimension parameter d is obvious: As d 

increases, the maximum in (2) is taken over more inde-

pendent realisations |fi(p) − fi(q)| of the same random 

variable. Since d̃(p, q) is bounded from above by d(p, q) 

due to Proposition 1, a irst conjecture is obvious:

1. he approximation of distances is likely to become 

better if d increases.

Let us now consider the dependence on the param-

eter k. We denote a point for which the minimum over 

all rij ∈ Ri in (1) is attained as an anchor point. For k = 1 

the anchor point must be the same (namely ri1) for all p 

and all reference sets Ri. Albeit the coincidence of anchor 

points for diferent point locations p and q does not 

−6 −4 −2 0 2

5
0

5
2

5
4

5
6

5
8

6
0

lon

la
t

ri2

ri1

ri3

262.3

162.7

308.9

sp. point

ref. pts

Fig. 1 Illustration of step 3. The size parameter k is chosen equal to 3 
and the elements of the reference sets are sampled at random from 
the administrative area of the United Kingdom. The coordinate fi(p) 
of the point p (black square) with respect to the random reference set 
Ri = {ri1 , ri2 , ri3} is given by the minimum distance from p to a point 
of this reference set. We have d(p, ri1) = 308.9, d(p, ri2) = 262.3 and 
d(p, ri3) = 162.7, thus fi(p) = min{308.9, 262.3, 162.7} = 162.7. All 
distances are measured in kilometers



Page 5 of 14Kroll and Schnell  Int J Health Geogr  (2016) 15:1 

guarantee that their distance is accurately approximated 

(the approximate distance can even be 0 in this case), 

it is easy to see that it makes accurate approximation 

more likely. For k ≫ 1, it is likely that the corresponding 

anchor points difer for many reference sets if p and q are 

far away from each other. Under this condition, original 

distances will be underestimated.

his reasoning results in two additional conjectures:

2. Larger values of k lead to a less accurate approxima-

tions of distances.

3. In general, shorter distances will be better preserved 

than longer distances.

hese efects will be demonstrated by an example 

of three pairs of British cities with diferent spatial dis-

tances: Liverpool–Manchester (50 km), London–Shef-

ield (228 km) and Plymouth–Newcastle (540 km). 

Figures  1, 2, 3 in Additional ile  1: Appendix show the 

conjectured efects for these distances using embed-

ding parameters k ∈ {1, 3, 5} and d ∈ {20, 100, 500}. Each 

combination of parameters was replicated in 100 embed-

dings. he plots show kernel density estimators of the 

approximated distances. he plots support both conjec-

tures: Increasing values of d decrease the deviation of 

approximated distances; therefore the approximations 

are closer to the original distances. he same efect can 

be observed as k decreases. he third conjecture (smaller 

distances are much better preserved than larger dis-

tances) is also obvious in the plots.

In general, Lipschitz embedding will result in randomly 

contracted distances (as already stated in Proposition  1 

above). Increasing values of k and decreasing values of 

d will increase the variance of approximated distances. 

Choosing these parameters accordingly will make the 

recovery of the original distances for an adversary more 

diicult.

Example: inluence of Lipschitz embedding on data mining 

tasks

In this section we consider the efect of distance modii-

cation via Lipschitz embedding on two speciic data min-

ing tasks.

For the irst demonstration, we empirically determine 

the rate of correct nearest neighbour classiications 

depending on the embedding parameters d and k. Near-

est neighbour classiications are essential for agglom-

erative cluster analysis, therefore this computation is 

of interest. Note that given aggregated data instead of a 

modiied distance matrix, this computation would be 

impossible.

We investigated the accuracy of our method by means 

of a distance matrix obtained by calculating the pairwise 

distances between 400 randomly chosen hospitals in Eng-

land. he distances between the hospitals were modiied 

using the proposed Lipschitz embedding technique. Based 

on the modiied distance matrix for each record its near-

est neighbour was determined. We considered parameter 

settings with k ∈ {5, 20, 35, 50} and d ∈ {5, 10, 15, 20} . For 

each combination of parameters 10 iterations were con-

ducted and the average proportion of correct nearest 

neighbour classiications was calculated. he results of 

this experiment are shown in Fig. 2. Obviously, even for 

small values of d and large values of k (implying heav-

ily modiied distances) the proportion of correct nearest 

neighbour classiications is large. Only for the smallest 

dimension considered (d = 5) a rapid decrease in correct 

classiications depending on k can be observed.

As second demonstration, we describe the preserva-

tion of relative orderings through the proposed variant of 

Lipschitz embedding. For this purpose two ixed points 

were chosen. One point was located in the centre and the 

other point at the border of the chosen geographical area. 

he Spearman rank correlation ρ was computed between 

the resulting ranks for the original and the approximated 
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distances of all points to the two selected points. Figure 2 

shows the decrease of ρ if d decreases and k increases. 

his result is in accordance with Conjectures 1 and 

2 above. Conjecture 3 is illustrated by the diference 

between the central point and the border point. For a 

point at the boundary, larger distances to other points are 

not as accurately preserved by the Lipschitz embedding 

as smaller distances.

Finally, it should be mentioned that for some other 

methods of distance modiication (for example, Kersch-

baum’s method) data mining tasks such as this cannot be 

computed at all.

Empirical privacy analysis of distance matrices

Standard methods for the evaluation of privacy of dis-

tance matrices seem to be unavailable.2 herefore, we use 

a recently published de-anonymisation attack based on 

graph matching [29].

A graph theoretic linkage attack

he graph theoretic linkage attack described here is 

related to a general attack mode termed  linkage attack 

2 Attacks and attacking methods for (medical) research data are rarely pub-
lished [44]. Geographical information in these attacks is used as quasi-iden-
tiiers [45], not as distance information. In the context of health data, to the 
best of our knowledge there is only one (roughly) reported attack method 
using distance information [4].

which is widely discussed in the literature on statisti-

cal disclosure control [3]. Linkage attacks assume access 

to an identiied auxiliary microdata ile by the attacker. 

By comparing common attributes of this auxiliary ile 

(termed the identification file) with the published micro-

data ile (termed the  target file), the attacker tries to 

match the records of both iles. In this context, common 

attributes in both iles (such as sex, age, ethnicity in 

the case of personal microdata) are referred to as quasi-

identifiers [30] or indirect identifiers [9].

he power of linkage attacks using quasi-identiiers has 

been demonstrated repeatedly (for an example, see [31]). 

he most popular demonstration is due to Sweeney [32]: 

She was able to detect the record corresponding to the 

governor of Massachusetts in a published health data ile 

by linking it with a publicly available voter registration 

list. Recently, some theoretical results on linkage attacks 

have been derived [33].

To prevent linkage attacks, many of the well-known 

anonymisation techniques for microdata modify the 

original data. For instance, the R package sdcMicro [34] 

provides such strategies for the anonymisation of tabular 

data. Probably the most popular strategy used to pre-

vent unambiguous linkage is provided by the concept of 

k-anonymity [32]. A microdata table satisies k-anonym-

ity if each record cannot be distinguished from at least 

k − 1 other records by means of the quasi-identiiers. 
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herefore, a microdata ile is k-anonymous if in case that 

an entity from the identiication ile can be linked with 

a given record from the target ile, then it can be linked 

with at least k − 1 other records as well.

Generally, the set of all potential matches between tar-

get and identiication ile (which we denote with V here-

after) contains correct matches (true positives) as well as 

incorrect ones (false positives). When an entity i from 

the identiication ile can be matched with more than one 

observation unit t of the target ile, diferent potential 

matches are equally likely.

However, when additional information about the dis-

tances between the units of observation in the target ile 

is released and the attacker can calculate the distances 

between the entities in the identiication ile, the compat-

ibility of matches in V can be examined by the attacker. 

By deinition, an element of V is a pair (t,  i) where t is 

a unit of observation from the target ile and i a known 

entity from the identiication ile such that t and i coin-

cide concerning the released attributes. herefore, the 

pair (t, i) corresponds to a potential match.

Given two such pairs (t1, i1) and (t2, i2), the attacker has 

to decide whether these pairs are compatible. his deci-

sion can only be made based on the knowledge of the 

released distance between t1 and t2 (which is possibly 

modiied or perturbed by the data holder) and the knowl-

edge of the proper distance between i1 and i2.

he precise deinition of compatibility is critically 

dependent on the way the distances between the obser-

vation units have been modiied by the data holder before 

releasing the data. Below we will give a speciic deinition 

for our case of interest, where the distances are modiied 

by the variant of Lipschitz embedding introduced in the 

“Methods” section.

he result of checking all potential matches of V in 

terms of their compatibility can be modelled by means of 

a simple undirected graph G = (V ,E). he vertex set V of 

this graph is just the set of all potential matches as above. 

he edge set E is deined as follows: two matches are tied 

by an edge (i.e., the corresponding vertices are adjacent) 

if and only if they are classiied as compatible. From now 

on, we refer to this graph as the compatibility graph.3

Having constructed the compatibility graph, the 

attacker will try to ind a set C of vertices in V of maxi-

mum size such that any two vertices from C are adjacent. 

In the ield of algorithmic graph theory, this problem is 

referred to as the maximum clique problem  [35]. he 

adversary will consider the matches corresponding to the 

3 For a more detailed account of the deinition of the compatibility graph, 
we refer the reader to [29], where an example for constructing a compatibil-
ity graph (termed product graph in that paper) is given.

vertices of such a maximum clique C and drop other 

potential matches.4 he maximum clique problem for a 

given graph is known to be NP-hard. herefore, the 

development of techniques for solving this problem 

exactly or at least approximately [35] has received a lot of 

attention in the literature. For the computational experi-

ments in  the “Empirical privacy analysis of distance 

matrices” section, we used the C++ implementation of 

the exact maximum clique detection algorithm intro-

duced by Konc and Janežič in [36].

We give a deinition for the compatibility of two 

matches when the released distances between the units 

of the target ile are modiied by the proposed Lipschitz 

embedding. Consider (t1, i1), (t2, i2) ∈ V . he attacker 

has direct access to d̃(t1, t2) only and not to d(t1, t2); 

knowledge of the latter would permit him to compare 

d(t1, t2) and d(i1, i2) directly: if d(t1, t2) ≈ d(i1, i2) the 

matches (t1, i1) and (t2, i2) would be classiied as compati-

ble and (t1, i1)(t2, i2) would be taken into the edge set E. If 

only d̃(t1, t2) is known, the attacker can use a diferent 

strategy. In this setting the Lipschitz embedding of i1, i2 

into Rd is repeated many times for the current parameter 

values d and k to estimate the distribution d̃(i1, i2).
5 his 

estimated distribution of d̃(i1, i2) can inally be compared 

with the known realization of d̃(t1, t2). his can be seen 

as constructing an empirical α-tolerance interval by tak-

ing the smallest (with respect to its length u − l) interval 

[l,u]i1,i2 which contains at least the proportion α ∈ (0, 1) 

of the simulated realisations of d̃(i1, i2). Using this 

approach, an attacker might deine the matches (t1, i1) 

and (t2, i2) as compatible if and only if d̃(t1, t2) ∈ [l,u]i1,i2.

Note that this way of attack has large computational 

costs, because Monte Carlo experiments have to be per-

formed for many pairs of points from the identiication 

ile. herefore, this is only reasonable for moderate sizes 

of V.

A simulation to study the privacy preserving properties of the 

Lipschitz embedding

Since the contractive properties of the proposed method 

are well understood, now the privacy properties of the 

embedding have to be studied. For this, we conducted 

simulation studies on the basis of two diferent scenarios. 

In the irst scenario, we performed a simulation study 

based on a target and an identiication ile from a dataset 

of 847 geocoded hospitals in England.6 We sampled 400 

4 If the maximum clique is not uniquely determined we assume that the 
adversary chooses one maximum clique at random.
5 We make the conservative assumption that the parameters are known to 
the attacker. If the parameters are unknown, re-identiication becomes even 
harder, because the parameters d and k have to be estimated.
6 his dataset is available at http://www.whatdotheyknow.com/request/
list_of_hospitals.

http://www.whatdotheyknow.com/request/list_of_hospitals
http://www.whatdotheyknow.com/request/list_of_hospitals
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records for each ile with an overlap of 40 hospitals 

belonging to both iles. As quasi-identiier the Trust-

Code7 was selected. To make assignments of the vertex 

labels more diicult, only the irst two characters of the 

trust code were used. In the second scenario, we con-

ducted the same experiments on a target and an identii-

cation ile consisting both of 500 simulated records on 

individuals from Germany with an overlap of 50 records. 

In this scenario, sex and age were chosen as 

quasi-identiiers.

We assume no measurement errors and no missing 

values in either data set. herefore, if a sampling unit is 

part of the target and identiication ile, both the geo-

graphic coordinates and the quasi-identiiers match. 

his assumption of perfect background knowledge for 

the attack is very conservative, since better information 

makes re-identiication more likely. However, it seems to 

be more appropriate to err on the conservative side and 

be protective, rather than permissive, with potentially 

sensitive data (see [4], p. 127).

A visualisation of the target and the identiication iles 

for the two scenarios considered are given in Figs.  3 

and 4, respectively. Note that the vertex set V of the com-

patibility graphs contains 7976 (resp. 15517) nodes of 

which only 40 (resp. 50) correspond to true matches. For 

this reason, performing a classical linkage attack in both 

scenarios is not promising and the target iles would cer-

tainly be regarded as suiciently anonymised if no addi-

tional distance information had been released.

he linkage attack was repeated using the data sets 

described above for diferent values of k and d.

In a irst experiment, we set the parameters 

d ∈ {20, 100, 500} and k ∈ {1, . . . , 10}. he threshold 

α varied between 0.1, 0.5 and 0.9. For each parameter 

combination, the simulation (consisting in the genera-

tion of D̃ , generation of the compatibility graph, maxi-

mum clique search and extraction of the corresponding 

matches) was repeated 20 times.

In a second experiment, we used parameter values 

which should yield higher levels of protection than the 

set of parameter in the irst experiment. herefore, we 

considered d ∈ {20, 60, 100} and k ∈ {10, 12, 14, . . . , 30} . 

Here, we used α = 0.1 and α = 0.5 for the threshold 

parameter α. Again, for each parameter setting the simu-

lation was repeated 20 times.

Data preparation and analysis were done with the 

statistical programming language R [22]. As indicated 

above, we used the C++ implementation of the maxi-

mum clique detection algorithm proposed in [36] which 

7 he National Health Service Act 2006 created NHS trusts “(...) to provide 
goods and services for the purposes of the health service”. he codes are 
available at http://data.gov.uk.

is available from http://www.sicmm.org/~konc/max-

clique/. he number of iterations was set to 20.000.000; 

the maximal clique found until this iteration was used as 

result.

Success of the attack was quantiied with precision 

(prec) and recall (rec), the most widely used measures for 

data linkage processes [37]. For example, [38] used preci-

sion and recall as measures in an evaluation of automatic 

de-identiication procedures. Further studies of this type 

using the same measure are reported by [39].

Here, TP denotes the number of successful re-identii-

cations, FP the number of false assignments and FN the 

number of common entities of target and identiication 

ile that were not detected by the attack. Precision and 

recall are deined by

Note that in our framework the attacker would primar-

ily be interested in attaining high precision, implying a 

high proportion of true positives among all assignments. 

his is due to the fact that correct re-identiication of 

some entities would permit the re-identiication of addi-

tional entities. herefore, we focus on precision to meas-

ure the attacker’s success. Accordingly, 1 − prec can be 

interpreted as a measure of the empirically attained ano-

nymity. However, we will also report briely results con-

cerning recall as a measure of which proportion of the 

overlap of both iles can be detected by the attacker.

Results

Using the parameter settings of the irst experiment for 

the English hospital data, Figures 5, 6, 7 show high lev-

els of success for the attack for all parameters considered. 

Hereby, we demonstrated the practical utility of the pro-

posed attack: For unsuitable parameter settings as used 

here, the attack will yield successful re-identiications. 

he attacker can achieve a precision of nearly 0.5 (50 % of 

her re-identiications are correct if she chooses α = 0.5 ) 

given even the most secure parameter settings consid-

ered in the irst experiment (k = 10 and d = 20) (Fig. 6). 

his level of precision will be unacceptable for sensitive 

data in most applications.

However, a decrease in precision with increasing k is 

obvious for all but the largest number of dimension d 

considered here. For the smallest number of dimensions 

(d = 20), precision decreases rapidly with increasing k.

To investigate if higher levels of anonymity can 

be achieved by the proposed Lipschitz embedding, 

higher values of k (k ∈ {10, 12, . . . , 30}) were used in 

the second experiment. For the dimension parameter 

d ∈ {20, 60, 100} was chosen. he results for this settings 

are shown in Figs. 8 and 9.

prec =
TP

TP + FP
and rec =

TP

TP + FN
.

http://data.gov.uk
http://www.sicmm.org/~konc/maxclique/
http://www.sicmm.org/~konc/maxclique/
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For all levels of d considered, the precision approaches 

25 % for large k. Additional tests using even larger values 

of k ∈ {50, 100} did not result in a further decrease of 

precision.

his may be due to the limited size of the compatibil-

ity graph. his reasoning is based on the results obtained 

with the slightly larger iles for the German population 

data in the second scenario. On the German data, the 

embedding method results in a failure of the graph theo-

retic linkage attack: Whereas the attack achieves a certain 

amount of successful re-identiications for the irst exper-

iment (see Figs. 10, 11, 12), only a precision close to 0 can 

be achieved by the attack for suitable parameter choices 

in the second experiment (see Figs. 13 and 14). A natu-

ral explanation for this observed diference in attainable 

precision between the two scenarios is the diference in 

size of the compatibility graphs (15517 for the German 

population data compared to 7976 nodes for the English 

hospital data).

For the English hospital data, the results regarding the 

recall are similar to the results on precision. Whereas in 

Figs. 5 and 6 recall decreases with k at least for the larg-

est number of dimension considered (d = 500 in this 

case), the recall decreases only slightly with d and not 

with k for the second experiment and rarely exceeds 25 % 

(see Figs. 8, 9). For the German data, the recall does not 

approach 10 % for d = 20 and k ≥ 20 (see Figs. 13, 14).

However, as mentioned before, in our context recall is 

less important than precision since a large recall is of no 

use for an attacker if precision is small and correctness of 
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the re-identiication can not be evaluated. his is similar 

to the k-anonymity model, where some re-identiications 

might be correct, but the attacker has no way to check 

the truth of the identiications, since even when the 

attacker knows that a certain person’s record belongs to 

the target ile, an assignment of this person to a record 

will be correct with probability ≤ 1/k. herefore, by rep-

licating each simulation step 20 time, we aim to approxi-

mate the probability 1/k by generating an expected value 

for precision.

Based on this interpretation, we consider re-identii-

cation risks of more than 25 % as not suitable since this 

corresponds to k-anonymity with k < 4. his level of pro-

tection is higher than those accepted by some European 

data protection agencies in practice. For example, the 

implementation of statistical disclosure control for the 

German Census [40] aims for k-anonymity with k = 3. 

herefore, a precision of 25 % seems to be not unreason-

able for practical applications. he embedding method 

proposed here seems to meet this requirement.

Conclusion

In this paper, we have introduced a new method for the 

modiication of spatial distance matrices that protects 
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against re-identiication. he proposed method combines 

two desirable properties for data protection methods (see 

page 123 in [41]):

1. For the intended class of applications, it allows accu-

rate statistical analyses.

2. It seems to possess the potential for high-level pro-

tection even if an adversary has in-depth background 

knowledge.

Due to the contractivity of the Lipschitz embedding, 

small distances will be preserved better than large dis-

tances. herefore, statistical models using local features 

will give accurate results despite the (intended) distortion 

of the distance matrix. For example, agglomerative clus-

ter analysis will give very similar results. In general, treat-

ing the transformed distance matrix as censored data 

might give additional options for analysis. For a compre-

hensive review of suitable statistical approaches for the 

analysis of censored data, see [42].

Of course, descriptive statistics based on the modiied 

distance matrix alone will be biased. However, with the 

exception of quantiles, publishing additional descriptive 

statistics of the unmodiied distance matrix seems not 

to increase the re-identiication risk for the graph based 

attack since this information is not used in the attack. 

Since no other attack on distance matrices is known 

at the moment, there is no way to assess the risk for 

unknown attack methods.

For one of our example data sets, we have shown that 

the only currently known attack on distance matrices 

fails if the embedding parameters are chosen carefully. 

For this data set consisting of simulated German popu-

lation data, choosing d = 20 and k = 30 resulted in very 

few successful re-identiications. Of course, for a given 

data set, the data custodian has to determine appropri-

ate values for d and k by simulations. However, similar 

considerations are necessary for all other geo-masking 

methods.

We consider the levels of privacy protection reported 

here as conservative estimates, since real world attacks 

will sufer from practical obstacles such as measurement 

and data processing errors in distances. Furthermore, the 

amount of overlap between target and identiication ile 

will often be lower, resulting in lower precision and recall 

of an attack. Finally, for large iles, the graph theoretical 

linkage attack becomes computationally expensive since 

the attack requires exponential resources with increasing 

size of the compatibility graph.

However, the privacy analysis presented here is based 

only on the graph theoretic linkage attack. To our knowl-

edge, no other attacks on distance matrices have been 
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published. herefore, for a detailed evaluation of dis-

closure risks for publishing distance matrices further 

research on attacks is needed.
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