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Abstract

How did the Subprime Crisis, a problem in a small corner of U.S. financial markets, affect the

entire global banking system? To shed light on this question we use principal components analysis

to identify common factors in the movement of banks’ credit default swap spreads. We find that

fortunes of international banks rise and fall together even in normal times along with short-term

global economic prospects. But the importance of common factors rose steadily to exceptional

levels from the outbreak of the Subprime Crisis to past the rescue of Bear Stearns, reflecting a

diffuse sense that funding and credit risk was increasing. Following the failure of Lehman Brothers,

the interdependencies briefly increased to a new high, before they fell back to the pre-Lehman

elevated levels — but now they more clearly reflected heightened funding and counterparty risk.

After Lehman’s failure, the prospect of global recession became imminent, auguring the further

deterioration of banks’ loan portfolios. At this point the entire global financial system had become

infected.
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1 Introduction

One enduring question about the financial turbulence that engulfed the world starting in the

summer of 2007 is how problems in a small corner of U.S. financial markets–securities backed by

subprime mortgages accounting for only some 3 per cent of U.S. financial assets–could infect the

entire U.S. and global banking systems. Moreover, while the banking system became affected in a

generalized fashion by the crisis, the fortunes of banks differed substantially in terms of the market

assessment (e.g. differentials in the impact on their share prices) and on the scale of government

intervention received. In particular, whether the decision to let Lehman Brothers fail was a critical

mistake that unleashed a global economic and financial tsunami will be debated for years. Some

say that the authorities should have known that investors perceived banks’ fortunes as intertwined,

so that letting one fail was bound to undermine confidence in the others. Others say that Lehman

Brothers was unique and everyone knew it.1 The crisis that affected the global financial system, in

this view, did not reflect the decision to let this one institution fail. Rather it reflected deteriorating

global economic and financial conditions that undermined the position of banks as a class.

This paper seeks to shed further light on these issues. We analyze the risk premium on debt owed

by individual banks as measured by banks’ credit default swap (CDS) spreads, focusing on the CDS

spreads of the 45 largest financial institutions in the U.S., the U.K., Germany, Switzerland, France,

Italy, Netherlands, Spain and Portugal.2

We use principal components analysis (PCA) to extract the common factors underlying weekly

variations in the CDS spreads of individual banks. If the spreads for different banks move inde-

pendently, then we can infer that the risk of bank failure is driven by bank-specific factors. If they

move together, then we infer that banks are perceived as subject to common risks. This provides us

with the first bit of evidence on how the crisis spread. In addition to estimating the importance of

common factors, we attempt to ascertain what they reflect. We examine the association between the

1Among other things, whereas other institutions could be saved because they had adequate collateral against which
the U.S. Treasury and Federal Reserve could lend, Lehman did not.

2These swaps are insurance contracts. The buyer of the CDS makes payments to the seller in order to receive a
payment if a credit instrument (e.g. a bond or a loan) goes into default or in the event of a specified credit event,
such as bankruptcy. The spreads are, in effect, a measure of the credit risk or the insurance premium charged. This
measure has several advantages over the traditional measures which are based on banks’ balance sheet information.
First, the CDS spreads are forward looking since they encompass available information with respect to expected default
risk. Balance sheet data only reflects ex-post information on the institutions’ performance. Second, CDS spreads are
timely updated without the need to rely on (subjective) interpolation techniques, whereas balance sheet data are only
available at quarterly frequency. The CDS spreads also offer advantages over other market measures of risk based on,
e.g. bond spreads and stock returns. They are the most actively traded derivatives and lead bond (Blanco, Brennan
and Marsh, 2005) and stock (Acharya and Johnson, 2007) markets in price discovery. Also, bond spreads may reflect
factors other than the ones related to default risk (due to, for example, different tax treatments) and are sensitive to
the choice of the benchmark risk-free rate (Jorion and Zhang, 2007). However, there has been a recent concern that
speculative pressure within the CDS market sometimes causes the swaps to become delinked from their function of
hedging against default (Soros, 2009). See also Longstaff et al. (2010), who analyze spreads on sovereign CDS, and
Zhang, Zhou, and Zhu (2009), who examine the determinants of spreads on corporate CDS spreads.
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common factors on the one hand and real-economy influences outside the financial system, transac-

tional relationships among banks, and transactional influences between banks and other parts of the

financial system on the other hand.3

We reach the following conclusions. The share of common factors was already quite high, at

62 percent, prior to the outbreak of the Subprime Crisis in July 2007. Banks’ fortunes rose and

fell together to a considerable extent, in other words, even before the crisis. These common factors

were associated with U.S. high-yield spreads–the premium paid relative to Treasury bonds by U.S.

corporations that had less than investment grade credit ratings–which we take as an indicator of the

perceived probability of default by less creditworthy U.S. corporations, and in turn reflects economic

growth prospects.4 For obvious reasons, those defaults and the growth performance that drives them

have major implications for the condition of the banking system even in normal times.

The share of the variance accounted for by common factors then rose to 77 percent in the period

between the July 2007 eruption of the Subprime Crisis and Lehman’s failure in September 2008. This

is indicative of a perception that banks as a class faced higher common risks than before. At the same

time, the measured association between the common factors and U.S. high-yield spreads declined,

while the association with measures of banks’ own credit risk and of generalized risk aversion increased

(Brunnermeier, 2009; Dwyer and Tkac, 2009). An interpretation is that the Subprime Crisis made

investors more wary of the risks in bank portfolios for reasons largely independent of the evolution

of the real economy but that lack of detailed information on those risks led them to treat all banks

as riskier rather than discriminating among them.

Following Lehman’s failure, there was a further brief increase in the share of the variance ac-

counted for by the common components. Then, although the level of CDS spreads remained high,

the share of their variance accounted for by the common component fell back relatively quickly to

levels below those that prevailed just before the Lehman episode. In other words, the common

movements declined from their peaks but remained at the post-Bear Stearns elevated levels. Thus,

the perception persisted that the banks’ fortunes were linked. The association between the common

factors and high-yield corporate spreads also reemerged, evidently reflecting the perception that a

global recession was now in train. More importantly, the common component of CDS spreads became

more highly related with measures of funding and credit risk as measured by spreads in the asset-

backed commercial paper market and LIBOR minus the overnight index swap. An interpretation is

that whereas in the July 2007-September 2008 period investors became more aware of systemic risk

3To be clear, we do not attempt to identify causality. However, the association measures offer a rich set of stylized
characterizations. These characterizations are likely to be the basis for defining and probing more subtle hypotheses.

4These high-yield spreads have been found to be good predictors of U.S. GDP growth at horizons of about a year,
reflecting a financial-accelerator interaction between credit markets and the real economy (Mody and Taylor, 2003;
Mody, Sarno and Taylor, 2007). Because European high-yield spreads are closely correlated with US spreads and, as
such, offer no additional information, U.S. high-yield spreads are also a measure of global prospects.
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in an unfocused sense, Lehman’s failure caused that common risk to be more concretely identified

with both developments in the real economy and specific problems in the financial system.

In sum, then, our answer to the question posed in the title is as follows. Banks fortunes rise

and fall together even in normal times. But the importance of common factors rose to exceptional

levels between the outbreak of the Subprime Crisis and the rescue of Bear Stearns, reflecting increased

diffuse sense that credit risk was increasing. The period following the failure of Lehman Brothers then

saw a further increase in those interdependencies, reflecting heightened funding and counterparty risk.

In addition there were direct spillovers, as opposed to common movements, from the CDS spreads

of U.S. banks to those of European banks. After Lehman’s failure the prospect of global recession

became imminent, auguring the further deterioration of banks’ loan portfolios. At this point the

entire global financial system had become infected.

It is helpful to be clear about what this paper does not do. It does not pinpoint any one bank

or set of banks as systemically important. Rather, the extent of comovement in spreads points to

tendencies of the degree to which the system is perceived to be tied to common factors. An individual

bank within the set examined may be more or less tied to the common factors to the extent that it

has a larger or smaller extent of idiosyncratic risk. Ultimately, then, the methodology outlined here

is a guide for policy only to the extent that it highlights overall trends. The task of determining the

systemic importance of an individual bank requires examining the data in the books of the banks–or

worse, data that should be on the books but is not.

The rest of the paper is organized as follows. Section 2 specifies a dynamic factor model in which

common latent factors explain the movement of the CDS spreads of the 45 banks in our sample. The

model is estimated using PCA in recursive fashion, allowing the contributions of the components to

change over time. In Section 3, we consider the possibility of additional spillovers from inter-bank

exposures that go beyond the common movements identified by the latent factors. Then in Section

4, we describe the changing relations between these latent factors and a number of high frequency

financial series. We also provide a sensitivity analysis to check the robustness of our results. A final

section concludes.

2 Common Factors in CDS Spreads

We start by decomposing the change in CDS spreads of N=45 global banks into common and idio-

syncratic components. The term “banks” is used throughout in this paper, although some insurance

companies are also included in the sample. The sample runs from July 29, 2002 to November 28,

2008. Thereafter, the intense involvement of the U.S. authorities in managing the short-term vul-

nerability of the financial sector increasingly reflects the official interventions which, because they

4



operated differentially across the institutions, limits the validity of a market-driven common set of

influences on their CDS. The data are 5-year CDS spreads, as the five-year maturity is the most

widely traded. We use end-of-day quotes from the New York market for payment in U.S. dollars

based on U.S. dollar-denominated notional amounts. As is customary, the spreads are denominated

in basis points (100 basis points equal 1 percentage point). These are averaged over the week to

obtain a weekly series, smoothing out sharp daily movements and irregular trading, yielding 331

observations per bank. The data are taken from Bloomberg.

2.1 Preliminary Data Analysis

Table 1 reports summary statistics on spreads for 45 banks. Average spreads over the period vary

significantly across banks (from a low of 17 for Rabobank to a high of 101 basis points for AIG).5 Our

interest is not so much in the cross-sectional variation at this stage, however, as in the variation over

time, which has been substantial. Unlike sovereign CDS spreads where the standard deviations are

typically smaller than the means, the standard deviations of the CDS spreads of financial institutions

studied here are close to the means and sometimes larger. The minimum/maximum values further

highlight the considerable time-series variation. For example, the spread for Merrill Lynch ranges

from 15 to 473 basis points; in Europe, the range for Commerzbank varies from 8 to 260 basis points.

[Insert Table 1 about here]

Figure 1 tracks the time variation in median spreads for all banks, U.S. banks, and European

banks. In 2002, after the tech bubble burst and confidence was challenged by the events of September

11, 2001, CDS spreads were elevated. Some banks were able to purchase protection at relatively low

spreads of 20-50 basis points, but others paid more than 100 basis points. Subsequently spreads

declined everywhere. The low point was the week of January 17, 2007 when the median spread in

the full sample of 45 banks was 7.5 basis points. Thereafter, spreads increased gradually, reaching a

median of 12 basis points in the second week of July 2007. But even in that week, the highest spread

was 55 basis points for Bear Stearns.6 In contrast, the subsequent rise in spreads was dramatic with

twin peaks corresponding to the Bear Stearns rescue and the Lehman Brothers failure. For U.S.

banks, a high of 417 basis points was reached following the severe stress after the Lehman failure

during the week of October 1, 2008; the median spread then moderated to 268 basis points in the

last week of November 2008. The corresponding numbers for the European banks were 130 and 97

basis points, respectively.

[Insert Figure 1 about here]

5This variation is, however, smaller than the 100-fold variation in premia across the Japanese and Brazilian sovereigns
in the sample analyzed by Longstaff et al. (2010).

6Some, evidently, knew about the extent of its leverage.
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2.2 A Dynamic Factor Model of CDS Spreads

The first question we ask is whether the movements in spreads reflected common drivers. To answer

that question we estimate the “latent” or unobserved factors generating common movements. The re-

lationship between the unobserved factors (Ft) and the observed spreads (Xi,t) can be approximately

represented by a dynamic factor model (Chamberlain and Rothchild, 1983):

Xi,t = Λi,hFh,t + φi(L)Xi,t−1 + εi,t (1)

where Xi,t is a vector of the weekly changes in CDS spreads of each of the 45 banks, “i” refers to

a bank and “t” is the time subscript. Λi,h is a vector of factor loadings, and Fh,t are latent factors

(h = 1, . . . , k). The estimation procedure allows for εi,t to be cross-sectionally and time correlated

and heteroskedastic.7 Stacking the terms, specification (1) can be equally represented as:

X = FΛ′ +Φ(L)X + ε (2)

where X and ε are T ×N matrices, F is a T × k matrix, and Λ is a N × k matrix.

The idea here is that the covariance among the series can be captured by a few unobserved

common factors. The latent factors and their loadings can be consistently estimated by PCA. As

Bai and Ng (2002, 2008) and Stock and Watson (2002) show, the principal component (PC) estimator

enables us to identify factors up to a change of sign and consistently estimate the factors space up to

an orthonormal transformation.8 The estimation procedure also provides a measure of the fraction

of the total variation explained by each factor, which is computed as the ratio between the k largest

eigenvalues of the matrix X ′X divided by the sum of all eigenvalues.

The data for each bank are first filtered for autocorrelation since in the presence of serial corre-

lation the covariance matrix of the data will not have the factor structure (exact or approximate)

and as such can lead to biased inference. To assess variation over time, the model is estimated

recursively after the first 150 data points: as such, the filtering is also performed recursively. At

each recursion an AR(p) model is applied to each series, where the order, p is determined using the

individual partial autocorrelation function (PACF) and residuals from the AR(p) model are used as

the filtered series. It is worth noting that the use of weekly averages of the daily CDS spreads may

also introduce a moving average component in the errors of the constructed series. However, since

7Note, however, that the contribution of the idiosyncratic covariances to the total variance needs to be bounded
(Bai and Ng, 2008), which puts a limit on the amount of time and cross-correlation and heteroskedasticity such that
the number of cross-correlated errors can only grow at a rate slower than

√
N and analogously for the dependence over

time.
8Note that the consistency is related to the space spanned by the factors and not with respect to the individual

factor estimates.
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the PC estimation procedure allows for some serial correlation in the errors, this should not affect

the results substantially. Finally, all series are standardized at each recursion since PC estimates are

not scale invariant.

Some caveats and further motivation are in order with respect to our choice of modeling framework

and econometric methods. First, we do not attempt to model the time-variation in conditional

pairwise correlations across the CDS analyzed, which one could achieve by estimating a dynamic

conditional correlation (DCC) model of the type originally developed by Engle (2002). This is

because we are primarily interested in the common drivers across the whole set of banks analyzed,

which would be more cumbersome to extract from the richer structure of a DCC model, whereas this

task is straightforward in the context of specification (2).

Second, the dynamic factor model considered here does not allow explicitly for time-varying

volatility, which could generate biases in the estimation of the principal components and subsequent

estimation of the correlation between the principal components and observable economic variables.

This is important since changes in correlation between two series could be due to increases in volatility

in the common factor, as opposed to changes in the covariance between them. Thus, in addition

to the benchmark model for CDS spread changes which ignores the potential biases induced by

time-varying volatility, for robustness we also estimate the dynamic factor model with time-varying

factor volatility, and the details are given in Section 4.6. In general, a richer dynamic factor model of

CDS spreads would allow explicitly for time-varying, stochastic volatility and correlations, and could

be estimated by Markov Chain Monte Carlo (MCMC) methods.9 However, given that this paper

provides the first PCA analysis of CDS spreads during the crisis period, the use of a benchmark

model that is parsimonious has the advantage of establishing the bare facts in a more accessible

fashion. Moreover, the model estimated is comparable to traditional PCA analysis of the kind used,

for example, by Longstaff et al. (2010) for sovereign CDS spreads and Collin-Dufrense, Goldstein

and Martin (2001) for corporate bonds.10

2.3 Estimation Results and Discussion

Figure 2 shows changes over time in the contributions of the common factors to the total variation in

the CDS data, obtained from the estimated factors. Recall that up until mid-July 2007, i.e., before the

9For examples of MCMC estimation of multivariate stochastic volatility, see Della Corte, Sarno and Tsiakas (2009)
and Sarno, Schneider and Wagner (2012).
10A related literature focuses on estimating credit spreads, which is a key component in marking-to-market a financial

institution’s fixed-income investment portfolio. Credit spreads can be estimated using either bond prices (e.g. Campbell
and Taksler, 2003; Collin-Dufresne, Goldstein and Martin, 2001; Elton et al., 2001) or, more commonly, CDS spreads, as
in Longstaff, Mithal and Neis (2005) and Ericsson, Jacobs and Oviedo (2009). The CDS-based estimates are preferred
because of the greater liquidity of the CDS markets, which is due to the fact that CDSs do not require any upfront
investment and enable one to more easily short a firm’s credit risk. There are two common approaches to modeling:
analytical, structural models and statistical, reduced-form models. See Collin-Dufrense and Goldstein (2001), Chen,
Collin-Dufrense and Goldstein (2009), and Jarrow and Protter (2005) for a review.
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start of the Subprime Crisis, absolute movements in bank CDS spreads were small. The PCA shows

that even in this relatively tranquil period the perceived riskiness of different international banks

moved together to a considerable extent. The first component contributed just above 40 percent

of these movements and the second a further 10 percent. Together the first four common factors

explained about 60 percent of movements in CDS spreads in this period.11 The statistical procedure

does not tell us whether these common influences reflected interconnections within the banking

system or were the result of common external factors. To explore that distinction, in Section 4, we

report evidence on the relations between the common “unobserved” factors and observed variables

representing real economic prospects and metrics of banks’ funding stress and their systemic credit

risk.

[Insert Figure 2 about here]

A new phase commenced in July 2007, when HSBC announced large subprime-mortgage related

losses and CDS spreads rose sharply. While spreads retreated somewhat in the months thereafter,

they remained at significantly higher levels. Nevertheless, July 2007 saw the start of a tendency

towards an increase in the comovement of spreads. The rise in the share of variance explained by

the first factor and the first four factors combined trended up even as the average spreads rose and

fell. Thus, while the sense of crisis went into remission periodically in late 2007 and early 2008, the

perception remained that banks faced common risks. By early March 2008, prior to the rescue of

Bear Stearns, the share of the first component had risen by about 15 percentage points to 56 percent.

The importance of the common factors continued to increase following the Bear Stearns rescue,

reaching a new high in May 2008, at which point the first common factor explained almost 60

percent of the variance of CDS spreads. Then, the period between May and September 2008 was one

of general weakness of financial-market indicators. The share of the variation explained by common

components of CDS spreads exhibited some tendency to decline in this period, although it remained

not very far below the high level reached in May.

The failure of Lehman Brothers was accompanied by a further increase in the comovement of

spreads. The share of the variance accounted for by the first principal component jumped to 65

percent, while the share accounted for by the first four reached 80 percent. However, there was

moderation of the comovement by the first week of October, as the share of the variation explained

by recursively computed common factors fell back to pre-Lehman levels, implying that the importance

11Factors other than the first four individually explained less than 4 percent of the variation. Thus, our analysis
below focuses on the PC estimates obtained using the four factor “space.” This is supported by the results obtained
by running the Onatski’s (2010) criterion for determination of the number of factors in the data through a grid of
parameter values. The Bai and Ng (2002) information criterion does lead to the possibility of more than four factors,
but this criterion tends to overestimate the number of factors in samples with relatively small cross-sections and high
cross-correlations (Anderson and Vahid, 2007, Onatski, 2010). As a practical matter, note that our results remain the
same with either 3 or 5 factors.
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of factors decreased to below pre-Lehman levels over this period.

To get a sense of whether the degree of commonality we observe for international banks is high

or low, we can compare these results with those of Longstaff et al. (2010) for sovereign CDS spreads.

Longstaff et al. find that the fraction of the variance of spreads on the CDS of 26 sovereigns

explained by the first component varies between 32 and 48 percent. Note that they use monthly

(rather than weekly) changes in spreads and the higher share is for months in which observations

were available for all sovereigns. These features of their analysis smooth out some part of the

idiosyncratic movements and, to that extent, might overstate the commonality. As such, the initial–

pre-subprime–contribution of the first component of banks’ spreads at about a 40 percent share is

at least in a comparable range, and possibly implies greater commonality. That share of the first

component for the banks, as we have reported, then rose to approximately 60 percent just before the

Lehman failure and further to 65 percent just after. When considering the first four components,

Longstaff et al. (2010) find that they explain 60 to 70 percent of the share of sovereign spreads

variation, which is comparable to our range of 60 to 80 percent. Another implication is that for

sovereign spreads, the second component and beyond have a more substantial contribution than is

the case for banks, implying greater variety of global common influences on sovereign spreads.

3 Additional Spillovers

In this section, we investigate whether, once the common factors are considered, the CDS spread of

a particular bank is further influenced by current and lagged changes in CDS spreads of other banks.

In other words, we ask whether there is significant information in CDS spreads of other banks over

and above that contained in the common factors.

These spillover tests are performed by regressing the change in the (non-filtered) CDS spread

of bank “i” on its own lags, the common factors, and the (lagged and current) changes in CDS

spreads of another bank (bank “j”), as in equation (3). Since the CDS data exhibit a potential

break in the last week of July 2007 we also include a dummy variable for the sub-prime period,

where Dt = Xj,t−1I (t ≥ τ):
12

Xi,t = ΛiFh,i + φi(L)Xi,t−1 + λj(L)Xj,t−1 + δDt + ui,t. (3)

Equation (3) is estimated for each pair of banks, which yields a total of 2025 regressions. In each

case, we test for the statistical significance of the coefficients λj by computing the heteroskedascity-

12Bai and Ng (2006a) showed that these so-called “factor-augmented” regressions yield consistent estimates of the
parameters as T,N → ∞ provided that

√
T/N → 0. Of course, in a finite sample the estimation error will not

disappear completely.
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robust Lagrange multiplier (LM) test of specification (3). The restrictions are tested using a standard

χ2 test.13

In only about 2.5 percent of the 2025 regressions is the CDS spread of another bank significant

at the 5 percent significance level. This supports the validity of the common factors estimated in the

preceding section. The relatively few additional spillovers we identify are illustrated in Figure 3(a).

Following the start of the sub-prime crisis, the incidence of such spillovers declined, implying that

the commonality is well captured by the latent factors. However, the additional spillovers increased

notably starting in mid-July 2008 and reached their maximum during the Lehman Brothers crisis.

An interpretation is that not just global economic drivers (which are presumably being picked up

by the common factors) but also counterparty risk and other similarities in a few banks’ portfolios

(which are being captured by the additional spillovers) figured importantly in individual CDS spreads

around the time of the Lehman Brothers failure.14 The banks for which additional spillovers matter

tend to be well-known names: they include ING, Royal Bank of Scotland and UBS in Europe, and

Bank of America, J.P. Morgan and Morgan Stanley in the U.S.

[Insert Figure 3 about here]

Our procedure also allows us to glean some evidence of international spillovers. Here we consider

the percentage of banks in the U.S. significantly influenced by a bank in the European Union (Figure

3b) and vice versa (Figure 3c). Note that we are not looking here at pairwise influences; rather the

question is what percentage of banks has at least one cross-border relationship with evidence of addi-

tional spillovers.15 The period before the sub-prime crisis is relatively stable with moderate evidence

of spillovers from the European Union to the U.S. (Figure 3b) and little evidence of spillovers from

U.S. banks to European banks (Figure 3c). Following the start of the crisis in July 2007, however,

the incidence of additional spillovers from the U.S. system to Europe increased, particularly in pe-

riods of high distress (in August 2007 and from the beginning of July 2008 onwards). Interestingly,

the magnitude of additional spillovers from European to U.S. banks declined in this period. This

is consistent with the view that developments in U.S. banks were the stronger source of perceived

financial risk starting in the early stages of the Subprime Crisis.

13The heteroskedasticity-robust estimate of the covariance matrix is obtained using the Davidson and MacKinnon
(1985)’s transformation of the squared residuals. Simulation results in Clark and McCracken (2005) and Rossi (2005)
establish that this test does not lose power in establishing the statistical significance of variables in OLS regressions
subject to a structural break provided that the relationship existed for any subsample (i.e. before or after the break).
However, it is well known that in the presence of breaks and heteroskedasticity, all classical tests may be oversized
(Hansen, 2000). Therefore, we also run the robust bootstrap LM test based on the fixed design wild bootstrap (Hansen,
2000) and the recursive wild bootstrap (Goncalves and Kilian, 2004), but the results are not significantly different. In
addition, we also perform a battery of Monte Carlo experiments using the LM and Wald statistics (with and without
bootstrapping), and while both tests had similar power properties, the LM test is found to display better size properties.
Full details are available upon request.
14The importance of counterparty problems due to the failure of Lehman Brothers is emphasized by, inter alia,

Brunnermeier (2009), Dwyer and Tkac (2009) and Jones (2009).
15Clearly, this leads to a larger fraction of banks than where the assessment is on a pairwise basis.
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4 Correlating Latent Factors with Observed Financial Variables

The next step is to examine the relation between the latent factors identified in Section 2 and the

observed financial variables. While the exact association of a financial variable with any one of the

estimated factors is hard to define due to non-uniqueness of the factor estimates, we can measure

the association of financial variables with the entire set of estimated factors and investigate under

which conditions correlations with individual factors are still informative.

4.1 Some Statistical Considerations

Let Gt be an M -dimensional vector of observed financial variables. Bai and Ng (2006b) develop

statistical criteria which can be used to investigate whether any of the candidate series yields the

same information that is contained in the factors. The general idea behind their tests is to examine

whether any of the candidate series can be represented as a linear combination of the latent factors

allowing for a (limited) degree of noise in the relationship, so that Gm,t = β
′

mFt+ ξm,t, where Gm,t

is an observable financial time series. Defining the OLS estimates from this regression as β̂m, the

residual as ξ̂m and the predicted value Ĝm,t = β̂mF̂t, a convenient measure that allows us to compare

Gm,t with Ĝm,t is defined as:

R2(m) =
V̂
(
Ĝm,t

)

V̂ (Gm,t)
(4)

where V̂ (·) denotes the sample variance and V̂
(
Ĝ
)
is computed using the sample analogue of the

factors’ asymptotic covariance matrix, which is calculated to be robust to non-zero cross-correlations

and time-series heteroskedasticity (see Bai and Ng, 2006a,b for further details). By definition R2(m)

is bounded between 0 and 1: it equals 1 if there is exact association between the observed variable

Gm and the factor space, and is close to 0 in the absence of any relation.
16

Instead of examining the relationship with the entire factor space, the observed series can also be

associated with a particular factor subspace, including one particular factor. Ahn and Perez (2010)

proposed moment selection criteria that consistently determine the number of factors that can be

related to the set of observable series of interest.17 The criteria resemble the well-known likelihood-

based selection criteria BIC and HCC, using the GMM J-statistic for testing the over-identifying

restrictions. Once this number of factors is determined, the individual correlations between factors

and the observed series can be examined. The Ahn-Perez analysis makes the relatively strong

assumption of independence between the idiosyncratic part of the movement in CDS spreads and the

16An alternative measure defined in Bai and Ng (2006b) with an analogous intuition is NS(m) =
V̂ (ξ̂m,t)
V̂ (Ĝm,t)

. The

obtained results with this measure are equivalent to those obtained with R2(m).
17This procedure is essentially an extension of Andrews and Lu’s (2001) general approach to model and moment

selection in the generalized method of moment (GMM) estimation.
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observed series. If this assumption is invalid, then the results will be biased since the rejections of

the null hypothesis of no correlation may occur for any number of factors related to the observables.

To obtain robust results we therefore adopt a pre-step estimation procedure to validate the series of

observables we use.18

Among other statistical considerations that are worth noting, with regard to the Bai and Ng’s

(2006b) R2 criterion, it is not straightforward to determine the threshold that would signal a “match-

ing” between the factor space and individual series of interest when the relationship is contaminated

by some degree of noise. Also, with regard to correlations with individual factors, the concern is

whether these correlations uniquely identify the relationships with a particular factor. For instance,

finding a correlation of 0.5 between the first factor and a series of interest may genuinely reflect a

correlation but may also be spuriously picking up a correlation between the second factor and the

series. This is a direct consequence of the non-consistency of the individual PC estimates - the first

principal component can be a good approximation for the first factor but it can also be a linear

combination of (all) factors. Hence, looking at the individual correlations between the series and

principal components can spuriously pick up the correlation between the series and other factors. In

general, the literature has not fully dealt with these issues. It is commonplace to report the criteria

and the correlations without acknowledging their non-uniqueness. To evaluate the seriousness of

these limitations, we used a Monte Carlo experiment to investigate how these procedures behave and

to reassure ourselves that the results are meaningful and robust.19

18Given the structure of the procedure and if the true number of factors is known and equal to k, then for m observed
series it follows that if we reject the null hypothesis that m(N − k) moment conditions are zero, this may happen only
if the instruments (observed series) are correlated with a subset of the idiosyncratic errors. If the observed series
were correlated with all idiosyncratic errors, then this would imply the existence of another factor in the data. The
useful pre-step therefore is to compute a J-test using a standard optimal HAC weighting matrix for m(N − k) moment
conditions and test whether the null is rejected. Following the non-rejection of the null, Ahn and Perez (2010)’s model
selection procedure can be applied; otherwise the set of observed series needs to be reconsidered. Note that the pre-step
procedure can be seen as leading to a conservative selection of correlates since we exclude all observable series that are
correlated with both the factors and idiosyncratic variations: the selected observables are then very robust.
19We perform the following experiment, designed to resemble the characteristics of our CDS data (not reported but

available upon request). We allow for the data to be cross-correlated and heteroskedastic and subject to a break in
volatility. In the first experiment the factors explain a roughly equal percentage of total variation, whereas the second
experiment captures the situations when the first factor explains the largest part of the overall variance and when its
importance increases after the break point. The “observable” series are generated through a linear relationship with
factors with a varying degree of noise. The R2 criterion and simple correlations between observable series and the
estimates of the first three factors are obtained using 5000 simulations. The Ahn and Perez’s (2010) GMM-based BIC
criterion was computed using 1000 simulations and 100 randomizations to save on computing time. The main findings
from the experiment are the following. First, the GMM-based BIC criterion performs fairly well selecting in all cases
the correct number of factors. The proposed pre-step estimation captures whenever the series are correlated with the
idiosyncratic errors. Second, the R2 estimates are significantly lower than those proposed by Bai and Ng (2006b) when
there is some noise in the relation and breaks in volatility. In particular, the R2 estimates we highlight below are
meaningful measures of the relationships of interest under moderate levels of noise. Third, the signal-to-noise ratio
from using correlations as a proxy improves with the difference in the importance of factors.
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4.2 Correlates

We limit our attention to U.S. variables, since the corresponding European variables are highly

correlated with U.S. series. A first set of variables representing the real economy includes the cor-

porate default risk measured by the high-yield spread (HYS), risk aversion (VIX), and returns on

the S&P500 stock index.20 A second set of variables representing the banks’ financial risks includes

the credit spread (LIBOR minus overnight index swap), the liquidity spread (overnight index swap

minus the Treasury bill yield), and spreads on asset backed commercial paper (ABCP).21

The GMM-based model and moment selection criterion of the validity of the observed series is

performed first and the results are presented in Table 2. The test is performed for the full sample

and two subsamples (up to July 2007 and up to May 2008) in order to examine whether the most

recent period (with possible outliers) influences the results. In the first column of Table 2 we can see

that none of the proposed series is correlated with the idiosyncratic part of CDS spreads since the

frequency of rejections of the null among all randomizations of the data is very small for all samples.

This implies that we can use the moment selection criteria to investigate the relationship between

the observed series and the factors. In turn, the results from full and subsample estimation of the

criteria suggest that the information in the set of observed series can be associated with the three or

four factor subspace.22

[Insert Table 2 about here]

4.3 The Real Economy Prior to the Subprime Crisis

In the “real economy” group, we consider three correlates. High-yield spreads (HYS, spreads on

bonds issued by less-than-investment-grade issuers) reflect increased corporate default probabilities

and are known to do well in predicting short-term GDP growth (Mody and Taylor, 2003). The S&P

500 average reflects the market’s perception of the economic outlook, while the VIX is a measure of

economic volatility embedded in stock price movements.

Figure 4 shows the evolution of (median) CDS spreads in relation to these observed variables.

Prior to the start of the Subprime Crisis, the HYS and the VIX trended down along with the median

CDS spreads. As the figure suggests and we show below, the real economy as represented by the

stock market bore less short-term relationship with the movement in CDS spreads. The HYS, VIX,

20VIX is the implied volatility on the S&P 100 option and is a widely used measure of global risk aversion.
21As with the CDS data, all series are recursively filtered and are standardized prior to the estimation of the

correlations.
22For the full sample, the various criteria (namely, BIC1, BIC2, BIC3 and HQQ) suggest the existence of a relationship

between the series and four factors. For the subsamples, BIC1 suggests a relationship with only one factor, whereas
three or four factors are suggested by other criteria. Given that apart from the first factor, all other factors may be
perceived as weak, BIC1 may underselect the true number of relationships; however, BIC3 and HQQ tend to overselect
the true number of relationships (Ahn and Perez, 2010). As such we base our inference primarily on BIC2. See Ahn
and Perez (2010) for formal definitions of the BIC1, BIC2, BIC3 and HQQ criteria.
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and CDS spreads were all at low levels prior to July 2007. While they rose subsequently, their short-

term movements became less correlated between the start of the Subprime Crisis and the failure of

Lehman Brothers.

[Insert Figure 4 about here]

In Figure 5, panel A, we show the association of the first four factor space with HYS; this was

relatively high prior to the Subprime Crisis. The R2 criterion gives a value of 0.5 on the eve of the

Subprime Crisis. In contrast, the association with the S&P 500 returns is low–less than 0.1. Notice

that the R2 for the VIX lies in between, but at 0.2 is at the lower end of the range.

[Insert Figure 5 about here]

The implication is that perceptions of banks’ risk in that tranquil period were shaped by a global

factor that is best summarized by corporate default risk. This is reasonable not just because of the

banks’ direct exposure to default risk but also because HYS has a proven track record as a predictor

of economic prospects (e.g. Mody and Taylor, 2003). In particular, HYS movements capture the

operation of the financial accelerator: high spreads imply high expected default rates (and hence

lower collateral), lower credit supply, reduced growth prospects, and hence higher spreads. HYS

has also been found to be a significant explanatory variable of emerging market spread differences

across countries and their movements over time (see Eichengreen and Mody, 2000, and Longstaff et

al., 2010, who find it to be the most potent of their candidate variables). In contrast, stock returns

include both upside and downside movements: while high stock returns presumably lower risk to a

degree, banks’ risks are apparently more clearly defined by downside risks as reflected in HYS. The

fact that the correlation with the VIX is significantly smaller than for HYS suggests that a higher

generalized risk aversion does not necessarily translate into banks’ risk premia.

These interpretations are supported by the correlations with specific factors reported in Panel

B of Figure 5. Up through the start of the Subprime Crisis, the HYS was most highly correlated

with the first principal component of CDS spreads.23 In contrast, there was almost no correlation

with the second factor. The same is true for the VIX (panel C). In contrast, S&P 500 returns had a

higher correlation with the second factor (panel D). An interpretation is that the first factor reflects

global perceptions of downside risks, while the second gives more weight to general movements in

expected future profitability. Note, though, that the second factor explains a much smaller fraction

of the overall variance of CDS spreads. Hence returns had a much weaker association with spreads’

movements.

23Hereafter, all the correlations are expressed in absolute terms for ease of comparison.
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4.4 The Emergence of Financial Factors

Thus, prior to the Subprime Crisis, global economic factors as summarized in HYS were the main

drivers of the commonality in CDS spreads of international banks. Following the onset of the crisis

and through the Bear Stearns bailout, however, the association with the HYS declined (Figure 5,

panel A). The decline in the overall association between the HYS and the factor space reflected a

decline in correlation with the increasingly important first factor of CDS spreads and occurred despite

some increase in correlation with the second factor (panel B). Evidently, there was some dissociation

with the real economy despite the fact that banks’ prospects appear to have been perceived as

increasingly correlated with one another in this period. Intuitively, the common risk did not obviously

emanate from a sense of worsening of economic prospects. Moreover, an initial sharp increase in

association with the VIX, reflecting generalized risk aversion, died down to pre-crisis levels by the

time of Bear Stearns rescue (Figure 5, panels A and C). The small rise in the R2 between S&P

500 returns and the CDS factor space probably reflects the fact that fears about the stability of

the banking system were driven more by problems in the banks’ positions in securities than by the

ability of their corporate customers to stay current on their loans.

Once the Subprime Crisis started, the relevance of financial variables, particularly those related

to banks’ credit and funding risks, acquired greater prominence. A common metric of banks’ credit

risks is the TED spread, or the difference between the interest rates on interbank loans (we use the

US dollar, 3-month LIBOR) and short-term U.S. government debt (3-month US Treasury bills). This

captures the risk premium on bank borrowing, since LIBOR is the rate at which banks borrow and

Treasury bills (T-bills) are commonly considered risk-free.

However, the TED spread reflects not just banking sector credit risk but also includes liq-

uidity or flight-to-quality risk. These two categories of risks can be approximately decomposed.

TED=(LIBOR-OIS)+(OIS-“T-bill”), where the OIS is an “overnight index swap” which measures

the expected daily average Federal Funds rate over the next 3 months. Thus, the TED spread can

be decomposed into the banking sector credit risk premium (LIBOR-OIS) and liquidity or flight-to-

quality premium (OIS-T-bill).24

The TED spread rose sharply in the post-Lehman-crisis period as Figure 6 shows. While the

liquidity premium (the OIS-T-bill differential) also increased, the more substantial increase was in

credit risk (the LIBOR-OIS differential). Note also the spike after the start of the Subprime Crisis

in the spread on ABCP. Since banks use these instruments for their short-term funding, the rise

in this spread proxies the risks associated with rollover in short-term funding. That the trading in

24Of course, the OIS-T-Bill spread picks up some credit risk, but most analysts view the “general collateral” repo
rate as the “risk free” rate (e.g. Longstaff, 2000; Della Corte, Sarno and Thornton, 2008), and that plots very closely
to the OIS rate. The LIBOR-OIS spread is analyzed by Taylor (2009) and critiqued by Jones (2009).
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market for ABCP issued by banks and conduits decreased substantially within days of the Lehman

bankruptcy is well known; e.g. see Dwyer and Tkac (2009) for an overview of events in fixed-income

markets before March 2009.25

[Insert Figure 6 about here]

The measured association of the common factors with these financial variables, which had been

historically close to zero, rose following the start of the crisis (Figure 7). Thus, perceived bank risk,

which had previously stemmed mainly from the development of the real economy, now stemmed

more from banks’ own internal credit and funding risks. However, while liquidity risk (as captured

by the OIS-T-bill spread) and the ABCP spread showed some correlation with the CDS factor space

initially, those correlations were not sustained. In contrast, the association with credit risk was

sustained. Credit risk has the largest R2 of these three financial variables with the factor space after

the start of the crisis; in particular, the correlation with the first factor rose steadily up until Bear

Stearns.

[Insert Figure 7 about here]

While the change in the pattern of relationships clearly points to greater emphasis on the internal

workings of the banking system (rather than to the broader global economy), the estimates we find

even at their elevated levels during this phase are small. To the extent that banks’ credit risk

and funding risk did become more important, our measures for these features may not be sufficiently

encompassing. In addition other concerns, such as lack of transparency of the complex asset holdings,

may have also acquired greater prominence in assessing bank risks.

Not much changed between the Bear Stearns rescue and the Lehman failure. The relation with

HYS stabilized at below pre-crisis levels and the association with credit risk remained significantly

above pre-crisis levels. The values of R2 for other variables remained low, near their pre-crisis levels.

Thus while corporate default risk remained a salient factor determining banks’ risk, there was a shift

as this traditionally-dominant factor lost ground and the risk that banks themselves may not be able

to honor their obligations gained prominence.

4.5 After Lehman

The immediate post-Lehman phase is remarkable for the unprecedented alignment of risks. The

association between the CDS factor space and all of the observed variables rose, according the R2

criterion, with the association with the financial variables increasing most sharply. The increase in

credit and funding risk premia reflected the stress faced by banks. In addition, these developments

presumably contributed to a revision of prospects of the real economy that further undermined

25Note also from Figure 6 that the LIBOR-OIS spread moved rather closely with the spreads on ABCP, often used
to proxy the banks’ costs of funding since banks issue such paper to fund their investments.
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confidence in the condition of and prospects for the banking system.

By theR2 criterion, the association between the space of common factors in bank CDS spreads and

HYS increased following the failure of Lehman, reversing its decline in the preceding four quarters.

The association with the S&P 500 returns showed a particularly large increase as global economic

prospects were seen as increasingly tied to the fortunes of banks. However, despite the high level of

VIX during this period, the association between the CDS factor space and VIX increased relatively

little. In contrast, there was an especially sharp increase in the association between the financial

variables and the common factor in banks’ CDS spreads.

Differences in the correlations between these real and financial variables and the first and second

common factors provide further intuition. The financial stress indicators became more correlated

with the first factor of CDS spreads; that correlation rose to levels that had not been seen before.

In contrast, the variables that had moved the first factor in the past, particularly the HYS, declined

sharply in importance in the immediate post-Lehman phase. Instead, the correlation between the

real economy and the common CDS movements shifted to the smaller, second factor.

4.6 Sensitivity Analysis

The consistency of the PC factor space estimates which is established in a series of papers by Bai and

Ng constitutes the basis for our empirical analysis. Consistency is obtained under the assumptions of

a limited degree of cross-section and time correlation and heteroskedasticity in the data. Moreover,

the PC estimation does not take into account time-varying volatility of individual factors, which

may lead to biases in the estimation of the factors and subsequent estimation of the correlation

between the principal components and observable economic variables. To assess the seriousness of

these limitations we use three additional methods of estimation.

Makarov and Papanikolaou (2009) recently proposed an extension of specification (1) that ex-

plicitly allows for time-varying factor volatility such that:

Ft = Σ
1/2
t ut (5)

where EΣt = I and ut ∼ N (0, I). The model still implies an unconditional factor structure as

in (1), but the individual factors are now allowed to display time-varying volatility. The method

is especially useful in cases when the relative volatility of factors varies over time. Estimation of

the model consists of two steps. In the first step standard PCA estimation is performed. In the

second step, the first-step estimates are corrected using the estimated rotation matrix such that

the computed factors are also conditionally uncorrelated. The rotation matrix is estimated as the

solution that minimizes the squared off-diagonal elements of the realized factor correlation matrix.
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The realized factor correlation matrix is computed using a rolling window of daily factor realizations

over the previous eight weeks.26 To control for possible changes in the volatility of the observed

correlates each series is filtered for volatility in the same way using the rolling window of daily

realizations over the previous eight weeks.

To assess the impact that the non-spherical idiosyncratic errors may have on the results, we also

perform two alternative estimations: the weighted principal component (WPC) estimation proposed

by Boivin and Ng (2006), and the robust PCA estimation proposed by Pison, Rousseeuw, Filzmoser

and Croux (2003). The former controls for non-negligible cross-correlations and heteroskedasticity

by exploiting the information from the sample error covariance matrix to improve the efficiency

of the PC estimator through a two-step procedure. The robust PC controls for the presence of

outliers through computing the minimum covariance determinant (MCD) estimator, which is an

outlier resistant estimate of the data covariance matrix. The PC estimator is then obtained in a

classical way using the MCD estimate.

To save space, we only give the description of the results from this further analysis, whereas

full details are available on request. The results from all three methods generally support the main

findings from the PCA discussed earlier. In particular, if we allow for time-varying volatility in the

factors, the R2 estimates are virtually identical to the ones we recorded with the standard PCA. This

is not surprising since it can be expected that the PC estimates of the factor space remain consistent

even in the presence of time-varying volatility in the factors, given that the factors unconditional

covariance matrix is the same regardless of whether there is time variation in factors’ volatility.

However, individual factors’ correlations exhibit more fluctuations when the procedure is employed

recursively, although the general pattern of correlations is consistent with that observed in Figures

5 and 7 for the standard PCA.

Results from weighted PC estimation confirm the previously obtained interpretation of the fac-

tors, both quantitatively and qualitatively. The dynamics of correlations computed from robust PC

estimation also remain unchanged, the only difference being in the level of correlations, which is

slightly lower when computed using the robust factor estimates.

5 Conclusions

We have analyzed common factors in bank credit default swaps both before and during the credit

crisis that broke out in July 2007 in order to better understand how this crisis spread from the

subprime segment of the U.S. financial market to the entire U.S. and global financial system. We

showed first that common factors in CDS spreads are present even in normal times; they reflect the

26We have also experimented with different choices of the window length, but the results were very similar.
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impact of the macroeconomy–the ultimate common factor from this point of view–on banks as a

group. But the importance of the common factor increased significantly between the eruption of the

Subprime Crisis in July 2007 and the failure of Lehman Brothers in September 2008. This increase

in the common factor seems to have been associated with a proxy for the banking-sector credit risk

premium, especially in the period prior to the rescue of Bear Stearns. In contrast, the association

with the state of the real economy, which had been evident prior to the crisis, appears to have been

somewhat attenuated. In other words, in this abnormal period investors were not yet concerned so

much with the prospect of a global recession that would impact the banks’ loan books as with other

credit risks affecting the banks — connected, presumably, with their investments in subprime related

securities.

After the failure of Lehman Brothers the importance of the common factor remained elevated.

But where movements in that factor had previously been related to diffuse measures of generalized

banking-sector credit risk, they now became increasingly linked to measures of funding risk. In

addition, the association of the common factor with the real economy reasserted itself, as evidence

of the deepening recession mounted.

What does this evidence imply for policy decisions taken in this period? With benefit of hindsight

(which is what a retrospective statistical analysis permits), we can see a substantial common factor in

banks’ CDS spreads that could have alerted the authorities to the risks of allowing a major financial

institution to fail. The further increase in that common factor in the period between the outbreak

of the Subprime Crisis and the critical decision concerning Lehman Brothers should have implied

further caution in this regard. It was not the implications of any impending economic slowdown

about which investors were primarily worried in this period; rather the concern was about the state

of the banks’ asset portfolios and, presumably, their investments in securities in particular. The

heightened comovement at least in part reflected incomplete knowledge about the magnitude of

toxic asset positions in this relatively early stage of the crisis and, hence, raised the possibility that

instability could spread more quickly and widely than assumed in the consensus view. In the event,

Lehman Brothers was allowed to fail, after which the sensitivity of the CDS spreads of global banks

as a group experienced heightened sensitivity to the whole range of economic and financial variables.

As those variables deteriorated, the result was a perfect storm.
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Table 1. The Sample of Financial Institutions: Descriptive Statistics

Mean
Standard

deviation
Median Minimum Maximum

Abbey 26.29 27.36 15.16 4.51 137.93

Barclays 28.45 37.81 12.21 5.65 251.89

HBOS 35.64 54.12 13.78 4.84 385.86

HSBC 23.73 23.88 14.01 4.99 134.96

Lloyds TSB 22.39 27.24 12.30 3.87 184.40

RBS 28.84 39.71 13.02 4.00 289.11

Standard Chartered 31.65 30.37 18.59 5.87 176.73

Allianz 36.19 27.76 24.92 6.03 136.59

Commerzbank 45.81 41.82 27.05 8.14 221.83

HVB 43.24 36.41 29.64 6.32 167.81

Deutsche Bank 31.38 28.54 18.29 10.11 161.68

Dresdner Bank 34.73 30.22 22.00 5.52 154.83

Hannover

Rueckversicherung 44.88 30.08 34.67 8.17 138.25

Münchner Hypoth. 32.31 20.56 25.56 5.78 120.19

Monte dei Paschi 30.90 24.31 21.03 6.17 137.93

UniCredit 28.27 25.28 16.06 7.65 133.66

AXA 49.19 46.95 27.93 9.11 235.14

BNP Paribas 20.51 19.01 12.31 5.51 103.83

Credit Agricole 24.19 27.47 13.27 6.08 145.56

LCL 24.58 27.61 12.58 6.16 150.27

Société Générale 24.85 27.11 13.25 5.97 138.93

ABN AMRO 26.79 29.92 15.03 5.26 172.69

ING 26.54 31.12 15.44 4.45 163.93

Rabobank 16.83 22.49 8.35 3.12 131.92

Banco Santader 31.46 30.47 16.89 7.68 143.98

Credit Suisse 38.98 35.44 20.87 9.04 169.57

UBS 29.04 43.34 11.63 4.55 276.23

Banco Comerc. Port. 33.20 28.23 21.86 8.20 145.36

American Express 59.97 90.51 25.84 9.07 603.16

AIG 101.24 310.18 24.87 8.57 2624.15

Bank of America 35.03 33.93 21.34 8.47 191.45

Bear Sterns 60.14 62.51 34.47 19.01 574.31

Chubb 39.28 29.26 29.94 10.01 153.70

Citibank 43.19 54.79 20.83 7.52 351.93

Fed. Mortgage 22.81 14.09 20.67 6.35 82.55

Freddie Mac 21.77 14.77 19.03 5.28 83.10

Goldman Sachs 57.72 64.67 34.33 18.95 437.37

Hartford 67.82 111.88 36.36 10.82 826.17

JP Morgan 44.05 31.96 31.37 11.81 174.98

Lehman Brothers 86.00 127.03 36.74 19.49 641.91

Merrill Lynch 68.94 77.04 34.60 15.61 417.10

Met Life 62.58 108.22 30.46 11.20 790.42

Morgan Stanley 73.21 117.44 34.42 18.59 1153.09

Safeco 46.01 34.38 32.88 18.04 181.00

Wachovia 52.70 84.18 21.42 10.40 741.79
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Table 2. The Validity of the Correlates

Variable set Sample size JN−4 BIC1 BIC2 BIC3 HQQ

I1 29/07/2002− 28/11/2008 0.01 4(0.52) 4(0.77) 4(0.91) 4(0.74)

I1 29/07/2002− 30/04/2008 0.01 1(0.52) 4(0.64) 4(0.85) 4(0.525)

I1 29/07/2002− 18/07/2007 0.01 1(0.74) 3(0.47) 4(0.87) 4(0.475)

Notes: The test formulas are defined in Ahn and Perez (2008). The number of randomizations

of the cross-section ordering was set to 500. JN−4 shows the percentage of rejections of the moment

condition across randomizations when the true number of factors is 4 (test for independence of

idiosyncratic errors and observable series). BIC1, BIC2, BIC3 and HQQ show the number of factors

suggested by each and, in parenthesis, the empirical frequency of the selected number of factors over

all randomizations. The set of correlates, I1 includes the high-yield spread, the VIX, the S&P 500

returns, the spread on asset-backed commercial paper, the spread of the LIBOR over the overnight

index swap, and the spread of the overnight index swap over the T-bill rate.
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Figure 1: Evolution of Spreads on Credit Default Swaps (median, in basis points)
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Figure 2: Share of CDS Spreads’ Variation Explained by the Four Factors
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Figure 3. Additional Spillovers - (a) Fraction of Pairs of Banks Incurring "Additional" Spillovers
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Figure 4. CDS Spread and the "Real Economy"
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Figure 5. Association of Common Components with the "Real Economy"
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Figure 6. CDS Spread and Costs of Funding (basis points)
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Figure 7. Association of Common Components with the Costs of Funding
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Notes: Series: OIS: Overnight Index Swap; ABCP: Spread on Asset Backed Commercial Paper;

Tbill: 3-month Treasury Bills. Vertical line indicators: SUB: Start of Subprime crisis; BRS: Rescue

of Bear Stearns; LEH: Failure of Lehman Brothers;
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